1
|
Birnberg-Weiss F, Castro JE, Pittaluga JR, Castillo LA, Martire-Greco D, Fuentes F, Bigi F, Gómez SA, Landoni VI, Fernández GC. Klebsiella pneumoniae ST258 impairs intracellular elastase mobilization and persists within human neutrophils. Microbiol Res 2025; 292:128035. [PMID: 40289722 DOI: 10.1016/j.micres.2024.128035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 04/30/2025]
Abstract
Klebsiella pneumoniae (Kp) strains of sequence type (ST) 258 producing K. pneumoniae-carbapenemase (KPC) are a major cause of hospital-associated outbreaks and the main contributors of carbapenemase spreading. Here, we deepen into the mechanisms behind the inhibition of neutrophil bactericidal functions mediated by a clinical isolate of Kp ST258 KPC, Kp from now on. We found that NETs formation induced by different stimuli (PMA, ionomycin, Staphylococcus aureus) was significantly reduced in the presence of Kp. We revealed that Kp affects actin polymerization which correlates with impaired mobilization of elastase from azurophilic granules to the nucleus and reduced elastase mobilization towards phagosomes that contain bacteria. In line with these results, Kp survived within neutrophils for 3 h post-challenge without compromising neutrophil viability. We also found that different Kp clinical isolates inhibited NETs formation and actin polymerization. These results describe a strategy of evasion used by Kp to subvert PMN-mediating both intra and extracellular mechanisms of killing, representing a clear advantage for the survival and spreading of this multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Federico Birnberg-Weiss
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Academia Nacional de Medicina, CABA, Argentina.
| | - Joselyn E Castro
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Academia Nacional de Medicina, CABA, Argentina
| | - Jose R Pittaluga
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Academia Nacional de Medicina, CABA, Argentina
| | - Luis A Castillo
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Academia Nacional de Medicina, CABA, Argentina
| | - Daiana Martire-Greco
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Academia Nacional de Medicina, CABA, Argentina
| | - Federico Fuentes
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Academia Nacional de Medicina, CABA, Argentina
| | - Fabiana Bigi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), CONICET, Nicolas Repetto y de los Reseros s/n, Hurlingham, Buenos Aires B1686, Argentina
| | - Sonia A Gómez
- Servicio de Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas, ANLIS 'Dr Carlos G. Malbrán', CABA, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Verónica I Landoni
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Academia Nacional de Medicina, CABA, Argentina
| | - Gabriela C Fernández
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Academia Nacional de Medicina, CABA, Argentina
| |
Collapse
|
2
|
de Mendieta JM, Argüello A, Menocal MA, Rapoport M, Albornoz E, Más J, Corso A, Faccone D. Emergence of NDM-producing Enterobacterales infections in companion animals from Argentina. BMC Vet Res 2024; 20:174. [PMID: 38702700 PMCID: PMC11067382 DOI: 10.1186/s12917-024-04020-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Abstract
Antimicrobial resistance is considered one of the most critical threat for both human and animal health. Recently, reports of infection or colonization by carbapenemase-producing Enterobacterales in companion animals had been described. This study report the first molecular characterization of NDM-producing Enterobacterales causing infections in companion animals from Argentina. Nineteen out of 3662 Enterobacterales isolates analyzed between October 2021 and July 2022 were resistant to carbapenemes by VITEK2C and disk diffusion method, and suspected to be carbapenemase-producers. Ten isolates were recovered from canine and nine from feline animals. Isolates were identified as K. pneumoniae (n = 9), E. coli (n = 6) and E. cloacae complex (n = 4), and all of them presented positive synergy among EDTA and carbapenems disks, mCIM/eCIM indicative of metallo-carbapenemase production and were also positive by PCR for blaNDM gene. NDM variants were determined by Sanger sequencing method. All 19 isolates were resistant to β-lactams and aminoglycosides but remained susceptible to colistin (100%), tigecycline (95%), fosfomycin (84%), nitrofurantoin (63%), minocycline (58%), chloramphenicol (42%), doxycycline (21%), enrofloxacin (5%), ciprofloxacin (5%) and trimethoprim/sulfamethoxazole (5%). Almost all isolates (17/19) co-harbored blaCTX-M plus blaCMY, one harbored blaCTX-M alone and the remaining blaCMY. E. coli and E. cloacae complex isolates harbored blaCTX-M-1/15 or blaCTX-M-2 groups, while all K. pneumoniae harbored only blaCTX-M-1/15 genes. All E. coli and E. cloacae complex isolates harbored blaNDM-1, while in K. pneumoniae blaNDM-1 (n = 6), blaNDM-5 (n = 2), and blaNDM-1 plus blaNDM-5 (n = 1) were confirmed. MLST analysis revealed the following sequence types by species, K. pneumoniae: ST15 (n = 5), ST273 (n = 2), ST11, and ST29; E. coli: ST162 (n = 3), ST457, ST224, and ST1196; E. cloacae complex: ST171, ST286, ST544 and ST61. To the best of our knowledge, this is the first description of NDM-producing E. cloacae complex isolates recovered from cats. Even though different species and clones were observed, it is remarkable the finding of some major clones among K. pneumoniae and E. coli, as well as the circulation of NDM as the main carbapenemase. Surveillance in companion pets is needed to detect the spread of carbapenem-resistant Enterobacterales and to alert about the dissemination of these pathogens among pets and humans.
Collapse
Affiliation(s)
- Juan Manuel de Mendieta
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Ciudad de Buenos Aires, Argentina
| | | | - María Alejandra Menocal
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Ciudad de Buenos Aires, Argentina
| | - Melina Rapoport
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Ciudad de Buenos Aires, Argentina
| | - Ezequiel Albornoz
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Ciudad de Buenos Aires, Argentina
| | - Javier Más
- Laboratorio Diagnotest, El Palomar, Buenos Aires, Argentina
| | - Alejandra Corso
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Ciudad de Buenos Aires, Argentina
| | - Diego Faccone
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Ciudad de Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
3
|
Sanz MB, Pasteran F, de Mendieta JM, Brunetti F, Albornoz E, Rapoport M, Lucero C, Errecalde L, Nuñez MR, Monge R, Pennini M, Power P, Corso A, Gomez SA. KPC-2 allelic variants in Klebsiella pneumoniae isolates resistant to ceftazidime-avibactam from Argentina: blaKPC-80, blaKPC-81, blaKPC-96 and blaKPC-97. Microbiol Spectr 2024; 12:e0411123. [PMID: 38319084 PMCID: PMC10913460 DOI: 10.1128/spectrum.04111-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Ceftazidime-avibactam (CZA) therapy has significantly improved survival rates for patients infected by carbapenem-resistant bacteria, including KPC producers. However, resistance to CZA is a growing concern, attributed to multiple mechanisms. In this study, we characterized four clinical CZA-resistant Klebsiella pneumoniae isolates obtained between July 2019 and December 2020. These isolates expressed novel allelic variants of blaKPC-2 resulting from changes in hotspots of the mature protein, particularly in loops surrounding the active site of KPC. Notably, KPC-80 had an K269_D270insPNK mutation near the Lys270-loop, KPC-81 had a del_I173 mutation within the Ω-loop, KPC-96 showed a Y241N substitution within the Val240-loop and KPC-97 had an V277_I278insNSEAV mutation within the Lys270-loop. Three of the four isolates exhibited low-level resistance to imipenem (4 µg/mL), while all remained susceptible to meropenem. Avibactam and relebactam effectively restored carbapenem susceptibility in resistant isolates. Cloning mutant blaKPC genes into pMBLe increased imipenem MICs in recipient Escherichia coli TOP10 for blaKPC-80, blaKPC-96, and blaKPC-97 by two dilutions; again, these MICs were restored by avibactam and relebactam. Frameshift mutations disrupted ompK35 in three isolates. Additional resistance genes, including blaTEM-1, blaOXA-18 and blaOXA-1, were also identified. Interestingly, three isolates belonged to clonal complex 11 (ST258 and ST11) and one to ST629. This study highlights the emergence of CZA resistance including unique allelic variants of blaKPC-2 and impermeability. Comprehensive epidemiological surveillance and in-depth molecular studies are imperative for understanding and monitoring these complex resistance mechanisms, crucial for effective antimicrobial treatment strategies. IMPORTANCE The emergence of ceftazidime-avibactam (CZA) resistance poses a significant threat to the efficacy of this life-saving therapy against carbapenem-resistant bacteria, particularly Klebsiella pneumoniae-producing KPC enzymes. This study investigates four clinical isolates exhibiting resistance to CZA, revealing novel allelic variants of the key resistance gene, blaKPC-2. The mutations identified in hotspots surrounding the active site of KPC, such as K269_D270insPNK, del_I173, Y241N and V277_I278insNSEAV, prove the adaptability of these pathogens. Intriguingly, low-level resistance to imipenem and disruptions in porin genes were observed, emphasizing the complexity of the resistance mechanisms. Interestingly, three of four isolates belonged to clonal complex 11. This research not only sheds light on the clinical significance of CZA resistance but also shows the urgency for comprehensive surveillance and molecular studies to inform effective antimicrobial treatment strategies in the face of evolving bacterial resistance.
Collapse
Affiliation(s)
- María Belén Sanz
- National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR)-INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Fernando Pasteran
- National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR)-INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Juan Manuel de Mendieta
- National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR)-INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Florencia Brunetti
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ezequiel Albornoz
- National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR)-INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Melina Rapoport
- National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR)-INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Celeste Lucero
- National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR)-INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | | | - Maria Rosa Nuñez
- Hospital Provincial Neuquén Dr. Castro Rendón, Neuquén, Argentina
| | | | | | - Pablo Power
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alejandra Corso
- National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR)-INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Sonia A. Gomez
- National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR)-INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
4
|
Lerminiaux N, Mitchell R, Bartoszko J, Davis I, Ellis C, Fakharuddin K, Hota SS, Katz K, Kibsey P, Leis JA, Longtin Y, McGeer A, Minion J, Mulvey M, Musto S, Rajda E, Smith SW, Srigley JA, Suh KN, Thampi N, Tomlinson J, Wong T, Mataseje L, on behalf of the Canadian Nosocomial Infection Surveillance Program. Plasmid genomic epidemiology of blaKPC carbapenemase-producing Enterobacterales in Canada, 2010-2021. Antimicrob Agents Chemother 2023; 67:e0086023. [PMID: 37971242 PMCID: PMC10720558 DOI: 10.1128/aac.00860-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/07/2023] [Indexed: 11/19/2023] Open
Abstract
Carbapenems are considered last-resort antibiotics for the treatment of infections caused by multidrug-resistant Enterobacterales, but carbapenem resistance due to acquisition of carbapenemase genes is a growing threat that has been reported worldwide. Klebsiella pneumoniae carbapenemase (blaKPC) is the most common type of carbapenemase in Canada and elsewhere; it can hydrolyze penicillins, cephalosporins, aztreonam, and carbapenems and is frequently found on mobile plasmids in the Tn4401 transposon. This means that alongside clonal expansion, blaKPC can disseminate through plasmid- and transposon-mediated horizontal gene transfer. We applied whole genome sequencing to characterize the molecular epidemiology of 829 blaKPC carbapenemase-producing isolates collected by the Canadian Nosocomial Infection Surveillance Program from 2010 to 2021. Using a combination of short-read and long-read sequencing, we obtained 202 complete and circular blaKPC-encoding plasmids. Using MOB-suite, 10 major plasmid clusters were identified from this data set which represented 87% (175/202) of the Canadian blaKPC-encoding plasmids. We further estimated the genomic location of incomplete blaKPC-encoding contigs and predicted a plasmid cluster for 95% (603/635) of these. We identified different patterns of carbapenemase mobilization across Canada related to different plasmid clusters, including clonal transmission of IncF-type plasmids (108/829, 13%) in K. pneumoniae clonal complex 258 and novel repE(pEh60-7) plasmids (44/829, 5%) in Enterobacter hormaechei ST316, and horizontal transmission of IncL/M (142/829, 17%) and IncN-type plasmids (149/829, 18%) across multiple genera. Our findings highlight the diversity of blaKPC genomic loci and indicate that multiple, distinct plasmid clusters have contributed to blaKPC spread and persistence in Canada.
Collapse
Affiliation(s)
| | | | | | - Ian Davis
- QEII Health Sciences Centre, Halifax, Nova Scotia, Canada
| | - Chelsey Ellis
- The Moncton Hospital, Moncton, New Brunswick, Canada
| | - Ken Fakharuddin
- National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Susy S. Hota
- University Health Network, Toronto, Ontario, Canada
| | - Kevin Katz
- North York General Hospital, Toronto, Ontario, Canada
| | - Pamela Kibsey
- Royal Jubilee Hospital, Victoria, British Columbia, Canada
| | - Jerome A. Leis
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Yves Longtin
- Jewish General Hospital, Montréal, Québec, Canada
| | | | - Jessica Minion
- Saskatchewan Health Authority, Regina, Saskatchewan, Canada
| | - Michael Mulvey
- National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Sonja Musto
- Health Sciences Centre, Winnipeg, Manitoba, Canada
| | - Ewa Rajda
- McGill University Health Centre, Montréal, Québec, Canada
| | | | - Jocelyn A. Srigley
- BC Women’s and BC Children’s Hospital, Vancouver, British Columbia, Canada
| | | | - Nisha Thampi
- Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | | | - Titus Wong
- Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Laura Mataseje
- National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - on behalf of the Canadian Nosocomial Infection Surveillance Program
- National Microbiology Laboratory, Winnipeg, Manitoba, Canada
- Public Health Agency of Canada, Ottawa, Ontario, Canada
- QEII Health Sciences Centre, Halifax, Nova Scotia, Canada
- The Moncton Hospital, Moncton, New Brunswick, Canada
- University Health Network, Toronto, Ontario, Canada
- North York General Hospital, Toronto, Ontario, Canada
- Royal Jubilee Hospital, Victoria, British Columbia, Canada
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Jewish General Hospital, Montréal, Québec, Canada
- Sinai Health, Toronto, Ontario, Canada
- Saskatchewan Health Authority, Regina, Saskatchewan, Canada
- Health Sciences Centre, Winnipeg, Manitoba, Canada
- McGill University Health Centre, Montréal, Québec, Canada
- University of Alberta Hospital, Edmonton, Alberta, Canada
- BC Women’s and BC Children’s Hospital, Vancouver, British Columbia, Canada
- The Ottawa Hospital, Ottawa, Ontario, Canada
- Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Veloso M, Arros P, Acosta J, Rojas R, Berríos-Pastén C, Varas M, Araya P, Hormazábal JC, Allende ML, Chávez FP, Lagos R, Marcoleta AE. Antimicrobial resistance, pathogenic potential, and genomic features of carbapenem-resistant Klebsiella pneumoniae isolated in Chile: high-risk ST25 clones and novel mobile elements. Microbiol Spectr 2023; 11:e0039923. [PMID: 37707451 PMCID: PMC10581085 DOI: 10.1128/spectrum.00399-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/26/2023] [Indexed: 09/15/2023] Open
Abstract
Multidrug- and carbapenem-resistant Klebsiella pneumoniae (CR-Kp) are critical threats to global health and key traffickers of resistance genes to other pathogens. Despite the sustained increase in CR-Kp infections in Chile, few strains have been described at the genomic level, lacking details of their resistance and virulence determinants and the mobile elements mediating their dissemination. In this work, we studied the antimicrobial susceptibility and performed a comparative genomic analysis of 10 CR-Kp isolates from the Chilean surveillance of carbapenem-resistant Enterobacteriaceae. High resistance was observed among the isolates (five ST25, three ST11, one ST45, and one ST505), which harbored 44 plasmids, most carrying genes for conjugation and resistance to several antibiotics and biocides. Ten plasmids encoding carbapenemases were characterized, including novel plasmids or variants with additional resistance genes, a novel genetic environment for blaKPC-2, and plasmids widely disseminated in South America. ST25 K2 isolates belonging to CG10224, a clone traced back to 2012 in Chile, which recently acquired blaNDM-1, blaNDM-7, or blaKPC-2 plasmids stood out as high-risk clones. Moreover, this corresponds to the first report of ST25 and ST45 Kp producing NDM-7 in South America and ST505 CR-Kp producing both NDM-7 and KPC-2 worldwide. Also, we characterized a variety of genomic islands carrying virulence and fitness factors. These results provide baseline knowledge for a detailed understanding of molecular and genetic determinants behind antibiotic resistance and virulence of CR-Kp in Chile and South America. IMPORTANCE In the ongoing antimicrobial resistance crisis, carbapenem-resistant strains of Klebsiella pneumoniae are critical threats to public health. Besides globally disseminated clones, the burden of local problem clones remains substantial. Although genomic analysis is a powerful tool for improving pathogen and antimicrobial resistance surveillance, it is still restricted in low- to middle-income countries, including Chile, causing them to be underrepresented in genomic databases and epidemiology surveys. This study provided the first 10 complete genomes of the Chilean surveillance for carbapenem-resistant K. pneumoniae in healthcare settings, unveiling their resistance and virulence determinants and the mobile genetic elements mediating their dissemination, placed in the South American and global K. pneumoniae epidemiological context. We found ST25 with K2 capsule as an emerging high-risk clone, along with other lineages producing two carbapenemases and several other resistance and virulence genes encoded in novel plasmids and genomic islands.
Collapse
Affiliation(s)
- Marcelo Veloso
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Patricio Arros
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Joaquin Acosta
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Roberto Rojas
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Camilo Berríos-Pastén
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Macarena Varas
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | | | - Miguel L. Allende
- Millennium Institute Center for Genome Regulation (CGR), Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Francisco P. Chávez
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Rosalba Lagos
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Andrés E. Marcoleta
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
6
|
Arcari G, Carattoli A. Global spread and evolutionary convergence of multidrug-resistant and hypervirulent Klebsiella pneumoniae high-risk clones. Pathog Glob Health 2023; 117:328-341. [PMID: 36089853 PMCID: PMC10177687 DOI: 10.1080/20477724.2022.2121362] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
For people living in developed countries life span is growing at a faster pace than ever. One of the main reasons for such success is attributable to the introduction and extensive use in the clinical practice of antibiotics over the course of the last seven decades. In hospital settings, Klebsiella pneumoniae represents a well-known and commonly described opportunistic pathogen, typically characterized by resistance to several antibiotic classes. On the other hand, the broad wedge of population living in Low and/or Middle Income Countries is increasing rapidly, allowing the spread of several commensal bacteria which are transmitted via human contact. Community transmission has been the original milieu of K. pneumoniae isolates characterized by an outstanding virulence (hypervirulent). These two characteristics, also defined as "pathotypes", originally emerged as different pathways in the evolutionary history of K. pneumoniae. For a long time, the Sequence Type (ST), which is defined by the combination of alleles of the 7 housekeeping genes of the Multi-Locus Sequence Typing, has been a reliable marker of the pathotype: multidrug-resistant clones (e.g. ST258, ST147, ST101) in the Western world and hypervirulent clones (e.g. ST23, ST65, ST86) in the Eastern. Currently, the boundaries separating the two pathotypes are fading away due to several factors, and we are witnessing a worrisome convergence in certain high-risk clones. Here we review the evidence available on confluence of multidrug-resistance and hypervirulence in specific K. pneumoniae clones.
Collapse
Affiliation(s)
- Gabriele Arcari
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
7
|
Dentice Maidana S, Imamura Y, Elean M, Albarracín L, Nishiyama K, Suda Y, Kurata S, Jure MÁ, Kitazawa H, Villena J. Oral Administration of Lacticaseibacillus rhamnosus CRL1505 Modulates Lung Innate Immune Response against Klebsiella pneumoniae ST25. Microorganisms 2023; 11:1148. [PMID: 37317122 DOI: 10.3390/microorganisms11051148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 06/16/2023] Open
Abstract
Orally administered Lacticaseibacillus rhamnosus CRL1505 enhances respiratory immunity, providing protection against respiratory viruses and Streptococcus pneumoniae. However, the capacity of the CRL1505 strain to improve respiratory immunity against Gram-negative bacterial infections has not been evaluated before. The aim of this work was to evaluate whether the Lcb. rhamnosus CRL1505 was able to beneficially regulate the respiratory innate immune response and enhance the resistance to hypermucoviscous KPC-2-producing Klebsiella pneumoniae of the sequence type 25 (ST25). BALB/c mice were treated with the CRL1505 strain via the oral route and then nasally challenged with K. pneumoniae ST25 strains LABACER 01 or LABACER 27. Bacterial cell counts, lung injuries and the respiratory and systemic innate immune responses were evaluated after the bacterial infection. The results showed that K. pneumoniae ST25 strains increased the levels of TNF-α, IL-1β, IL-6, IFN-γ, IL-17, KC and MPC-1 in the respiratory tract and blood, as well as the numbers of BAL neutrophils and macrophages. Mice treated with Lcb. rhamnosus CRL1505 had significantly lower K. pneumoniae counts in their lungs, as well as reduced levels of inflammatory cells, cytokines and chemokines in the respiratory tract and blood when compared to infected controls. Furthermore, higher levels of the regulatory cytokines IL-10 and IL-27 were found in the respiratory tract and blood of CRL1505-treated mice than controls. These results suggest that the ability of Lcb. rhamnosus CRL1505 to help with the control of detrimental inflammation in lungs during K. pneumoniae infection would be a key feature to improve the resistance to this pathogen. Although further mechanistic studies are necessary, Lcb. rhamnosus CRL1505 can be proposed as a candidate to improve patients' protection against hypermucoviscous KPC-2-producing strains belonging to the ST25, which is endemic in the hospitals of our region.
Collapse
Affiliation(s)
- Stefania Dentice Maidana
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina
- Laboratory of Antimicrobials, Institute of Microbiology "Luis C. Verna", Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucuman, Tucuman 4000, Argentina
| | - Yoshiya Imamura
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Mariano Elean
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina
| | - Leonardo Albarracín
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina
| | - Keita Nishiyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Yoshihito Suda
- Department of Food, Agriculture and Environment, Miyagi University, Sendai 980-8572, Japan
| | - Shoichiro Kurata
- Laboratory of Molecular Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - María Ángela Jure
- Laboratory of Antimicrobials, Institute of Microbiology "Luis C. Verna", Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucuman, Tucuman 4000, Argentina
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| |
Collapse
|
8
|
Faccone D, Gomez SA, de Mendieta JM, Sanz MB, Echegorry M, Albornoz E, Lucero C, Ceriana P, Menocal A, Martino F, De Belder D, Corso A, Pasterán F. Emergence of Hyper-Epidemic Clones of Enterobacterales Clinical Isolates Co-Producing KPC and Metallo-Beta-Lactamases during the COVID-19 Pandemic. Pathogens 2023; 12:pathogens12030479. [PMID: 36986401 PMCID: PMC10052147 DOI: 10.3390/pathogens12030479] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND The global spread of carbapenemase-producing Enterobacterales has become an epidemiological risk for healthcare systems by limiting available antimicrobial treatments. The COVID-19 pandemic worsened this scenario, prompting the emergence of extremely resistant microorganisms. METHODS Between March 2020 and September 2021, the NRL confirmed 82 clinical Enterobacterales isolates harboring a combination of blaKPC and MBL genes. Molecular typing was analyzed by PFGE and MLST. Modified double-disk synergy (MDDS) tests were used for phenotypic studies. RESULTS Isolates were submitted from 28 hospitals located in seven provinces and Buenos Aires City, including 77 K. pneumoniae, 2 K. oxytoca, 2 C. freundii, and 1 E. coli. Almost half of K. pneumoniae isolates (n = 38; 49.4%), detected in 15 hospitals, belong to the CC307 clone. CC11 was the second clone, including 29 (37.7%) isolates (22, ST11 and 7, ST258) from five cities and 12 hospitals. Three isolates belonging to CC45 were also detected. The carbapenemase combinations observed were as follows: 55% blaKPC-2 plus blaNDM-5; 32.5% blaKPC-2 plus blaNDM-1; 5% blaKPC-3 plus blaNDM-1; 5% blaKPC-2 plus blaIMP-8; and 2.5% strain with blaKPC-2 plus blaNDM-5 plus blaOXA-163. Aztreonam/avibactam and aztreonam/relebactam were the most active combinations (100% and 91% susceptible, respectively), followed by fosfomycin (89%) and tigecycline (84%). CONCLUSIONS The MDDS tests using ceftazidime-avibactam/EDTA and aztreonam/boronic acid disks improved phenotypic classification as dual producers. The successful high-risk clones of K. pneumoniae, such as hyper-epidemic CC307 and CC11 clones, drove the dissemination of double carbapenemase-producing isolates during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Diego Faccone
- Servicio Antimicrobianos, National Reference Laboratory in Antimicrobial Resistance (NRLAR), National Institute of Infectious Diseases (INEI), ANLIS "Dr. Carlos G. Malbrán", Ave. Velez Sarsfield, 563, Buenos Aires City 1281, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, Buenos Aires City 2290 (C1425FQB), Argentina
| | - Sonia A Gomez
- Servicio Antimicrobianos, National Reference Laboratory in Antimicrobial Resistance (NRLAR), National Institute of Infectious Diseases (INEI), ANLIS "Dr. Carlos G. Malbrán", Ave. Velez Sarsfield, 563, Buenos Aires City 1281, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, Buenos Aires City 2290 (C1425FQB), Argentina
| | - Juan Manuel de Mendieta
- Servicio Antimicrobianos, National Reference Laboratory in Antimicrobial Resistance (NRLAR), National Institute of Infectious Diseases (INEI), ANLIS "Dr. Carlos G. Malbrán", Ave. Velez Sarsfield, 563, Buenos Aires City 1281, Argentina
| | - María Belén Sanz
- Servicio Antimicrobianos, National Reference Laboratory in Antimicrobial Resistance (NRLAR), National Institute of Infectious Diseases (INEI), ANLIS "Dr. Carlos G. Malbrán", Ave. Velez Sarsfield, 563, Buenos Aires City 1281, Argentina
| | - Mariano Echegorry
- Servicio Antimicrobianos, National Reference Laboratory in Antimicrobial Resistance (NRLAR), National Institute of Infectious Diseases (INEI), ANLIS "Dr. Carlos G. Malbrán", Ave. Velez Sarsfield, 563, Buenos Aires City 1281, Argentina
| | - Ezequiel Albornoz
- Servicio Antimicrobianos, National Reference Laboratory in Antimicrobial Resistance (NRLAR), National Institute of Infectious Diseases (INEI), ANLIS "Dr. Carlos G. Malbrán", Ave. Velez Sarsfield, 563, Buenos Aires City 1281, Argentina
| | - Celeste Lucero
- Servicio Antimicrobianos, National Reference Laboratory in Antimicrobial Resistance (NRLAR), National Institute of Infectious Diseases (INEI), ANLIS "Dr. Carlos G. Malbrán", Ave. Velez Sarsfield, 563, Buenos Aires City 1281, Argentina
| | - Paola Ceriana
- Servicio Antimicrobianos, National Reference Laboratory in Antimicrobial Resistance (NRLAR), National Institute of Infectious Diseases (INEI), ANLIS "Dr. Carlos G. Malbrán", Ave. Velez Sarsfield, 563, Buenos Aires City 1281, Argentina
| | - Alejandra Menocal
- Servicio Antimicrobianos, National Reference Laboratory in Antimicrobial Resistance (NRLAR), National Institute of Infectious Diseases (INEI), ANLIS "Dr. Carlos G. Malbrán", Ave. Velez Sarsfield, 563, Buenos Aires City 1281, Argentina
| | - Florencia Martino
- Servicio Antimicrobianos, National Reference Laboratory in Antimicrobial Resistance (NRLAR), National Institute of Infectious Diseases (INEI), ANLIS "Dr. Carlos G. Malbrán", Ave. Velez Sarsfield, 563, Buenos Aires City 1281, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, Buenos Aires City 2290 (C1425FQB), Argentina
| | - Denise De Belder
- Servicio Antimicrobianos, National Reference Laboratory in Antimicrobial Resistance (NRLAR), National Institute of Infectious Diseases (INEI), ANLIS "Dr. Carlos G. Malbrán", Ave. Velez Sarsfield, 563, Buenos Aires City 1281, Argentina
| | - Alejandra Corso
- Servicio Antimicrobianos, National Reference Laboratory in Antimicrobial Resistance (NRLAR), National Institute of Infectious Diseases (INEI), ANLIS "Dr. Carlos G. Malbrán", Ave. Velez Sarsfield, 563, Buenos Aires City 1281, Argentina
| | - Fernando Pasterán
- Servicio Antimicrobianos, National Reference Laboratory in Antimicrobial Resistance (NRLAR), National Institute of Infectious Diseases (INEI), ANLIS "Dr. Carlos G. Malbrán", Ave. Velez Sarsfield, 563, Buenos Aires City 1281, Argentina
| |
Collapse
|
9
|
Basquiera AL, Aguirre MA, Serra FA, Vaca M, Brulc EB, Perusini MA, Ferini GA, Schutz NP, Otero V, García Corbanini D, Litvack E, Giron J, Garnica G, Martinez B, Michelangelo H, San Román E, Pollán J, Fantl DB, Arbelbide JA, Valledor A, Staneloni MI. Decrease in Mortality from Sepsis: Impact of the Multidisciplinary Program for the Hematologic Patient at Very High Risk. Indian J Hematol Blood Transfus 2023; 39:7-14. [PMID: 36699429 PMCID: PMC9868195 DOI: 10.1007/s12288-021-01497-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/05/2021] [Indexed: 01/28/2023] Open
Abstract
A program for the hematologic patient at very high risk of infections (HAR, from its initials in Spanish) was implemented, based on a multidisciplinary team and six measures intended to reduce the colonization and subsequent sepsis by multidrug-resistant organisms (MDRO). We aimed at evaluating the effectiveness of the HAR program in terms of MDRO infections mainly caused by Klebsiella pneumoniae carbapenemase-producing and multidrug-resistant Pseudomona aeruginosa, and sepsis-related mortality. We established retrospective comparisons between the pre-HAR period (2016-2018) and the post-HAR period (2018-2019), in patients who received a hematopoietic stem cell transplant (HSCT) and/or intensive chemotherapy to treat non-M3 acute myeloid leukemia (CH-AML). We included 262 patients: 176 pre-HAR and 86 post-HAR. MDRO infection was 4.6% at 30 days and 6.1% at 90 days (all the cases during the pre-HAR period). Sepsis-related mortality was 6.5%, considering a median follow-up of 608 days: 6.1% in the HSCT group and 12.4% in the CH-AML group (p = 0.306). Sepsis-related mortality was 8.7% in the pre-HAR period and 0% in the post-HAR period (p = 0.014). The implementation of this multidisciplinary program based in preventive measures and the appropriate use of antibiotics enabled a decrease in sepsis-related mortality in very high-risk hematologic patients.
Collapse
Affiliation(s)
- Ana L. Basquiera
- Hematology Section, Department of Internal Medicine, Hospital Italiano de Buenos Aires, Instituto Universitario Hospital Italiano de Buenos Aires, Tte. Gral. Juan Domingo Perón 4190, C1199ABB Buenos Aires, Argentina
- Present Address: Hospital Privado Universitario de Córdoba, Naciones Unidas 346, 5016 Córdoba, Argentina
| | - María A. Aguirre
- Department of Internal Medicine, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Florencia A. Serra
- Department of Internal Medicine, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Mayra Vaca
- Hematology Section, Department of Internal Medicine, Hospital Italiano de Buenos Aires, Instituto Universitario Hospital Italiano de Buenos Aires, Tte. Gral. Juan Domingo Perón 4190, C1199ABB Buenos Aires, Argentina
| | - Erika B. Brulc
- Hematology Section, Department of Internal Medicine, Hospital Italiano de Buenos Aires, Instituto Universitario Hospital Italiano de Buenos Aires, Tte. Gral. Juan Domingo Perón 4190, C1199ABB Buenos Aires, Argentina
| | - María A. Perusini
- Hematology Section, Department of Internal Medicine, Hospital Italiano de Buenos Aires, Instituto Universitario Hospital Italiano de Buenos Aires, Tte. Gral. Juan Domingo Perón 4190, C1199ABB Buenos Aires, Argentina
| | - Gonzalo A. Ferini
- Hematology Section, Department of Internal Medicine, Hospital Italiano de Buenos Aires, Instituto Universitario Hospital Italiano de Buenos Aires, Tte. Gral. Juan Domingo Perón 4190, C1199ABB Buenos Aires, Argentina
| | - Natalia P. Schutz
- Hematology Section, Department of Internal Medicine, Hospital Italiano de Buenos Aires, Instituto Universitario Hospital Italiano de Buenos Aires, Tte. Gral. Juan Domingo Perón 4190, C1199ABB Buenos Aires, Argentina
| | - Victoria Otero
- Hematology Section, Department of Internal Medicine, Hospital Italiano de Buenos Aires, Instituto Universitario Hospital Italiano de Buenos Aires, Tte. Gral. Juan Domingo Perón 4190, C1199ABB Buenos Aires, Argentina
| | | | - Edgardo Litvack
- Nursery Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Julio Giron
- Nursery Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Gastón Garnica
- Nursery Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Bernardo Martinez
- Department of Internal Medicine, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
- Emergency Unit for Adults, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Hernán Michelangelo
- Department of Internal Medicine, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
- Intermediate Care Unit for Adults, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Eduardo San Román
- Intensive Care Unit for Adults, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Javier Pollán
- Department of Internal Medicine, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Dorotea B. Fantl
- Hematology Section, Department of Internal Medicine, Hospital Italiano de Buenos Aires, Instituto Universitario Hospital Italiano de Buenos Aires, Tte. Gral. Juan Domingo Perón 4190, C1199ABB Buenos Aires, Argentina
| | - Jorge A. Arbelbide
- Hematology Section, Department of Internal Medicine, Hospital Italiano de Buenos Aires, Instituto Universitario Hospital Italiano de Buenos Aires, Tte. Gral. Juan Domingo Perón 4190, C1199ABB Buenos Aires, Argentina
| | - Alejandra Valledor
- Infectology Section, Department of Internal Medicine, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - María I. Staneloni
- Infections Committee, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
10
|
Knecht CA, García Allende N, Álvarez VE, Prack McCormick B, Massó MG, Piekar M, Campos J, Fox B, Camicia G, Gambino AS, Leguina ACDV, Donis N, Fernández-Canigia L, Quiroga MP, Centrón D. Novel insights related to the rise of KPC-producing Enterobacter cloacae complex strains within the nosocomial niche. Front Cell Infect Microbiol 2022; 12:951049. [DOI: 10.3389/fcimb.2022.951049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
According to the World Health Organization, carbapenem-resistant Enterobacteriaceae (CRE) belong to the highest priority group for the development of new antibiotics. Argentina-WHONET data showed that Gram-negative resistance frequencies to imipenem have been increasing since 2010 mostly in two CRE bacteria: Klebsiella pneumoniae and Enterobacter cloacae Complex (ECC). This scenario is mirrored in our hospital. It is known that K. pneumoniae and the ECC coexist in the human body, but little is known about the outcome of these species producing KPC, and colonizing or infecting a patient. We aimed to contribute to the understanding of the rise of the ECC in Argentina, taking as a biological model both a patient colonized with two KPC-producing strains (one Enterobacter hormaechei and one K. pneumoniae) and in vitro competition assays with prevalent KPC-producing ECC (KPC-ECC) versus KPC-producing K. pneumoniae (KPC-Kp) high-risk clones from our institution. A KPC-producing E. hormaechei and later a KPC-Kp strain that colonized a patient shared an identical novel conjugative IncM1 plasmid harboring blaKPC-2. In addition, a total of 19 KPC-ECC and 58 KPC-Kp strains isolated from nosocomial infections revealed that high-risk clones KPC-ECC ST66 and ST78 as well as KPC-Kp ST11 and ST258 were prevalent and selected for competition assays. The competition assays with KCP-ECC ST45, ST66, and ST78 versus KPC-Kp ST11, ST18, and ST258 strains analyzed here showed no statistically significant difference. These assays evidenced that high-risk clones of KPC-ECC and KPC-Kp can coexist in the same hospital environment including the same patient, which explains from an ecological point of view that both species can exchange and share plasmids. These findings offer hints to explain the worldwide rise of KPC-ECC strains based on the ability of some pandemic clones to compete and occupy a certain niche. Taken together, the presence of the same new plasmid and the fitness results that showed that both strains can coexist within the same patient suggest that horizontal genetic transfer of blaKPC-2 within the patient cannot be ruled out. These findings highlight the constant interaction that these two species can keep in the hospital environment, which, in turn, can be related to the spread of KPC.
Collapse
|
11
|
Dentice Maidana S, Ortiz Moyano R, Vargas JM, Fukuyama K, Kurata S, Melnikov V, Jure MÁ, Kitazawa H, Villena J. Respiratory Commensal Bacteria Increase Protection against Hypermucoviscous Carbapenem-Resistant Klebsiella pneumoniae ST25 Infection. Pathogens 2022; 11:pathogens11091063. [PMID: 36145495 PMCID: PMC9501321 DOI: 10.3390/pathogens11091063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 12/18/2022] Open
Abstract
In a previous work, we demonstrated that nasally administered Corynebacterium pseudodiphtheriticum 090104 beneficially modulated the respiratory innate immune response and improved the protection against Respiratory Syncytial Virus and Streptococcus pneumoniae in mice. In this work, we aimed to evaluate whether the immunomodulatory 090104 strain was able to enhance the resistance against the respiratory infection induced by hypermucoviscous carbapenemase-producing (KPC-2) Klebsiella pneumoniae strains belonging to the sequence type (ST) 25. The nasal treatment of mice with C. pseudodiphtheriticum 090104 before the challenge with multiresistant K. pneumoniae ST25 strains significantly reduced lung bacterial cell counts and lung tissue damage. The protective effect of the 090104 strain was related to its ability to regulate the respiratory innate immune response triggered by K. pneumoniae challenge. C. pseudifteriticum 090104 differentially modulated the recruitment of leukocytes into the lung and the production of TNF-α, IFN-γ and IL-10 levels in the respiratory tract and serum. Our results make an advance in the positioning of C. pseudodiphtheriticum 090104 as a next-generation probiotic for the respiratory tract and encourage further research of this bacterium as a promising alternative to develop non-antibiotic therapeutical approaches to enhance the prevention of infections produced by microorganisms with multiple resistance to antimicrobials such as KPC-2-producing hypermucoviscous K. pneumoniae strains belonging to ST25.
Collapse
Affiliation(s)
- Stefania Dentice Maidana
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina
- Laboratory of Antimicrobials, Institute of Microbiology “Luis C. Verna”, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucuman, San Miguel de Tucumán 4000, Argentina
| | - Ramiro Ortiz Moyano
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina
| | - Juan Martin Vargas
- Laboratory of Antimicrobials, Institute of Microbiology “Luis C. Verna”, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucuman, San Miguel de Tucumán 4000, Argentina
| | - Kohtaro Fukuyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Shoichiro Kurata
- Laboratory of Molecular Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Vyacheslav Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | - María Ángela Jure
- Laboratory of Antimicrobials, Institute of Microbiology “Luis C. Verna”, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucuman, San Miguel de Tucumán 4000, Argentina
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Correspondence: (H.K.); (J.V.)
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Correspondence: (H.K.); (J.V.)
| |
Collapse
|
12
|
Di Conza J, Badaracco ME, Calza Y, Fontana H, Lincopan N, Peña L, Gutkind G. Emergence of Urease-Negative Klebsiella pneumoniae ST340 Carrying an IncP6 Plasmid-Mediated blaKPC-2 Gene. Microb Drug Resist 2022; 28:957-961. [PMID: 35984997 DOI: 10.1089/mdr.2021.0466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
An unusual biotype of KPC-2-producing Klebsiella pneumoniae (KPC-Kpn) isolates was detected in Corrientes, Argentina, which, to their isolation date, had been free of KPC-Kpn outbreaks. Our aim was to describe the clinical epidemiology focused on genomic characterization of atypical urease-negative KPC-Kpn clinical isolates belonging to the high-risk hospital-associated clonal lineage ST340/CC258. Thirteen isolates were recovered, all of them from inpatients with KPC-Kpn infection (August 2015 to January 2016). These isolates displayed identical enterobacterial repetitive intergenic consensus-PCR electropherotype belonging to a single clonal sequence type ST340. Whole genome sequencing was performed on two KPC-Kpn and the resistome analyses revealed the following acquired resistance genes: blaKPC-2, blaCTX-M-15, blaOXA-1, blaSHV-11, aac(3)-IId, aph(3')-Ia, aac(6')-Ib-cr, sul1, dfrA14, catB3, fosA, and arr-3. Mutations in GyrA (S83I) and ParC (S80I) were also identified. Among the virulence determinants, yersiniabactin was detected in both strains, specifically the ybt9 locus located in ICEKp3. Five plasmid incompatibility groups were observed in this clone and an unusual IncP6 plasmid bearing blaKPC-2 gene (named pKpn3KP) was fully characterized. In this study, we present the first draft genome sequences of two clinical isolates of KPC-2/CTX-M-15-producing K. pneumoniae belonging to the high-risk clonal lineage ST340/CC258 associated with nosocomial outbreaks in Argentina.
Collapse
Affiliation(s)
- José Di Conza
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Maria E Badaracco
- Instituto Cardiologico de Corrientes "Juana Francisca Cabral," Corrientes, Argentina
| | - Yanina Calza
- Instituto Cardiologico de Corrientes "Juana Francisca Cabral," Corrientes, Argentina
| | - Herrison Fontana
- Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, Sao Paulo, Brazil
| | - Nilton Lincopan
- Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, Sao Paulo, Brazil
| | - Laura Peña
- Instituto Cardiologico de Corrientes "Juana Francisca Cabral," Corrientes, Argentina
| | - Gabriel Gutkind
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
13
|
Genomic and Immunological Characterization of Hypermucoviscous Carbapenem-Resistant Klebsiella pneumoniae ST25 Isolates from Northwest Argentina. Int J Mol Sci 2022; 23:ijms23137361. [PMID: 35806365 PMCID: PMC9266295 DOI: 10.3390/ijms23137361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 02/05/2023] Open
Abstract
In recent years, an increase in the prevalence hypermucoviscous carbapenem-resistant Klebsiella pneumoniae with sequence type 25 (ST25) was detected in hospitals of Tucuman (Northwest Argentina). In this work, the virulence and the innate immune response to two K. pneumoniae ST25 strains (LABACER 01 and LABACER 27) were evaluated in a murine model after a respiratory challenge. In addition, comparative genomics was performed with K. pneumoniae LABACER01 and LABACER27 to analyze genes associated with virulence. Both LABACER01 and LABACER27 were detected in the lungs of infected mice two days after the nasal challenge, with LABACER01 counts significantly higher than those of LABACER27. Only LABACER01 was detected in hemocultures. Lactate dehydrogenase (LDH) and albumin levels in bronchoalveolar lavage (BAL) samples were significantly higher in mice challenged with LABACER01 than in LABACER27-infected animals, indicating greater lung tissue damage. Both strains increased the levels of neutrophils, macrophages, TNF-α, IL-1β, IL-6, KC, MCP-1, IFN-γ, and IL-17 in the respiratory tract and blood, with the effect of LABACER01 more marked than that of LABACER27. In contrast, LABACER27 induced higher levels of IL-10 in the respiratory tract than LABACER01. Genomic analysis revealed that K. pneumoniae LABACER01 and LABACER27 possess virulence factors found in other strains that have been shown to be hypervirulent, including genes required for enterobactin (entABCDEF) and salmochelin (iroDE) biosynthesis. In both strains, the genes of toxin–antitoxin systems, as well as regulators of the expression of virulence factors and adhesion genes were also detected. Studies on the genetic potential of multiresistant K. pneumoniae strains as well as their cellular and molecular interactions with the host are of fundamental importance to assess the association of certain virulence factors with the intensity of the inflammatory response. In this sense, this work explored the virulence profile based on genomic and in vivo studies of hypermucoviscous carbapenem-resistant K. pneumoniae ST25 strains, expanding the knowledge of the biology of the emerging ST25 clone in Argentina.
Collapse
|
14
|
Sanz MB, De Belder D, de Mendieta JM, Faccone D, Poklepovich T, Lucero C, Rapoport M, Campos J, Tuduri E, Saavedra MO, Van der Ploeg C, Rogé A, Pasteran F, Corso A, Rosato AE, Gomez SA. Carbapenemase-Producing Extraintestinal Pathogenic Escherichia coli From Argentina: Clonal Diversity and Predominance of Hyperepidemic Clones CC10 and CC131. Front Microbiol 2022; 13:830209. [PMID: 35369469 PMCID: PMC8971848 DOI: 10.3389/fmicb.2022.830209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) causes infections outside the intestine. Particular ExPEC clones, such as clonal complex (CC)/sequence type (ST)131, have been known to sequentially accumulate antimicrobial resistance that starts with chromosomal mutations against fluoroquinolones, followed with the acquisition of blaCTX–M–15 and, more recently, carbapenemases. Here we aimed to investigate the distribution of global epidemic clones of carbapenemase-producing ExPEC from Argentina in representative clinical isolates recovered between July 2008 and March 2017. Carbapenemase-producing ExPEC (n = 160) were referred to the Argentinean reference laboratory. Of these, 71 were selected for genome sequencing. Phenotypic and microbiological studies confirmed the presence of carbapenemases confirmed as KPC-2 (n = 52), NDM-1 (n = 16), IMP-8 (n = 2), and VIM-1 (n = 1) producers. The isolates had been recovered mainly from urine, blood, and abdominal fluids among others, and some were from screening samples. After analyzing the virulence gene content, 76% of the isolates were considered ExPEC, although non-ExPEC isolates were also obtained from extraintestinal sites. Pan-genome phylogeny and clonal analysis showed great clonal diversity, although the first phylogroup in abundance was phylogroup A, harboring CC10 isolates, followed by phylogroup B2 with CC/ST131, mostly H30Rx, the subclone co-producing CTX-M-15. Phylogroups D, B1, C, F, and E were also detected with fewer strains. CC10 and CC/ST131 were found throughout the country. In addition, CC10 nucleated most metalloenzymes, such as NDM-1. Other relevant international clones were identified, such as CC/ST38, CC155, CC14/ST1193, and CC23. Two isolates co-produced KPC-2 and OXA-163 or OXA-439, a point mutation variant of OXA-163, and three isolates co-produced MCR-1 among other resistance genes. To conclude, in this work, we described the molecular epidemiology of carbapenemase-producing ExPEC in Argentina. Further studies are necessary to determine the plasmid families disseminating carbapenemases in ExPEC in this region.
Collapse
Affiliation(s)
- María Belén Sanz
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Denise De Belder
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina.,Plataforma Genómica y Bioinformática (PLABIO), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - J M de Mendieta
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Diego Faccone
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Tomás Poklepovich
- Plataforma Genómica y Bioinformática (PLABIO), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Celeste Lucero
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Melina Rapoport
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Josefina Campos
- Plataforma Genómica y Bioinformática (PLABIO), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Ezequiel Tuduri
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina.,Plataforma Genómica y Bioinformática (PLABIO), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Mathew O Saavedra
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Hospital, Houston Methodist Research Institute, Houston, TX, United States
| | - Claudia Van der Ploeg
- Servicio de Antígenos y Antisueros, INPB-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Ariel Rogé
- Servicio de Antígenos y Antisueros, INPB-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | | | - Fernando Pasteran
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Alejandra Corso
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Adriana E Rosato
- Department of Pathology and Molecular Microbiology Diagnostics-Research, Riverside University Health System, Moreno Valley, CA, United States.,School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Sonia A Gomez
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
15
|
Huang Y, Li J, Wang Q, Tang K, Li C. Rapid detection of KPC-producing Klebsiella pneumoniae in China based on MALDI-TOF MS. J Microbiol Methods 2021; 192:106385. [PMID: 34843862 DOI: 10.1016/j.mimet.2021.106385] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022]
Abstract
Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-Kp) represent a serious threat to public health and their timely detection is essential for patient management and the prevention of nosocomial infections. Here, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to rapidly identify dominant KPC-Kp in China, by using an automated detection of a KPC-specific peak (at 4521 m/z) by a genetic algorithm using ClinProTools software. Whole-genome sequencing (WGS) was used to understand the genetic environment of the blaKPC-2 gene. In this study, we analyzed 235 K. pneumoniae Chinese clinical isolates, of which 175 (93 KPC-positive isolates and 82 KPC-negative isolates) isolates were used to build a model to select a KPC-specific peak, and another 60 isolates for external validation. In addition, all the spectra were visually inspected by the FlexAnalysis software to evaluate the accuracy of the automated detection. The results showed a 4521 m/z peak found in all blaKPC-2-positive isolates but absent in blaKPC-2-negative isolates. Interestingly, all KPC-Kp belonged to ST11, the dominant clone in China. WGS analysis of a representative isolate showed that the genetic environment of KPC-2 was IS26-ISKpn27-blaKPC-2-ΔISKpn6-Tn1721, similar to the KPC-2 genetic environment of ST11 KPC-Kp previously reported in China. Therefore, the 4521 m/z peak is closely related to ST11 KPC-Kp. In summary, we used MALDI-TOF MS to quickly detect KPC-Kp in the process of routine bacterial identification without increasing costs or requiring further knowledge, which has broad application prospects in drug resistance analysis and infection control.
Collapse
Affiliation(s)
- Yun Huang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Juan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Qianyu Wang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Kewen Tang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Congrong Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| |
Collapse
|
16
|
Ghiglione B, Haim MS, Penzotti P, Brunetti F, D Amico González G, Di Conza J, Figueroa-Espinosa R, Nuñez L, Razzolini MTP, Fuga B, Esposito F, Vander Horden M, Lincopan N, Gutkind G, Power P, Dropa M. Characterization of Emerging Pathogens Carrying bla KPC-2 Gene in IncP-6 Plasmids Isolated From Urban Sewage in Argentina. Front Cell Infect Microbiol 2021; 11:722536. [PMID: 34504809 PMCID: PMC8421773 DOI: 10.3389/fcimb.2021.722536] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022] Open
Abstract
Untreated wastewater is a reservoir for multidrug-resistant bacteria, but its role in the spread of antibiotic resistance in the human population remains poorly investigated. In this study, we isolated a KPC-2-producing ST2787 Klebsiella quasipneumoniae subsp. quasipneumoniae (WW14A), recovered from raw sewage at a wastewater treatment plant in Argentina in 2018 and determined its complete genome sequence. Strain WW14A was resistant to all β-lactams, ciprofloxacin and amikacin. A core genome phylogenetic analysis indicated that WW14A was closely related to a GES-5-producing Taiwanese strain isolated from hospital wastewater in 2015 and it was clearly distinct from strains isolated recently in Argentina and Brazil. Interestingly, blaKPC-2 was harbored by a recently described IncP-6 broad-spectrum plasmid which was sporadically reported worldwide and had never been reported before in Argentina. We investigated the presence of the IncP-6 replicon in isolates obtained from the same sampling and found a novel non-typable/IncP-6 hybrid plasmid in a newly assigned ST1407 Enterobacter asburiae (WW19C) also harboring blaKPC-2. Nanopore sequencing and hybrid assembly of strains WW14A and WW19C revealed that both IncP-6 plasmids shared 72% of coverage (~20 kb), with 99.99% of sequence similarity and each one also presented uniquely combined regions that were derived from other plasmids recently reported in different countries of South America, Asia, and Europe. The region harboring the carbapenem resistance gene (~11 kb) in both plasmids contained a Tn3 transposon disrupted by a Tn3-ISApu-flanked element and the core sequence was composed by ΔISKpn6/blaKPC-2/ΔblaTEM-1/ISKpn27. Both strains also carried genes conferring resistance to heavy metals (e.g., arsenic, mercury, lead, cadmium, copper), pesticides (e.g., glyphosate), disinfectants, and several virulence-related genes, posing a potential pathogenic risk in the case of infections. This is the first study documenting blaKPC-2 associated with IncP-6 plasmids in K. quasipneumoniae and Enterobacter cloacae complex from wastewater in Argentina and highlights the circulation of IncP-6 plasmids as potential reservoirs of blaKPC-2 in the environment.
Collapse
Affiliation(s)
- Barbara Ghiglione
- Laboratorio de Resistencia Bacteriana, Instituto de Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Sol Haim
- Laboratorio de Resistencia Bacteriana, Instituto de Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Pedro Penzotti
- Laboratorio de Resistencia Bacteriana, Instituto de Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Florencia Brunetti
- Laboratorio de Resistencia Bacteriana, Instituto de Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriela D Amico González
- Laboratorio de Resistencia Bacteriana, Instituto de Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - José Di Conza
- Laboratorio de Resistencia Bacteriana, Instituto de Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Roque Figueroa-Espinosa
- Laboratorio de Resistencia Bacteriana, Instituto de Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lidia Nuñez
- Facultad de Farmacia y Bioquímica, Cátedra de Salud Pública e Higiene Ambiental, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Tereza Pepe Razzolini
- Departamento de Saúde Ambiental, Laboratório de Microbiologia Ambiental e Resistência Antimicrobiana - MicroRes, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil
| | - Bruna Fuga
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Fernanda Esposito
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Maximiliano Vander Horden
- Ingeniería - Gerencia Técnica, Dirección de Saneamiento, Agua y Saneamientos Argentinos S.A. (AySA), Buenos Aires, Argentina
| | - Nilton Lincopan
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Gabriel Gutkind
- Laboratorio de Resistencia Bacteriana, Instituto de Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Pablo Power
- Laboratorio de Resistencia Bacteriana, Instituto de Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Milena Dropa
- Departamento de Saúde Ambiental, Laboratório de Microbiologia Ambiental e Resistência Antimicrobiana - MicroRes, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Jure MA, Albarracin L, Vargas JM, Maidana SD, Zamar JC, Kitazawa H, Villena J. Draft genome sequences of two hypermucoviscous carbapenem-resistant ST25 Klebsiella pneumoniae strains causing respiratory and systemic infections. J Glob Antimicrob Resist 2021; 26:174-176. [PMID: 34153527 DOI: 10.1016/j.jgar.2021.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/24/2021] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES The emergence and spread of hypermucoviscous KPC-2-producing Klebsiella pneumoniae strains belonging to the sequence type 25 (ST25) clone was reported recently in Northwest Argentina as a leading cause of nosocomial infections. The aim of this work was to perform whole-genome sequencing (WGS) to analyse antimicrobial resistance genes (ARGs), virulence factors and colonisation-associated genes in two carbapenem-resistant KPC-2-producing ST25 K. pneumoniae strains isolated from hospitalised patients. METHODS Classical microbiological methods were applied to recover K. pneumoniae LABACER 01 from a bone sample and LABACER 27 from the respiratory tract of two hospitalised patients. Bacteria were identified by matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF). WGS was performed using an Illumina MiSeq platform. Genome annotation and analysis were performed with available databases and bioinformatic tools. RESULTS Genomic analysis revealed a genome of 5 598 020 bp with 19 further characterised ARGs in strain LABACER 01, and a genome of 5 622 382 bp with 20 ARGs in strain LABACER 27. Bioinformatics analysis also predicted genomic regions associated with virulence factors and mucosal tissue colonisation. CONCLUSION This study reports the genomic analysis of K. pneumoniae LABACER 01 and LABACER 27, two hypermucoviscous carbapenem-resistant ST25 strains, which expands our knowledge on the antibiotic resistance, pathogenic mechanisms and biology of ST25 clones recently emerging in Argentina.
Collapse
Affiliation(s)
- María Angela Jure
- Laboratory of Antimicrobials, Institute of Microbiology 'Luis C. Verna', Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucumán, Tucumán, Argentina
| | - Leonardo Albarracin
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán, Argentina; Scientific Computing Laboratory, Computer Science Department, Faculty of Exact Science and Technology, National University of Tucumán, Tucumán, Argentina; Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Juan Martin Vargas
- Laboratory of Antimicrobials, Institute of Microbiology 'Luis C. Verna', Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucumán, Tucumán, Argentina
| | - Stefania Dentice Maidana
- Laboratory of Antimicrobials, Institute of Microbiology 'Luis C. Verna', Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucumán, Tucumán, Argentina; Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán, Argentina; Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Juan Cortez Zamar
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán, Argentina
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan; Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán, Argentina; Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.
| |
Collapse
|
18
|
Wozniak A, Figueroa C, Moya-Flores F, Guggiana P, Castillo C, Rivas L, Munita JM, García PC. A multispecies outbreak of carbapenem-resistant bacteria harboring the bla KPC gene in a non-classical transposon element. BMC Microbiol 2021; 21:107. [PMID: 33836654 PMCID: PMC8034096 DOI: 10.1186/s12866-021-02169-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/31/2021] [Indexed: 11/16/2022] Open
Abstract
Background Klebsiella pneumoniae is the most frequent KPC-producing bacteria. The blaKPC gene is frequently embedded in Tn4401 transposon, and less frequently in non-Tn4401 elements (NTEKPC) variants I-III. The first case of KPC in the UC-CHRISTUS Clinical Hospital was detected in Pseudomonas aeruginosa. Soon after this event, KPC was detected in 2 additional Pseudomonas aeruginosa, 3 Escherichia coli, 3 Enterobacter cloacae, 3 Klebsiella pneumoniae, and 1 Citrobacter freundii, isolated from 6 different patients. We aimed to elucidate the possible mechanisms of genetic transfer and dissemination of the blaKPC gene among isolates of this multispecies outbreak. A molecular epidemiology analysis of the above mentioned clinical isolates (n = 13) through Multi-Locus Sequence Typing, plasmid analysis, Pulsed-Field Gel-Electrophoresis, and Whole-genome sequencing (WGS) was performed. Results High-risk sequence types were found: K. pneumoniae ST11, P. aeruginosa ST654, and E. cloacae ST114. All enterobacterial isolates were not clonal except for 3 E. coli isolated from the same patient. WGS analysis in 6 enterobacterial isolates showed that 4 of them had blaKPC embedded in a novel variant of NTEKPC designated NTEKPC-IIe. Upstream of blaKPC gene there was a 570 pb truncated blaTEM-1 gene followed by an insertion sequence that was 84% similar to ISEc63, a 4473 bp element of the Tn3 family. Downstream the blaKPC gene there was a truncated ISKpn6 gene, and the inverted repeat right sequence of Tn4401. The ISec63-like element together with the blaKPC gene plus Tn4401 remnants were inserted in the Tra operon involved in conjugative transfer of the plasmid. This NTE was carried in a broad host-range IncN plasmid. P. aeruginosa isolates carried blaKPC gene embedded in a typical Tn4401b transposon in a different plasmid, suggesting that there was no plasmid transfer between Enterobacteriaceae and P. aeruginosa as initially hypothesized. Conclusions Most enterobacterial isolates had blaKPC embedded in the same NTEKPC-IIe element, suggesting that this multispecies KPC outbreak was due to horizontal gene transfer rather than clonal spread. This poses a greater challenge to infection control measures often directed against containment of clonal spread. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02169-3.
Collapse
Affiliation(s)
- Aniela Wozniak
- Laboratory of Microbiology, Department of Clinical Laboratories, Centro Médico San Joaquín, Escuela de Medicina, Pontificia Universidad Católica de Chile, 3rd floor, Vicuña Mackenna, 4686, Santiago, Chile.,Clinical Laboratories Network, Red de Salud UC-CHRISTUS, Santiago, Chile
| | - Cristian Figueroa
- Laboratory of Microbiology, Department of Clinical Laboratories, Centro Médico San Joaquín, Escuela de Medicina, Pontificia Universidad Católica de Chile, 3rd floor, Vicuña Mackenna, 4686, Santiago, Chile
| | - Francisco Moya-Flores
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile.,Genomics & Resistant Microbes group (GeRM), Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Piero Guggiana
- Laboratory of Microbiology, Department of Clinical Laboratories, Centro Médico San Joaquín, Escuela de Medicina, Pontificia Universidad Católica de Chile, 3rd floor, Vicuña Mackenna, 4686, Santiago, Chile
| | - Claudia Castillo
- Clinical Laboratories Network, Red de Salud UC-CHRISTUS, Santiago, Chile
| | - Lina Rivas
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile.,Genomics & Resistant Microbes group (GeRM), Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - José M Munita
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile.,Genomics & Resistant Microbes group (GeRM), Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Patricia C García
- Laboratory of Microbiology, Department of Clinical Laboratories, Centro Médico San Joaquín, Escuela de Medicina, Pontificia Universidad Católica de Chile, 3rd floor, Vicuña Mackenna, 4686, Santiago, Chile. .,Clinical Laboratories Network, Red de Salud UC-CHRISTUS, Santiago, Chile. .,Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile.
| |
Collapse
|
19
|
Simple Phenotypic Tests To Improve Accuracy in Screening Chromosomal and Plasmid-Mediated Colistin Resistance in Gram-Negative Bacilli. J Clin Microbiol 2020; 59:JCM.01701-20. [PMID: 33115847 DOI: 10.1128/jcm.01701-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/19/2020] [Indexed: 11/20/2022] Open
Abstract
CLSI and EUCAST recommend that only broth microdilution (BMD) should be used for routine colistin susceptibility testing; however, this technique can be difficult to perform in resource-poor settings. The purpose of this study was to evaluate the accuracy of a colistin agar spot test (COL-AS) and a colistin drop test (COL-DT) compared to BMD. COL-AS and COL-DT were assessed with a collection of 271 Gram-negative bacilli clinical isolates: 195 Enterobacterales (including 63 mcr-1 positive strains), 37 Acinetobacter spp., and 39 Pseudomonas aeruginosa For COL-AS, 3.0 μg/ml (final concentration) of colistin was added to a Mueller-Hinton agar plate and subsequently swabbed with a 0.5 McFarland standard suspension of the tested strain within a 1 cm2 spot. For COL-DT, 10 μl of a 16 μg/ml colistin solution was dripped on the surface of a Mueller-Hinton agar plate, previously inoculated with a lawn of the tested strain (0.5 McFarland standard). Colistin solution was made either by dissolving powder or by disk elution in cation-adjusted Mueller-Hinton broth (CA-MHB). Overall, 141/271 (52%) isolates were categorized as colistin resistant by reference BMD. COL-AS yielded a categorical agreement (CA) of 95.5% compared to BMD, with 0.7% very major errors and 3.8% major errors. COL-DT yielded a CA of 96.2% compared to BMD, with 0.7% and 0% very major errors and 3.1% and 3.8% major errors, for colistin powder and disk elution solutions, respectively. Most major errors occurred for mcr-1 strains with MICs that fluctuated from 2 to 4 μg/ml according to the method used. In conclusion, we developed and validated methods suited to the systematic screening of resistance to colistin in Gram-negative bacilli.
Collapse
|
20
|
Reyes J, Cárdenas P, Tamayo R, Villavicencio F, Aguilar A, Melano RG, Trueba G. Characterization of blaKPC-2-Harboring Klebsiella pneumoniae Isolates and Mobile Genetic Elements from Outbreaks in a Hospital in Ecuador. Microb Drug Resist 2020; 27:752-759. [PMID: 33217245 DOI: 10.1089/mdr.2019.0433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aim: To investigate the mobile genetic elements harboring blaKPC gene in carbapenem-resistant Klebsiella pneumoniae recovered during a 6-month outbreak in a high-complexity hospital from Ecuador. Results: A total of 62 isolates belonging to ST258 pilv-I-positive (n = 45), ST25 serotype K2 (n = 8), ST348 (n = 6), ST42 (n = 1), ST196 (n = 1), and ST1758 (n = 1) were collected from intensive care unit (ICU), neurosurgery, burn unit, internal medicine, pneumology, and neurology. Pulsed-field gel electrophoresis analysis showed two major clusters of ST258 and ST25 related to bloodstream infections and pneumonia circulating in ICU. The PCR assay showed that in non-ST258 isolates, the blaKPC-2 gene were located on the Tn4401a transposon inserted in the transferable pKpQIL-like IncFIIK2 plasmid; the whole-genome sequencing of ST258 clone showed two plasmids, the blaKPC-2 gene was located on nonconjugative IncR plasmid, whereas the IncFIB/IncFII plasmid lacked ß-lactamase genes. We found an IncM plasmid in blaKPC-2-harboring Klebsiella pneumoniae ST1758 clone. Conclusions: These findings highlight the presence of pKpQIL-like plasmids in non-ST258 and nonconjugative plasmids in ST258 isolates causing hospital outbreaks.
Collapse
Affiliation(s)
- Jorge Reyes
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador.,Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito, Ecuador
| | - Paúl Cárdenas
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Rafael Tamayo
- Centro de Referencia Nacional de Resistencia a los antimicrobianos "LIP," Quito, Ecuador
| | - Fernando Villavicencio
- Centro de Referencia Nacional de Resistencia a los antimicrobianos "LIP," Quito, Ecuador
| | - Ana Aguilar
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador.,Escuela de Medicina, Colegio de Ciencias de la Salud (COCSA), Universidad San Francisco de Quito, Quito, Ecuador
| | - Roberto G Melano
- Public Health Ontario Laboratory, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Gabriel Trueba
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| |
Collapse
|
21
|
De Belder D, Ghiglione B, Pasteran F, de Mendieta JM, Corso A, Curto L, Di Bella A, Gutkind G, Gomez SA, Power P. Comparative Kinetic Analysis of OXA-438 with Related OXA-48-Type Carbapenem-Hydrolyzing Class D β-Lactamases. ACS Infect Dis 2020; 6:3026-3033. [PMID: 32970406 DOI: 10.1021/acsinfecdis.0c00537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Novel variants of OXA-48-type enzymes with the ability to hydrolyze oxyimino-cephalosporins and carbapenems are increasingly reported. Since its first report in 2011, OXA-163 is now extensively spread throughout Argentina, and several variants like OXA-247 have emerged. Here, we characterized a new blaOXA-48-like variant, OXA-438, and we performed a comparative kinetic analysis with the local variants OXA-247 and OXA-163 and the internationally disseminated OXA-48. blaOXA-163, blaOXA-247, and blaOXA-438 were located in a 70 kb IncN2 conjugative plasmid. OXA-438 presented mutations in the vicinity of conserved KTG (214-216), with a 2-aa deletion (R220-I221) and a D224E shift (as in OXA-163) compared to OXA-48. Despite Kpn163 (OXA-163), Kpn247 (OXA-247) and Eco438 (OXA-438) were resistant to meropenem and ertapenem, and the transconjugants (TC) remained susceptible (however, the carbapenems minimum inhibitory concentrations were ≥3 times 2-fold dilutions higher than the acceptor strain). TC163 and Eco48 were resistant to oxyimino-cephalosporins, unlike TC247 and TC438. kcat/Km values for cefotaxime in OXA-163 were slightly higher than the rest of the variants that were accompanied by a lower Km for carbapenems. For OXA-163, OXA-247, and OXA-438, the addition of NaHCO3 improved kcat values for both cefotaxime and ceftazidime; carbapenems kcat/Km values were higher than for oxyimino-cephalosporins. Mutations occurring near the conserved KTG in OXA-247 and OXA-438 are probably responsible for the improved carbapenems hydrolysis and decreased inactivation of oxyimino-cephalosporins compared to OXA-163. Dichroism results suggest that deletions at the β5-β6 loop seem to impact the structural stability of OXA-48 variants. Finally, additional mechanisms are probably involved in the resistance pattern observed in the clinical isolates.
Collapse
Affiliation(s)
- Denise De Belder
- Servicio Antimicrobianos - National Reference Laboratory in Antimicrobial Resistance (NRLAR), Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1452, Argentina
| | - Barbara Ghiglione
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1452, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Departamento de Microbiología, Inmunología, Biotecnología y Genética, Laboratorio de Resistencia Bacteriana, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Fernando Pasteran
- Servicio Antimicrobianos - National Reference Laboratory in Antimicrobial Resistance (NRLAR), Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina
| | - Juan Manuel de Mendieta
- Servicio Antimicrobianos - National Reference Laboratory in Antimicrobial Resistance (NRLAR), Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina
| | - Alejandra Corso
- Servicio Antimicrobianos - National Reference Laboratory in Antimicrobial Resistance (NRLAR), Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina
| | - Lucrecia Curto
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1452, Argentina
- IQUIFIB, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Buenos Aires 1113, Argentina
| | - Adriana Di Bella
- Hospital Nacional “Profesor Alejandro Posadas”, El Palomar, Buenos Aires 1684, Argentina
| | - Gabriel Gutkind
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1452, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Departamento de Microbiología, Inmunología, Biotecnología y Genética, Laboratorio de Resistencia Bacteriana, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Sonia A. Gomez
- Servicio Antimicrobianos - National Reference Laboratory in Antimicrobial Resistance (NRLAR), Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1452, Argentina
| | - Pablo Power
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1452, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Departamento de Microbiología, Inmunología, Biotecnología y Genética, Laboratorio de Resistencia Bacteriana, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| |
Collapse
|
22
|
Hammer-Dedet F, Jumas-Bilak E, Licznar-Fajardo P. The Hydric Environment: A Hub for Clinically Relevant Carbapenemase Encoding Genes. Antibiotics (Basel) 2020; 9:antibiotics9100699. [PMID: 33076221 PMCID: PMC7602417 DOI: 10.3390/antibiotics9100699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 12/31/2022] Open
Abstract
Carbapenems are β-lactams antimicrobials presenting a broad activity spectrum and are considered as last-resort antibiotic. Since the 2000s, carbapenemase producing Enterobacterales (CPE) have emerged and are been quickly globally spreading. The global dissemination of carbapenemase encoding genes (CEG) within clinical relevant bacteria is attributed in part to its location onto mobile genetic elements. During the last decade, carbapenemase producing bacteria have been isolated from non-human sources including the aquatic environment. Aquatic ecosystems are particularly impacted by anthropic activities, which conduce to a bidirectional exchange between aquatic environments and human beings and therefore the aquatic environment may constitute a hub for CPE and CEG. More recently, the isolation of autochtonous aquatic bacteria carrying acquired CEG have been reported and suggest that CEG exchange by horizontal gene transfer occurred between allochtonous and autochtonous bacteria. Hence, aquatic environment plays a central role in persistence, dissemination and emergence of CEG both within environmental ecosystem and human beings, and deserves to be studied with particular attention.
Collapse
Affiliation(s)
- Florence Hammer-Dedet
- UMR 5569 HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, 34090 Montpellier, France; (F.H.-D.); (E.J.-B.)
| | - Estelle Jumas-Bilak
- UMR 5569 HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, 34090 Montpellier, France; (F.H.-D.); (E.J.-B.)
- Département d’Hygiène Hospitalière, CHU Montpellier, 34090 Montpellier, France
| | - Patricia Licznar-Fajardo
- UMR 5569 HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, 34090 Montpellier, France; (F.H.-D.); (E.J.-B.)
- Département d’Hygiène Hospitalière, CHU Montpellier, 34090 Montpellier, France
- Correspondence:
| |
Collapse
|
23
|
Birnberg-Weiss F, Castillo LA, Pittaluga JR, Martire-Greco D, Gómez SA, Landoni VI, Fernández GC. Modulation of neutrophil extracellular traps release by Klebsiella pneumoniae. J Leukoc Biol 2020; 109:245-256. [PMID: 32640486 DOI: 10.1002/jlb.4ma0620-099r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/21/2022] Open
Abstract
One of the main bactericidal mechanisms of polymorphonuclear neutrophils (PMN) is the release of neutrophil extracellular traps (NETs), which capture and destroy pathogens. Klebsiella pneumoniae (Kpn) producer of carbapenemase (KPC) and belonging to the sequence type 258 (ST258), is a hyper epidemic clone that causes a large number of infections worldwide associated with high persistence and mortality. It is necessary to investigate the interaction of Kpn KPC with the immune system to improve prevention and treatment of infections mediated by this bacterium. Based on the hypothesis that Kpn is able to subvert PMN-mediated death, the aim was to assess whether Kpn KPC ST258 could modulate the bactericidal response of PMN, focusing on NETs formation, compared to another opportunistic pathogen, as Escherichia coli (Eco). The results showed that the release of NETs was absent when PMN were challenged with Kpn KPC, while Eco was a strong inducer of NETosis. Moreover, Kpn KPC was able to inhibit NETosis induced by Eco. The inhibition of Kpn KPC-mediated NETs formation still occurred in spite of exogenous addition of hydrogen peroxide (H2 O2 ), did not involve bacterial-released soluble factors or cell wall components, and was dependent on bacterial viability. Moreover, when degranulation was investigated, we found that Kpn KPC affected only the mobilization of primary granules, which harbor the proteins with more potent bactericidal properties and those related to NETosis. In conclusion, Kpn KPC ST258 effectively managed to evade the PMN response by inhibiting the release of NETs, and primary granule mobilization.
Collapse
Affiliation(s)
- Federico Birnberg-Weiss
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-CONICET/Academia Nacional de Medicina, CABA, Argentina
| | - Luis A Castillo
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-CONICET/Academia Nacional de Medicina, CABA, Argentina
| | - Jose R Pittaluga
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-CONICET/Academia Nacional de Medicina, CABA, Argentina
| | - Daiana Martire-Greco
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-CONICET/Academia Nacional de Medicina, CABA, Argentina
| | - Sonia A Gómez
- Servicio de Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas, ANLIS 'Dr Carlos G. Malbrán', CABA, Argentina
| | - Verónica I Landoni
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-CONICET/Academia Nacional de Medicina, CABA, Argentina
| | - Gabriela C Fernández
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-CONICET/Academia Nacional de Medicina, CABA, Argentina
| |
Collapse
|
24
|
Reyes JA, Melano R, Cárdenas PA, Trueba G. Mobile genetic elements associated with carbapenemase genes in South American Enterobacterales. Braz J Infect Dis 2020; 24:231-238. [PMID: 32325019 PMCID: PMC9392046 DOI: 10.1016/j.bjid.2020.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/11/2020] [Accepted: 03/21/2020] [Indexed: 01/04/2023] Open
Abstract
Introduction Carbapenem resistance in members of order Enterobacterales is a growing public health problem causing high mortality in developing and industrialized countries. Its emergence and rapid propagation worldwide was due to both intercontinental spread of pandemic strains and horizontal dissemination via mobile genetic elements (MGE) such as plasmids and transposons. Objective To describe MGE carrying carbapenem resistance genes in Enterobacterales which have been reported in South America. Search strategy and selection criteria A search of the literature in English or Spanish published until 2019 in PubMed, Google Scholar, LILACS and SciELO databases was performed for studies of MGE in Enterobacterales reported in South American countries. Results Seven South American countries reported MGE related to carbapenemases. Carbapenemase-producing Klebsiella pneumoniae belonging to clonal complex 258 were the most prevalent pathogens reported; others carbapenemase-producing Enterobacterales such as Escherichia coli, Serratia marcescens, and Providencia rettgeri also have been reported. The MGE implicated in the spread of the most prevalent carbapenemase genes are Tn4401 and non-Tn4401 elements for blaKPC and ISAba125 for blaNDM, located in different plasmid incompatibility groups, i.e. L/M, A/C, FII and bacterial clones. Conclusion This review indicates that, like in other parts of the world, the most commonly reported carbapenemases in Enterobacterales from South America are being disseminated through clones, plasmids, and transposons which have been previously reported in other parts of the world.
Collapse
|
25
|
Ben-David D, Masarwa S, Fallach N, Temkin E, Solter E, Carmeli Y, Schwaber MJ. Success of a National Intervention in Controlling Carbapenem-resistant Enterobacteriaceae in Israel's Long-term Care Facilities. Clin Infect Dis 2020; 68:964-971. [PMID: 29986007 DOI: 10.1093/cid/ciy572] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/07/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Long-term care facilities (LTCFs) are a major reservoir of carbapenem-resistant Enterobacteriaceae (CRE) in healthcare facilities, contributing to rapid regional dissemination of CRE. METHODS In 2008, The Israeli National Center for Infection Control (NCIC) initiated a coordinated, comprehensive intervention in Israel's LTCFs, encompassing approximately 25000 beds in over 300 institutions. The intervention included implementation of population-tailored contact precautions and early detection of carriers. The NCIC established a real-time repository of all CRE carriers and events of acquisition, supervised information exchange between healthcare facilities and directed intervention at the institutional level during local outbreaks. CRE incidence was determined based on detection of CRE, either during LTFC stay or on admission to another facility. Prevalence was determined by a series of 5 cross-sectional surveys commenced between 2008 and 2015. RESULTS From January 2009 through December 2015, 5265 patients acquired CRE in LTCFs. During the study period, incidence of acquisition declined in all facility types, to approximately 50% of the baseline (P < .001). The number of skilled nursing facilities and nursing homes experiencing ≥ 5 CRE acquisitions annually decreased from 35 to 11 during this period. The point prevalence of newly detected CRE carriage in post-acute care hospitals decreased from 12.3% in the survey commenced in 2008 to 0.8% in that begun in 2015 (P < .001). CONCLUSIONS A national, coordinated intervention resulted in a sustained decrease in CRE incidence and prevalence in LTCFs. These results support the assumption that centrally coordinated intervention is an essential public health tool in reducing CRE in healthcare facilities.
Collapse
Affiliation(s)
- Debby Ben-David
- National Center for Infection Control, Israel Ministry of Health, Israel
| | - Samira Masarwa
- National Center for Infection Control, Israel Ministry of Health, Israel
| | - Noga Fallach
- National Center for Infection Control, Israel Ministry of Health, Israel
| | - Elizabeth Temkin
- National Center for Infection Control, Israel Ministry of Health, Israel
| | - Ester Solter
- National Center for Infection Control, Israel Ministry of Health, Israel
| | - Yehuda Carmeli
- National Center for Infection Control, Israel Ministry of Health, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Mitchell J Schwaber
- National Center for Infection Control, Israel Ministry of Health, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | |
Collapse
|
26
|
Gu B, Bi R, Cao X, Qian H, Hu R, Ma P. Clonal dissemination of KPC-2-producing Klebsiella pneumoniae ST11 and ST48 clone among multiple departments in a tertiary teaching hospital in Jiangsu Province, China. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:716. [PMID: 32042732 DOI: 10.21037/atm.2019.12.01] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background The world-wide prevalence of carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a threat to the public health. The objective of this study was to determine the epidemiological and molecular patterns of KPC-producing Klebsiella pneumoniae (K. pneumoniae) clinical isolates. Methods In this study, a total of 82 non-duplicated CRKP isolates were analyzed for the prevalence of resistant determinants including carbapenemase, extended spectrum β-lactamase (ESBLs), and AmpC as well as integrons and cassette regions by polymerase chain reaction (PCR) and DNA sequencing. The genetic relatedness was investigated by pulsed field gel electrophoresis (PFGE) and multi-locus sequencing typing (MLST). Results Overall, bla KPC-2 (n=75) was the predominant carbapenemase gene, followed by high prevalence of bla SHV (92.7%) and bla CTX-M (90.2%). PFGE and MLST analysis revealed that 65 out of 68 KPC-2-producing CRKP belonged to the ST11 clone and were distributed mainly in the department of neurology ICU. Moreover, first report on clonal dissemination of KPC-2-producing CRKP ST48 clone and NDM-5-producing CRKP ST337 clone was also identified. Class I integron were detected in 17 (20.7%) of 82 isolates with aadA2 being the most common cassette. And a novel cassette array of integron, aac(6')-II-bla CARB/PSE-1 was identified. Conclusions All in all, KPC-2-producing CRKP ST11 and ST48 clone were widely disseminated in multiple departments of our hospital, which triggers the need for active surveillance and implementation of infection control measures.
Collapse
Affiliation(s)
- Bing Gu
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China.,Medical Technology Institute of Xuzhou Medical University, Xuzhou 221004, China
| | - Ruru Bi
- Medical Technology Institute of Xuzhou Medical University, Xuzhou 221004, China.,Department of Laboratory Medicine, Suzhou Science and Technology Town Hospital, Suzhou 215163, China
| | - Xiaoli Cao
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Huimin Qian
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Renjing Hu
- Department of Laboratory Medicine, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214000, China
| | - Ping Ma
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China.,Medical Technology Institute of Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
27
|
Novel patterns in the molecular epidemiology of KPC-producing Klebsiella pneumoniae in Tucumán, Argentina. J Glob Antimicrob Resist 2019; 19:183-187. [DOI: 10.1016/j.jgar.2019.02.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/05/2019] [Accepted: 02/17/2019] [Indexed: 11/30/2022] Open
|
28
|
Reyes J, Aguilar AC, Caicedo A. Carbapenem-Resistant Klebsiella pneumoniae: Microbiology Key Points for Clinical Practice. Int J Gen Med 2019; 12:437-446. [PMID: 31819594 PMCID: PMC6886555 DOI: 10.2147/ijgm.s214305] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/24/2019] [Indexed: 01/20/2023] Open
Abstract
Carbapenemase–producing Klebsiella pneumoniae strains (Cp-Kpn) represent a challenge for clinical practitioners due to their increasing prevalence in hospital settings and antibiotic resistance. Clinical practitioners are often overwhelmed by the extensive list of publications regarding Cp-Kpn infections, treatment, characteristics, identification, and diagnosis. In this perspective article, we provide key points for clinical practitioners to consider for improved patient management including identification of risk factors and strategies for treatment. Additionally, we also discuss genetic underpinnings of antibiotic resistance, implementation of an antimicrobial stewardship program (ASP), and use of automated systems for detection of Cp-Kpn. Collectively, implementation of such key points would enhance clinical practices through providing practical knowledge to health professionals worldwide.
Collapse
Affiliation(s)
- Jorge Reyes
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito (USFQ), Quito 17-09-01, Ecuador.,Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito, Ecuador
| | - Ana Cristina Aguilar
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito (USFQ), Quito 17-09-01, Ecuador.,Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Universidad San Francisco de Quito (USFQ), Quito 17-12-841, Ecuador
| | - Andrés Caicedo
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito (USFQ), Quito 17-09-01, Ecuador.,Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Universidad San Francisco de Quito (USFQ), Quito 17-12-841, Ecuador.,Sistemas Médicos (SIME), Universidad San Francisco de Quito (USFQ), Quito 17-12-841, Ecuador
| |
Collapse
|
29
|
Zeng L, Deng Q, Zeng T, Liu Y, Zhang J, Cao X. Prevalence of Carbapenem-Resistant Klebsiella pneumoniae Infection in Southern China: Clinical Characteristics, Antimicrobial Resistance, Virulence, and Geographic Distribution. Microb Drug Resist 2019; 26:483-491. [PMID: 31682180 DOI: 10.1089/mdr.2018.0401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) strains pose a significant threat to public health. In this study, a survey was conducted in the Jiangxi Province of China, covering a total of 140 CRKP strains collected from 11 hospital laboratories from June 2016 to January 2018. All CRKP isolates were subjected to antimicrobial susceptibility testing, capsular serotypes, virulence gene profiles, multilocus sequence typing, and pulsed-field gel electrophoresis. The differences in the patient characteristics and distributions among the various regions were statistically significant (p ≤ 0.001). Most patients were hospitalized in intensive care units (30.0%) and burn departments (13.6%), with lower respiratory (52.1%) and urinary tract (15.7%) infections being most prevalent. A higher ratio of CRKP isolates were identified in the southern and central regions of Jiangxi than in the other regions. Only two carbapenemase genes, blaKPC and blaNDM, were responsible for phenotypic resistance in the tested CRKP strains (46.5% and 22.1%, respectively), among which several major sequence types (STs), such as ST11 (27.8%) and ST23 (14.8%), were identified. A total of 39 virulent strains were detected, of which 22 strains were classified by capsule serotyping. Hypervirulent genes were most common in the eastern and central regions of Jiangxi. In conclusion, CRKP strains in the Jiangxi Province have varied geographic distributions; the resistance rates of isolates harboring blaKPC decreased from southern to northern regions, whereas the drug resistance gene blaNDM showed a tendency to spread from a central point to the surrounding areas. ST23 carbapenem-resistant hypervirulent K. pneumoniae is emerging, resulting in an urgent need to enhance clinical awareness.
Collapse
Affiliation(s)
- Ling Zeng
- School of Public Health, Nanchang University Medical College, Nanchang, China.,Department of Infection Control and The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qiong Deng
- Department of Infection Control and The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ting Zeng
- School of Public Health, Nanchang University Medical College, Nanchang, China
| | - Yang Liu
- Department of Clinical Microbiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jie Zhang
- School of Public Health, Nanchang University Medical College, Nanchang, China
| | - Xianwei Cao
- Department of Infection Control and The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
30
|
Dissemination of blaKPC-2 in an NTEKPC by an IncX5 plasmid. Plasmid 2019; 106:102446. [DOI: 10.1016/j.plasmid.2019.102446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022]
|
31
|
Valenzuela-Valderrama M, González IA, Palavecino CE. Photodynamic treatment for multidrug-resistant Gram-negative bacteria: Perspectives for the treatment of Klebsiella pneumoniae infections. Photodiagnosis Photodyn Ther 2019; 28:256-264. [PMID: 31505296 DOI: 10.1016/j.pdpdt.2019.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/09/2019] [Indexed: 12/25/2022]
Abstract
The emergence of multi-drug resistance for pathogenic bacteria is one of the most pressing global threats to human health in the 21st century. Hence, the availability of new treatment becomes indispensable to prevent morbidity and mortality caused by infectious agents. This article reviews the antimicrobial properties of photodynamic therapy (PDT), which is based on the use of photosensitizers compounds (PSs). The PSs are non-toxic small molecules, which induce oxidative stress only under excitation with light. Then, the PDT has the advantage to be locally activated using phototherapy devices. We focus on PDT for the Klebsiella pneumoniae, as an example of Gram-negative bacteria, due to its relevance as an agent of health-associated infections (HAI) and a multi-drug resistant bacteria. K. pneumoniae is a fermentative bacillus, member of the Enterobacteriaceae family, which is most commonly associated with producing infection of the urinary tract (UTI) and pneumonia. K. pneumoniae infections may occur in deep organs such as bladder or lungs tissues; therefore, activating light must get access or penetrate tissues with sufficient power to produce effective PDT. Consequently, the rationale for selecting the most appropriate PSs, as well as photodynamic devices and photon fluence doses, were reviewed. Also, the mechanisms by which PDT activates the immune system and its importance to eradicate the infection successfully, are discussed.
Collapse
Affiliation(s)
- Manuel Valenzuela-Valderrama
- Laboratorio de Microbiología Celular, Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile; Centro de Estudios Avanzados en Enfermedades Crónicas (ACCDiS), Independencia, Santiago 8380000, Chile.
| | - Iván Alonzo González
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile.
| | - Christian Erick Palavecino
- Laboratorio de Microbiología Celular, Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile.
| |
Collapse
|
32
|
Changing epidemiology of KPC-producing Klebsiella pneumoniae in Argentina: Emergence of hypermucoviscous ST25 and high-risk clone ST307. J Glob Antimicrob Resist 2019; 18:238-242. [PMID: 31202977 DOI: 10.1016/j.jgar.2019.06.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES To assess the epidemiological features of 76 Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae (KPC-Kp) isolates recovered from three hospitals in Buenos Aires, Argentina, during 2015-2017. METHODS Antimicrobial susceptibilities were determined according to CLSI Clinical and Laboratoy Standards guidelines. Molecular typing of KPC-Kp was performed by pulsed-field gel electrophoresis (PFGE)-Xbal and multilocus sequence typing. Plasmid encoded genes involved in carbapenem, fosfomycin and colistin resistance were detected by polymerase chain reaction (PCR) and sequencing. Also, mgrB inactivation was investigated in those colistin-resistant isolates. Genetic platforms involved in horizontal spread of blaKPC were investigated by PCR mapping. RESULTS Besides β-lactams, high resistance rates were observed for gentamycin, quinolones and trimethoprim-sulfamethoxazole. KPC-Kp sequence type (ST)258 corresponded to 26% of the isolates, while 42% corresponded to ST25. The other isolates were distributed in a diversity of lineages such as ST11 (10.5%), ST392 (10.5%), ST307, ST13, ST101, ST15 and ST551. blaKPC-2 was detected in 75 of 76 isolates, and one ST307 isolate harboured blaKPC-3. Tn4401 was identified as the genetic platform for blaKPC in epidemic lineages such as ST258 and ST307. However, in ST25 and ST392, which are usually not related to blaKPC, a blaKPC-bearing non-Tn4401 element was identified. Alterations in mgrB were detected in seven of 11 colistin-resistant isolates. CONCLUSIONS Despite previous reports in Argentina, ST258 is no longer the absolute clone among KPC-Kp isolates. In the present study, dissemination of more virulent lineages such as the hypermucoviscous ST25 was detected. The emergence of the high-risk clone ST307 and occurrence of blaKPC-3 was noticed for the first time in this region.
Collapse
|
33
|
Vargas J, Moreno Mochi M, Nuñez J, Cáceres M, Mochi S, del Campo Moreno R, Jure M. Virulence factors and clinical patterns of multiple-clone hypermucoviscous KPC-2 producing K. pneumoniae. Heliyon 2019; 5:e01829. [PMID: 31286076 PMCID: PMC6587045 DOI: 10.1016/j.heliyon.2019.e01829] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/18/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022] Open
Abstract
Carbapenemase-producing Klebsiella pneumoniae (CRKP) are increasingly reported worldwide being necessary the local epidemiological monitoring. Our aim was to characterize the hypermucoviscous CRKP isolates collected in our hospital during a 6 months period. Carriage of the carbapenemase genes (bla KPC, bla NDM, bla VIM and bla OXA-48), extended spectrum β-lactamases (bla SHV-2, bla CTX-M) and the virulence genes (magA, k2A, rmpA, wabG, uge, allS, entB, ycfM, kpn, wcaG, fimH, mrkD, iutA, iroN, hly and cnf-1) were determined by multiplex-PCR. Genetic relationship among the isolates was performed by PFGE and MLST. A total of 35 isolates were recovered, being the urinary and respiratory tract the most common infection sites (34.2%). The bla KPC-2 gene was present in all the isolates, coexisting with bla CTX-M-2 (45.7%), bla SHV-2 (28.6%), and bla CTX-M-2/bla SHV-2 (14.3%). The capsular serotype K2 corresponded with 68.6% of the isolates. Virulence factors frequency were variable [adhesins (97.1%), siderophores (94.3%) and phagocytosis resistance (wabG 48.5%, uge 80% and ycfM 57.1%)]. A total of 10 STs were identified although 40% of them clustered on ST25-CC65, and 17% to ST17. The incidence of KPC-2-producing K. pneumoniae reported by the hospital was 0.290 per 1000 admissions. In summary we described an epidemic scenario of multidrug resistant hypermucoviscous KPC-2 producing ST25 K. pneumoniae in our institution.
Collapse
Affiliation(s)
- J.M. Vargas
- Universidad Nacional de Tucumán, Facultad de Bioquímica, Química y Farmacia, Instituto de Microbiología Luis C. Verna, Cátedra de Bacteriología, Laboratorio de Antimicrobianos, Ayacucho 471, CP:4000, San Miguel de Tucumán, Tucumán, Argentina
| | - M.P. Moreno Mochi
- Universidad Nacional de Tucumán, Facultad de Bioquímica, Química y Farmacia, Instituto de Microbiología Luis C. Verna, Cátedra de Bacteriología, Laboratorio de Antimicrobianos, Ayacucho 471, CP:4000, San Miguel de Tucumán, Tucumán, Argentina
| | - J.M. Nuñez
- Hospital Ángel C. Padilla, Departamento de Infectología, Alberdi 550, CP:4000, San Miguel de Tucumán, Tucumán, Argentina
| | - M. Cáceres
- Hospital Ángel C. Padilla, Servicio de Bacteriología, Alberdi 550, CP:4000, San Miguel de Tucumán, Tucumán, Argentina
| | - S. Mochi
- Hospital Ángel C. Padilla, Servicio de Bacteriología, Alberdi 550, CP:4000, San Miguel de Tucumán, Tucumán, Argentina
| | - R. del Campo Moreno
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Servicio de Microbiología y Parasitología del Hospital Universitario Ramón y Cajal de Madrid, Ctra. Colmenar Viejo, km. 9100, CP 28034, Madrid, Spain
| | - M.A. Jure
- Universidad Nacional de Tucumán, Facultad de Bioquímica, Química y Farmacia, Instituto de Microbiología Luis C. Verna, Cátedra de Bacteriología, Laboratorio de Antimicrobianos, Ayacucho 471, CP:4000, San Miguel de Tucumán, Tucumán, Argentina
| |
Collapse
|
34
|
Castillo LA, Birnberg-Weiss F, Rodriguez-Rodrigues N, Martire-Greco D, Bigi F, Landoni VI, Gomez SA, Fernandez GC. Klebsiella pneumoniae ST258 Negatively Regulates the Oxidative Burst in Human Neutrophils. Front Immunol 2019; 10:929. [PMID: 31105712 PMCID: PMC6497972 DOI: 10.3389/fimmu.2019.00929] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/11/2019] [Indexed: 11/13/2022] Open
Abstract
The epidemic clone of Klebsiella pneumoniae (Kpn), sequence type 258 (ST258), carbapenamase producer (KPC), commonly infects hospitalized patients that are left with scarce therapeutic option since carbapenems are last resort antibiotics for life-threatening bacterial infections. To improve prevention and treatment, we should better understand the biology of Kpn KPC ST258 infections. Our hypothesis was that Kpn KPC ST258 evade the first line of defense of innate immunity, the polymorphonuclear neutrophil (PMN), by decreasing its functional response. Therefore, our aim was to evaluate how the ST258 Kpn clone affects PMN responses, focusing on the respiratory burst, compared to another opportunistic pathogen, Escherichia coli (Eco). We found that Kpn KPC ST258 was unable to trigger bactericidal responses as reactive oxygen species (ROS) generation and NETosis, compared to the high induction observed with Eco, but both bacterial strains were similarly phagocytized and cause increases in cell size and CD11b expression. The absence of ROS induction was also observed with other Kpn ST258 strains negative for KPC. These results reflect certain selectivity in terms of the functions that are triggered in PMN by Kpn, which seems to evade specifically those responses critical for bacterial survival. In this sense, bactericidal mechanisms evasion was associated with a higher survival of Kpn KPC ST258 compared to Eco. To investigate the mechanisms and molecules involved in ROS inhibition, we used bacterial extracts (BE) and found that BE were able to inhibit ROS generation triggered by the well-known ROS inducer, fMLP. A sequence of experiments led us to elucidate that the polysaccharide part of LPS was responsible for this inhibition, whereas lipid A mediated the other responses that were not affected by bacteria, such as cell size increase and CD11b up-regulation. In conclusion, we unraveled a mechanism of immune evasion of Kpn KPC ST258, which may contribute to design more effective strategies for the treatment of these multi-resistant bacterial infections.
Collapse
Affiliation(s)
- Luis A Castillo
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)- Consejo Nacional de investigaciones Científicas y Tecnológicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| | - Federico Birnberg-Weiss
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)- Consejo Nacional de investigaciones Científicas y Tecnológicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| | - Nahuel Rodriguez-Rodrigues
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)- Consejo Nacional de investigaciones Científicas y Tecnológicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| | - Daiana Martire-Greco
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)- Consejo Nacional de investigaciones Científicas y Tecnológicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| | - Fabiana Bigi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Veronica I Landoni
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)- Consejo Nacional de investigaciones Científicas y Tecnológicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| | - Sonia A Gomez
- Servicio de Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas Dr. Carlos G. Malbrán (INEI), Administración Nacional de Laboratorios e Institutos de Salud (ANLIS), Buenos Aires, Argentina
| | - Gabriela C Fernandez
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)- Consejo Nacional de investigaciones Científicas y Tecnológicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
35
|
Variabilidad genética de Klebsiella pneumoniae con carbapenemasa tipo KPC proveniente de diferentes estados de Venezuela. Enferm Infecc Microbiol Clin 2019; 37:76-81. [DOI: 10.1016/j.eimc.2017.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/11/2017] [Accepted: 12/18/2017] [Indexed: 02/03/2023]
|
36
|
Arabaghian H, Salloum T, Alousi S, Panossian B, Araj GF, Tokajian S. Molecular Characterization of Carbapenem Resistant Klebsiella pneumoniae and Klebsiella quasipneumoniae Isolated from Lebanon. Sci Rep 2019; 9:531. [PMID: 30679463 PMCID: PMC6345840 DOI: 10.1038/s41598-018-36554-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/09/2018] [Indexed: 12/31/2022] Open
Abstract
Klebsiella pneumoniae is a Gram-negative organism and a major public health threat. In this study, we used whole-genome sequences to characterize 32 carbapenem-resistant K. pneumoniae (CRKP) and two carbapenem-resistant K. quasipneumoniae (CRKQ). Antimicrobial resistance was assessed using disk diffusion and E-test, while virulence was assessed in silico. The capsule type was determined by sequencing the wzi gene. The plasmid diversity was assessed by PCR-based replicon typing to detect the plasmid incompatibility (Inc) groups. The genetic relatedness was determined by multilocus sequence typing, pan-genome, and recombination analysis. All of the isolates were resistant to ertapenem together with imipenem and/or meropenem. Phenotypic resistance was due to blaOXA-48,blaNDM-1, blaNDM-7, or the coupling of ESBLs and outer membrane porin modifications. This is the first comprehensive study reporting on the WGS of CRKP and the first detection of CRKQ in the region. The presence and dissemination of CRKP and CRKQ, with some additionally having characteristics of hypervirulent clones such as the hypermucoviscous phenotype and the capsular type K2, are particularly concerning. Additionally, mining the completely sequenced K. pneumoniae genomes revealed the key roles of mobile genetic elements in the spread of antibiotic resistance and in understanding the epidemiology of these clinically significant pathogens.
Collapse
Affiliation(s)
- Harout Arabaghian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, 1401, Lebanon
| | - Tamara Salloum
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, 1401, Lebanon
| | - Sahar Alousi
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, 1401, Lebanon
| | - Balig Panossian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, 1401, Lebanon
| | - George F Araj
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, 1107, Lebanon
| | - Sima Tokajian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, 1401, Lebanon.
| |
Collapse
|
37
|
Wilson H, Török ME. Extended-spectrum β-lactamase-producing and carbapenemase-producing Enterobacteriaceae. Microb Genom 2018; 4:e000197. [PMID: 30035710 PMCID: PMC6113871 DOI: 10.1099/mgen.0.000197] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 06/19/2018] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global public-health emergency, which threatens the advances made by modern medical care over the past century. The World Health Organization has recently published a global priority list of antibiotic-resistant bacteria, which includes extended-spectrum β-lactamase-producing Enterobacteriaceae and carbapenemase-producing Enterobacteriaceae. In this review, we highlight the mechanisms of resistance and the genomic epidemiology of these organisms, and the impact of AMR.
Collapse
Affiliation(s)
- Hayley Wilson
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - M. Estée Török
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Clinical Microbiology and Public Health Laboratory, Public Health England, Cambridge, UK
| |
Collapse
|
38
|
Montaña S, Hernandez M, Fernandez JS, Pennini M, Centrón D, Sucari A, Iriarte A, Ramírez MS. Molecular characterization of KPC-2-positive Klebsiella pneumoniae isolates from a neurosurgical centre in Argentina. New Microbes New Infect 2018; 24:32-34. [PMID: 29922473 PMCID: PMC6004774 DOI: 10.1016/j.nmni.2018.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/10/2018] [Accepted: 04/14/2018] [Indexed: 01/22/2023] Open
Abstract
Carbapenem-resistant Enterobacteriaceae is a growing concern worldwide. Klebsiella pneumoniae is an important nosocomial pathogen with a high capacity for nosocomial spread. We described the occurrence of plasmid-encoded KPC-2-harbouring K. pneumoniae isolates recovered from a neurosurgical centre in Argentina. The blaKPC-2 gene was surrounded by ISkpn6 and ISkpn7.
Collapse
Affiliation(s)
- S Montaña
- Instituto de Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - M Hernandez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - J S Fernandez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - M Pennini
- Unidad Microbiología, Stamboulian, Buenos Aires, Argentina
| | - D Centrón
- Instituto de Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - A Sucari
- Unidad Microbiología, Stamboulian, Buenos Aires, Argentina
| | - A Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Uruguay
| | - M S Ramírez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| |
Collapse
|
39
|
Rojas LJ, Weinstock GM, De La Cadena E, Diaz L, Rios R, Hanson BM, Brown JS, Vats P, Phillips DS, Nguyen H, Hujer KM, Correa A, Adams MD, Perez F, Sodergren E, Narechania A, Planet PJ, Villegas MV, Bonomo RA, Arias CA. An Analysis of the Epidemic of Klebsiella pneumoniae Carbapenemase-Producing K. pneumoniae: Convergence of Two Evolutionary Mechanisms Creates the "Perfect Storm". J Infect Dis 2017; 217:82-92. [PMID: 29029188 PMCID: PMC5853647 DOI: 10.1093/infdis/jix524] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/22/2017] [Indexed: 01/11/2023] Open
Abstract
Background Carbapenem resistance is a critical healthcare challenge worldwide. Particularly concerning is the widespread dissemination of Klebsiella pneumoniae carbapenemase (KPC). Klebsiella pneumoniae harboring blaKPC (KPC-Kpn) is endemic in many areas including the United States, where the epidemic was primarily mediated by the clonal dissemination of Kpn ST258. We postulated that the spread of blaKPC in other regions occurs by different and more complex mechanisms. To test this, we investigated the evolution and dynamics of spread of KPC-Kpn in Colombia, where KPC became rapidly endemic after emerging in 2005. Methods We sequenced the genomes of 133 clinical isolates recovered from 24 tertiary care hospitals located in 10 cities throughout Colombia, between 2002 (before the emergence of KPC-Kpn) and 2014. Phylogenetic reconstructions and evolutionary mapping were performed to determine temporal and genetic associations between the isolates. Results Our results indicate that the start of the epidemic was driven by horizontal dissemination of mobile genetic elements carrying blaKPC-2, followed by the introduction and subsequent spread of clonal group 258 (CG258) isolates containing blaKPC-3. Conclusions The combination of 2 evolutionary mechanisms of KPC-Kpn within a challenged health system of a developing country created the "perfect storm" for sustained endemicity of these multidrug-resistant organisms in Colombia.
Collapse
Affiliation(s)
- Laura J Rojas
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Ohio
| | | | - Elsa De La Cadena
- Bacterial Resistance and Hospital Epidemiology Unit, International Center for Medical Research and Training (CIDEIM), Cali, Colombia
- Molecular Genetics and Antimicrobial Resistance Unit - International Center for Microbial Genomics Universidad El Bosque, Bogotá, Colombia
| | - Lorena Diaz
- Molecular Genetics and Antimicrobial Resistance Unit - International Center for Microbial Genomics Universidad El Bosque, Bogotá, Colombia
- Center for Antimicrobial Resistance and Microbial Genomics, Division of Infectious Diseases, University of Texas McGovern Medical School at Houston Houston, Texas
| | - Rafael Rios
- Molecular Genetics and Antimicrobial Resistance Unit - International Center for Microbial Genomics Universidad El Bosque, Bogotá, Colombia
| | - Blake M Hanson
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Joseph S Brown
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Purva Vats
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Daniel S Phillips
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Hoan Nguyen
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Kristine M Hujer
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Ohio
| | - Adriana Correa
- Bacterial Resistance and Hospital Epidemiology Unit, International Center for Medical Research and Training (CIDEIM), Cali, Colombia
| | - Mark D Adams
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Federico Perez
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Research Service, Medical Service, and Geriatric Research
- Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Ohio
| | - Erica Sodergren
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Apurva Narechania
- Center for Infectious Diseases, UTHealth School of Public Health, Houston, Texas
| | - Paul J Planet
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York
- Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Pediatric Infectious Disease Division, Children’s Hospital of Philadelphia, Pennsylvania
| | - Maria V Villegas
- Bacterial Resistance and Hospital Epidemiology Unit, International Center for Medical Research and Training (CIDEIM), Cali, Colombia
- Molecular Genetics and Antimicrobial Resistance Unit - International Center for Microbial Genomics Universidad El Bosque, Bogotá, Colombia
| | - Robert A Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Research Service, Medical Service, and Geriatric Research
- Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Ohio
- Case Western Reserve University -Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology, Ohio
| | - Cesar A Arias
- Molecular Genetics and Antimicrobial Resistance Unit - International Center for Microbial Genomics Universidad El Bosque, Bogotá, Colombia
- Center for Antimicrobial Resistance and Microbial Genomics, Division of Infectious Diseases, University of Texas McGovern Medical School at Houston Houston, Texas
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston Houston, Texas
- Center for Infectious Diseases, UTHealth School of Public Health, Houston, Texas
| |
Collapse
|
40
|
De Belder D, Lucero C, Rapoport M, Rosato A, Faccone D, Petroni A, Pasteran F, Albornoz E, Corso A, Gomez SA. Genetic Diversity of KPC-Producing Escherichia coli, Klebsiella oxytoca, Serratia marcescens, and Citrobacter freundii Isolates from Argentina. Microb Drug Resist 2017; 24:958-965. [PMID: 29236574 DOI: 10.1089/mdr.2017.0213] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The predominance of Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae was caused by the spread of ST258 clone. In Latin America, KPC was reported in 2006, with the isolation of genetically unrelated K. pneumoniae in Colombia. Since then, the expansion of blaKPC in either K. pneumoniae ST258 or other Enterobacteriaceae (ETB) species was increasingly reported. In this study, we characterized 89 KPC-producing Escherichia coli, Klebsiella oxytoca, Serratia marcescens, and Citrobacter freundii that were received between 2010 and 2014. The results revealed that all isolates harbored blaKPC-2. Moreover, the dissemination of KPC by non-K. pneumoniae was mainly caused by the dispersion of ETB mostly genetically unrelated. E. coli is a community pathogen that may serve as the vehicle for the spread of KPC into community settings. Recently, KPC was detected in E. coli ST131, an international epidemic and multidrug-resistant clone. We found that 5/29 KPC-producing E. coli belonged to ST131 and four were blaCTXM-15 producers. The detection of blaKPC in ST131 should be closely monitored to prevent further dissemination. The blaKPC is generally located within Tn4401 transposon capable of mobilization through transposition found in plasmids in ST258. Less is known about the diversity of blaKPC genetic elements that disseminate horizontally among other species of ETB. We found that 16/29 E. coli and 2/18 S. marcescens harbored blaKPC-2 in Tn4401a. In 71 isolates, blaKPC-2 was located amidst diverse Tn3-derived genetic elements bearing non-Tn4401 structure. Further studies on the plasmids that encode blaKPC-2 in these clinical isolates may provide additional insight into its transmission mechanisms.
Collapse
Affiliation(s)
- Denise De Belder
- 1 Servicio Antimicrobianos, Dpto. Bacteriología, Instituto Nacional de Enfermedades Infecciosas , ANLIS "Dr. Carlos G. Malbrán," Buenos Aires, Argentina .,2 Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina.
| | - Celeste Lucero
- 1 Servicio Antimicrobianos, Dpto. Bacteriología, Instituto Nacional de Enfermedades Infecciosas , ANLIS "Dr. Carlos G. Malbrán," Buenos Aires, Argentina
| | - Melina Rapoport
- 1 Servicio Antimicrobianos, Dpto. Bacteriología, Instituto Nacional de Enfermedades Infecciosas , ANLIS "Dr. Carlos G. Malbrán," Buenos Aires, Argentina
| | - Adriana Rosato
- 3 Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas
| | - Diego Faccone
- 1 Servicio Antimicrobianos, Dpto. Bacteriología, Instituto Nacional de Enfermedades Infecciosas , ANLIS "Dr. Carlos G. Malbrán," Buenos Aires, Argentina .,2 Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina.
| | - Alejandro Petroni
- 1 Servicio Antimicrobianos, Dpto. Bacteriología, Instituto Nacional de Enfermedades Infecciosas , ANLIS "Dr. Carlos G. Malbrán," Buenos Aires, Argentina
| | - Fernando Pasteran
- 1 Servicio Antimicrobianos, Dpto. Bacteriología, Instituto Nacional de Enfermedades Infecciosas , ANLIS "Dr. Carlos G. Malbrán," Buenos Aires, Argentina
| | - Ezequiel Albornoz
- 1 Servicio Antimicrobianos, Dpto. Bacteriología, Instituto Nacional de Enfermedades Infecciosas , ANLIS "Dr. Carlos G. Malbrán," Buenos Aires, Argentina
| | - Alejandra Corso
- 1 Servicio Antimicrobianos, Dpto. Bacteriología, Instituto Nacional de Enfermedades Infecciosas , ANLIS "Dr. Carlos G. Malbrán," Buenos Aires, Argentina
| | - Sonia A Gomez
- 1 Servicio Antimicrobianos, Dpto. Bacteriología, Instituto Nacional de Enfermedades Infecciosas , ANLIS "Dr. Carlos G. Malbrán," Buenos Aires, Argentina .,2 Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
41
|
Molecular characterization of KPC-producing Klebsiella pneumoniae isolated from patients in a Public Hospital in Caracas, Venezuela. Enferm Infecc Microbiol Clin 2017; 35:411-416. [DOI: 10.1016/j.eimc.2017.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 01/18/2017] [Accepted: 01/21/2017] [Indexed: 11/17/2022]
|
42
|
Yao Y, Lazaro-Perona F, Falgenhauer L, Valverde A, Imirzalioglu C, Dominguez L, Cantón R, Mingorance J, Chakraborty T. Insights into a Novel blaKPC-2-Encoding IncP-6 Plasmid Reveal Carbapenem-Resistance Circulation in Several Enterobacteriaceae Species from Wastewater and a Hospital Source in Spain. Front Microbiol 2017; 8:1143. [PMID: 28702005 PMCID: PMC5487458 DOI: 10.3389/fmicb.2017.01143] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/06/2017] [Indexed: 02/06/2023] Open
Abstract
Untreated wastewater, particularly from hospitals and other healthcare facilities, is considered to be a reservoir for multidrug-resistant bacteria. However, its role in the spread of antibiotic resistances in the human population remains poorly investigated. We used whole genome sequencing to analyze 25 KPC-2-producing Enterobacteriaceae isolates from sewage water collected during a 3-year period and three clinical Citrobacter freundii isolates from a tertiary hospital in the same collection area in Spain. We detected a common, recently described, IncP-6 plasmid carrying the gene blaKPC-2 in 21 isolates from both sources. The plasmid was present in diverse environmental bacterial species of opportunistic pathogens such as C. freundii, Enterobacter cloacae, Klebsiella oxytoca, and Raoultella ornithinolytica. The 40,186 bp IncP-6 plasmid encoded 52 coding sequences and was composed of three uniquely combined regions that were derived from other plasmids recently reported in different countries of South America. The region harboring the carbapenem resistance gene (14 kb) contained a Tn3 transposon disrupted by an ISApu-flanked element and the core sequence composed by ISKpn6/blaKPC-2/ΔblaTEM-1/ISKpn27. We document here the presence of a novel promiscuous blaKPC-2 plasmid circulating in environmental bacteria in wastewater and human populations.
Collapse
Affiliation(s)
- Yancheng Yao
- Institute of Medical Microbiology, Justus Liebig University Giessen and German Center for Infection Research, Partner Site Giessen-Marburg-LangenGiessen, Germany
| | - Fernando Lazaro-Perona
- Servicio de Microbiología, Hospital Universitario La Paz and Instituto de Investigación Sanitaria Hospital La PazMadrid, Spain
| | - Linda Falgenhauer
- Institute of Medical Microbiology, Justus Liebig University Giessen and German Center for Infection Research, Partner Site Giessen-Marburg-LangenGiessen, Germany
| | - Aránzazu Valverde
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de MadridMadrid, Spain.,Red Española de Investigación en Patología Infecciosa SpainMadrid, Spain
| | - Can Imirzalioglu
- Institute of Medical Microbiology, Justus Liebig University Giessen and German Center for Infection Research, Partner Site Giessen-Marburg-LangenGiessen, Germany
| | - Lucas Dominguez
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de MadridMadrid, Spain
| | - Rafael Cantón
- Red Española de Investigación en Patología Infecciosa SpainMadrid, Spain.,Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain
| | - Jesús Mingorance
- Servicio de Microbiología, Hospital Universitario La Paz and Instituto de Investigación Sanitaria Hospital La PazMadrid, Spain.,Red Española de Investigación en Patología Infecciosa SpainMadrid, Spain
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus Liebig University Giessen and German Center for Infection Research, Partner Site Giessen-Marburg-LangenGiessen, Germany
| |
Collapse
|
43
|
Population Genomic Analysis of 1,777 Extended-Spectrum Beta-Lactamase-Producing Klebsiella pneumoniae Isolates, Houston, Texas: Unexpected Abundance of Clonal Group 307. mBio 2017; 8:mBio.00489-17. [PMID: 28512093 PMCID: PMC5433097 DOI: 10.1128/mbio.00489-17] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae is a major human pathogen responsible for high morbidity and mortality rates. The emergence and spread of strains resistant to multiple antimicrobial agents and documented large nosocomial outbreaks are especially concerning. To develop new therapeutic strategies for K. pneumoniae, it is imperative to understand the population genomic structure of strains causing human infections. To address this knowledge gap, we sequenced the genomes of 1,777 extended-spectrum beta-lactamase-producing K. pneumoniae strains cultured from patients in the 2,000-bed Houston Methodist Hospital system between September 2011 and May 2015, representing a comprehensive, population-based strain sample. Strains of largely uncharacterized clonal group 307 (CG307) caused more infections than those of well-studied epidemic CG258. Strains varied markedly in gene content and had an extensive array of small and very large plasmids, often containing antimicrobial resistance genes. Some patients with multiple strains cultured over time were infected with genetically distinct clones. We identified 15 strains expressing the New Delhi metallo-beta-lactamase 1 (NDM-1) enzyme that confers broad resistance to nearly all beta-lactam antibiotics. Transcriptome sequencing analysis of 10 phylogenetically diverse strains showed that the global transcriptome of each strain was unique and highly variable. Experimental mouse infection provided new information about immunological parameters of host-pathogen interaction. We exploited the large data set to develop whole-genome sequence-based classifiers that accurately predict clinical antimicrobial resistance for 12 of the 16 antibiotics tested. We conclude that analysis of large, comprehensive, population-based strain samples can assist understanding of the molecular diversity of these organisms and contribute to enhanced translational research.IMPORTANCEKlebsiella pneumoniae causes human infections that are increasingly difficult to treat because many strains are resistant to multiple antibiotics. Clonal group 258 (CG258) organisms have caused outbreaks in health care settings worldwide. Using a comprehensive population-based sample of extended-spectrum beta-lactamase (ESBL)-producing K. pneumoniae strains, we show that a relatively uncommon clonal type, CG307, caused the plurality of ESBL-producing K. pneumoniae infections in our patients. We discovered that CG307 strains have been abundant in Houston for many years. As assessed by experimental mouse infection, CG307 strains were as virulent as pandemic CG258 strains. Our results may portend the emergence of an especially successful clonal group of antibiotic-resistant K. pneumoniae.
Collapse
|
44
|
Baraniak A, Izdebski R, Żabicka D, Bojarska K, Górska S, Literacka E, Fiett J, Hryniewicz W, Gniadkowski M. Multiregional dissemination of KPC-producing Klebsiella pneumoniae ST258/ST512 genotypes in Poland, 2010–14. J Antimicrob Chemother 2017; 72:1610-1616. [DOI: 10.1093/jac/dkx054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/29/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Anna Baraniak
- Department of Molecular Microbiology, National Medicines Institute, Warsaw 00-725, Poland
| | - Radosław Izdebski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw 00-725, Poland
| | - Dorota Żabicka
- Department of Epidemiology and Clinical Microbiology, The National Reference Center for Susceptibility Testing, National Medicines Institute, Warsaw 00-725, Poland
| | - Katarzyna Bojarska
- Department of Epidemiology and Clinical Microbiology, The National Reference Center for Susceptibility Testing, National Medicines Institute, Warsaw 00-725, Poland
| | - Sandra Górska
- Department of Molecular Microbiology, National Medicines Institute, Warsaw 00-725, Poland
| | - Elżbieta Literacka
- Department of Epidemiology and Clinical Microbiology, The National Reference Center for Susceptibility Testing, National Medicines Institute, Warsaw 00-725, Poland
| | - Janusz Fiett
- Department of Molecular Microbiology, National Medicines Institute, Warsaw 00-725, Poland
| | - Waleria Hryniewicz
- Department of Epidemiology and Clinical Microbiology, The National Reference Center for Susceptibility Testing, National Medicines Institute, Warsaw 00-725, Poland
| | - Marek Gniadkowski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw 00-725, Poland
| | | |
Collapse
|
45
|
Genetic Environment of the blaKPC-2 Gene in a Klebsiella pneumoniae Isolate That May Have Been Imported to Russia from Southeast Asia. Antimicrob Agents Chemother 2017; 61:AAC.01856-16. [PMID: 27919902 DOI: 10.1128/aac.01856-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/30/2016] [Indexed: 12/16/2022] Open
Abstract
The nucleotide sequence of a blaKPC-2-harboring plasmid (pKPCAPSS) from Klebsiella pneumoniae ST273 isolated in Saint Petersburg, Russia, from a patient with history of recent travel to Vietnam is presented. This 127,970-bp plasmid possessed both IncFII and IncR replicons. blaKPC-2 was localized on a hypothetical mobile element. This element was flanked by 38-bp inverted Tn3 repeats and included a Tn3-specific transposase gene, macrolide resistance operon (mphA-mrx-mphR), and a fragment of blaTEM with unique polymorphisms.
Collapse
|
46
|
Escandón-Vargas K, Reyes S, Gutiérrez S, Villegas MV. The epidemiology of carbapenemases in Latin America and the Caribbean. Expert Rev Anti Infect Ther 2016; 15:277-297. [PMID: 27915487 DOI: 10.1080/14787210.2017.1268918] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Enterobacteriaceae, Pseudomonas spp., and Acinetobacter spp. infections are major causes of morbidity and mortality, especially due to the emergence and spread of β-lactamases. Carbapenemases, which are β-lactamases with the capacity to hydrolyze or inactivate carbapenems, have become a serious concern as they have the largest hydrolytic spectrum and therefore limit the utility of most β-lactam antibiotics. Areas covered: Here, we present an update of the current status of carbapenemases in Latin America and the Caribbean. Expert commentary: The increased frequency of reports on carbapenemases in Latin America and the Caribbean shows that they have successfully spread and have even become endemic in some countries. Countries such as Brazil, Colombia, Argentina, and Mexico account for the majority of these reports. Early suspicion and detection along with implementation of antimicrobial stewardship programs in all healthcare settings are crucial for the control and prevention of carbapenemase-producing bacteria.
Collapse
Affiliation(s)
- Kevin Escandón-Vargas
- a Bacterial Resistance and Hospital Epidemiology Unit , International Center for Medical Research and Training (CIDEIM) , Cali , Colombia
| | - Sergio Reyes
- a Bacterial Resistance and Hospital Epidemiology Unit , International Center for Medical Research and Training (CIDEIM) , Cali , Colombia
| | - Sergio Gutiérrez
- a Bacterial Resistance and Hospital Epidemiology Unit , International Center for Medical Research and Training (CIDEIM) , Cali , Colombia
| | - María Virginia Villegas
- a Bacterial Resistance and Hospital Epidemiology Unit , International Center for Medical Research and Training (CIDEIM) , Cali , Colombia.,b Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics , Universidad El Bosque , Bogotá , Colombia
| |
Collapse
|
47
|
Ribeiro PCS, Monteiro AS, Marques SG, Monteiro SG, Monteiro-Neto V, Coqueiro MMM, Marques ACG, de Jesus Gomes Turri R, Santos SG, Bomfim MRQ. Phenotypic and molecular detection of the bla KPC gene in clinical isolates from inpatients at hospitals in São Luis, MA, Brazil. BMC Infect Dis 2016; 16:737. [PMID: 27927163 PMCID: PMC5142414 DOI: 10.1186/s12879-016-2072-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 11/28/2016] [Indexed: 11/10/2022] Open
Abstract
Background Bacteria that produce Klebsiella pneumoniae carbapenemases (KPCs) are resistant to broad-spectrum β-lactam antibiotics. The objective of this study was to phenotypically and genotypically characterize the antibiotic susceptibility to carbapenems of 297 isolates recovered from clinical samples obtained from inpatients at 16 hospitals in São Luis (Maranhão, Brazil). Methods The study was conducted using phenotypic tests and molecular methods, including polymerase chain reaction (PCR), sequencing and enterobacterial repetitive intergenic consensus (ERIC)-PCR. The nonparametric chi-square test of independence was used to evaluate the associations between the bacterial blaKPC gene and the modified Hodge test, and the chi-square adherence test was used to assess the frequency of carbapenemases and their association with the blaKPC gene. Results The most frequently isolated species were Acinetobacter baumannii (n = 128; 43.0%), K. pneumoniae (n = 75; 25.2%), and Pseudomonas aeruginosa (n = 42; 14.1%). Susceptibility assays showed that polymixin B was active against 89.3% of the bacterial isolates. The Acinetobacter spp. and K. pneumoniae strains were susceptible to amikacin and tigecycline, and Pseudomonas spp. were sensitive to gentamicin and amikacin. Among the 297 isolates, 100 (33.7%) were positive for the blaKPC gene, including non-fermentative bacteria (A. baumannii) and Enterobacteriaceae species. Among the isolates positive for the blaKPC gene, K. pneumoniae isolates had the highest positivity rate of 60.0%. The blaKPC gene variants detected included KPC-2, which was found in all isolates belonging to species of the Enterobacteriaceae family. KPC-2 and KPC-3 were observed in A. baumannii isolates. Importantly, the blaKPC gene was also detected in three Raoultella isolates and one isolate of the Pantoea genus. ERIC-PCR patterns showed a high level of genetic diversity among the bacterial isolates; it was capable of distinguishing 34 clones among 100 strains that were positive for blaKPC and were circulating in 11 of the surveyed hospitals. Conclusions The high frequency of the blaKPC gene and the high degree of clonal diversity among microorganisms isolated from patients from different hospitals in São Luis suggest the need to improve the quality of health care to reduce the incidence of infections and the emergence of carbapenem resistance in these bacteria as well as other Gram-negative pathogens.
Collapse
Affiliation(s)
- Patricia Cristina Saldanha Ribeiro
- Programa de Pós-Graduação em Biologia Parasitária, Universidade CEUMA, Rua Josué Montello, No. 1, Renascença II, São Luís, Maranhão, CEP 65075-120, Brazil
| | - Andrea Souza Monteiro
- Programa de Pós-Graduação em Biologia Parasitária, Universidade CEUMA, Rua Josué Montello, No. 1, Renascença II, São Luís, Maranhão, CEP 65075-120, Brazil
| | - Sirlei Garcia Marques
- Hospital Universitário da Universidade Federal do Maranhão, Rua Barão de Itapari, 227, Centro, São Luís, Maranhão, Brazil
| | - Sílvio Gomes Monteiro
- Programa de Pós-Graduação em Biologia Parasitária, Universidade CEUMA, Rua Josué Montello, No. 1, Renascença II, São Luís, Maranhão, CEP 65075-120, Brazil
| | - Valério Monteiro-Neto
- Programa de Pós-Graduação em Biologia Parasitária, Universidade CEUMA, Rua Josué Montello, No. 1, Renascença II, São Luís, Maranhão, CEP 65075-120, Brazil
| | - Martina Márcia Melo Coqueiro
- Programa de Pós-Graduação em Biologia Parasitária, Universidade CEUMA, Rua Josué Montello, No. 1, Renascença II, São Luís, Maranhão, CEP 65075-120, Brazil
| | - Ana Cláudia Garcia Marques
- Programa de Pós-Graduação em Saúde do Adulto e da Criança-UFMA, Universidade Federal do Maranhão, Av. dos Portugueses, 1966 - Bacanga, São Luis, Maranhão, Brazil
| | - Rosimary de Jesus Gomes Turri
- Departamento de Farmácia, Universidade Federal do Maranhão, Av. dos Portugueses, 1966 - Bacanga, São Luis, Maranhão, Brazil
| | - Simone Gonçalves Santos
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte, MG, Brazil
| | - Maria Rosa Quaresma Bomfim
- Programa de Pós-Graduação em Biologia Parasitária, Universidade CEUMA, Rua Josué Montello, No. 1, Renascença II, São Luís, Maranhão, CEP 65075-120, Brazil.
| |
Collapse
|
48
|
Oteo J, Pérez-Vázquez M, Bautista V, Ortega A, Zamarrón P, Saez D, Fernández-Romero S, Lara N, Ramiro R, Aracil B, Campos J. The spread of KPC-producing Enterobacteriaceae in Spain: WGS analysis of the emerging high-risk clones of Klebsiella pneumoniae ST11/KPC-2, ST101/KPC-2 and ST512/KPC-3. J Antimicrob Chemother 2016; 71:3392-3399. [PMID: 27530752 PMCID: PMC5890657 DOI: 10.1093/jac/dkw321] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/10/2016] [Accepted: 07/08/2016] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES We analysed the microbiological traits and population structure of KPC-producing Enterobacteriaceae isolates collected in Spain between 2012 and 2014. We also performed a comparative WGS analysis of the three major KPC-producing Klebsiella pneumoniae clones detected. METHODS Carbapenemase and ESBL genes were sequenced. The Institut Pasteur MLST scheme was used. WGS data were used to construct phylogenetic trees, to identify the determinants of resistance and to de novo assemble the genome of one representative isolate of each of the three major K. pneumoniae clones. RESULTS Of the 2443 carbapenemase-producing Enterobacteriaceae isolates identified during the study period, 111 (4.5%) produced KPC. Of these, 81 (73.0%) were K. pneumoniae and 13 (11.7%) were Enterobacter cloacae. Three major epidemic clones of K. pneumoniae were identified: ST11/KPC-2, ST101/KPC-2 and ST512/KPC-3. ST11/KPC-2 differed from ST101/KPC-2 and ST512/KPC-3 by 27 819 and 6924 SNPs, respectively. ST101/KPC-2 differed from ST512/KPC-3 by 28 345 SNPs. Nine acquired resistance genes were found in ST11/KPC-2, 11 in ST512/KPC-3 and 13 in ST101/KPC-2. ST101/KPC-2 had the highest number of virulence genes (20). An 11 bp deletion at the end of the mgrB sequence was the cause of colistin resistance in ST512/KPC-3. CONCLUSIONS KPC-producing Enterobacteriaceae are increasing in Spain. Most KPC-producing K. pneumoniae isolates belonged to only five clones: ST11 and ST512 caused interregional spread, ST101 caused regional spread and ST1961 and ST678 produced independent hospital outbreaks. ST101/KPC-2 had the highest number of resistance and virulence genes. ST101/KPC-2 and ST512/KPC-3 were recently implicated in the spread of KPC in Italy.
Collapse
Affiliation(s)
- Jesús Oteo
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Majadahonda, Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Spain
| | - María Pérez-Vázquez
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Majadahonda, Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Spain
| | - Verónica Bautista
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Majadahonda, Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Spain
| | - Adriana Ortega
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Majadahonda, Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Spain
| | - Pilar Zamarrón
- Servicio de Microbiología, Hospital Virgen de la Salud, Toledo, Spain
| | - David Saez
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Majadahonda, Madrid, Spain
| | - Sara Fernández-Romero
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Majadahonda, Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Spain
| | - Noelia Lara
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Majadahonda, Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Spain
| | - Raquel Ramiro
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Majadahonda, Madrid, Spain
| | - Belén Aracil
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Majadahonda, Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Spain
| | - José Campos
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Majadahonda, Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Spain
- Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
49
|
Falco A, Ramos Y, Franco E, Guzmán A, Takiff H. A cluster of KPC-2 and VIM-2-producing Klebsiella pneumoniae ST833 isolates from the pediatric service of a Venezuelan Hospital. BMC Infect Dis 2016; 16:595. [PMID: 27770796 PMCID: PMC5075218 DOI: 10.1186/s12879-016-1927-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 10/12/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Klebsiella pneumoniae is a bacterial pathogen that has developed resistance to multiple antibiotics and is a major cause of nosocomial infections worldwide. Carbapenemase-producing Klebsiella pneumoniae have been isolated in many hospitals in Venezuela, but they have not been well-studied. The aim of this study was to characterize carbapenem-resistant Klebsiella pneumoniae isolates from the pediatric service of a hospital located in Anzoategui State, in the eastern part of Venezuela. METHODS Nineteen Klebsiella pneumoniae strains isolated in the hospital from April to July 2014 were evaluated phenotypically and molecularly for the presence of carbapenemases blaKPC, blaIMP and blaVIM. Molecular epidemiology was performed with Repetitive Extragenic Palindromic-PCR (REP-PCR) and Multilocus Sequence Typing (MLST). They were also studied for phenotypic and molecular resistance to a quaternary ammonium compound (QAC) disinfectant. RESULTS All 19 isolates contained both bla VIM-2 and bla KPC-2 genes, and the bla KPC-2 gene was associated with Tn4401b. All isolates were phenotypically sensitive to QACs and contained qacΔE and addA2 genes typical of class 1 integrons. Analysis by REP-PCR and MLST showed that all isolates had identical profiles characteristic of sequence type ST833. CONCLUSION All 19 strains are bla VIM-2 and bla KPC-2-producing ST833 K. pneumoniae sensitive to QACs. This analysis may help to understand the routes of dissemination and confirms that QAC disinfectants can be used to help control their spread.
Collapse
Affiliation(s)
- Aura Falco
- Laboratorio de Genética Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Yusibeska Ramos
- Laboratorio B, Dirección de Energía y Ambiente, Instituto de Estudios Avanzados, Caracas, Venezuela
| | - Esther Franco
- Servicio de Laboratorio Clínico del anexo pediátrico "Dr. Rafael Tobías Guevara" del Complejo Hospitalario Universitario "Dr. Luis Razetti", Barcelona, Venezuela
| | - Alegría Guzmán
- Servicio de Laboratorio Clínico del anexo pediátrico "Dr. Rafael Tobías Guevara" del Complejo Hospitalario Universitario "Dr. Luis Razetti", Barcelona, Venezuela
| | - Howard Takiff
- Laboratorio de Genética Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela.
| |
Collapse
|
50
|
Gomez S, Rapoport M, Piergrossi N, Faccone D, Pasteran F, De Belder D, ReLAVRA-Group, Petroni A, Corso A. Performance of a PCR assay for the rapid identification of the Klebsiella pneumoniae ST258 epidemic clone in Latin American clinical isolates. INFECTION GENETICS AND EVOLUTION 2016; 44:145-146. [DOI: 10.1016/j.meegid.2016.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 06/05/2016] [Accepted: 06/06/2016] [Indexed: 11/27/2022]
|