1
|
Wang X, Wang J, Mao L, Yao Y. Helicobacter pylori outer membrane vesicles and infected cell exosomes: new players in host immune modulation and pathogenesis. Front Immunol 2024; 15:1512935. [PMID: 39726601 PMCID: PMC11670821 DOI: 10.3389/fimmu.2024.1512935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Outer membrane vesicles (OMVs) and exosomes are essential mediators of host-pathogen interactions. Elucidating their mechanisms of action offers valuable insights into diagnosing and treating infectious diseases and cancers. However, the specific interactions of Helicobacter pylori (H. pylori) with host cells via OMVs and exosomes in modulating host immune responses have not been thoroughly investigated. This review explores how these vesicles elicit inflammatory and immunosuppressive responses in the host environment, facilitate pathogen invasion of host cells, and enable evasion of host defenses, thereby contributing to the progression of gastric diseases and extra-gastric diseases disseminated through the bloodstream. Furthermore, the review discusses the challenges and future directions for investigating OMVs and exosomes, underscoring their potential as therapeutic targets in H. pylori-associated diseases.
Collapse
Affiliation(s)
- Xiuping Wang
- Department of Clinical Laboratory, The First People’s Hospital of
Kunshan, Kunshan, Jiangsu, China
| | | | | | | |
Collapse
|
2
|
Gholamhosseinzadeh E, Ghalehnoei H, Kazemi Veisari A, Jafari N, Goli HR. Evaluation of the Rock1 and microRNA-148a expression in biopsies collected from patients with Helicobacter pylori induced gastritis. BMC Gastroenterol 2024; 24:251. [PMID: 39112943 PMCID: PMC11308716 DOI: 10.1186/s12876-024-03347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Helicobacter pylori infection is one of the most common chronic bacterial infections, especially in developing countries. MicroRNA-148a is involved in the regulation of various genes, including Rock1, which is altered in gastric cancer. Decreased expression of mir-148a leads to tumor metastasis and increased Rock1 gene expression in gastric cancer. This study aimed to investigate the expression of these genes in biopsies collected from patients with H. pylori induced gastritis. METHODS Informed consent forms were gotten from the studied patients with gastritis who needed endoscopy. Gastric biopsies were taken by a gastroenterologist from patients with inflammation. Rapid urease test, stool antigen detection, and histopathological staining were used to determine the H. pylori infected patients. Real time PCR was used to evaluate the miRNA and Rock1 expression levels. RESULTS The Rock1 expression level in biopsies that were positive for H. pylori was significantly increased compared to our control gastritis group that were H. pylori-negative, but the results were not statistically significant. Moreover, the mir-148a expression level in H. pylori-positive patients with gastritis was increased compared to our control group. However, the results were not statistically significant. We did not find a significant relation between the expression levels of Rock1 and mir-148a in samples with gastritis infected or uninfected by H. pylori. This result may be due to the small sample size. CONCLUSION We suggest that this test should be carried out with more samples, and the comparison should be done between biopsies with inflammation and no inflammation in a patient.
Collapse
Affiliation(s)
- Ebrahim Gholamhosseinzadeh
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Farah Abad blv, Khazar square, Sari, Mazandaran, Iran
| | - Hossein Ghalehnoei
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Arash Kazemi Veisari
- Gut and Liver Research Center, Non-communicable Disease Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Narjes Jafari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Reza Goli
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Farah Abad blv, Khazar square, Sari, Mazandaran, Iran.
| |
Collapse
|
3
|
Xu H, Huang K, Shi M, Gong H, Han M, Tian W, Wang X, Zhang D. MicroRNAs in Helicobacter pylori-infected gastric cancer: Function and clinical application. Pharmacol Res 2024; 205:107216. [PMID: 38761883 DOI: 10.1016/j.phrs.2024.107216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Gastric cancer (GC) is the leading cause of cancer-related death worldwide, and it is associated with a combination of genetic, environmental, and microbial risk factors. Helicobacter pylori (H. pylori) is classified as a type I carcinogen, however, the exact regulatory mechanisms underlying H. pylori-induced GC are incompletely defined. MicroRNAs (miRNAs), one of small non-coding RNAs, negatively regulate gene expression through binding to their target genes. Dysregulation of miRNAs is crucial in human cancer. A noteworthy quantity of aberrant miRNAs induced by H. pylori through complex regulatory networks have been identified. These miRNAs substantially affect genetic instability, cell proliferation, apoptosis, invasion, metastasis, autophagy, chemoresistance, and the tumor microenvironment, leading to GC development and progression. Importantly, some H. pylori-associated miRNAs hold promise as therapeutic tools and biomarkers for GC prevention, diagnosis, and prognosis. Nonetheless, clinical application of miRNAs remains in its infancy with multiple issues, including sensitivity and specificity, stability, reliable delivery systems, and off-target effects. Additional research on the specific molecular mechanisms and more clinical data are still required. This review investigated the biogenesis, regulatory mechanisms, and functions of miRNAs in H. pylori-induced GC, offering novel insights into the potential clinical applications of miRNA-based therapeutics and biomarkers.
Collapse
Affiliation(s)
- Huimei Xu
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Ke Huang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China
| | - Mingxuan Shi
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China
| | - Hang Gong
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Mengyu Han
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Wenji Tian
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Xiaoying Wang
- Department of Emergency, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| | - Dekui Zhang
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
4
|
Akbari A, Noorbakhsh Varnosfaderani SM, Haeri MS, Fathi Z, Aziziyan F, Yousefi Rad A, Zalpoor H, Nabi-Afjadi M, Malekzadegan Y. Autophagy induced by Helicobacter Pylori infection can lead to gastric cancer dormancy, metastasis, and recurrence: new insights. Hum Cell 2024; 37:139-153. [PMID: 37924488 DOI: 10.1007/s13577-023-00996-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/11/2023] [Indexed: 11/06/2023]
Abstract
According to the findings of recent research, Helicobacter Pylori (H. pylori) infection is not only the primary cause of gastric cancer (GC), but it is also linked to the spread and invasion of GC through a number of processes and factors that contribute to virulence. In this study, we discussed that H. pylori infection can increase autophagy in GC tumor cells, leading to poor prognosis in such patients. Until now, the main concerns have been focused on H. pylori's role in GC development. According to our hypothesis, however, H. pylori infection may also lead to GC dormancy, metastasis, and recurrence by stimulating autophagy. Therefore, understanding how H. pylori possess these processes through its virulence factors and various microRNAs can open new windows for providing new prevention and/or therapeutic approaches to combat GC dormancy, metastasis, and recurrence which can occur in GC patients with H. pylori infection with targeting autophagy and eradicating H. pylori infection.
Collapse
Affiliation(s)
- Abdullatif Akbari
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Melika Sadat Haeri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zeinab Fathi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Aziziyan
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Yousefi Rad
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | | |
Collapse
|
5
|
Lepcha TT, Kumar M, Sharma AK, Mal S, Majumder D, Jana K, Basu J, Kundu M. Uncovering the role of microRNA671-5p/CDCA7L/monoamine oxidase-A signaling in Helicobacter pylori mediated apoptosis in gastric epithelial cells. Pathog Dis 2023; 81:7143101. [PMID: 37140023 DOI: 10.1093/femspd/ftad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/27/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023] Open
Abstract
Helicobacter pylori is a gram-negative microaerophilic bacterium and is associated with gastrointestinal diseases ranging from peptic ulcer and gastritis to gastric cancer and mucosa-associated lymphoid tissue lymphoma. In our laboratory, the transcriptomes and miRnomes of AGS cells infected with H. pylori have been profiled, and an miRNA-mRNA network has been constructed. MicroRNA 671-5p is upregulated during H. pylori infection of AGS cells or of mice. In this study, the role of miR-671-5p during infection has been investigated. It has been validated that miR-671-5p targets the transcriptional repressor CDCA7L, which is downregulated during infection (in vitro and in vivo) concomitant with miR-671-5p upregulation. Further, it has been established that the expression of monoamine oxidase A (MAO-A) is repressed by CDCA7L, and that MAO-A triggers the generation of reactive oxygen species (ROS). Consequently, miR-671-5p/CDCA7L signaling is linked to the generation of ROS during H. pylori infection. Finally, it has been demonstrated that ROS-mediated caspase 3 activation and apoptosis that occurs during H. pylori infection, is dependent on the miR-671-5p/CDCA7L/MAO-A axis. Based on the above reports, it is suggested that targeting miR-671-5p could offer a means of regulating the course and consequences of H. pylori infection.
Collapse
Affiliation(s)
- Thurbu Tshering Lepcha
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road Kolkata 700009, India
| | - Manish Kumar
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road Kolkata 700009, India
| | - Arun Kumar Sharma
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road Kolkata 700009, India
| | - Soumya Mal
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road Kolkata 700009, India
| | - Debayan Majumder
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road Kolkata 700009, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, EN80 Sector V, Salt Lake City, Kolkata 700091, India
| | - Joyoti Basu
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road Kolkata 700009, India
| | - Manikuntala Kundu
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road Kolkata 700009, India
| |
Collapse
|
6
|
Choi JM, Kim SG. Effect of Helicobacter pylori Eradication on Epigenetic Changes in Gastric Cancer-related Genes. THE KOREAN JOURNAL OF HELICOBACTER AND UPPER GASTROINTESTINAL RESEARCH 2021. [DOI: 10.7704/kjhugr.2021.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is known that gastric carcinogenesis results from the progressive changes from chronic gastritis to gastric atrophy, intestinal metaplasia, dysplasia, and invasive carcinoma. Several genetic and epigenetic alterations are involved in this process, and Helicobacter pylori (H. pylori) infection is believed to induce the initiation and progression of these steps. From an epigenetic point of view, H. pylori induces hypermethylation of genes involved in the development of gastric cancer and regulates the expression of various microRNAs (miRNAs). These H. pylori-related epigenetic changes are accumulated not only at the site of neoplasm but also in the adjacent non-cancerous gastric mucosa. Thereby, a state vulnerable to gastric cancer known as an epigenetic field defect is formed. H. pylori eradication can have an effective chemopreventive effect in gastric carcinogenesis. However, the molecular biological changes that occur in the stomach environment during H. pylori eradication have not yet been established. Several studies have reported that H. pylori eradication can restore infection-related changes, especially epigenetic alterations in gastric cancer-related genes, but some studies have shown otherwise. Simply put, it appears that the recovery of methylated gastric cancer-related genes and miRNAs during H. pylori eradication may vary among genes and may also differ depending on the histological subtype of the gastric mucosa. In this review, we will discuss the potential mechanism of gastric cancer prevention by H. pylori eradication, mainly from an epigenetic perspective.
Collapse
|
7
|
Wang C, Hu Y, Yang H, Wang S, Zhou B, Bao Y, Huang Y, Luo Q, Yang C, Xie X, Yang S. Function of Non-coding RNA in Helicobacter pylori-Infected Gastric Cancer. Front Mol Biosci 2021; 8:649105. [PMID: 34046430 PMCID: PMC8144459 DOI: 10.3389/fmolb.2021.649105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer is a common malignant tumor of the digestive system. Its occurrence and development are the result of a combination of genetic, environmental, and microbial factors. Helicobacter pylori infection is a chronic infection that is closely related to the occurrence of gastric tumorigenesis. Non-coding RNA has been demonstrated to play a very important role in the organism, exerting a prominent role in the carcinogenesis, proliferation, apoptosis, invasion, metastasis, and chemoresistance of tumor progression. H. pylori infection affects the expression of non-coding RNA at multiple levels such as genetic polymorphisms and signaling pathways, thereby promoting or inhibiting tumor progression or chemoresistance. This paper mainly introduces the relationship between H. pylori-infected gastric cancer and non-coding RNA, providing a new perspective for gastric cancer treatment.
Collapse
Affiliation(s)
- Chao Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yiyang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Huan Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Sumin Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bo Zhou
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yulu Bao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yu Huang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qiang Luo
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Chuan Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xia Xie
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
8
|
Kim N. Reversal of the Methylation-Associated Regulation of miR-200a/b by Helicobacter pylori Eradication Contributes to the Chemoprevention of Gastric Carcinogenesis. Gut Liver 2020; 14:533-534. [PMID: 32921637 PMCID: PMC7492488 DOI: 10.5009/gnl20251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Ghafouri-Fard S, Vafaee R, Shoorei H, Taheri M. MicroRNAs in gastric cancer: Biomarkers and therapeutic targets. Gene 2020; 757:144937. [PMID: 32640300 DOI: 10.1016/j.gene.2020.144937] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/09/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are a group of non-coding RNAs that have critical roles in regulation of expression of genes. They can inhibit or decrease expression of target genes mostly via interaction with 3' untranslated region of their targets. Their crucial roles in the regulation of expression of tumor suppressor genes and oncogenes have potentiated them as contributors in tumorigenesis. Moreover, their stability in body fluids has enhanced their potential as cancer biomarkers. In the present review article, we describe the role of miRNAs in the pathogenesis of gastric cancer and advances in application of miRNAs as biomarkers and therapeutic targets in this kind of malignancy.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Vafaee
- Proteomics Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Ebrahimi Ghahnavieh L, Tabatabaeian H, Ebrahimi Ghahnavieh Z, Honardoost MA, Azadeh M, Moazeni Bistgani M, Ghaedi K. Fluctuating expression of miR-584 in primary and high-grade gastric cancer. BMC Cancer 2020; 20:621. [PMID: 32615958 PMCID: PMC7345521 DOI: 10.1186/s12885-020-07116-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/25/2020] [Indexed: 12/24/2022] Open
Abstract
Background Gastric cancer is the fifth most common cancer worldwide. Along with environmental factors, such as Helicobacter pylori (H. pylori) infection, genetic changes play important roles in gastric tumor formations. miR-584 is a less well-characterized microRNA (miRNA), with apparent activity in human cancers. However, miR-584 expression pattern in gastric cancer development has remained unclear. This study aims to analyze the expression of miR-584 in gastric cancer samples and investigates the associations between this miRNA and H. pylori infection and clinical characteristics. Methods The expression level of miR-584 was studied in primary gastric cancers versus healthy control gastric mucosa samples using the RT-qPCR method. The clinical data were analyzed statistically in terms of miR-584 expression. In silico studies were employed to study miR-584 more broadly in order to assess its expression and find new potential target genes. Results Both experimental and in silico studies showed up-regulation of miR-584 in patients with gastric cancer. This up-regulation seems to be induced by H. pylori infection since the infected samples showed increased levels of miR-584 expression. Deeper analyses revealed that miR-584 undergoes a dramatic down-regulation in late stages, invasive and lymph node-metastatic gastric tumors. Bioinformatics studies demonstrated that miR-584 has a substantial role in cancer pathways and has the potential to target STAT1 transcripts. Consistent with the inverse correlation between TCGA RNA-seq data of miR-584 and STAT1 transcripts, the qPCR analysis showed a significant negative correlation between these two RNAs in a set of clinical samples. Conclusion miR-584 undergoes up-regulation in the stage of primary tumor formation; however, becomes down-regulated upon the progression of gastric cancer. These findings suggest the potential of miR-584 as a diagnostic or prognostic biomarker in gastric cancer.
Collapse
Affiliation(s)
| | - Hossein Tabatabaeian
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran. .,Anahid Cancer Clinic, Isfahan Healthcare City, Isfahan, Iran.
| | - Zhaleh Ebrahimi Ghahnavieh
- Department of Medical Education, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Amin Honardoost
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Mohamad Moazeni Bistgani
- Department of Surgery, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran. .,Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
11
|
STAT3 Pathway in Gastric Cancer: Signaling, Therapeutic Targeting and Future Prospects. BIOLOGY 2020; 9:biology9060126. [PMID: 32545648 PMCID: PMC7345582 DOI: 10.3390/biology9060126] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
Molecular signaling pathways play a significant role in the regulation of biological mechanisms, and their abnormal expression can provide the conditions for cancer development. The signal transducer and activator of transcription 3 (STAT3) is a key member of the STAT proteins and its oncogene role in cancer has been shown. STAT3 is able to promote the proliferation and invasion of cancer cells and induces chemoresistance. Different downstream targets of STAT3 have been identified in cancer and it has also been shown that microRNA (miR), long non-coding RNA (lncRNA) and other molecular pathways are able to function as upstream mediators of STAT3 in cancer. In the present review, we focus on the role and regulation of STAT3 in gastric cancer (GC). miRs and lncRNAs are considered as potential upstream mediators of STAT3 and they are able to affect STAT3 expression in exerting their oncogene or onco-suppressor role in GC cells. Anti-tumor compounds suppress the STAT3 signaling pathway to restrict the proliferation and malignant behavior of GC cells. Other molecular pathways, such as sirtuin, stathmin and so on, can act as upstream mediators of STAT3 in GC. Notably, the components of the tumor microenvironment that are capable of targeting STAT3 in GC, such as fibroblasts and macrophages, are discussed in this review. Finally, we demonstrate that STAT3 can target oncogene factors to enhance the proliferation and metastasis of GC cells.
Collapse
|
12
|
Ou Y, Ren H, Zhao R, Song L, Liu Z, Xu W, Liu Y, Wang S. Helicobacter pylori CagA promotes the malignant transformation of gastric mucosal epithelial cells through the dysregulation of the miR-155/KLF4 signaling pathway. Mol Carcinog 2019; 58:1427-1437. [PMID: 31162747 DOI: 10.1002/mc.23025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/31/2019] [Accepted: 04/08/2019] [Indexed: 12/18/2022]
Abstract
The Helicobacter pylori (H. pylori) cytotoxin-associated gene A (CagA) and Krüppel-like transcription factor (KLF4) were both closely associated with the development and progression of gastric cancer (GC). However, the nature of the interactions between CagA and KLF4 in GC development has not been elucidated. Therefore, we focused on the CagA-mediated promotion of the malignant transformation of gastric epithelial cells. Herein, we first examined the expression of KLF4 in both human cancer and paracarcinoma tissues with or without H. pylori infection and found that KLF4 expression was significantly decreased in H. pylori-positive GC cells compared with the H. pylori-negative GC cells. Further functional studies revealed that the increased expression of CagA could suppress KLF4 expression and promote the malignant transformation of normal epithelial cells. Subsequently, we found that CagA could upregulate miR-155 and further restrict the expression of downstream KLF4. More importantly, the overexpression of miR-155 in GES-1 promoted epithelial-mesenchymal transition and eventually facilitated tumor growth in vivo. Overall, the identification of the CagA/miR-155/KLF4 signaling pathway provided a new insight into the development and treatment of GC.
Collapse
Affiliation(s)
- Yang Ou
- Department of physiopathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Haifeng Ren
- Department of physiopathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Rongrong Zhao
- Department of physiopathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Le Song
- Department of physiopathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Zhengxia Liu
- Department of physiopathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Wenting Xu
- Department of physiopathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Yakun Liu
- Department of physiopathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Siying Wang
- Department of physiopathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| |
Collapse
|
13
|
Zou D, Xu L, Li H, Ma Y, Gong Y, Guo T, Jing Z, Xu X, Zhang Y. Role of abnormal microRNA expression in Helicobacter pylori associated gastric cancer. Crit Rev Microbiol 2019; 45:239-251. [PMID: 30776938 DOI: 10.1080/1040841x.2019.1575793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epidemiological studies have shown that Helicobacter pylori (HP) infection is a risk factor for gastric cancer (GC). HP infection may induce the release of pro-inflammatory mediators, and abnormally increase the level of reactive oxygen species (ROS), nitric oxide (NO), and cytokines in mucosal epithelial cells of the stomach. However, the specific mechanism underlying the pathogenesis of HP-associated GC is still poorly understood. Recent studies have revealed that abnormal microRNA expression may affect the proliferation, differentiation, and apoptosis of mucosal epithelial cells of the stomach to further influence GC occurrence, development, and metastasis. Herein, we summarize the role of abnormal microRNAs in the regulation of HP-associated GC progression. Abnormal microRNA expression in HP-positive GC may be a biomarker for GC diagnosis, occurrence, and development as well as its targeted treatment and prognosis.
Collapse
Affiliation(s)
- Dan Zou
- a The First laboratory of cancer institute , First Hospital of China Medical University , Shenyang , China
| | - Ling Xu
- b Department of Medical Oncology , First Hospital of China Medical University , Shenyang , China
| | - Heming Li
- b Department of Medical Oncology , First Hospital of China Medical University , Shenyang , China.,c Department of Oncology , Affiliated Zhongshan Hospital of Dalian University , Dalian , China
| | - Yanju Ma
- b Department of Medical Oncology , First Hospital of China Medical University , Shenyang , China.,d Department of Medical Oncology , Cancer Hospital of China Medical University , Shenyang , China
| | - Yuehua Gong
- e Department of Tumor Etiology and Screening Department of Cancer Institute and General Surgery, First Hospital of China Medical University , Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department , Shenyang , China
| | - Tianshu Guo
- b Department of Medical Oncology , First Hospital of China Medical University , Shenyang , China
| | - Zhitao Jing
- f Department of Neurosurgery , First Hospital of China Medical University , Shenyang , China
| | - Xiuying Xu
- g Department of Gastroenterology , First Hospital of China Medical University , Shenyang , China
| | - Ye Zhang
- a The First laboratory of cancer institute , First Hospital of China Medical University , Shenyang , China
| |
Collapse
|
14
|
Kumar R, Gong H, Liu L, Ramos-Solis N, Seye CI, Derbigny WA. TLR3 deficiency exacerbates the loss of epithelial barrier function during genital tract Chlamydia muridarum infection. PLoS One 2019; 14:e0207422. [PMID: 30625140 PMCID: PMC6326510 DOI: 10.1371/journal.pone.0207422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/22/2018] [Indexed: 12/18/2022] Open
Abstract
Problem Chlamydia trachomatis infections are often associated with acute syndromes including cervicitis, urethritis, and endometritis, which can lead to chronic sequelae such as pelvic inflammatory disease (PID), chronic pelvic pain, ectopic pregnancy, and tubal infertility. As epithelial cells are the primary cell type productively infected during genital tract Chlamydia infections, we investigated whether Chlamydia has any impact on the integrity of the host epithelial barrier as a possible mechanism to facilitate the dissemination of infection, and examined whether TLR3 function modulates its impact. Method of study We used wild-type and TLR3-deficient murine oviduct epithelial (OE) cells to ascertain whether C. muridarum infection had any effect on the epithelial barrier integrity of these cells as measured by transepithelial resistance (TER) and cell permeability assays. We next assessed whether infection impacted the transcription and protein function of the cellular tight-junction (TJ) genes for claudins1-4, ZO-1, JAM1 and occludin via quantitative real-time PCR (qPCR) and western blot. Results qPCR, immunoblotting, transwell permeability assays, and TER studies show that Chlamydia compromises cellular TJ function throughout infection in murine OE cells and that TLR3 deficiency significantly exacerbates this effect. Conclusion Our data show that TLR3 plays a role in modulating epithelial barrier function during Chlamydia infection of epithelial cells lining the genital tract. These findings propose a role for TLR3 signaling in maintaining the integrity of epithelial barrier function during genital tract Chlamydia infection, a function that we hypothesize is important in helping limit the chlamydial spread and subsequent genital tract pathology.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Haoli Gong
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Xiangya Second Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Luyao Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Xiangya Second Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Nicole Ramos-Solis
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Cheikh I. Seye
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Wilbert A. Derbigny
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
15
|
Marcelis L, Tousseyn T, Sagaert X. MALT Lymphoma as a Model of Chronic Inflammation-Induced Gastric Tumor Development. Curr Top Microbiol Immunol 2019; 421:77-106. [PMID: 31123886 DOI: 10.1007/978-3-030-15138-6_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mucosa-associated lymphoid tissue (MALT) lymphoma, or extranodal marginal zone lymphoma of MALT, is an indolent B-cell non-Hodgkin lymphoma linked with preexisting chronic inflammation. The stomach is the most commonly affected organ and the MALT lymphoma pathogenesis is clearly associated with Helicobacter pylori gastroduodenitis. Inflammation induces the lymphoid infiltrates in extranodal sites, where the lymphoma then subsequently develops. Genetic aberrations arise through the release of reactive oxygen species (ROS), H. pylori-induced endonucleases, and other effects. The involvement of nuclear factor kappa B (NF-κB) pathway activation, a critical regulator of pro-inflammatory responses, further highlights the role of inflammation in gastric MALT lymphoma. The NF-κB pathway regulates key elements of normal lymphocyte function, including the transcription of proliferation-promoting and anti-apoptotic genes. Aberrant constitutive activation of NF-κB signaling can lead to autoimmunity and malignancy. NF-κB pathway activation can happen through both the canonical and non-canonical pathways and can be caused by multiple genetic aberrations such as t(11;18)(q12;q21), t(1;14)(p22;q32), and t(14;18)(q32;q21) translocations, chronic inflammation and even directly by H. pylori-associated mechanisms. Gastric MALT lymphoma is considered one of the best models of how inflammation initiates genetic events that lead to oncogenesis, determines tumor biology, dictates clinical behavior and leads to viable therapeutic targets. The purpose of this review is to present gastric MALT lymphoma as an outstanding example of the close pathogenetic link between chronic inflammation and tumor development and to describe how this information can be integrated into daily clinical practice.
Collapse
Affiliation(s)
- Lukas Marcelis
- Translational Cell and Tissue Research Lab, Department of Imaging and Pathology, KU Leuven, Louvain, Belgium
- , O&N IV Herestraat 49 - bus 7003 24, 3000, Louvain, Belgium
| | - Thomas Tousseyn
- Translational Cell and Tissue Research Lab, Department of Imaging and Pathology, KU Leuven, Louvain, Belgium
- Department of Pathology, UZ Leuven, University Hospitals, Louvain, Belgium
- , O&N IV Herestraat 49 - bus 7003 24, 3000, Louvain, Belgium
| | - Xavier Sagaert
- Translational Cell and Tissue Research Lab, Department of Imaging and Pathology, KU Leuven, Louvain, Belgium.
- Department of Pathology, UZ Leuven, University Hospitals, Louvain, Belgium.
- , O&N IV Herestraat 49 - bus 7003 24, 3000, Louvain, Belgium.
| |
Collapse
|
16
|
Maleki Kakelar H, Barzegari A, Dehghani J, Hanifian S, Saeedi N, Barar J, Omidi Y. Pathogenicity of Helicobacter pylori in cancer development and impacts of vaccination. Gastric Cancer 2019; 22:23-36. [PMID: 30145749 DOI: 10.1007/s10120-018-0867-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori affect around 50% of the population worldwide. More importantly, the gastric infection induced by this bacterium is deemed to be associated with the progression of distal gastric carcinoma and gastric mucosal lymphoma in the human. H. pylori infection and its prevalent genotype significantly differ across various geographical regions. Based on numerous virulence factors, H. pylori can target different cellular proteins to modulate the variety of inflammatory responses and initiate numerous "hits" on the gastric mucosa. Such reactions lead to serious complications, including gastritis and peptic ulceration, gastric cancer and gastric mucosa-associated lymphoid structure lymphoma. Therefore, H. pylori have been considered as the type I carcinogen by the Global Firm for Research on Cancer. During the two past decades, different reports revealed that H. pylori possess oncogenic potentials in the gastric mucosa through a complicated interplay between the bacterial factors, various facets, and the environmental factors. Accordingly, numerous signaling pathways could be triggered in the development of gastrointestinal diseases (e.g., gastric cancer). Therefore, the main strategy for the treatment of gastric cancer is controlling the disease far before its onset using preventive/curative vaccination. Increasing the efficiency of vaccines may be achieved by new trials of vaccine modalities, which is used to optimize the cellular immunity. Taken all, H. pylori infection may impose severe complications, for resolving of which extensive researches are essential in terms of immune responses to H. pylori. We envision that H. pylori-mediated diseases can be controlled by advanced vaccines and immunotherapies.
Collapse
Affiliation(s)
- Hadi Maleki Kakelar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaber Dehghani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Hanifian
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Nazli Saeedi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran.
| |
Collapse
|
17
|
Fattahi S, Kosari‐Monfared M, Ghadami E, Golpour M, Khodadadi P, Ghasemiyan M, Akhavan‐Niaki H. Infection‐associated epigenetic alterations in gastric cancer: New insight in cancer therapy. J Cell Physiol 2018; 233:9261-9270. [DOI: 10.1002/jcp.27030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022]
Abstract
Gastric cancer risk is higher for malignancies motivated by bacterial and viral infections. Epigenetic abnormalities including DNA methylation, histone modifications, and noncoding RNAs are important regulatory key players in gastric cancer development in infected patients. Epigenetic memory restoration is an extremely interesting phenomenon which should be considered in therapeutic approaches. In vitro and in vivo antiviral treatments in combination with epigenetic therapeutic strategies along with standard chemotherapy revealed promising outcomes in gastric cancer prevention and treatment. This review summarizes our current understanding of the gastric cancer infections and epigenetic alterations caused by these agents. We focus on studies highlighting recent advances in epigenetic restoration by target specific drugs and present also a comprehensive overview of effective antiviral drug treatments against gastric cancer.
Collapse
Affiliation(s)
- Sadegh Fattahi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences Babol Iran
- North Research Center, Pasteur Institute Amol Iran
| | | | - Elham Ghadami
- Department of Genetics Faculty of Medicine, Babol University of Medical Sciences Babol Iran
| | - Monireh Golpour
- Molecular and Cell Biology Research Center, Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Science Sari Iran
| | - Parastoo Khodadadi
- Department of Genetics Faculty of Medicine, Babol University of Medical Sciences Babol Iran
| | - Mohammad Ghasemiyan
- Department of Genetics Faculty of Medicine, Babol University of Medical Sciences Babol Iran
| | - Haleh Akhavan‐Niaki
- Department of Genetics Faculty of Medicine, Babol University of Medical Sciences Babol Iran
| |
Collapse
|
18
|
OncomiR-27a rs895819 variant and breast cancer risk: An updated meta-analysis. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
19
|
Datta C, Subuddhi A, Kumar M, Lepcha TT, Chakraborty S, Jana K, Ghosh Z, Mukhopadhyay AK, Basu J, Kundu M. Genome-wide mRNA-miRNA profiling uncovers a role of the microRNA miR-29b-1-5p/PHLPP1 signalling pathway in Helicobacter pylori-driven matrix metalloproteinase production in gastric epithelial cells. Cell Microbiol 2018; 20:e12859. [PMID: 29749704 DOI: 10.1111/cmi.12859] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/29/2018] [Accepted: 05/02/2018] [Indexed: 02/06/2023]
Abstract
Aberrant expression of microRNAs (miRNAs) is associated with tumour progression, extracellular matrix remodelling, and cell proliferation. miRNAs modulate host gene expression during infection by pathogens such as Helicobacter pylori, which is associated with varying degrees of gastric pathology. In order to gain insight into the regulation of gene expression by miRNAs during H. pylori infection of gastric epithelial cells and its likely downstream consequences, we analysed the transcriptomes and miRnomes of AGS cells infected with H. pylori. In silico analysis of miRNA-mRNA interactions suggested that miR-29b-1-5p was a likely regulator of pathways associated with gastric epithelial cell pathology. We validated PH domain leucine rich phosphatase 1 (PHLPP1), a negative regulator of the Akt signalling pathway, as a target of miR-29b-1-5p. In an in vivo mouse model, we observed that infection with H. pylori was associated with upregulation of miR-29b-1-5p and downregulation of PHLPP1. Transfection with either a mimic or an inhibitor of miR-29b-1-5p confirmed that downregulation of PHLPP1 upregulates Akt-dependent NF-κB signalling leading to activation of matrix metalloproteinases 2 and 9, players in the degradation of extracellular matrix during H. pylori infection. The secreted antigen HP0175 was associated with upregulation of miR-29b-1-5p, regulation of metalloproteinase activity, and migration of AGS cells. Our study suggests that targeting the miR-29b-1-5p/PHLPP1 signalling axis could be a potential host-directed approach for regulating the outcome of H. pylori infection.
Collapse
Affiliation(s)
| | | | - Manish Kumar
- Department of Chemistry, Bose Institute, Kolkata, India
| | | | | | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Zhumur Ghosh
- Bioinformatics Centre, Bose Institute, Kolkata, India
| | - Asish Kumar Mukhopadhyay
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases Kolkata, Kolkata, India
| | - Joyoti Basu
- Department of Chemistry, Bose Institute, Kolkata, India
| | | |
Collapse
|
20
|
Carrasco SE, Hu S, Imai DM, Kumar R, Sandusky GE, Yang XF, Derbigny WA. Toll-like receptor 3 (TLR3) promotes the resolution of Chlamydia muridarum genital tract infection in congenic C57BL/6N mice. PLoS One 2018; 13:e0195165. [PMID: 29624589 PMCID: PMC5889059 DOI: 10.1371/journal.pone.0195165] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/16/2018] [Indexed: 12/24/2022] Open
Abstract
Chlamydia trachomatis urogenital serovars primarily replicate in epithelial cells lining the reproductive tract. Epithelial cells recognize Chlamydia through cell surface and cytosolic receptors, and/or endosomal innate receptors such as Toll-like receptors (TLRs). Activation of these receptors triggers both innate and adaptive immune mechanisms that are required for chlamydial clearance, but are also responsible for the immunopathology in the reproductive tract. We previously demonstrated that Chlamydia muridarum (Cm) induces IFN-β in oviduct epithelial cells (OE) in a TLR3-dependent manner, and that the synthesis of several cytokines and chemokines are diminished in Cm-challenged OE derived from TLR3-/- 129S1 mice. Furthermore, our in vitro studies showed that Cm replication in TLR3-/- OE is more efficient than in wild-type OE. Because TLR3 modulates the release inflammatory mediators involved in host defense during Cm infection, we hypothesized that TLR3 plays a protective role against Cm-induced genital tract pathology in congenic C57BL/6N mice. Using the Cm mouse model for human Chlamydia genital tract infections, we demonstrated that TLR3-/- mice had increased Cm shedding during early and mid-stage genital infection. In early stage infection, TLR3-/- mice showed a diminished synthesis of IFN-β, IL-1β, and IL-6, but enhanced production of IL-10, TNF-α, and IFN-γ. In mid-stage infection, TLR3-/- mice exhibited significantly enhanced lymphocytic endometritis and salpingitis than wild-type mice. These lymphocytes were predominantly scattered along the endometrial stroma and the associated smooth muscle, and the lamina propria supporting the oviducts. Surprisingly, our data show that CD4+ T-cells are significantly enhanced in the genital tract TLR3-/- mice during mid-stage Chlamydial infection. In late-stage infections, both mouse strains developed hydrosalpinx; however, the extent of hydrosalpinx was more severe in TLR3-/- mice. Together, these data suggest that TLR3 promotes the clearance of Cm during early and mid-stages of genital tract infection, and that loss of TLR3 is detrimental in the development hydrosalpinx.
Collapse
Affiliation(s)
- Sebastian E. Carrasco
- School of Veterinary Medicine and Comparative Pathology Laboratory, University of California-Davis, Davis, California, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sishun Hu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Denise M. Imai
- School of Veterinary Medicine and Comparative Pathology Laboratory, University of California-Davis, Davis, California, United States of America
| | - Ramesh Kumar
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - George E. Sandusky
- Department of Pathology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Wilbert A. Derbigny
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
21
|
Sundaravinayagam D, Kim HR, Wu T, Kim HH, Lee HS, Jun S, Cha JH, Kee Y, You HJ, Lee JH. miR146a-mediated targeting of FANCM during inflammation compromises genome integrity. Oncotarget 2018; 7:45976-45994. [PMID: 27351285 PMCID: PMC5216775 DOI: 10.18632/oncotarget.10275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/03/2016] [Indexed: 02/07/2023] Open
Abstract
Inflammation is a potent inducer of tumorigenesis. Increased DNA damage or loss of genome integrity is thought to be one of the mechanisms linking inflammation and cancer development. It has been suggested that NF-κB-induced microRNA-146 (miR146a) may be a mediator of the inflammatory response. Based on our initial observation that miR146a overexpression strongly increases DNA damage, we investigated its potential role as a modulator of DNA repair. Here, we demonstrate that FANCM, a component in the Fanconi Anemia pathway, is a novel target of miR146a. miR146a suppressed FANCM expression by directly binding to the 3′ untranslated region of the gene. miR146a-induced downregulation of FANCM was associated with inhibition of FANCD2 monoubiquitination, reduced DNA homologous recombination repair and checkpoint response, failed recovery from replication stress, and increased cellular sensitivity to cisplatin. These phenotypes were recapitulated when miR146a expression was induced by overexpressing the NF-κB subunit p65/RelA or Helicobacter pylori infection in a human gastric cell line; the phenotypes were effectively reversed with an anti-miR146a antagomir. These results suggest that undesired inflammation events caused by a pathogen or over-induction of miR146a can impair genome integrity via suppression of FANCM.
Collapse
Affiliation(s)
- Devakumar Sundaravinayagam
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, Gwangju, Republic of Korea.,Department of Pharmacology, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Hye Rim Kim
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, Gwangju, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - TingTing Wu
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, Gwangju, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Hyun Hee Kim
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, Gwangju, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Hyun-Seo Lee
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, Gwangju, Republic of Korea.,Department of Pharmacology, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Semo Jun
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, Gwangju, Republic of Korea.,Department of Pharmacology, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Jeong-Heon Cha
- Department of Oral Biology, Department of Applied Life Science, The Graduate School, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Younghoon Kee
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, Florida, United States of America
| | - Ho Jin You
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, Gwangju, Republic of Korea.,Department of Pharmacology, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Jung-Hee Lee
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, Gwangju, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, Republic of Korea
| |
Collapse
|
22
|
Zabaglia LM, Sallas ML, Santos MPD, Orcini WA, Peruquetti RL, Constantino DH, Chen E, Smith MDAC, Payão SM, Rasmussen LT. Expression of miRNA‐146a, miRNA‐155, IL‐2, and TNF‐α in inflammatory response to
Helicobacter pylori
infection associated with cancer progression. Ann Hum Genet 2017; 82:135-142. [DOI: 10.1111/ahg.12234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/19/2017] [Accepted: 11/10/2017] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | | | | | | | - Elizabeth Chen
- Universidade Federal de São Paulo (UNIFESP) São Paulo São Paulo Brazil
| | | | | | | |
Collapse
|
23
|
Lee JW, Kim N, Park JH, Kim HJ, Chang H, Kim JM, Kim JW, Lee DH. Differential MicroRNA Expression Between Gastric Cancer Tissue and Non-cancerous Gastric Mucosa According to Helicobacter pylori Status. J Cancer Prev 2017; 22:33-39. [PMID: 28382284 PMCID: PMC5380187 DOI: 10.15430/jcp.2017.22.1.33] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 12/28/2022] Open
Abstract
Background MicroRNAs (miRNAs) are key post-translational mechanisms which can regulate gene expression in gastric carcinogenesis. To identify miRNAs responsible for gastric carcinogenesis, we compared expression levels of miRNAs between gastric cancer tissue and non-cancerous gastric mucosa according to Helicobacter pylori status. Methods Total RNA was extracted from the cancerous regions of formalin-fixed, paraffin-embedded tissues of H. pylori-positive (n = 8) or H. pylori-negative (n = 8) patients with an intestinal type of gastric cancer. RNA expression was analyzed using a 3,523 miRNA profiling microarray based on the Sanger miRBase. Validation analysis was performed using TaqMan miRNA assays for biopsy samples from 107 patients consisted of control and gastric cancer with or without H. pylori. And then, expression levels of miRNAs were compared according to subgroups. Results A total of 156 miRNAs in the aberrant miRNA profiles across the miRNA microarray showed differential expression (at least a 2-fold change, P < 0.05) in cancer tissue, compared to noncancerous mucosa in both of H. pylori-negative and -positive samples. After 10 promising miRNAs were selected, validations by TaqMan miRNA assays confirmed that two miRNAs (hsa-miR-135b-5p and hsa-miR-196a-5p) were significantly increased and one miRNA (hsa-miR-145-5p) decreased in cancer tissue compared to non-cancerous gastric mucosa at H. pylori-negative group. For H. pylori-positive group, three miRNAs (hsa-miR-18a-5p, hsa-miR-135b-5p, and hsa-miR-196a-5p) were increased in cancer tissue. hsa-miR-135b-5p and hsa-miR-196a-5p were increased in gastric cancer in both of H. pylori-negative and -positive. Conclusions miRNA expression of the gastric cancer implies that different but partially common gastric cancer carcinogenic mechanisms might exist according to H. pylori status.
Collapse
Affiliation(s)
- Jung Won Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea; Department of Internal Medicine, Samsung Changwon Hospital, Changwon, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea; Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Hyun Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hee Jin Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea; Department of Internal Medicine, Myongji Hospital, Goyang, Korea
| | - Hyun Chang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jung Min Kim
- NAR Center, Inc., Daejeon Oriental Hospital of Daejeon University, Daejeon, Korea
| | - Jin-Wook Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea; Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea; Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Induction of immunomodulatory miR-146a and miR-155 in small intestinal epithelium of Vibrio cholerae infected patients at acute stage of cholera. PLoS One 2017; 12:e0173817. [PMID: 28319200 PMCID: PMC5358779 DOI: 10.1371/journal.pone.0173817] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/27/2017] [Indexed: 12/30/2022] Open
Abstract
The potential immunomodulatory role of microRNAs in small intestine of patients with acute watery diarrhea caused by Vibrio cholerae O1 or enterotoxigenic Escherichia coli (ETEC) infection was investigated. Duodenal biopsies were obtained from study-participants at the acute (day 2) and convalescent (day 21) stages of disease, and from healthy individuals. Levels of miR-146a, miR-155 and miR-375 and target gene (IRAK1, TRAF6, CARD10) and 11 cytokine mRNAs were determined by qRT-PCR. The cellular source of microRNAs in biopsies was analyzed by in situ hybridization. The ability of V. cholerae bacteria and their secreted products to cause changes in microRNA- and mRNA levels in polarized tight monolayers of intestinal epithelial cells was investigated. miR-146a and miR-155 were expressed at significantly elevated levels at acute stage of V. cholerae infection and declined to normal at convalescent stage (P<0.009 versus controls; P = 0.03 versus convalescent stage, pairwise). Both microRNAs were mainly expressed in the epithelium. Only marginal down-regulation of target genes IRAK1 and CARD10 was seen and a weak cytokine-profile was identified in the acute infected mucosa. No elevation of microRNA levels was seen in ETEC infection. Challenge of tight monolayers with the wild type V. cholerae O1 strain C6706 and clinical isolates from two study-participants, caused significant increase in miR-155 and miR-146a by the strain C6706 (P<0.01). One clinical isolate caused reduction in IRAK1 levels (P<0.05) and none of the strains induced inflammatory cytokines. In contrast, secreted factors from these strains caused markedly increased levels of IL-8, IL-1β, and CARD10 (P<0.001), without inducing microRNA expression. Thus, miR-146a and miR-155 are expressed in the duodenal epithelium at the acute stage of cholera. The inducer is probably the V. cholerae bacterium. By inducing microRNAs the bacterium can limit the innate immune response of the host, including inflammation evoked by its own secreted factors, thereby decreasing the risk of being eliminated.
Collapse
|
25
|
Sekar D, Krishnan R, Thirugnanasambantham K, Rajasekaran B, Islam VIH, Sekar P. Significance of microRNA 21 in gastric cancer. Clin Res Hepatol Gastroenterol 2016; 40:538-545. [PMID: 27179559 DOI: 10.1016/j.clinre.2016.02.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 02/01/2016] [Accepted: 02/17/2016] [Indexed: 02/04/2023]
Abstract
Despite promising developments of treatment, the mortality due to gastric cancer remains high and the mechanisms of gastric cancer initiation and the development also remains elusive. It has been reported that patients with positive serologic tests for H. pylori have a higher risk of the development of gastric cancer. microRNAs (miRNAs) are short non-coding RNA molecules consisting of 21-25 nucleotides (nt) in length. The miRNAs silence their cognate target genes by inhibiting mRNA translation or degrading the mRNA molecules by binding to their 3'-untranslated (UTR) regions and plays a very important role in cancer biology. Recent evidences indicate that miR-21 is overexpressed in tumour tissue, including gastric cancer and plays a vital role in tumour cell proliferation, apoptosis, invasion and angiogenesis. Elevated levels of miR-21 is associated with downregulation of tumour suppressor genes, such as programmed cell death 4 (PDCD4), tissue inhibitor of metalloproteinase 3, phosphatase and tensin homolog (PTEN), tropomyosin 1, ras homolog gene family member B, and maspin. Silencing of miR-21 through the use of a miR-21 inhibitor affected cancer cell viability, induced cell cycle arrest and increased chemosensitivity to anticancer agents indicating that miR-21 functions as an oncogene. Although an increased expression level of miR-21 has been observed in gastric cancer, studies related to the role of miR-21 in gastric cancer progression is very limited. The main thrust of this mini review is to explain the potency of miR-21 as a prognostic and/or diagnostic biomarker and as a new target for clinical therapeutic for interventions of gastric cancer progression.
Collapse
Affiliation(s)
- Durairaj Sekar
- Narayana Medical College and Hospital, Chintha Reddy Palem, Nellore 524002, India; Stem Cell Division, Cryovault Biotech India Pvt. Ltd, Bangalore 560016, India.
| | - Ramalingam Krishnan
- Narayana Medical College and Hospital, Chintha Reddy Palem, Nellore 524002, India
| | | | - Baskaran Rajasekaran
- Biochemistry and Molecular Biology, Pondicherry University, RV Nagar, Pondicherry 6-5014, India
| | | | - Punitha Sekar
- Stem Cell Division, Cryovault Biotech India Pvt. Ltd, Bangalore 560016, India
| |
Collapse
|
26
|
Treece AL, Duncan DL, Tang W, Elmore S, Morgan DR, Dominguez RL, Speck O, Meyers MO, Gulley ML. Gastric adenocarcinoma microRNA profiles in fixed tissue and in plasma reveal cancer-associated and Epstein-Barr virus-related expression patterns. J Transl Med 2016; 96:661-71. [PMID: 26950485 PMCID: PMC5767475 DOI: 10.1038/labinvest.2016.33] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 12/09/2015] [Accepted: 01/12/2016] [Indexed: 12/27/2022] Open
Abstract
MicroRNA expression in formalin-fixed paraffin-embedded tissue (FFPE) or plasma may add value for cancer management. The GastroGenus miR Panel was developed to measure 55 cancer-specific human microRNAs, Epstein-Barr virus (EBV)-encoded microRNAs, and controls. This Q-rtPCR panel was applied to 100 FFPEs enriched for adenocarcinoma or adjacent non-malignant mucosa, and to plasma of 31 patients. In FFPE, microRNAs upregulated in malignant versus adjacent benign gastric mucosa were hsa-miR-21, -155, -196a, -196b, -185, and -let-7i. Hsa-miR-18a, 34a, 187, -200a, -423-3p, -484, and -744 were downregulated. Plasma of cancer versus non-cancer controls had upregulated hsa-miR-23a, -103, and -221 and downregulated hsa-miR-378, -346, -486-5p, -200b, -196a, -141, and -484. EBV-infected versus uninfected cancers expressed multiple EBV-encoded microRNAs, and concomitant dysregulation of four human microRNAs suggests that viral infection may alter cellular biochemical pathways. Human microRNAs were dysregulated between malignant and benign gastric mucosa and between plasma of cancer patients and non-cancer controls. Strong association of EBV microRNA expression with known EBV status underscores the ability of microRNA technology to reflect disease biology. Expression of viral microRNAs in concert with unique human microRNAs provides novel insights into viral oncogenesis and reinforces the potential for microRNA profiles to aid in classifying gastric cancer subtypes. Pilot studies of plasma suggest the potential for a noninvasive addition to cancer diagnostics.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/virology
- Aged
- Aged, 80 and over
- Case-Control Studies
- Epstein-Barr Virus Infections/genetics
- Epstein-Barr Virus Infections/metabolism
- Epstein-Barr Virus Infections/virology
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/isolation & purification
- Humans
- Male
- MicroRNAs/blood
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Pilot Projects
- RNA, Neoplasm/blood
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- RNA, Viral/blood
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Stomach Neoplasms/genetics
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/virology
Collapse
Affiliation(s)
- Amanda L Treece
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel L Duncan
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Weihua Tang
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sandra Elmore
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Douglas R Morgan
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Ricardo L Dominguez
- Department of Gastroenterology, Western Regional Hospital, Santa Rosa de Copan, Honduras
| | - Olga Speck
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael O Meyers
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Surgical Oncology, Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Margaret L Gulley
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
27
|
Chang H, Kim N, Park JH, Nam RH, Choi YJ, Park SM, Choi YJ, Yoon H, Shin CM, Lee DH. Helicobacter pylori Might Induce TGF-β1-Mediated EMT by Means of cagE. Helicobacter 2015; 20:438-48. [PMID: 25735663 DOI: 10.1111/hel.12220] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT), in which polarized epithelial cells have mesenchymal cell phenotypes, is thought to be a key process of invasion and metastasis of cancer. Transforming growth factor beta-1 (TGF-β1) is known to be carcinogenic and Helicobacter pylori is a predominant carcinogen of gastric cancer. Our study aimed to determine whether TGF-β1 or H. pylori infection enhances EMT process and cytotoxin-associated gene E (CagE) is associated with EMT. MATERIALS AND METHODS Human gastric cancer cell AGS and MKN45 were treated with recombinant TGF-β1 or H. pylori including cagE-negative (ΔcagE) mutant. Besides the assessment of EMT-related markers expression levels by means of RT-qPCR, Western blot, and immunofluorescence assay, the induction of in vitro EMT on gastric cancer cells (AGS and MKN cell lines) was confirmed by wound-healing assay and invasion assay. RESULTS When gastric cancer cells were treated with TGF-β1 or various strains of cagE-positive H. pylori, EMT-related marker altered significantly. However, the ΔcagE mutant did not. Wound-healing assay and invasion assay showed enhanced migration ability of the cells treated with cagE-positive H. pylori but not in ΔcagE mutant. CONCLUSIONS EMT induction in gastric cancer cells by TGF-β1 was confirmed. Only infection with cagE-positive H. pylori upregulated the TGF-β1-mediated EMT pathway and consequently promotes EMT. Therefore, H. pylori might induce TGF-β1-mediated EMT associated with the cagE.
Collapse
Affiliation(s)
- Hyun Chang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoungnam, Gyeonggi-do, South Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoungnam, Gyeonggi-do, South Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji Hyun Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Ryoung Hee Nam
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoungnam, Gyeonggi-do, South Korea
| | - Yoon Jeong Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoungnam, Gyeonggi-do, South Korea
| | - Seon Mee Park
- Department of Internal Medicine, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, South Korea
| | - Yoon Jin Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoungnam, Gyeonggi-do, South Korea
| | - Hyuk Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoungnam, Gyeonggi-do, South Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoungnam, Gyeonggi-do, South Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoungnam, Gyeonggi-do, South Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
28
|
Chang H, Kim N, Park JH, Nam RH, Choi YJ, Lee HS, Yoon H, Shin CM, Park YS, Kim JM, Lee DH. Different microRNA expression levels in gastric cancer depending on Helicobacter pylori infection. Gut Liver 2015; 9:188-96. [PMID: 25167801 PMCID: PMC4351025 DOI: 10.5009/gnl13371] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND/AIMS This study was conducted to identify microRNAs (miRNAs) that are differentially expressed in Helicobacter pylori-infected patients with an intestinal type of gastric cancer using miRNA microarray and to confirm the candidate miRNA expression levels. METHODS Total RNA was extracted from the cancerous and noncancerous regions of formalin-fixed, paraffin-embedded tissues of H. pylori-positive (n=8) or H. pylori-negative (n=8) patients with an intestinal type of gastric cancer. RNA expression was analyzed using a 3,523 miRNA profiling microarray based on the Sanger miRBase. Validation analysis was performed using TaqMan miRNA assays. RESULTS A total of 219 miRNAs in the aber-rant miRNA profiles across the miRNA microarray showed at least a 2-fold change differential expression in H. pylori-positive and H. pylori-negative cancer tissues. After candi-date miRNAs were selected using online miRNA databases, TaqMan miRNA assays confirmed that three miRNAs (miR-99b-3p, miR-564, and miR-638) were significantly increased in three H. pylori-positive cancer tissues compared to the H. pylori-negative cancer tissues. Additionally, four miRNAs (miR-204-5p, miR-338-5p, miR-375, and miR-548c-3p) were significantly increased in H. pylori-negative cancer tissues compared to H. pylori-positive cancer tissues. CONCLUSIONS miRNA expression in the intestinal type of H. pylori infection-dependent gastric cancer suggests that different gastric can-cer pathogenesis mechanisms could exist between H. pylori-positive and H. pylori-negative gastric cancer. Additional functional studies are required. (Gut Liver, 2015;9188-196).
Collapse
Affiliation(s)
- Hyun Chang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam and Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Hyun Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ryoung Hee Nam
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yoon Jeong Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hyuk Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Young Soo Park
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam and Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Min Kim
- NAR Center, Inc., Daejeon Oriental Hospital of Daejeon University, Daejeon, Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam and Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
29
|
Libânio D, Dinis-Ribeiro M, Pimentel-Nunes P. Helicobacter pylori and microRNAs: Relation with innate immunity and progression of preneoplastic conditions. World J Clin Oncol 2015; 6:111-132. [PMID: 26468448 PMCID: PMC4600186 DOI: 10.5306/wjco.v6.i5.111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 06/22/2015] [Accepted: 08/04/2015] [Indexed: 02/06/2023] Open
Abstract
The accepted paradigm for intestinal-type gastric cancer pathogenesis is a multistep progression from chronic gastritis induced by Helicobacter pylori (H. pylori) to gastric atrophy, intestinal metaplasia, dysplasia and ultimately gastric cancer. The genetic and molecular mechanisms underlying disease progression are still not completely understood as only a fraction of colonized individuals ever develop neoplasia suggesting that bacterial, host and environmental factors are involved. MicroRNAs are noncoding RNAs that may influence H. pylori-related pathology through the regulation of the transcription and expression of various genes, playing an important role in inflammation, cell proliferation, apoptosis and differentiation. Indeed, H. pylori have been shown to modify microRNA expression in the gastric mucosa and microRNAs are involved in the immune host response to the bacteria and in the regulation of the inflammatory response. MicroRNAs have a key role in the regulation of inflammatory pathways and H. pylori may influence inflammation-mediated gastric carcinogenesis possibly through DNA methylation and epigenetic silencing of tumor suppressor microRNAs. Furthermore, microRNAs influenced by H. pylori also have been found to be involved in cell cycle regulation, apoptosis and epithelial-mesenchymal transition. Altogether, microRNAs seem to have an important role in the progression from gastritis to preneoplastic conditions and neoplastic lesions and since each microRNA can control the expression of hundreds to thousands of genes, knowledge of microRNAs target genes and their functions are of paramount importance. In this article we present a comprehensive review about the role of microRNAs in H. pylori gastric carcinogenesis, identifying the microRNAs downregulated and upregulated in the infection and clarifying their biological role in the link between immune host response, inflammation, DNA methylation and gastric carcinogenesis.
Collapse
|
30
|
Chen W, Qi J, Bao G, Wang T, Du CW, Wang MD. Emerging role of microRNA-27a in human malignant glioma cell survival via targeting of prohibitin. Mol Med Rep 2015; 12:1515-23. [PMID: 25777779 DOI: 10.3892/mmr.2015.3475] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 02/05/2015] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRs) function as oncogenes and tumor suppressors, and have roles in most cellular processes. To date, the possible role of miR-27a, which is part of the miR-23a/27a/24-2 cluster, in malignant gliomas has remained elusive. Therefore, the present study aimed to explore the role of miR-27a in glioma and its potential target. Through transfection with miR-27a inhibitor or oligonucleotide mimics, the impact of miR-27a silencing or overexpression on the growth, apoptosis, cell cycle and invasiveness of U251 and U87MG cells was examined in vitro. The present study initially identified the potential target of miR-27a in glioma cells through a bioinformatics analysis, which was used for screening of the literature on the proteomics of gliomas. Prohibitin (PHB) was then confirmed as a target by absolute luciferase reporter assays, quantitative real-time polymerase chain reaction and western blot analysis. Treatment with miR-27a mimics oligonucleotides suppressed U251 cell proliferation, promoted apoptosis by inducing G2/M phase arrest, and impaired the invasive potential of U251 cells in vitro. In addition, miR-27a expression was downregulated in glioma tissues. A PHB-3'-untranslated region luciferase reporter assay confirmed PHB as a direct target gene of miR-27a. PHB mRNA expression was reversely correlated with levels of miR-27a in U251 cells. Overexpression of miR-27a in U251 cells at 72 h and 96 h post‑transfection with miR-27a mimics significantly decreased PHB protein expression by 17.2% and 43.9%, respectively. In conclusion, miR-27a was shown to be a significant tumor suppressor by targeting and decreasing PHB protein expression in glioma U251 cells. miR-27a targeting of PHB may be a novel potential therapeutic strategy for glioma.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jun Qi
- Institute of Transfusion Research, Shaanxi Blood Center, Xi'an, Shaanxi 710061, P.R. China
| | - Gang Bao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Tuo Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Chang-Wang Du
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Mao-De Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
31
|
Calcagno DQ, de Arruda Cardoso Smith M, Burbano RR. Cancer type-specific epigenetic changes: gastric cancer. Methods Mol Biol 2015; 1238:79-101. [PMID: 25421656 DOI: 10.1007/978-1-4939-1804-1_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gastric cancer (GC) remains a major cause of mortality despite declining rate in the world. Epigenetic alterations contribute significantly to the development and progression of gastric tumors. Epigenetic refers to the number of modifications of the chromatin structure that affect gene expression without altering the primary sequence of DNA, and these changes lead to transcriptional activation or silencing of the gene. Over the years, the study of epigenetic processes has increased, and novel therapeutic approaches have emerged. This chapter summarizes the main epigenomic mechanisms described recently involved in gastric carcinogenesis, focusing on the roles that aberrant DNA methylation, histone modifications (histone acetylation and methylation), and miRNAs (oncogenic and tumor suppressor function of miRNA) play in the onset and progression of gastric tumors. Clinical implications of these epigenetic alterations in GC are also discussed.
Collapse
Affiliation(s)
- Danielle Queiroz Calcagno
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Rua dos Mundurucus, 4487, Guamá, CEP 66073-000 Belém, PA, Brazil,
| | | | | |
Collapse
|
32
|
Uozaki H, Morita S, Kumagai A, Aso T, Soejima Y, Takahashi Y, Fukusato T. Stromal miR-21 is more important than miR-21 of tumour cells for the progression of gastric cancer. Histopathology 2014; 65:775-83. [PMID: 25041158 DOI: 10.1111/his.12491] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/06/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Gastric cancer (GC) is a common cancer globally. miRNA-21 (miR-21) appears to be important in the tumourigenesis of almost all types of human cancer. However its precise localization in GC has yet to be clarified. We thus examined miR-21 localization in GC and revealed its clinicopathological importance. METHODS Tissue arrays of 469 GCs from 454 patients were examined for miR-21 using in situ hybridization (ISH). The positivity was evaluated separately in tumour cells and stromal cells. Conventional sections of 10 GCs were also stained. Eight cases were examined by quantitative RT-PCR (qRT-PCR). RESULTS miR-21 was highly expressed in tumour cells of 44% of cases and in cancer stroma of 51% of cases. miR-21 of tumour cells was not related to clinicopathological factors, whereas stromal miR-21 was related to many factors including tumour stage, size, and nodal metastasis. Stromal miR-21 gradually increased during tumour progression. ISH of whole sections showed stronger stromal positivity in invasive areas with desmoplastic reaction. Cancer stroma also showed higher miR-21 expression than tumour and non-tumourous tissue in the qRT-PCR study. CONCLUSION Stromal miR-21 is closely related to tumour progression in GC. Stromal miR-21 of tumours might be a target of treatment.
Collapse
Affiliation(s)
- Hiroshi Uozaki
- Department of Pathology, Teikyo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Fei B, Wu H. MiR-378 inhibits progression of human gastric cancer MGC-803 cells by targeting MAPK1 in vitro. Oncol Res 2014; 20:557-64. [PMID: 24139413 DOI: 10.3727/096504013x13775486749254] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Gastric cancer (GC) is one of the most common cancers and the leading cause of cancer-related deaths globally. The discovery of microRNAs (miRNAs) provides a new avenue for GC diagnostic and treatment regiments. Currently, a large number of miRNAs have been reported to be associated with the progression of GC, among which miR-378 has been examined to be downregulated in GC tissues and several cell lines. However, the function of miR-378 on GC cells and the mechanisms were less known. Here we found that ectopic expression of miR-378 could inhibit cell proliferation, cell cycle progression, cell migration as well as invasion, and induced cell apoptosis in GC cell line MGC-803. Moreover, we found that oncogene mitogen-activated protein kinase 1 (MAPK1) was a target gene of miR-378 in GC cells, and the tumor-suppressive role of miR-378 might be achieved by the direct interaction with MAPK1. Taken together, our results showed that miR-378 might act as tumor suppressors in GC, and it may provide novel diagnostic and therapeutic options for human GC clinical operation in the future.
Collapse
Affiliation(s)
- Bojian Fei
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, SooChow, Jiangsu, PR China
| | | |
Collapse
|
34
|
Miao L, Liu K, Xie M, Xing Y, Xi T. miR-375 inhibits Helicobacter pylori-induced gastric carcinogenesis by blocking JAK2-STAT3 signaling. Cancer Immunol Immunother 2014; 63:699-711. [PMID: 24718681 PMCID: PMC11028505 DOI: 10.1007/s00262-014-1550-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/28/2014] [Indexed: 12/16/2022]
Abstract
Gastric cancer remains the second leading cause of cancer-related deaths worldwide. Although Helicobacter pylori (H. pylori) is considered to be a critical risk factor, the molecular mechanisms underlying H. pylori-induced gastric carcinogenesis are still poorly defined. Recently, accumulating studies have revealed that microRNAs play key roles in development, differentiation, immune regulation, and even carcinogenesis. This study was performed to explore the mechanism of microRNA-375 (miR-375) in H. pylori promotion of gastric carcinogenesis. It was shown that miR-375 was down-regulated in response to H. pylori infection in gastric epithelial cell lines; this finding was quite opposite to the expression patterns of pro-inflammatory cytokines observed in a co-culture cell model. Moreover, the ectopic expression of miR-375 aggravated cell proliferation and migration. It was further observed that Janus kinase 2 (JAK2) was a bona fide target of miR-375 and further activated signal transducer and activator of transcription 3 (STAT3) and other downstream target molecules. Both gain-of-function and loss-of-function experiments showed that decreased miR-375 expression could mimic the oncogenic effects of the JAK2-STAT3 pathway. In addition, pretreatment with siRNAs targeting JAK2 prevented gastric epithelial cells from increasing proliferation and migration even in response to H. pylori infection. For the first time, our results demonstrate that the JAK2-STAT3 pathway regulated by miR-375 is involved in H. pylori-induced inflammation; this pathway promotes neoplastic transformation by affecting the expression of BCL-2 and TWIST1, hence offering a potential therapeutic target for inflammation-related cancers, especially those related to H. pylori.
Collapse
Affiliation(s)
- Lin Miao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jiaxiang Road, Nanjing, 210009 Jiangsu China
| | - Kunmei Liu
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Laboratory Medicine, Ningxia Medical University, Yinchuan, 750004 China
| | - Meijuan Xie
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jiaxiang Road, Nanjing, 210009 Jiangsu China
| | - Yingying Xing
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jiaxiang Road, Nanjing, 210009 Jiangsu China
| | - Tao Xi
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jiaxiang Road, Nanjing, 210009 Jiangsu China
| |
Collapse
|
35
|
Tsai MM, Wang CS, Tsai CY, Chen CY, Chi HC, Tseng YH, Chung PJ, Lin YH, Chung IH, Chen CY, Lin KH. MicroRNA-196a/-196b promote cell metastasis via negative regulation of radixin in human gastric cancer. Cancer Lett 2014; 351:222-31. [PMID: 24933454 DOI: 10.1016/j.canlet.2014.06.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 05/25/2014] [Accepted: 06/04/2014] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) play an important role to contribute carcinogenesis. The aim of the current study was to identify useful biomarkers from miRNAs. Differential miRNA profiles were analyzed using the miRNA qRT-PCR-based assay. Two of the most upregulated miRNAs were selected and validated. The miR-196a/-196b levels were significantly increased in gastric cancer (GC) tissues (n=109). Overexpression of miR-196a/-196b was significantly associated with tumor progression and poorer 5-year survival outcomes. Overexpression of miR-196a/-196b enhances GC cell migration and invasion. Further, radixin was identified as a target gene of miR-196a/-196b. Elevated miR-196a/-196b expression in GC cells led to reduced radixin protein levels and vice versa. Notably, an inverse correlation between miR-196a/-196b and radixin mRNA and protein expression was observed in GC tissues with in situ hybridization and immunohistochemistry analyses. Together, miR-196a/-196b inhibitory oligonucleotides or overexpression of the radixin may thus have therapeutic potential in suppressing GC metastasis.
Collapse
Affiliation(s)
- Ming-Ming Tsai
- Department of Nursing, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Chia-Siu Wang
- Department of General Surgery, Chang Gung Memorial Hospital at Chiayi, Chiayi 613, Taiwan
| | - Chung-Ying Tsai
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Cheng-Yi Chen
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan; Department of Medical Research, Mackay Memorial Hospital, Taipei 251, Taiwan
| | - Hsiang-Cheng Chi
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Yi-Hsin Tseng
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Pei-Jung Chung
- Molecular Medicine Research Center, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Yang-Hsiang Lin
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - I-Hsiao Chung
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Ching-Ying Chen
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan.
| |
Collapse
|
36
|
Elevated serum level of microRNA (miRNA)-200c and miRNA-371-5p in children with Kawasaki disease. Pediatr Cardiol 2014; 35:745-52. [PMID: 24259014 DOI: 10.1007/s00246-013-0846-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/08/2013] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that regulate the expression of protein-coding genes. Recently, miRNA levels have been used as a novel non-invasive biomarker for the diagnosis of various diseases. We aimed to identify serum miRNAs elevated in patients with Kawasaki disease (KD) and to explore the potential biological function of identified candidate miRNAs. Serum specimens were collected from children with KD (n = 12) and healthy controls (n = 6). miRNA microarray assays were performed using the PANArray™ miRNA expression profiling kit (PANAGENE Co., Daejeon, Korea). We used TargetScan and the database for annotation, visualization, and integrated discovery program to obtain a list of enriched biological pathways targeted by miRNAs elevated in KD patients. As a result, miR-200c and miR-371-5p were significantly upregulated in the KD group compared with the control group (p = 0.032 in both). By using TargetScan, we obtained a list of 421 and 542 genes predicted to be targeted by miR-200c and miR-371, respectively, and these genes were significantly (p < 0.05) clustered in 17 and 3 pathways, respectively. Many of them are major pathways involved in inflammatory responses. The present data support the hypothesis that the inflammatory response is a crucial mechanism for pathogenesis of KD, and miRNAs might be the main regulators of this inflammatory response.
Collapse
|
37
|
Ruan Q, Wang P, Wang T, Qi J, Wei M, Wang S, Fan T, Johnson D, Wan X, Shi W, Sun H, Chen YH. MicroRNA-21 regulates T-cell apoptosis by directly targeting the tumor suppressor gene Tipe2. Cell Death Dis 2014; 5:e1095. [PMID: 24577093 PMCID: PMC3944261 DOI: 10.1038/cddis.2014.47] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/30/2013] [Accepted: 01/17/2014] [Indexed: 01/03/2023]
Abstract
MicroRNAs (MiRs) are short noncoding RNAs that can regulate gene expression. It has been reported that miR-21 suppresses apoptosis in activated T cells, but the molecular mechanism remains undefined. Tumor suppressor Tipe2 (or tumor necrosis factor-α-induced protein 8 (TNFAIP8)-like 2 (TNFAIP8L2)) is a newly identified anti-inflammatory protein of the TNFAIP8 family that is essential for maintaining immune homeostasis. We report here that miR-21 is a direct target of nuclear factor-κB and could regulate Tipe2 expression in a Tipe2 coding region-dependent manner. In activated T cells and macrophages, Tipe2 expression was markedly downregulated, whereas miR-21 expression was upregulated. Importantly, Tipe2-deficient T cells were significantly less sensitive to apoptosis. Conversely, overexpression of Tipe2 in EL-4 T cells increased their susceptibility to activation-induced apoptosis. Therefore, Tipe2 provides a molecular bridge between miR-21 and cell apoptosis; miR-21 suppresses apoptosis in activated T cells at least in part through directly targeting tumor suppressor gene Tipe2.
Collapse
Affiliation(s)
- Q Ruan
- 1] Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China [2] 713 Stellar-Chance Laboratories, Department of Pathology and Laboratory of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - P Wang
- 713 Stellar-Chance Laboratories, Department of Pathology and Laboratory of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - T Wang
- 1] 713 Stellar-Chance Laboratories, Department of Pathology and Laboratory of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA [2] Shandong Eye Institute, Qingdao 266071, People's Republic of China
| | - J Qi
- 713 Stellar-Chance Laboratories, Department of Pathology and Laboratory of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - M Wei
- 713 Stellar-Chance Laboratories, Department of Pathology and Laboratory of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - S Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - T Fan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - D Johnson
- 713 Stellar-Chance Laboratories, Department of Pathology and Laboratory of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - X Wan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - W Shi
- Shandong Eye Institute, Qingdao 266071, People's Republic of China
| | - H Sun
- 713 Stellar-Chance Laboratories, Department of Pathology and Laboratory of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Y H Chen
- 713 Stellar-Chance Laboratories, Department of Pathology and Laboratory of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
38
|
Wu C, Li M, Hu C, Duan H. Clinical significance of serum miR-223, miR-25 and miR-375 in patients with esophageal squamous cell carcinoma. Mol Biol Rep 2014; 41:1257-66. [PMID: 24390317 DOI: 10.1007/s11033-013-2970-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 12/23/2013] [Indexed: 02/06/2023]
Abstract
Changes in the expression profiles of microRNAs (miRNAs) have been found in many cancers. The study was aimed to investigate the expression of miR-25, miR-223, and miR-375 in the serum of patients with esophageal squamous cell carcinoma (ESCC) and its effect on survival outcome. We examined the expression levels of miR-25, miR-223, and miR-375 in 20 pairs of ESCC cancer and matched paracancerous tissues, serum samples from 94 healthy volunteers and 194 patients with ESCC using quantitative reverse transcription polymerase chain reaction, and analyzed the relationship between expressions of serum miR-25, miR-223, and miR-375 and ESCC clinicopathological parameters as well as survival. Expressions of miR-25 and miR-223 were significantly increased in ESCC tissues compared with paracancerous tissues (P = 0.008 and 0.009, respectively), whereas the expression of miR-375 was significantly decreased in ESCC tissues compared with paracancerous tissues (P = 0.006). Expressions of serum miR-25 and miR-223 were significantly higher in ESCC patients than those in healthy controls, and, inversely, expression of serum miR-375 was significantly lower in ESCC patients than those in healthy controls (P = 0.007). High expression of serum miR-25 was significantly associated with lymph node metastasis (P = 0.01). Survival analysis showed that high expression of serum miR-223 and low expression of serum miR-375 were associated with poor survival in ESCC patients [hazard ratio (HR) = 1.717, 95% confidence intervals (CI) 1.139-2.588, P = 0.01; HR = 1.750, 95% CI 1.111-2.756, P = 0.016, respectively). Furthermore, Patients with high miR-223 and low miR-375 expression had higher risk of death than those with low miR-223 and high miR-375 expression (HR = 3.599, 95% CI 1.800-7.195, P = 2.92 × 10(-4)). In conclusion, miR-25, miR-223, and miR-375 were abnormally expressed in ESCC tissues and sera. Serum miR-223 and miR-375 are potential prognostic biomarkers for ESCC.
Collapse
Affiliation(s)
- Chaohui Wu
- Department of Thoracic Surgery, Zhongshan Hospital, Xiamen University, Fujian, 361004, China
| | | | | | | |
Collapse
|
39
|
Fontenete S, Guimarães N, Leite M, Figueiredo C, Wengel J, Filipe Azevedo N. Hybridization-based detection of Helicobacter pylori at human body temperature using advanced locked nucleic acid (LNA) probes. PLoS One 2013; 8:e81230. [PMID: 24278398 PMCID: PMC3838382 DOI: 10.1371/journal.pone.0081230] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 10/10/2013] [Indexed: 12/16/2022] Open
Abstract
The understanding of the human microbiome and its influence upon human life has long been a subject of study. Hence, methods that allow the direct detection and visualization of microorganisms and microbial consortia (e.g. biofilms) within the human body would be invaluable. In here, we assessed the possibility of developing a variant of fluorescence in situ hybridization (FISH), named fluorescence in vivo hybridization (FIVH), for the detection of Helicobacter pylori. Using oligonucleotide variations comprising locked nucleic acids (LNA) and 2’-O-methyl RNAs (2’OMe) with two types of backbone linkages (phosphate or phosphorothioate), we were able to successfully identify two probes that hybridize at 37 °C with high specificity and sensitivity for H. pylori, both in pure cultures and in gastric biopsies. Furthermore, the use of this type of probes implied that toxic compounds typically used in FISH were either found to be unnecessary or could be replaced by a non-toxic substitute. We show here for the first time that the use of advanced LNA probes in FIVH conditions provides an accurate, simple and fast method for H. pylori detection and location, which could be used in the future for potential in vivo applications either for this microorganism or for others.
Collapse
Affiliation(s)
- Sílvia Fontenete
- LEPABE, Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
- ICBAS, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Nuno Guimarães
- LEPABE, Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Marina Leite
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Céu Figueiredo
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- FMUP, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Jesper Wengel
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Nuno Filipe Azevedo
- LEPABE, Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
40
|
Molecular approaches and modern clinical strategies for the management of Helicobacter pylori infection in Japan. Keio J Med 2013; 61:109-19. [PMID: 23324305 DOI: 10.2302/kjm.2012-0001-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Thirty years have passed since Warren and Marshall's discovery of Helicobacter pylori (H. pylori). Since then, not only peptic ulcer diseases and chronic gastritis but also non-cardia gastric cancers have been recognized as diseases originating from H. pylori infection. Several combination therapies consisting of multiple antibiotics have been developed as first- or second-line regimens to eradicate H. pylori infection. Our extensive experience in the field of anti-H. pylori medicine suggests that clinicians should consider a possible role for unidentified, invisible pathogens to elucidate the pathogenesis and improve the treatment of refractory diseases of unknown etiology.
Collapse
|
41
|
Hayashi Y, Tsujii M, Wang J, Kondo J, Akasaka T, Jin Y, Li W, Nakamura T, Nishida T, Iijima H, Tsuji S, Kawano S, Hayashi N, Takehara T. CagA mediates epigenetic regulation to attenuate let-7 expression in Helicobacter pylori-related carcinogenesis. Gut 2013; 62:1536-1546. [PMID: 22936674 DOI: 10.1136/gutjnl-2011-301625] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE MicroRNAs (miRNAs) act as tumour suppressor genes or oncogenes in the regulation of multiple carcinogenic processes. Aberrant miRNA expression is reported in Helicobacter pylori (H pylori)-related gastritis and gastric cancer. The cytotoxin-associated gene A (CagA) of H pylori has a pathophysiologically important role in gastric carcinogenesis. A study was undertaken to evaluate the effect of CagA on miRNA expression and its regulatory mechanism. METHODS The effect of CagA on miRNA expression was assessed by comprehensive miRNA microarray. The mechanisms of the in vitro and in vivo effects of CagA on histone modification and DNA methylation and the involvement of CagA-dysregulated signal transduction on let-7, an important representative miRNA in gastric carcinogenesis, were investigated. RESULTS In in vitro experiments, CagA significantly attenuated let-7 expression leading to Ras pathway activation. CagA enhanced c-myc, DNA methyltransferase 3B (DNMT3B) and Enhancer of Zeste homologue 2 (EZH2) expression and attenuated miR-26a and miR-101 expression, which resulted in the attenuation of let-7 expression by histone and DNA methylation. Experiments performed in CagA transgenic mice revealed that c-myc, EZH2 and DNMT3B expression were enhanced and let-7 expression was attenuated to induce Ras oncoprotein expression in the stomach, with no associated inflammation. CONCLUSIONS H pylori CagA induces aberrant epigenetic silencing of let-7 expression, leading to Ras upregulation.
Collapse
Affiliation(s)
- Yoshito Hayashi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Shiotani A, Murao T, Kimura Y, Matsumoto H, Kamada T, Kusunoki H, Inoue K, Uedo N, Iishi H, Haruma K. Identification of serum miRNAs as novel non-invasive biomarkers for detection of high risk for early gastric cancer. Br J Cancer 2013; 109:2323-2330. [PMID: 24104965 PMCID: PMC3817334 DOI: 10.1038/bjc.2013.596] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/27/2013] [Accepted: 09/09/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Many micro-RNAs (miRNAs) are differentially expressed in Helicobacter pylori-infected gastric mucosa and in gastric cancer tissue and previous reports have suggested the possibility of serum miRNAs as complementary tumour markers. The aim of the study was to investigate serum miRNAs and pepsinogen levels in individuals at high risk for gastric cancer both before and after H. pylori eradication. METHODS Patients with recent history of endoscopic resection for early gastric cancer and the sex- and age-matched controls were enrolled. Serum was collected from subjects before or after eradication and total RNA was extracted to analyse serum levels of 24 miRNAs. Serum pepsinogen (PG) I and II levels were measured using enzyme-linked immunosorbent assay kits. RESULTS Using miR-16 as an endogenous control, the relative levels of miR-106 and let-7d before and after H. pylori eradication and miR-21 after eradication were significantly higher in the high-risk group than in the controls. H. pylori eradication significantly decreased miR-106b levels and increased let-7d only in the control group. After eradication, the combination MiR-106b with miR-21 was superior to serum pepsinogen and the most valuable biomarker for the differentiating high-risk group from controls. CONCLUSION Serum miR-106b and miR-21 may provide a novel and stable marker of increased risk for early gastric cancer after H. pylori eradication.
Collapse
Affiliation(s)
- A Shiotani
- Division of Gastroenterology, Department of Internal Medicine, Kawasaki Medical School, Kurashiki, Japan
| | - T Murao
- Division of Gastroenterology, Department of Internal Medicine, Kawasaki Medical School, Kurashiki, Japan
| | - Y Kimura
- Division of Gastroenterology, Department of Internal Medicine, Kawasaki Medical School, Kurashiki, Japan
| | - H Matsumoto
- Division of Gastroenterology, Department of Internal Medicine, Kawasaki Medical School, Kurashiki, Japan
| | - T Kamada
- Division of Gastroenterology, Department of Internal Medicine, Kawasaki Medical School, Kurashiki, Japan
| | - H Kusunoki
- Department of Comprehensive Medicine, Kawasaki Medical School, Kurashiki, Japan
| | - K Inoue
- Department of Comprehensive Medicine, Kawasaki Medical School, Kurashiki, Japan
| | - N Uedo
- Department of Gastrointestinal Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - H Iishi
- Department of Gastrointestinal Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - K Haruma
- Division of Gastroenterology, Department of Internal Medicine, Kawasaki Medical School, Kurashiki, Japan
| |
Collapse
|
43
|
Wu J, Xu S, Zhu Y. Helicobacter pylori CagA: a critical destroyer of the gastric epithelial barrier. Dig Dis Sci 2013; 58:1830-7. [PMID: 23423500 DOI: 10.1007/s10620-013-2589-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 01/24/2013] [Indexed: 12/15/2022]
Abstract
The destruction of the integrity of the gastric epithelial barrier underlies the pathology of many gastric diseases, including gastric tumors. The Helicobacter pylori virulence factor CagA is one of the main destroyers of the gastric epithelial barrier. There are differences among CagA proteins that originate from different isolates. CagA translocated into the gastric epithelial cells causes significant changes in cell signaling pathways in phosphorylation-dependent and phosphorylation-independent manners, leading to cell morphological changes and host cell epithelial barrier injury, which lay the foundation for the occurrence of related diseases. As a newly identified pathogenic mechanism of CagA, miRNA is involved in the remodeling of the gastric epithelial barrier. Both the eradication of H. pylori infection and interventions against CagA-induced gastric epithelial barrier lesions may contribute to the prevention of the development of gastric tumors.
Collapse
Affiliation(s)
- Jia Wu
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | | | | |
Collapse
|
44
|
Epigenetic modifications induced by Helicobacter pylori infection through a direct microbe–gastric epithelial cells cross-talk. Med Microbiol Immunol 2013; 202:327-37. [DOI: 10.1007/s00430-013-0301-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 05/17/2013] [Indexed: 02/07/2023]
|
45
|
Feng Y, Wang L, Zeng J, Shen L, Liang X, Yu H, Liu S, Liu Z, Sun Y, Li W, Chen C, Jia J. FoxM1 is overexpressed in Helicobacter pylori-induced gastric carcinogenesis and is negatively regulated by miR-370. Mol Cancer Res 2013; 11:834-44. [PMID: 23576572 DOI: 10.1158/1541-7786.mcr-13-0007] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
UNLABELLED Helicobacter pylori (H. pylori) infections are strongly implicated in human gastric mucosa-associated diseases. Forkhead box M1 (FoxM1), a key positive regulator of cell proliferation, is overexpressed in gastric cancer. MicroRNAs are important post-transcriptional regulators of gene expression. In this study, the effects of H. pylori infection on FoxM1 expression and possible mechanisms of carcinogenesis were explored. The expression of FoxM1 was gradually increased in human gastric specimens from inflammation to cancer. FoxM1 upregulation was time- and concentration-dependent in gastric epithelial-derived cell lines infected with H. pylori. CagA, a key virulence factor of H. pylori, was associated with increased FoxM1 expression. H. pylori and CagA inhibited the expression of p27(Kip1) (CDKN1B) and promoted cell proliferation by upregulating FoxM1. The expression of miR-370 was decreased in human gastritis and gastric cancer. FoxM1 was directly downregulated by miR-370 in gastric cell lines. H. pylori and CagA inhibited miR-370 expression, which led to overexpression of FoxM1 and cell proliferation. Furthermore, the overexpression of FoxM1 and reduced expression of miR-370 was confirmed in H. pylori-infected C57BL/6J mice. H. pylori infection and CagA upregulated FoxM1 expression, dependent on miR-370, altered the expression of p27(Kip1), and promoted proliferation in gastric cells. IMPLICATIONS These findings delineate the mechanisms governing FoxM1 regulation and the role of H. pylori in the process of gastric carcinogenesis.
Collapse
Affiliation(s)
- Yimin Feng
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan 250012, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Liu L, Chen Q, Lai R, Wu X, Wu X, Liu F, Xu G, Ji Y. Elevated expression of mature miR-21 and miR-155 in cancerous gastric tissues from Chinese patients with gastric cancer. J Biomed Res 2013; 24:187-97. [PMID: 23554630 PMCID: PMC3596554 DOI: 10.1016/s1674-8301(10)60028-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Indexed: 12/19/2022] Open
Abstract
Objective MicroRNA (miRNA) expression is deregulated in many types of human cancers. We sought to investigate the expression patterns of the miRNAs, miR-21, miR-145 and miR-155 in sporadic gastric cancer in a Chinese population. Methods Total RNA was extracted from archived gastric cancer tissues and adjacent non-cancerous tissues from 20 pairs of paraffin-embedded specimens. Expression levels of miR-21, miR-145 and miR-155 were detected by quantitative reverse transcriptase PCR using a specific stem-loop primer, with U6 as the internal reference gene. Results The expression of miR-21 and miR-155 in gastric cancer samples was significantly higher than in paired non-cancerous samples (P < 0.05). There was no statistically significant difference in expression levels of miR-145 between cancerous and non-cancerous tissues (P > 0.05). Conclusion In Chinese sporadic gastric cancer tissues, the expressions of the oncogenic miR-21 and miR-155 were significantly up-regulated, while the expression of the tumor suppressor miR-145 was decreased, although this decrease was not statistically significant. Thus there is specificity in the miRNA expression pattern in gastric cancers in the Chinese population.
Collapse
Affiliation(s)
- Li Liu
- Atherosclerosis Research Center, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China ; Laboratory of Cytology & Molecules/Department of Pathology, the Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Wang Z, Lai J, Wang Y, Nie W, Guan X. The Hsa-miR-27a rs895819 (A>G) polymorphism and cancer susceptibility. Gene 2013; 521:87-90. [PMID: 23524006 DOI: 10.1016/j.gene.2013.02.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 02/12/2013] [Accepted: 02/20/2013] [Indexed: 01/08/2023]
Abstract
Published data on the association between the rs895819 (A>G) polymorphism in the terminal loop of pre-miR-27a and cancer risk is inconclusive. Therefore, we conducted a meta-analysis to estimate the association between this polymorphism and cancer. The PubMed, Web of science, and Embase databases were searched for articles on the hsa-miR-27a rs895819 polymorphism and cancer risk published up to November 24, 2012. The genotype data obtained in the searches were pooled in our meta-analysis, and pooled odds ratio (OR) with 95% confidence interval (CI) was used to assess the association. Seven studies with a total of 3849 cases and 4781 controls were eligible for analysis. Overall, we found no significant associations between the hsa-miR-27a rs895819 (A>G) polymorphism and cancer susceptibility (homozygote model: OR=0.88, 95% CI: 0.68-1.14; heterozygote model: OR=0.96, 95% CI: 0.79-1.17; dominant model: OR=0.94, 95% CI: 0.79-1.12; recessive model: OR=0.88, 95% CI: 0.69-1.12). In the subgroup analysis by ethnicity, we found that the rs895819 AG genotype was associated with a decreased risk of cancer in white individuals (dominant model: OR=0.85, 95% CI: 0.76-0.94; heterozygote model: OR=0.84, 95% CI: 0.75-0.94). This meta-analysis indicated that the hsa-miR-27a rs895819 polymorphism did not correlate with overall cancer risk in the general population. However, the rs895819 AG genotype may protect against the development of cancer in white individuals. Larger, better studies of homogeneous cancer patients are needed to further assess the correlation between this polymorphism and cancer risk.
Collapse
Affiliation(s)
- Zexing Wang
- Department of Medical Oncology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | | | | | | | | |
Collapse
|
48
|
Li F, Liu J, Li S. MicorRNA 106b ∼ 25 cluster and gastric cancer. Surg Oncol 2013; 22:e7-10. [PMID: 23510949 DOI: 10.1016/j.suronc.2013.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/15/2013] [Accepted: 01/22/2013] [Indexed: 12/19/2022]
Abstract
Conventional strategies for the early diagnosis and treatment of gastric cancer are not yet satisfactory, and it calls for better diagnosis and treatments based on a deeper understanding of the molecular mechanisms. It has been revealed that the number of verified human microRNA (miRNA) expression contribute to the initiation and progression of cancer. Among them, miR-106b ∼ 25 cluster is of particular interest. The miRNA-106b ∼ 25 cluster is composed of the highly conserved miRNA-106b, miRNA-93 and miRNA-25. The miRNA-106b ∼ 25 polycistron exerted potential proliferative, anti-apoptotic and cell cycle-promoting effects on cancer cells. Over-expression of the miRNA-106b ∼ 25 cluster is known to overcome TGF-beta mediated growth suppression via targeting p21 and Bim. This cluster can additionally target the inhibitory Smad7 protein and increase TGF-beta RI which is sufficient to induce epithelial-to-mesenchymal transition (EMT). MiRNA-93 can promote angiogenesis. The tumor suppressor genes RB and PTEN are the direct targets of miRNA-106b ∼ 25. Especially, miRNA-106b ∼ 25 clusters play an important role in oncogenesis of gastric cancer. Focus on the essential role in tumorgenisis and extremely low expression of miRNA-106b ∼ 25 in normal tissues, it maybe an appropriate target of gastric cancer treatment and a novel biomarkers for detecting gastric cancer.
Collapse
Affiliation(s)
- Fangxuan Li
- Cancer Prevention Center, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Hexi District, Tianjin 300060, China
| | | | | |
Collapse
|
49
|
Abstract
Helicobacter pylori infection leads to long-lasting chronic inflammation and represents the most common risk factor underlying gastric cancer. Recently, new insights into the mechanisms through which H. pylori and mucosal inflammation lead to cancer development have emerged. H. pylori virulence factors, in particular specific CagA genotypes, represent main factors in gastric cancer, inducing altered intracellular signaling in epithelial cells. The chronic nature of H. pylori infection appears to relate to the VacA virulence factor and Th17/Treg mechanisms. A role of H. pylori infection in epigenetic and microRNA deregulation has been shown. Mutation of the epithelial cell genome, a hallmark of cancer, was demonstrated to accumulate in H. pylori infected stomach partly due to inadequate DNA repair. Gastric stem cells were shown to be targets of oxidative injury in the Helicobacter-inflammatory milieu. Recent advances emphasizing the contribution of bacterial factors, inflammatory mediators, and the host epithelial response in gastric carcinogenesis are reviewed.
Collapse
|
50
|
Shiotani A, Uedo N, Iishi H, Murao T, Kanzaki T, Kimura Y, Kamada T, Kusunoki H, Inoue K, Haruma K. H. pylori eradication did not improve dysregulation of specific oncogenic miRNAs in intestinal metaplastic glands. J Gastroenterol 2012; 47:988-998. [PMID: 22382634 DOI: 10.1007/s00535-012-0562-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 02/10/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND Many microRNAs (miRNAs) are differentially expressed in Helicobacter pylori-infected gastric mucosa and in gastric cancer tissue. AIM We aimed to compare the effect of H. pylori eradication on gastric mucosal miRNAs in subjects in a high-risk group for gastric cancer compared to controls. METHODS Patients with a recent history of endoscopic resection for early gastric cancer and sex- and age-matched non-cancer controls were enrolled. The expression of 21 miRNAs was examined using gastric mucosal biopsy specimens and microdissected gastric glands from the lesser and greater curvatures of the gastric corpus both before and one year after H. pylori eradication. RESULTS Twenty patients and 14 controls were enrolled. The expression of oncogenic miRNAs (miR-17/92 and the miR-106b-93-25 cluster, miR-21, miR-194, and miR-196) was significantly higher in the gastric mucosa of the cancer group than in the controls. H. pylori eradication resulted in a significant fall in the expression of oncogenic miRNAs only in the controls, whereas miR-223 expression was decreased and let-7d expression was increased in both groups. miR-196 was expressed only in intestinal metaplastic glands. The expression of oncogenic miRNAs was significantly higher in the intestinal metaplastic glands than in the non-intestinal metaplastic glands irrespective of H. pylori eradication. In neither group did H. pylori eradication significantly change any miRNA expression in the intestinal metaplastic glands. CONCLUSION Dysregulation of specific miRNAs is present in H. pylori-induced corpus gastritis. H. pylori eradication improved miRNA dysregulation, but not in intestinal metaplastic glands or in the gastric mucosa of patients in a high-risk group for gastric cancer.
Collapse
Affiliation(s)
- Akiko Shiotani
- Division of Gastroenterology, Department of Internal Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|