1
|
Mamabolo K, Wadee R, Perner Y, Magangane P, Duze ST, Marimani M. Differential Epigenetic Regulation in Uninfected and Tuberculosis-Human Immunodeficiency Virus Co-Infected Patients. Microorganisms 2024; 12:1001. [PMID: 38792830 PMCID: PMC11123988 DOI: 10.3390/microorganisms12051001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
This study aimed to compare the degree of epigenetic modifications between a TB-HIV co-infected cohort and uninfected subjects. Formalin-fixed paraffin-embedded (FFPE) tissues were retrieved from 45 TB-HIV co-infected and 45 control individuals. Real-time PCR was applied to compare the level of expression of genes involved in epigenetic regulation. The protein multiplex assay was used to assess the degree of protein modification. DNA sequencing was used to determine the evolutionary relationships between the infecting HIV and Mtb strains. Our results indicated a significant increase in the expression of the five candidate genes in the patients with TB-HIV relative to the control cohort. A sharp increase in the degree of histone methylation, acetylation and phosphorylation was observed in TB-HIV co-infected patients. The phylogenetic analysis classified the strains into three distinct HIV clusters and five Mtb clusters. The disparities in the expression profiles of our candidate genes between the TB-HIV cohort and non-TB-HIV group highlights the important role played by various TB and HIV strains in regulating the host gene expression landscape.
Collapse
Affiliation(s)
- Katlego Mamabolo
- Anatomical Pathology, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg 2001, South Africa (R.W.)
| | - Reubina Wadee
- Anatomical Pathology, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg 2001, South Africa (R.W.)
| | - Yvonne Perner
- Anatomical Pathology, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg 2001, South Africa (R.W.)
| | - Pumza Magangane
- Anatomical Pathology, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg 2001, South Africa (R.W.)
| | - Sanelisiwe Thinasonke Duze
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg 2001, South Africa
| | - Musa Marimani
- Anatomical Pathology, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg 2001, South Africa (R.W.)
| |
Collapse
|
2
|
Zang X, Zhang J, Jiang Y, Feng T, Cui Y, Wang H, Cui Z, Dang G, Liu S. Serine protease Rv2569c facilitates transmission of Mycobacterium tuberculosis via disrupting the epithelial barrier by cleaving E-cadherin. PLoS Pathog 2024; 20:e1012214. [PMID: 38722857 PMCID: PMC11081392 DOI: 10.1371/journal.ppat.1012214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Epithelial cells function as the primary line of defense against invading pathogens. However, bacterial pathogens possess the ability to compromise this barrier and facilitate the transmigration of bacteria. Nonetheless, the specific molecular mechanism employed by Mycobacterium tuberculosis (M.tb) in this process is not fully understood. Here, we investigated the role of Rv2569c in M.tb translocation by assessing its ability to cleave E-cadherin, a crucial component of cell-cell adhesion junctions that are disrupted during bacterial invasion. By utilizing recombinant Rv2569c expressed in Escherichia coli and subsequently purified through affinity chromatography, we demonstrated that Rv2569c exhibited cell wall-associated serine protease activity. Furthermore, Rv2569c was capable of degrading a range of protein substrates, including casein, fibrinogen, fibronectin, and E-cadherin. We also determined that the optimal conditions for the protease activity of Rv2569c occurred at a temperature of 37°C and a pH of 9.0, in the presence of MgCl2. To investigate the function of Rv2569c in M.tb, a deletion mutant of Rv2569c and its complemented strains were generated and used to infect A549 cells and mice. The results of the A549-cell infection experiments revealed that Rv2569c had the ability to cleave E-cadherin and facilitate the transmigration of M.tb through polarized A549 epithelial cell layers. Furthermore, in vivo infection assays demonstrated that Rv2569c could disrupt E-cadherin, enhance the colonization of M.tb, and induce pathological damage in the lungs of C57BL/6 mice. Collectively, these results strongly suggest that M.tb employs the serine protease Rv2569c to disrupt epithelial defenses and facilitate its systemic dissemination by crossing the epithelial barrier.
Collapse
Affiliation(s)
- Xinxin Zang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Jiajun Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yanyan Jiang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Tingting Feng
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yingying Cui
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Hui Wang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Ziyin Cui
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Guanghui Dang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Siguo Liu
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| |
Collapse
|
3
|
Desfontaine V, Guinchard S, Marques S, Vocat A, Moulfi F, Versace F, Huser-Pitteloud J, Ivanyuk A, Bardinet C, Makarov V, Ryabova O, André P, Prod'Hom S, Chtioui H, Buclin T, Cole ST, Decosterd L. Optimized LC-MS/MS quantification of tuberculosis drug candidate macozinone (PBTZ169), its dearomatized Meisenheimer Complex and other metabolites, in human plasma and urine. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1215:123555. [PMID: 36563654 PMCID: PMC9883661 DOI: 10.1016/j.jchromb.2022.123555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Tuberculosis, and especially multidrug-resistant tuberculosis (MDR-TB), is a major global health threat which emphasizes the need to develop new agents to improve and shorten treatment of this difficult-to-manage infectious disease. Among the new agents, macozinone (PBTZ169) is one of the most promising candidates, showing extraordinary potency in vitro and in murine models against drug-susceptible and drug-resistant Mycobacterium tuberculosis. A previous analytical method using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was developed by our group to support phase I clinical trials of PBTZ169. These plasma sample analyses revealed the presence of several additional metabolites among which the most prominent was H2PBTZ, a reduced species obtained by dearomatization of macozinone, one of the first examples of Meisenheimer Complex (MC) metabolites identified in mammals. Identification of these new metabolites required the optimization of our original method for enhancing the selectivity between isobaric metabolites as well as for ensuring optimal stability for H2PBTZ analyses. Sample preparation methods were also developed for plasma and urine, followed by extensive quantitative validation in accordance with international bioanalytical method recommendations, which include selectivity, linearity, qualitative and quantitative matrix effect, trueness, precision and the establishment of accuracy profiles using β-expectation tolerance intervals for known and newer analytes. The newly optimized methods have been applied in a subsequent Phase Ib clinical trial conducted in our University Hospital with healthy subjects. H2PBTZ was found to be the most abundant species circulating in plasma, underscoring the importance of measuring accurately and precisely this unprecedented metabolite. Low concentrations were found in urine for all monitored analytes, suggesting extensive metabolism before renal excretion.
Collapse
Affiliation(s)
- Vincent Desfontaine
- Laboratory & Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Switzerland
| | - Sylvie Guinchard
- Laboratory & Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Switzerland
| | - Sara Marques
- Laboratory & Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Switzerland
| | - Anthony Vocat
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Farizade Moulfi
- Innovative Medicines for Tuberculosis (IM4TB), Lausanne, Switzerland
| | - François Versace
- Laboratory & Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Switzerland
| | - Jeff Huser-Pitteloud
- Laboratory & Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Switzerland
| | - Anton Ivanyuk
- Laboratory & Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Switzerland
| | - Carine Bardinet
- Laboratory & Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Switzerland
| | - Vadim Makarov
- Innovative Medicines for Tuberculosis (IM4TB), Lausanne, Switzerland,Federal Research Center “Fundamentals of Biotechnology RAS”, Moscow, Russia
| | - Olga Ryabova
- Federal Research Center “Fundamentals of Biotechnology RAS”, Moscow, Russia
| | - Pascal André
- Laboratory & Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Switzerland
| | - Sylvain Prod'Hom
- Laboratory & Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Switzerland
| | - Haithem Chtioui
- Laboratory & Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Switzerland
| | - Thierry Buclin
- Laboratory & Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Switzerland,Innovative Medicines for Tuberculosis (IM4TB), Lausanne, Switzerland
| | - Stewart T. Cole
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland,Innovative Medicines for Tuberculosis (IM4TB), Lausanne, Switzerland
| | - Laurent Decosterd
- Laboratory & Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Switzerland,Corresponding author.
| |
Collapse
|
4
|
Udhaya Kumar S, Saleem A, Thirumal Kumar D, Anu Preethi V, Younes S, Zayed H, Tayubi IA, George Priya Doss C. A systemic approach to explore the mechanisms of drug resistance and altered signaling cascades in extensively drug-resistant tuberculosis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 127:343-364. [PMID: 34340773 DOI: 10.1016/bs.apcsb.2021.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM The persistence of extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis (MTB) continue to pose a significant challenge to the treatment and control of tuberculosis infections worldwide. XDR-MTB strains exhibit resistance against first-line anti-TB drugs, fluoroquinolones, and second-line injectable drugs. The mechanisms of drug resistance of MTB remains poorly understood. Our study aims at identifying the differentially expressed genes (DEGs), associated gene networks, and signaling cascades involved in rendering this pathogen resistant to multiple drugs, namely, isoniazid, rifampicin, and capreomycin. METHODS We used the microarray dataset GSE53843. The GEO2R tool was used to prioritize the most significant DEGs (top 250) of each drug exposure sample between XDR strains and non-resistant strains. The validation of the 250 DEGs was performed using volcano plots. Protein-protein interaction networks of the DEGs were created using STRING and Cytoscape tools, which helped decipher the relationship between these genes. The significant DEGs were functionally annotated using DAVID and ClueGO. The concomitant biological processes (BP) and molecular functions (MF) were represented as dot plots. RESULTS AND CONCLUSION We identified relevant molecular pathways and biological processes, such as cell wall biogenesis, lipid metabolic process, ion transport, phosphopantetheine binding, and triglyceride lipase activity. These processes indicated the involvement of multiple interconnected mechanisms in drug resistance. Our study highlighted the impact of cell wall permeability, with the dysregulation of the mur family of proteins, as essential factors in the inference of resistance. Additionally, upregulation of genes responsible for ion transport such as ctpF, arsC, and nark3, emphasizes the importance of transport channels and efflux pumps in potentially driving out stress-inducing compounds. This study investigated the upregulation of the Lip family of proteins, which play a crucial role in triglyceride lipase activity. Thereby illuminating the potential role of drug-induced dormancy and subsequent resistance in the mycobacterial strains. Multiple mechanisms such as carboxylic acid metabolic process, NAD biosynthetic process, triglyceride lipase activity, phosphopantetheine binding, organic acid biosynthetic process, and growth of symbiont in host cell were observed to partake in resistance of XDR-MTB. This study ultimately provides a platform for important mapping targets for potential therapeutics against XDR-MTB.
Collapse
Affiliation(s)
- S Udhaya Kumar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Aisha Saleem
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - D Thirumal Kumar
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - V Anu Preethi
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Salma Younes
- Translational Research Institute, Women's Wellness and Research Center, Hamad Medical Corporation, Doha, Qatar
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, QU Health, Qatar University, Doha, Qatar
| | - Iftikhar Aslam Tayubi
- Faculty of Computing and Information Technology, King Abdul-Aziz University, Rabigh, Saudi Arabia
| | - C George Priya Doss
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
5
|
Mallick Gupta A, Mandal S. Distribution of sigma factors delineates segregation of virulent and avirulent Mycobacterium. Arch Microbiol 2021; 203:1627-1640. [PMID: 33432378 DOI: 10.1007/s00203-020-02172-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/02/2020] [Accepted: 12/27/2020] [Indexed: 11/26/2022]
Abstract
The genus Mycobacterium includes a wide range of species of both slow and rapid growth under major pathogens, opportunists, and saprophytes. The number and combination of sigma factors are extremely diversified among various species of Mycobacterium. The comparative genome analysis illustrates that SigC, SigD, SigG, SigH, SigK and SigI are dominant among the pathogens. Evolutionary analysis using Bayesian inference on 16S rRNA and MLST-based phylogeny using 14 housekeeping genes distinctly differentiate the slow-growing Mycobacterium from fast growers and segregate pathogens from opportunists and saprophytes. Based on the similarity coefficient upon the allotment of sigma factors in mycobacterial species through UPGMA dendrogram analysis, it is apparent that the pathogens are grouped separately following the similar trend observed from the evolutionary approach. Predominance of a set of sigma factors particularly the pathogenic Mycobacterium co-exists with the distribution of six well-known virulence factors of Mycobacterium (PhoP, PcaA, FbpA, Mce1B, KatG and PE_PGRS30). The pathogenicity responsible sigma factors elicit close resemblance with few notable characters of the known virulence factors. Thus the analysis renders that the distribution of sigma factors of different species of Mycobacterium can be a potential tool to predict their pathogenicity index.
Collapse
Affiliation(s)
- Aayatti Mallick Gupta
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
6
|
Colangeli R, Gupta A, Vinhas SA, Chippada Venkata UD, Kim S, Grady C, Jones-López EC, Soteropoulos P, Palaci M, Marques-Rodrigues P, Salgame P, Ellner JJ, Dietze R, Alland D. Mycobacterium tuberculosis progresses through two phases of latent infection in humans. Nat Commun 2020; 11:4870. [PMID: 32978384 PMCID: PMC7519141 DOI: 10.1038/s41467-020-18699-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/03/2020] [Indexed: 12/21/2022] Open
Abstract
Little is known about the physiology of latent Mycobacterium tuberculosis infection. We studied the mutational rates of 24 index tuberculosis (TB) cases and their latently infected household contacts who developed active TB up to 5.25 years later, as an indication of bacterial physiological state and possible generation times during latent TB infection in humans. Here we report that the rate of new mutations in the M. tuberculosis genome decline dramatically after two years of latent infection (two-sided p < 0.001, assuming an 18 h generation time equal to log phase M. tuberculosis, with latency period modeled as a continuous variable). Alternatively, assuming a fixed mutation rate, the generation time increases over the latency duration. Mutations indicative of oxidative stress do not increase with increasing latency duration suggesting a lack of host or bacterial derived mutational stress. These results suggest that M. tuberculosis enters a quiescent state during latency, decreasing the risk for mutational drug resistance and increasing generation time, but potentially increasing bacterial tolerance to drugs that target actively growing bacteria.
Collapse
Affiliation(s)
- Roberto Colangeli
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Aditi Gupta
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Solange Alves Vinhas
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo (UFES), Vitória, Brazil
| | | | - Soyeon Kim
- Frontier Science Foundation, 1371 Beacon Street, Suite #203, Brookline, MA, 02446, USA
| | - Courtney Grady
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Edward C Jones-López
- Division of Infectious Diseases, Department of Medicine. Keck School of Medicine of USC, University of Southern California Los Angeles, Los Angeles, CA, USA
| | - Patricia Soteropoulos
- The Genomics Center, Rutgers-New Jersey Medical School, Newark, NJ, USA
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Moisés Palaci
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo (UFES), Vitória, Brazil
| | | | - Padmini Salgame
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Jerrold J Ellner
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Reynaldo Dietze
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo (UFES), Vitória, Brazil
- Global Health & Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - David Alland
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
7
|
Hadifar S, Shamkhali L, Kargarpour Kamakoli M, Mostafaei S, Khanipour S, Mansoori N, Fateh A, Siadat SD, Vaziri F. Genetic diversity of Mycobacterium tuberculosis isolates causing pulmonary and extrapulmonary tuberculosis in the capital of Iran. Mol Phylogenet Evol 2019; 132:46-52. [PMID: 30513341 DOI: 10.1016/j.ympev.2018.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 11/24/2018] [Accepted: 11/26/2018] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Evaluation of the genetic diversity of Mycobacterium tuberculosis (M.tb) and determining if the association between a specific genotype and the site of infection is crucial. Accordingly, the current study aimed at comparing predominant M.tb genotypes in pulmonary (PTB) and extrapulmonary tuberculosis (EPTB) isolates circulating in the capital of Iran. METHODS The genetic diversity of culture-confirmed PTB and EPTB isolates were evaluated by Spoligotyping and MIRU-VNTR (mycobacterial interspersed repetitive-unit-variable-number tandem-repeat) typing methods. Genotyping data were analyzed with SITVIT, MIRU-VNTRplus, and TBminer databases. To assess adjusted associations, chi-square/the Fisher exact test and multiple logistic regression model were applied. RESULTS URAL2 (NEW-1) (28/88; 31.8%) and CAS1-DELHI (25/84; 29.8%) genotypes were predominant in EPTB and PTB strains, respectively. Based on MIRU-VNTR typing, 158 different MIRU-VNTR patterns were identified. Clustering rate and minimum estimate of the proportion of TB caused by recent transmission was 4.1% and 8.1%, respectively. CONCLUSIONS The current study provided new insight into circulating genotypes of M.tb in PTB and EPTB patients in Tehran, Iran. This low percentage of TB transmission rate, demonstrated that mode of TB transmission was mainly associated with reactivation of latent TB rather than recently transmitted infection in this region. There was no significant difference in the association between the genotypes of M.tb strains and the site of the disease.
Collapse
Affiliation(s)
- Shima Hadifar
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Leila Shamkhali
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Mansour Kargarpour Kamakoli
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Shayan Mostafaei
- Department of Community Medicine, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Epidemiology and Biostatistics Unit, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sharareh Khanipour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Noormohamad Mansoori
- Department of Research & Technology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Farzam Vaziri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
8
|
Shi T, Li T, Li J, Wang J, Zhang Z. Genetic diversity of drug resistant Mycobacterium Tuberculosis in local area of Southwest China: a retrospective study. BMC Infect Dis 2018; 18:565. [PMID: 30428837 PMCID: PMC6234635 DOI: 10.1186/s12879-018-3503-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 11/05/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND By 2014 although tuberculosis (TB) incidence had fallen by an average of 1.5% per year since 2000 and was 18% lower than the level of in 2000, 1.5 million people died for TB in that year. One of reason was that drug resistant Mycobacterium tuberculosis (DRTB) spread. This study aims to determine drug resistant characteristics and genotype of DRTB that isolated from patients in a tuberculosis referral hospital of southwest China. METHODS Five hundred thirty-eight drug resistant tuberculosis samples were collected from July 2013 to March 2015. All the isolates were identified by genomic deletions in region of difference 105 (RD105) and genotyped by mycobacterial interspersed repetitive unit-variable number tandem repeat typing (MIRU-VNTR). Polymorphism and cluster analysis of each locus was carried out using Bionumerics Version 3.0 and phyloviz software. RESULTS Five hundred thirty-eight TB strains included 503 Mycobacterium tuberculosis (MTB) isolates and 35 non Mycobacterium tuberculosis (NMTB) isolates. Of 503 isolates Beijing family type was 447 (88.9%, 447/503) and non-Beijing family type was 56 (11.1%, 56/503). Five hundred three DRTB isolates were divided into 345 genotypes, of which 265 isolates were single genotype and the remaining 238 strains were classified into 80 clusters with cluster rate of 47.3% and cluster ratio of 31.4%. Sixty-nine clusters belonged to Beijing family with cluster rate was 48.3% and clustering ratio was 32.9%. The non - Beijing family had 11 clusters with a cluster rate of 39.3% and the clustering ratio of 19.6%. Beijing genotype had a significant correlation with the age (P < 0.05), the retreatment patients (P < 0.05) and the city of Chongqing (P < 0.05), not with gender (P > 0.05). In the 9 Beijing genotype clusters each cluster contained some patients who lived in the same region. CONCLUSIONS Beijing genotype was the predominant in the patients with DRTB in our hospital. In Chongqing retreatment patients with Beijing genotype MTB may be patient with DRTB. Drug resistance test (DST), regular medication and strict follow-up are very important for patients with Beijing genotype MTB. In Chongqing control and treatment of DRTB should be paid attention. Transmission and relations of patients with DRTB need to be further research.
Collapse
Affiliation(s)
- Tao Shi
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), No. 1, Shuanghu Branch Road, Yubei District, Chongqing, 401120 China
| | - Tongxin Li
- Department of Clinical Laboratory, Public Health Medical Center, No. 109, Baoyu Road, Shapingba District, Chongqing, 400036 China
| | - Jungang Li
- Department of Clinical Laboratory, Public Health Medical Center, No. 109, Baoyu Road, Shapingba District, Chongqing, 400036 China
| | - Jing Wang
- Department of Clinical Laboratory, Public Health Medical Center, No. 109, Baoyu Road, Shapingba District, Chongqing, 400036 China
| | - Zehua Zhang
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, No. 30, Gaotanyan Main Street, Shapingba District, Chongqing, 400038 China
| |
Collapse
|
9
|
Uddin MKM, Ahmed M, Islam MR, Rahman A, Khatun R, Hossain MA, Maug AKJ, Banu S. Molecular characterization and drug susceptibility profile of Mycobacterium tuberculosis isolates from Northeast Bangladesh. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018; 65:136-143. [PMID: 30048809 DOI: 10.1016/j.meegid.2018.07.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/24/2018] [Accepted: 07/22/2018] [Indexed: 12/14/2022]
Abstract
Tuberculosis (TB) remains a major public health problem worldwide including in Bangladesh. Molecular epidemiological tools provide genotyping profiles of Mycobacterium tuberculosis (M. tuberculosis) strains that can give insight into the transmission of TB in a specific region. The objective of the study was to identify the genetic diversity and drug susceptibility profile of M. tuberculosis strains circulating in the northeast Bangladesh. A total of 244 smear-positive sputum specimens were collected from two referral hospitals in Mymensingh and Netrakona districts. The isolated strains were genotyped by deletion analysis, spoligotyping, and MIRU-VNTR typing. We also analyzed the distributions of drug susceptibility pattern and demographic data among different genotypes. All isolates were identified as M. tuberculosis and among them 167 strains (68.44%) were 'ancestral' and the remaining 77 (31.56%) were 'modern' type. Spoligotyping analysis yielded 119 distinct patterns, among them, 86 isolates had unique patterns and the remaining 158 were grouped into 33 distinct clusters containing 2 to 18 isolates. The predominant spoligotypes belong to the EAI lineage strains, comprising 66 (27.04%) isolates followed by Beijing (7.38%), T1 (6.15%), CAS1-Delhi (5.33), LAM9 (3.28%), MANU-2 and X2. MIRU-VNTR analysis revealed 167 isolates (68%) had unique patterns, whereas 77 (32%) were grouped into 26 clusters and the rate of recent transmission was 20.9%, suggesting that the majority of TB cases in this region are caused by the reactivation of previous TB infections rather than recent transmission. About 136 (55.7%) isolates were sensitive to four anti-TB drugs, 69 (28.3%) were resistant to one or more (except rifampicin and isoniazid combination) drugs and 39 (15.9%) were MDR. In conclusion, our study provides a first insight into molecular characterization and drug resistance profile of M. tuberculosis strains in northeast Bangladesh which will ultimately contribute to the national TB control program.
Collapse
Affiliation(s)
| | - Moshtaq Ahmed
- Infectious Diseases Division, icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Dhaka 1212, Bangladesh
| | - Mohammad Riazul Islam
- Dept. of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Arfatur Rahman
- Infectious Diseases Division, icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Dhaka 1212, Bangladesh
| | - Razia Khatun
- Infectious Diseases Division, icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Dhaka 1212, Bangladesh.
| | | | - Aung Kya Jai Maug
- Damien Foundation Bangladesh, H# 106, R # 25, Block - A, Banani, Dhaka 1213, Bangladesh.
| | - Sayera Banu
- Infectious Diseases Division, icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Dhaka 1212, Bangladesh.
| |
Collapse
|
10
|
Hameed HMA, Islam MM, Chhotaray C, Wang C, Liu Y, Tan Y, Li X, Tan S, Delorme V, Yew WW, Liu J, Zhang T. Molecular Targets Related Drug Resistance Mechanisms in MDR-, XDR-, and TDR- Mycobacterium tuberculosis Strains. Front Cell Infect Microbiol 2018; 8:114. [PMID: 29755957 PMCID: PMC5932416 DOI: 10.3389/fcimb.2018.00114] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 03/23/2018] [Indexed: 01/08/2023] Open
Abstract
Tuberculosis (TB) is a formidable infectious disease that remains a major cause of death worldwide today. Escalating application of genomic techniques has expedited the identification of increasing number of mutations associated with drug resistance in Mycobacterium tuberculosis. Unfortunately the prevalence of bacillary resistance becomes alarming in many parts of the world, with the daunting scenarios of multidrug-resistant tuberculosis (MDR-TB), extensively drug-resistant tuberculosis (XDR-TB) and total drug-resistant tuberculosis (TDR-TB), due to number of resistance pathways, alongside some apparently obscure ones. Recent advances in the understanding of the molecular/ genetic basis of drug targets and drug resistance mechanisms have been steadily made. Intriguing findings through whole genome sequencing and other molecular approaches facilitate the further understanding of biology and pathology of M. tuberculosis for the development of new therapeutics to meet the immense challenge of global health.
Collapse
Affiliation(s)
- H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Md Mahmudul Islam
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chiranjibi Chhotaray
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Changwei Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yang Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Institute of Health Sciences, Anhui University, Hefei, China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Xinjie Li
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Shouyong Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Vincent Delorme
- Tuberculosis Research Laboratory, Institut Pasteur Korea, Seongnam-si, South Korea
| | - Wing W Yew
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Arjomandzadegan M, Titov L, Farnia P, Owlia P, Ranjbar R, Sheikholeslami F, Surkova L. Molecular detection of fluoroquinolone resistance-associated gyrA mutations in ofloxacin-resistant clinical isolates of Mycobacterium tuberculosis from Iran and Belarus. Int J Mycobacteriol 2016; 5:299-305. [PMID: 27847014 DOI: 10.1016/j.ijmyco.2016.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 04/27/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE/BACKGROUND Detection of mutations in the quinolone resistance-determining region (QRDR) of the gyrA gene could determine resistance to fluoroquinolone antituberculosis drugs. The aim of this study was to detect mutations in QRDRs. METHODS From 184 clinical isolates of Mycobacterium tuberculosis, ofloxacin resistance was proven in 42 isolates using the proportion method. The molecular basis of resistance to ofloxacin were investigated by the determination of mutations in the QRDR region of the gyrA gene. Extracted DNA fragments of 194bp from the gyrA gene were amplified and an automatic DNA sequencer was used for the sequencing process. RESULTS Molecular genetic analysis of 42 resistant M. tuberculosis strains demonstrated that they belong to Principal Genetic Group (PGG) 1 in 19 cases (45.2±10.9%), to PGG2 in 15 cases (35.7±10.5%), and to PGG3 in eight cases (19.0±8.4%). Isolates from PGG1 were dominant among resistant isolates (P<.05). It was found that 24 (57%) resistant isolates carried mutations at codon 94 with five different amino acid changes: D94A (n=11), D94G (n=3), D94T (n=4), D94A (n=4), and D94Y (n=2). The remaining 18 (43%) isolates had mutations in codon A90V (GCG→GTG) and S91P (TCG→CCG). Five isolates had two mutations in codons 90 and 94. There was no difference between mutations at these two codons in resistant isolates of the two countries (P<.001). There was no polymorphism observed in codon 95 in any of the ofloxacin-susceptible isolates. CONCLUSION It was concluded that the determination of nucleotide sequences of QRDRs can be used as a molecular test for the rapid detection of ofloxacin resistance. Furthermore, frequencies in gyrA codons in Belarus and Iran were similar, therefore it is not of geographical concern for the two countries.
Collapse
Affiliation(s)
| | - Leonid Titov
- Research Institute for Epidemiology and Microbiology, Minsk, Belarus
| | - Parissa Farnia
- Mycobacteriology Research Centre (MRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parviz Owlia
- Molecular Microbiology Research Center, Shahed University, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sheikholeslami
- Mycobacteriology Research Centre (MRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
12
|
Khanipour S, Ebrahimzadeh N, Masoumi M, Sakhaei F, Alinezhad F, Safarpour E, Fateh A, Nour Nematollahi A, Hadizadeh Tasbiti A, Zolfaghari MR, Bahrmand AR, Mirsaeidi M, Rahimi Jamnani F, Vaziri F, Siadat SD. Haarlem 3 is the predominant genotype family in multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis in the capital of Iran: A 5-year survey. J Glob Antimicrob Resist 2016; 5:7-10. [PMID: 27436458 DOI: 10.1016/j.jgar.2016.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/16/2015] [Accepted: 01/20/2016] [Indexed: 11/23/2022] Open
Abstract
The objective of this study was to further understand the genetic diversity of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis isolates prevalent in Tehran, the capital city of Iran. From January 2010 to March 2015, a total of 723 M. tuberculosis strains were isolated from patients with pulmonary tuberculosis (TB). A total of 23 MDR, pre-XDR and XDR M. tuberculosis isolates were genotyped by spoligotyping and 24-loci mycobacterial interspersed repetitive unit-variable-number tandem repeat (MIRU-VNTR) typing. The results showed that the MDR, pre-XDR and XDR M. tuberculosis strains mainly belonged to the Haarlem 3 genotype (11/23; 47.8%), followed by the Beijing family (9/23; 39.1%). In addition, the 23 strains were clustered into 21 genotypes using a 24-loci MIRU-VNTR. In conclusion, Haarlem 3 genotype was the predominant genotype among the isolates from MDR-TB cases in this study, which could be of special concern.
Collapse
Affiliation(s)
- Sharereh Khanipour
- Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, No. 358, 12th Farwardin Ave., Jomhhoori St., Tehran 1316943551, Iran; Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Nayereh Ebrahimzadeh
- Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, No. 358, 12th Farwardin Ave., Jomhhoori St., Tehran 1316943551, Iran
| | - Morteza Masoumi
- Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, No. 358, 12th Farwardin Ave., Jomhhoori St., Tehran 1316943551, Iran; Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Fatemeh Sakhaei
- Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, No. 358, 12th Farwardin Ave., Jomhhoori St., Tehran 1316943551, Iran
| | - Farhad Alinezhad
- Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, No. 358, 12th Farwardin Ave., Jomhhoori St., Tehran 1316943551, Iran
| | - Elham Safarpour
- Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, No. 358, 12th Farwardin Ave., Jomhhoori St., Tehran 1316943551, Iran
| | - Abolfazl Fateh
- Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, No. 358, 12th Farwardin Ave., Jomhhoori St., Tehran 1316943551, Iran
| | - Ali Nour Nematollahi
- Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, No. 358, 12th Farwardin Ave., Jomhhoori St., Tehran 1316943551, Iran
| | - Alireza Hadizadeh Tasbiti
- Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, No. 358, 12th Farwardin Ave., Jomhhoori St., Tehran 1316943551, Iran
| | | | - Ahmad Reza Bahrmand
- Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, No. 358, 12th Farwardin Ave., Jomhhoori St., Tehran 1316943551, Iran
| | - Mehdi Mirsaeidi
- Division of Pulmonary and Critical Care, University of Miami, Miami, FL, USA
| | - Fatemeh Rahimi Jamnani
- Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, No. 358, 12th Farwardin Ave., Jomhhoori St., Tehran 1316943551, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Farzam Vaziri
- Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, No. 358, 12th Farwardin Ave., Jomhhoori St., Tehran 1316943551, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Seyed Davar Siadat
- Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, No. 358, 12th Farwardin Ave., Jomhhoori St., Tehran 1316943551, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
13
|
Zhang D, An J, Wang Y, Pang Y. Genetic diversity of multidrug-resistant tuberculosis in a resource-limited region of China. Int J Infect Dis 2014; 29:7-11. [DOI: 10.1016/j.ijid.2014.05.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 05/02/2014] [Accepted: 05/21/2014] [Indexed: 10/24/2022] Open
|
14
|
Comparative analyses of nonpathogenic, opportunistic, and totally pathogenic mycobacteria reveal genomic and biochemical variabilities and highlight the survival attributes of Mycobacterium tuberculosis. mBio 2014; 5:e02020. [PMID: 25370496 PMCID: PMC4222108 DOI: 10.1128/mbio.02020-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mycobacterial evolution involves various processes, such as genome reduction, gene cooption, and critical gene acquisition. Our comparative genome size analysis of 44 mycobacterial genomes revealed that the nonpathogenic (NP) genomes were bigger than those of opportunistic (OP) or totally pathogenic (TP) mycobacteria, with the TP genomes being smaller yet variable in size—their genomic plasticity reflected their ability to evolve and survive under various environmental conditions. From the 44 mycobacterial species, 13 species, representing TP, OP, and NP, were selected for genomic-relatedness analyses. Analysis of homologous protein-coding genes shared between Mycobacterium indicus pranii (NP), Mycobacterium intracellulare ATCC 13950 (OP), and Mycobacterium tuberculosis H37Rv (TP) revealed that 4,995 (i.e., ~95%) M. indicaus pranii proteins have homology with M. intracellulare, whereas the homologies among M. indicus pranii, M. intracellulare ATCC 13950, and M. tuberculosis H37Rv were significantly lower. A total of 4,153 (~79%) M. indicus pranii proteins and 4,093 (~79%) M. intracellulare ATCC 13950 proteins exhibited homology with the M. tuberculosis H37Rv proteome, while 3,301 (~82%) and 3,295 (~82%) M. tuberculosis H37Rv proteins showed homology with M. indicus pranii and M. intracellulare ATCC 13950 proteomes, respectively. Comparative metabolic pathway analyses of TP/OP/NP mycobacteria showed enzymatic plasticity between M. indicus pranii (NP) and M. intracellulare ATCC 13950 (OP), Mycobacterium avium 104 (OP), and M. tuberculosis H37Rv (TP). Mycobacterium tuberculosis seems to have acquired novel alternate pathways with possible roles in metabolism, host-pathogen interactions, virulence, and intracellular survival, and by implication some of these could be potential drug targets. The complete sequence analysis of Mycobacterium indicus pranii, a novel species of Mycobacterium shown earlier to have strong immunomodulatory properties and currently in use for the treatment of leprosy, places it evolutionarily at the point of transition to pathogenicity. With the purpose of establishing the importance of M. indicus pranii in providing insight into the virulence mechanism of tuberculous and nontuberculous mycobacteria, we carried out comparative genomic and proteomic analyses of 44 mycobacterial species representing nonpathogenic (NP), opportunistic (OP), and totally pathogenic (TP) mycobacteria. Our results clearly placed M. indicus pranii as an ancestor of the M. avium complex. Analyses of comparative metabolic pathways between M. indicus pranii (NP), M. tuberculosis (TP), and M. intracellulare (OP) pointed to the presence of novel alternative pathways in M. tuberculosis with implications for pathogenesis and survival in the human host and identification of new drug targets.
Collapse
|
15
|
Prozorov AA, Zaichikova MV, Danilenko VN. Mycobacterium tuberculosis mutants with multidrug resistance: History of origin, genetic and molecular mechanisms of resistance, and emerging challenges. RUSS J GENET+ 2012. [DOI: 10.1134/s1022795411120118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Hsu CY, Wu CW, Talaat AM. Genome-Wide Sequence Variation among Mycobacterium avium Subspecies paratuberculosis Isolates: A Better Understanding of Johne's Disease Transmission Dynamics. Front Microbiol 2011; 2:236. [PMID: 22163226 PMCID: PMC3234532 DOI: 10.3389/fmicb.2011.00236] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 11/09/2011] [Indexed: 12/29/2022] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (M. ap), the causative agent of Johne’s disease, infects many farmed ruminants, wild-life animals, and recently isolated from humans. To better understand the molecular pathogenesis of these infections, we analyzed the whole-genome sequences of several M. ap and M. avium subspecies avium (M. avium) isolates to gain insights into genomic diversity associated with variable hosts and environments. Using Next-generation sequencing technology, all six M. ap isolates showed a high percentage of similarity (98%) to the reference genome sequence of M. ap K-10 isolated from cattle. However, two M. avium isolates (DT 78 and Env 77) showed significant sequence diversity (only 87 and 40% similarity, respectively) compared to the reference strain M. avium 104, a reflection of the wide environmental niches of this group of mycobacteria. Within the M. ap isolates, genomic rearrangements (insertions/deletions) were not detected, and only unique single nucleotide polymorphisms (SNPs) were observed among M. ap isolates. While more of the SNPs (~100) in M. ap genomes were non-synonymous, a total of ~6,000 SNPs were detected among M. avium genomes, most of them were synonymous suggesting a differential selective pressure between M. ap and M. avium isolates. In addition, SNPs-based phylo-genomics had a enough discriminatory power to differentiate between isolates from different hosts but yet suggesting a bovine source of infection to other animals examined in this study. Interestingly, the human isolate (M. ap 4B) was closely related to a M. ap isolate from a dairy facility, suggesting a common source of infection. Overall, the identified phylo-genomes further supported the idea of a common ancestor to both M. ap and M. avium isolates. Genome-wide analysis described here could provide a strong foundation for a population genetic structure that could be useful for the analysis of mycobacterial evolution and for the tracking of Johne’s disease transmission among animals.
Collapse
Affiliation(s)
- Chung-Yi Hsu
- Laboratory of Bacterial Genomics, Department of Pathobiological Sciences, University of Wisconsin-Madison Madison, WI, USA
| | | | | |
Collapse
|
17
|
Variation in gamma interferon responses to different infecting strains of Mycobacterium tuberculosis in acid-fast bacillus smear-positive patients and household contacts in Antananarivo, Madagascar. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1094-103. [PMID: 20463103 DOI: 10.1128/cvi.00049-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The majority of healthy individuals exposed to Mycobacterium tuberculosis will not develop tuberculosis (TB), though many may become latently infected. More precise measurement of the human immune response to M. tuberculosis infection may help us understand this difference and potentially identify those subjects most at risk of developing active disease. Gamma interferon (IFN-gamma) production has been widely used as a proxy marker to study infection and to examine the human immune response to specific M. tuberculosis antigens. It has been suggested that genetically distinct M. tuberculosis strains may invoke different immune responses, although how these differences influence the immune responses and clinical outcome in human tuberculosis is still poorly understood. We therefore evaluated the antigen-specific IFN-gamma production responses in peripheral blood mononuclear cells from two cohorts of subjects recruited in Antananarivo, Madagascar, from 2004 to 2006 and examined the influence of the infecting M. tuberculosis strains on this response. The cohorts were sputum-positive index cases and their household contacts. Clinical strains isolated from the TB patients were typed by spoligotyping. Comparison of the IFN-gamma responses with the spoligotype of the infecting clinical strains showed that "modern" M. tuberculosis strains, like Beijing and Central Asian (CAS) strains, tended to induce lower IFN-gamma responses than "ancient" strains, like East African-Indian (EAI) strains, in index cases and their household contacts. These results suggest that new strains may have evolved to induce a host response different from that of ancient strains. These findings could have important implications in the development of therapeutic and diagnostic strategies.
Collapse
|
18
|
Single nucleotide polymorphisms in cell wall biosynthesis-associated genes and phylogeny of Mycobacterium tuberculosis lineages. INFECTION GENETICS AND EVOLUTION 2010; 10:459-66. [DOI: 10.1016/j.meegid.2010.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 03/01/2010] [Accepted: 03/02/2010] [Indexed: 11/20/2022]
|
19
|
Setareh M, Titov LP, Surkova LK. High level association of mutation in KatG315 with MDR and XDR clinical isolates of Mycobacterium tuberculosis in Belarus. Acta Microbiol Immunol Hung 2009; 56:313-25. [PMID: 20038484 DOI: 10.1556/amicr.56.2009.4.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mutation in KatG315 is found in the majority of isoniazid resistant strains worldwide, especially in areas with a high incidence of tuberculosis. A total of 138 isoniazid (INH)-resistant strains of Mycobacterium tuberculosis consisting of 108 MDR (multidrug resistant) and 30 XDR (extensively drug resistant) isolated from patients in different regions of Belarus from 2007 to 2008 were screened by a PCR restriction fragment length polymorphism (RFLP) assay and sequencing. As a result, 97.8% prevalence of the KatG315 mutation was detected in all isolates from patients either actually or previously treated with tuberculosis. This mutation was not found in any of 9 INH-susceptible isolates and 2 standard strains of H37Rv and Academia included in the study. All isolates that contained the mutation in KatG315 were classified as MDR and XDR by a culture-based susceptibility testing method. Among the 30 XDR isolates, 15 (50%), 12 (40%), and 3 (10%) were classified into principal genetic groups (PGG) 1, 2, and 3, respectively. It is concluded that INH-resistant MTB were associated with the mutated KatG315 phenotype. The simplicity of the assay, with 100% specificity, permits its implementation in routine practice at clinical microbiology laboratories for first and fast screening of cultures. This method has potential application for rapid diagnosis of INH resistance due to KatG315 mutation.
Collapse
Affiliation(s)
- M Setareh
- Belarusian State Medical University, Minsk, Belarus, Iran.
| | | | | |
Collapse
|
20
|
Jang J, Becq J, Gicquel B, Deschavanne P, Neyrolles O. Horizontally acquired genomic islands in the tubercle bacilli. Trends Microbiol 2008; 16:303-8. [PMID: 18515114 DOI: 10.1016/j.tim.2008.04.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 04/14/2008] [Accepted: 04/28/2008] [Indexed: 01/18/2023]
Abstract
Most mycobacteria are environmental species, causing disease only occasionally when they encounter a susceptible human or animal host. A few species, such as Mycobacterium tuberculosis and Mycobacterium avium, have acquired the ability to parasitize host macrophages during the course of evolution and have become major pathogens. Recent genetic studies in these two species have suggested that early episodes of horizontal transfer of genomic islands from surrounding environmental species might have contributed to the evolution towards this virulence phenotype, possibly by helping bacilli to persist in protozoa and, subsequently, in mammalian phagocytes. A better understanding of the function of the proteins encoded by these genomic islands in mycobacterial metabolism might help to define novel targets for the development of future antimicrobials.
Collapse
Affiliation(s)
- Jichan Jang
- Institut Pasteur, Unité de Génétique Mycobactérienne, 28 rue du Dr Roux, 75015 Paris, France
| | | | | | | | | |
Collapse
|
21
|
Dahle UR, Eldholm V, Winje BA, Mannsåker T, Heldal E. Impact of immigration on the molecular epidemiology of Mycobacterium tuberculosis in a low-incidence country. Am J Respir Crit Care Med 2007; 176:930-5. [PMID: 17673698 DOI: 10.1164/rccm.200702-187oc] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Programs to prevent the incidence rate of tuberculosis (TB) from increasing in many low-incidence countries are challenged by international travel and immigration from high-burden countries. OBJECTIVES The current study aimed to determine the effect of such immigration on the genetic diversity of Mycobacterium tuberculosis isolates in an entire nation's population during 1994-2005. METHODS A total of 3,131 patients were notified with TB during the 12-year period. Of these, 2,284 (73%) had TB verified by culture, and isolates from 2,173 (96%) of these were analyzed by IS6110 restriction fragment length polymorphism. MEASUREMENTS AND MAIN RESULTS Only 31% of the included strains were isolated from nonimmigrants, the remaining 69% were isolated from immigrants. Although the incidence increased throughout the period, the genetic diversity remained high. A total of 135 clusters were identified; the percentage of recent disease was reduced among nonimmigrants, and remained stable among the immigrants during the study period. Although 69% of the isolates originated from immigrants from high-incidence countries, the established TB control program in the receiving country was adequate for the prevention of disease transmission. On average per year, only 2 nonimmigrants and 13 immigrants developed disease as a result of infection within the country by imported M. tuberculosis. CONCLUSIONS Twelve years of M. tuberculosis importation as a result of immigration from high-incidence countries had little influence on the transmission of this pathogen in the receiving low-incidence country. To prevent future increase of transmission of TB, the current control strategies of low-incidence countries are adequate but must be maintained.
Collapse
Affiliation(s)
- Ulf R Dahle
- Division of Infectious Disease Control, Norwegian Institute of Public Health, Oslo, Norway.
| | | | | | | | | |
Collapse
|
22
|
Waterman SR, Williamson PR. Pathogen diversity and adaptation to the host: applications to clinical genomics. Future Microbiol 2007; 2:215-8. [PMID: 17661692 DOI: 10.2217/17460913.2.3.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|