1
|
Pignolo RJ, Chandra A. Insights into age-related osteoporosis from senescence-based preclinical models and human accelerated aging paradigms. Mech Ageing Dev 2025; 224:112025. [PMID: 39805505 PMCID: PMC11938943 DOI: 10.1016/j.mad.2025.112025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/17/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Preclinical models of age-related osteoporosis have been developed based on the accumulation and clearance of senescent cells. The former include animal models based on telomere dysfunction and focal radiation; the latter based on genetic and pharmacological targeting (i.e., removal) of senescent cells. The weight of evidence using these models suggests that cellular senescence plays a key role in the pathophysiology of aging-onset bone loss with the senescence-associated secretory phenotype (SASP) mediating local and systemic deleterious effects on the skeleton. Mitochondrial dysfunction has also been implicated in senescence and age-related comorbidities, including osteoporosis, and knock-in mutations in the mtDNA polymerase gamma (Polg) gene in mice may recapitulate similar respiratory chain complex defects in aged individual with osteoporosis. This and other contributions to senile osteoporosis may also be identified by the careful evaluation of non-genetic paradigms of human accelerated aging. Premature aging syndromes, especially those with a prominent bone loss phenotype, include clinical scenarios of skeletal unloading, premature ovarian failure and survival from childhood cancers. These non-hereditary progeroid syndromes implicate the involvement of lineage switching to an adipogenic fate, inhibition of Wnt signaling, increased osteoclastogenesis and activation frequency of osteoclasts, as well as the substantial burden of senescent cell accumulation.
Collapse
Affiliation(s)
- Robert J Pignolo
- Department of Medicine, Divisions of Geriatric Medicine and Gerontology, Endocrinology, and Hospital Internal Medicine, the Department of Physiology and Biomedical Engineering, and the Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States.
| | - Abhishek Chandra
- Department of Medicine, Divisions of Geriatric Medicine and Gerontology, the Department of Physiology and Biomedical Engineering, and the Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
2
|
Spoladore R, Ciampi CM, Ossola P, Sultana A, Spreafico LP, Farina A, Fragasso G. Heart Failure and Osteoporosis: Shared Challenges in the Aging Population. J Cardiovasc Dev Dis 2025; 12:69. [PMID: 39997503 PMCID: PMC11856909 DOI: 10.3390/jcdd12020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/28/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
In clinical practice, heart failure (HF) and osteoporosis (OP) are commonly paired conditions. This association is particularly relevant in patients over the age of 50, among whom its prevalence increases dramatically with every decade of life. This can be especially impactful since patient prognosis when facing both conditions is poorer than that of each disease alone. Clinical studies suggest that prior fractures increase the risk for heart failure hospitalization and, conversely, an episode of heart failure increases the risk of subsequent fractures. In other words, the relationship between osteoporosis and heart failure seems to be two-way, meaning that each condition may influence or contribute to the development of the other. However, the details of the pathophysiological relationship between HF and OP have yet to be revealed. The two conditions share multiple pathological mechanisms that seem to be intertwined. Patients affected by OP are more prone to develop HF because of vitamin D deficiency, elevation of parathyroid hormone (PTH) plasma levels, and increased Fibroblast Growth Factor 23 (FGF-23) activity. On the other hand, HF patients are more prone to develop OP and pathological fractures because of low vitamin D level, high PTH, chronic renal failure, alteration of renin-angiotensin-aldosterone system, reduced testosterone level, and metabolic effects derived from commonly used medications. Considering the increasingly aging worldwide population, clinicians can expect to see more often an overlap between these two conditions. Thus, it becomes crucial to recognize how HF and OP mutually influence the patient's clinical condition. Clinicians attending these patients should utilize an integrated approach and, in order to improve prognosis, aim for early diagnosis and treatment initiation. The aim of this paper is to perform a review of the common pathophysiological mechanisms of OP and HF and identify potentially new treatment targets.
Collapse
Affiliation(s)
- Roberto Spoladore
- Heart Failure Clinic, Division of Cardiology, Alessandro Manzoni Hospital, ASST Lecco, 23900 Lecco, Italy;
| | - Claudio Mario Ciampi
- Health Science Department, University of Milan Bicocca, 20126 Milan, Italy; (C.M.C.); (P.O.); (A.S.)
| | - Paolo Ossola
- Health Science Department, University of Milan Bicocca, 20126 Milan, Italy; (C.M.C.); (P.O.); (A.S.)
| | - Andrea Sultana
- Health Science Department, University of Milan Bicocca, 20126 Milan, Italy; (C.M.C.); (P.O.); (A.S.)
| | - Luigi Paolo Spreafico
- Orthopedics and Traumatology Unit, San Paolo University Hospital, 20142 Milan, Italy;
| | - Andrea Farina
- Heart Failure Clinic, Division of Cardiology, Alessandro Manzoni Hospital, ASST Lecco, 23900 Lecco, Italy;
| | - Gabriele Fragasso
- Heart Failure Clinic, Division of Cardiology, IRCCS San Raffaele University Hospital, 20132 Milan, Italy;
| |
Collapse
|
3
|
He D, Liu H, Zhao Y, Wei W, Cai Q, Shi S, Chu X, Zhang N, Qin X, Jia Y, Wen Y, Cheng B, Zhang F. Assessing the Interaction Effects of Mitochondrial DNA Polymorphisms and Lifestyle on Heel Bone Mineral Density. J Clin Endocrinol Metab 2025; 110:e339-e346. [PMID: 38536958 DOI: 10.1210/clinem/dgae195] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 01/22/2025]
Abstract
BACKGROUND Bone mineral density (BMD) is a major predictor of osteoporotic fractures, and previous studies have reported the effects of mitochondrial dysfunction and lifestyle on BMD, respectively. However, their interaction effects on BMD are still unclear. OBJECTIVE We aimed to investigate the possible interaction of mitochondrial DNA (mtDNA) and common lifestyles contributing to osteoporosis. METHODS Our analysis included 119 120 white participants (Nfemale = 65 949 and Nmale = 53 171) from the UK Biobank with heel BMD phenotype data. A generalized linear regression model of PLINK was performed to assess the interaction effects of mtDNA and 5 life environmental factors on heel BMD, including smoking, drinking, physical activity, dietary diversity score, and vitamin D. In addition, we also performed linear regression analysis for total body BMD. Finally, we assessed the potential causal relationships between mtDNA copy number (mtDNA-CN) and life environmental factors using Mendelian randomization (MR) analysis. RESULTS Our study identified 4 mtDNA loci showing suggestive evidence of heel BMD, such as m.16356T>C (MT-DLOOP; P = 1.50 × 10-3) in total samples. Multiple candidate mtDNA × lifestyle interactions were also detected for heel BMD, such as MT-ND2 × physical activity (P = 2.88 × 10-3) in total samples and MT-ND1 × smoking (P = 8.54 × 10-4) in males. Notably, MT-CYB was a common candidate mtDNA loci for heel BMD to interact with 5 life environmental factors. Multivariable MR analysis indicated a causal effect of physical activity on heel BMD when mtDNA-CN was considered (P = 1.13 × 10-3). CONCLUSION Our study suggests the candidate interaction between mtDNA and lifestyles on heel BMD, providing novel clues for exploring the pathogenesis of osteoporosis.
Collapse
Affiliation(s)
- Dan He
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Huan Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yijing Zhao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wenming Wei
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qingqing Cai
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Sirong Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoge Chu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Na Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoyue Qin
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
4
|
Jiang L, Song X, Yan L, Liu Y, Qiao X, Zhang W. Molecular insights into the interplay between type 2 diabetes mellitus and osteoporosis: implications for endocrine health. Front Endocrinol (Lausanne) 2025; 15:1483512. [PMID: 39897963 PMCID: PMC11782046 DOI: 10.3389/fendo.2024.1483512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/05/2024] [Indexed: 02/04/2025] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) and osteoporosis are prevalent, interconnected chronic diseases that significantly impact global health. Understanding their complex biological relationship is crucial for improving patient outcomes and treatment strategies. Method This review examines recent research on the mechanisms linking T2DM with osteoporosis. It focuses on how abnormalities in bone metabolism, autophagy, ferroptosis, and vitamin D receptor (VDR) gene polymorphisms contribute to osteoporosis in T2DM patients. Results Our analysis indicates that T2DM is associated with reduced bone formation and increased bone resorption, which are influenced by hormonal changes, inflammation, and disrupted cellular signaling pathways. Additionally, increased perirenal fat thickness worsens osteoporosis through local inflammation and altered adipokine levels. VDR gene polymorphisms provide new molecular insights into this connection. Conclusion Addressing the identified mechanisms with targeted management strategies may improve bone health in individuals with T2DM. Future research should explore these associations in greater detail to develop more effective prevention and treatment strategies.
Collapse
Affiliation(s)
- Liyun Jiang
- Medical Laboratory Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xia Song
- Medical Laboratory Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Li Yan
- Medical Laboratory Center, Gansu Provincial People’s Hospital, Lanzhou, China
| | - Yali Liu
- Medical Laboratory Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiumei Qiao
- Medical Laboratory Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Wen Zhang
- Medical Laboratory Center, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Shirvani P, Shirvani A, Holick MF. Decoding the Genetic Basis of Mast Cell Hypersensitivity and Infection Risk in Hypermobile Ehlers-Danlos Syndrome. Curr Issues Mol Biol 2024; 46:11613-11629. [PMID: 39451569 PMCID: PMC11506785 DOI: 10.3390/cimb46100689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Hypermobile Ehlers-Danlos syndrome (hEDS) is a connective tissue disorder marked by joint hypermobility, skin hyperextensibility, and tissue fragility. Recent studies have linked hEDS with mast cell activation syndrome (MCAS), suggesting a genetic interplay affecting immune regulation and infection susceptibility. This study aims to decode the genetic basis of mast cell hypersensitivity and increased infection risk in hEDS by identifying specific genetic variants associated with these conditions. We conducted whole-genome sequencing (WGS) on 18 hEDS participants and 7 first-degree relatives as controls, focusing on identifying genetic variants associated with mast cell dysregulation. Participants underwent clinical assessments to document hEDS symptoms and mast cell hypersensitivity, with particular attention to past infections and antihistamine response. Our analysis identified specific genetic variants in MT-CYB, HTT, MUC3A, HLA-B and HLA-DRB1, which are implicated in hEDS and MCAS. Protein-protein interaction (PPI) network analysis revealed significant interactions among identified variants, highlighting their involvement in pathways related to antigen processing, mucosal protection, and collagen synthesis. Notably, 61.1% of the hEDS cohort reported recurrent infections compared to 28.5% in controls, and 72.2% had documented mast cell hypersensitivity versus 14.2% in controls. These findings provide a plausible explanation for the complex interplay between connective tissue abnormalities and immune dysregulation in hEDS. The identified genetic variants offer insights into potential therapeutic targets for modulating mast cell activity and improving patient outcomes. Future research should validate these findings in larger cohorts and explore the functional implications of these variants to develop effective treatment strategies for hEDS and related mast cell disorders.
Collapse
Affiliation(s)
| | - Arash Shirvani
- Section of Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Michael F. Holick
- Section of Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
6
|
Amroodi MN, Maghsoudloo M, Amiri S, Mokhtari K, Mohseni P, Pourmarjani A, Jamali B, Khosroshahi EM, Asadi S, Tabrizian P, Entezari M, Hashemi M, Wan R. Unraveling the molecular and immunological landscape: Exploring signaling pathways in osteoporosis. Biomed Pharmacother 2024; 177:116954. [PMID: 38906027 DOI: 10.1016/j.biopha.2024.116954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
Osteoporosis, characterized by compromised bone density and microarchitecture, represents a significant global health challenge, particularly in aging populations. This comprehensive review delves into the intricate signaling pathways implicated in the pathogenesis of osteoporosis, providing valuable insights into the pivotal role of signal transduction in maintaining bone homeostasis. The exploration encompasses cellular signaling pathways such as Wnt, Notch, JAK/STAT, NF-κB, and TGF-β, all of which play crucial roles in bone remodeling. The dysregulation of these pathways is a contributing factor to osteoporosis, necessitating a profound understanding of their complexities to unveil the molecular mechanisms underlying bone loss. The review highlights the pathological significance of disrupted signaling in osteoporosis, emphasizing how these deviations impact the functionality of osteoblasts and osteoclasts, ultimately resulting in heightened bone resorption and compromised bone formation. A nuanced analysis of the intricate crosstalk between these pathways is provided to underscore their relevance in the pathophysiology of osteoporosis. Furthermore, the study addresses some of the most crucial long non-coding RNAs (lncRNAs) associated with osteoporosis, adding an additional layer of academic depth to the exploration of immune system involvement in various types of osteoporosis. Finally, we propose that SKP1 can serve as a potential biomarker in osteoporosis.
Collapse
Affiliation(s)
- Morteza Nakhaei Amroodi
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, department of orthopedic, school of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Shayan Amiri
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, department of orthopedic, school of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Parnaz Mohseni
- Department of Pediatrics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Pourmarjani
- Department of Pediatrics, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Behdokht Jamali
- Department of microbiology and genetics, kherad Institute of higher education, Busheher, lran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Tabrizian
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, department of orthopedic, school of medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Runlan Wan
- Department of Oncology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
7
|
Cai R, Jiang Q, Chen D, Feng Q, Liang X, Ouyang Z, Liao W, Zhang R, Fang H. Identification of osteoblastic autophagy-related genes for predicting diagnostic markers in osteoarthritis. iScience 2024; 27:110130. [PMID: 38952687 PMCID: PMC11215306 DOI: 10.1016/j.isci.2024.110130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/15/2024] [Accepted: 05/24/2024] [Indexed: 07/03/2024] Open
Abstract
The development of osteoarthritis (OA) involves subchondral bone lesions, but the role of osteoblastic autophagy-related genes (ARGs) in osteoarthritis is unclear. Through integrated analysis of single-cell dataset, Bulk RNA dataset, and 367 ARGs extracted from GeneCards, 40 ARGs were found. By employing multiple machine learning algorithms and PPI networks, three key genes (DDIT3, JUN, and VEGFA) were identified. Then the RF model constructed from these genes indicated great potential as a diagnostic tool. Furthermore, the model's effectiveness in predicting OA has been confirmed through external validation datasets. Moreover, the expression of ARGs was examined in osteoblasts subject to excessive mechanical stress, human and mouse tissues. Finally, the role of ARGs in OA was confirmed through co-culturing explants and osteoblasts. Thus, osteoblastic ARGs could be crucial in OA development, providing potential diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Rulong Cai
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Qijun Jiang
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
- Department of Urology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
| | - Dongli Chen
- Department of Ultrasound, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Qi Feng
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xinzhi Liang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhaoming Ouyang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Weijian Liao
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Rongkai Zhang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hang Fang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
8
|
Ji Y, Guo N, Lu C, Zhang M, Wang S, Yang L, Li Q, Lv M, Yang Y, Gao Y. Association between mtDNA haplogroups and skeletal fluorosis in Han population residing in drinking water endemic fluorosis area of northern China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2397-2406. [PMID: 37660259 DOI: 10.1080/09603123.2023.2253161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023]
Abstract
To investigate the association between mtDNA genetic information and the risk of SF, individuals were conducted in the drinking water endemic fluorosis area in northern China, sequenced the whole genome of mtDNA, identified the SNPs and SNVs, analyzed the haplogroups, and diagnosed SF, and then, the effect of mtDNA genetic information on the risk of SF was evaluated. We find that, D5 haplogroup and its specific SNPs reduced the risk, while the D4 haplogroup and its specific SNPs increased the risk of SF. The number of SNVs in coding regions of mitochondrial respiratory chain (MRC) is different between the controls and cases. This suggests that D5 haplogroup may play a protective role in the risk of SF, while the opposite is observed for the D4 haplogroup, this may relate to their specific SNPs. And SNVs that encode the MRC complex may also be associated with the risk of SF.
Collapse
Affiliation(s)
- Yi Ji
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ning Guo
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Chunqing Lu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Meichen Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Sa Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Liu Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Qiao Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Man Lv
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
9
|
Wang K, Peng X, Zhang R, Wu X, Mao L. COL6A3 enhances the osteogenic differentiation potential of BMSCs by promoting mitophagy in the osteoporotic microenvironment. Mol Biol Rep 2024; 51:206. [PMID: 38270688 DOI: 10.1007/s11033-023-08918-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/12/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BMSCs) have been widely recognized as a highly promising option for cell-based tissue engineering therapy targeting osteoporosis. However, the osteogenic differentiation of BMSCs is impeded by the limited viability and diminished capacity for bone formation within the osteoporotic microenvironment. METHODS In this study, the COL6A3 gene was confirmed through an extensive analysis of the preceding single-cell sequencing database. The generation of an inflammatory microenvironment resembling osteoporotic cell transplantation was achieved by employing lipopolysaccharide (LPS). A lentivirus targeting the COL6A3 gene was constructed, and a Western blotting assay was used to measure the marker proteins of osteogenesis, adipogenesis, and mitophagy. Immunofluorescence was utilized to observe the colocalization of mitochondria and lysosomes. The apoptosis rate of each group was evaluated using the TUNEL assay, and the mitochondrial membrane potential was assessed using JC-1 staining. RESULTS This investigation discovered that the impaired differentiation capacity and decreased viability of BMSCs within the inflammatory microenvironment were markedly ameliorated upon overexpression of the specific COL6A3 gene. Moreover, the administration of COL6A3 gene overexpression successfully mitigated the inhibitory impacts of LPS on mitophagy and the expression of inflammatory mediators, specifically inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in BMSCs. To clarify the underlying mechanism, the role of mitophagy during the differentiation of COL6A3 gene-modified BMSCs in the inflammatory microenvironment was evaluated using the mitophagy inhibitor Mdivi-1. CONCLUSIONS In the context of lipopolysaccharide (LPS) stimulation, COL6A3 enhances the differentiation of BMSCs into osteogenic and adipogenic lineages through the promotion of mitophagy and the maintenance of mitochondrial health. Our findings may provide a novel therapeutic approach utilizing stem cells in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Kun Wang
- Department of Orthopedics, Zhongda Hospital, Southeast University, Nanjing, China
- Medical School of Southeast University, Nanjing, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Xin Peng
- Medical School of Southeast University, Nanjing, China
| | - Rui Zhang
- Medical School of Southeast University, Nanjing, China
| | - Xiaotao Wu
- Department of Orthopedics, Zhongda Hospital, Southeast University, Nanjing, China.
- Medical School of Southeast University, Nanjing, China.
| | - Lu Mao
- Department of Orthopedics, Zhongda Hospital, Southeast University, Nanjing, China.
- Medical School of Southeast University, Nanjing, China.
| |
Collapse
|
10
|
Pandics T, Major D, Fazekas-Pongor V, Szarvas Z, Peterfi A, Mukli P, Gulej R, Ungvari A, Fekete M, Tompa A, Tarantini S, Yabluchanskiy A, Conley S, Csiszar A, Tabak AG, Benyo Z, Adany R, Ungvari Z. Exposome and unhealthy aging: environmental drivers from air pollution to occupational exposures. GeroScience 2023; 45:3381-3408. [PMID: 37688657 PMCID: PMC10643494 DOI: 10.1007/s11357-023-00913-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/14/2023] [Indexed: 09/11/2023] Open
Abstract
The aging population worldwide is facing a significant increase in age-related non-communicable diseases, including cardiovascular and brain pathologies. This comprehensive review paper delves into the impact of the exposome, which encompasses the totality of environmental exposures, on unhealthy aging. It explores how environmental factors contribute to the acceleration of aging processes, increase biological age, and facilitate the development and progression of a wide range of age-associated diseases. The impact of environmental factors on cognitive health and the development of chronic age-related diseases affecting the cardiovascular system and central nervous system is discussed, with a specific focus on Alzheimer's disease, Parkinson's disease, stroke, small vessel disease, and vascular cognitive impairment (VCI). Aging is a major risk factor for these diseases. Their pathogenesis involves cellular and molecular mechanisms of aging such as increased oxidative stress, impaired mitochondrial function, DNA damage, and inflammation and is influenced by environmental factors. Environmental toxicants, including ambient particulate matter, pesticides, heavy metals, and organic solvents, have been identified as significant contributors to cardiovascular and brain aging disorders. These toxicants can inflict both macro- and microvascular damage and many of them can also cross the blood-brain barrier, inducing neurotoxic effects, neuroinflammation, and neuronal dysfunction. In conclusion, environmental factors play a critical role in modulating cardiovascular and brain aging. A deeper understanding of how environmental toxicants exacerbate aging processes and contribute to the pathogenesis of neurodegenerative diseases, VCI, and dementia is crucial for the development of preventive strategies and interventions to promote cardiovascular, cerebrovascular, and brain health. By mitigating exposure to harmful environmental factors and promoting healthy aging, we can strive to reduce the burden of age-related cardiovascular and brain pathologies in the aging population.
Collapse
Affiliation(s)
- Tamas Pandics
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Public Health Laboratory, National Public Health Centre, Budapest, Hungary
- Department of Public Health Siences, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - David Major
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Vince Fazekas-Pongor
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsofia Szarvas
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Peterfi
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Ungvari
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Monika Fekete
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Anna Tompa
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Shannon Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Adam G Tabak
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- UCL Brain Sciences, University College London, London, UK
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Benyo
- Department of Translational Medicine, Semmelweis University, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Cerebrovascular and Neurocognitive Disorders Research Group, Budapest, H-1052, Hungary
| | - Roza Adany
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- ELKH-DE Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
- Epidemiology and Surveillance Centre, Semmelweis University, 1085, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
11
|
Zhivodernikov IV, Kirichenko TV, Markina YV, Postnov AY, Markin AM. Molecular and Cellular Mechanisms of Osteoporosis. Int J Mol Sci 2023; 24:15772. [PMID: 37958752 PMCID: PMC10648156 DOI: 10.3390/ijms242115772] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Osteoporosis is a widespread systemic disease characterized by a decrease in bone mass and an imbalance of the microarchitecture of bone tissue. Experimental and clinical studies devoted to investigating the main pathogenetic mechanisms of osteoporosis revealed the important role of estrogen deficiency, inflammation, oxidative stress, cellular senescence, and epigenetic factors in the development of bone resorption due to osteoclastogenesis, and decreased mineralization of bone tissue and bone formation due to reduced function of osteoblasts caused by apoptosis and age-depended differentiation of osteoblast precursors into adipocytes. The current review was conducted to describe the basic mechanisms of the development of osteoporosis at molecular and cellular levels and to elucidate the most promising therapeutic strategies of pathogenetic therapy of osteoporosis based on articles cited in PubMed up to September 2023.
Collapse
Affiliation(s)
| | | | - Yuliya V. Markina
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 119991 Moscow, Russia; (I.V.Z.); (T.V.K.); (A.Y.P.); (A.M.M.)
| | | | | |
Collapse
|
12
|
Lovšin N. Copy Number Variation and Osteoporosis. Curr Osteoporos Rep 2023; 21:167-172. [PMID: 36795294 PMCID: PMC10105686 DOI: 10.1007/s11914-023-00773-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2022] [Indexed: 02/17/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize recent findings on copy number variations and susceptibility to osteoporosis. RECENT FINDINGS Osteoporosis is highly influenced by genetic factors, including copy number variations (CNVs). The development and accessibility of whole genome sequencing methods has accelerated the study of CNVs and osteoporosis. Recent findings include mutations in novel genes and validation of previously known pathogenic CNVs in monogenic skeletal diseases. Identification of CNVs in genes previously associated with osteoporosis (e.g. RUNX2, COL1A2, and PLS3) has confirmed their importance in bone remodelling. This process has been associated also with the ETV1-DGKB, AGBL2, ATM, and GPR68 genes, identified by comparative genomic hybridisation microarray studies. Importantly, studies in patients with bone pathologies have associated bone disease with the long non-coding RNA LINC01260 and enhancer sequences residing in the HDAC9 gene. Further functional investigation of genetic loci harbouring CNVs associated with skeletal phenotypes will reveal their role as molecular drivers of osteoporosis.
Collapse
Affiliation(s)
- Nika Lovšin
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
13
|
Yin Z, Gong G, Wang X, Liu W, Wang B, Yin J. The dual role of autophagy in periprosthetic osteolysis. Front Cell Dev Biol 2023; 11:1123753. [PMID: 37035243 PMCID: PMC10080036 DOI: 10.3389/fcell.2023.1123753] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/16/2023] [Indexed: 04/11/2023] Open
Abstract
Periprosthetic osteolysis (PPO) induced by wear particles is an important cause of aseptic loosening after artificial joint replacement, among which the imbalance of osteogenesis and osteoclastic processes occupies a central position. The cells involved in PPO mainly include osteoclasts (macrophages), osteoblasts, osteocytes, and fibroblasts. RANKL/RANK/OGP axis is a typical way for osteolysis. Autophagy, a mode of regulatory cell death and maintenance of cellular homeostasis, has a dual role in PPO. Although autophagy is activated in various periprosthetic cells and regulates the release of inflammatory cytokines, osteoclast activation, and osteoblast differentiation, its beneficial or detrimental role remains controversy. In particular, differences in the temporal control and intensity of autophagy may have different effects. This article focuses on the role of autophagy in PPO, and expects the regulation of autophagy to become a powerful target for clinical treatment of PPO.
Collapse
Affiliation(s)
- Zhaoyang Yin
- Department of Orthopedics, The First People’s Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Ge Gong
- Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiang Wang
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Wei Liu
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Bin Wang
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
- *Correspondence: Jian Yin, ; Bin Wang,
| | - Jian Yin
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
- *Correspondence: Jian Yin, ; Bin Wang,
| |
Collapse
|
14
|
Chen Q, Fan K, Song G, Wang X, Zhang J, Chen H, Qin X, Lu Y, Qi W. Rapamycin regulates osteogenic differentiation through Parkin-mediated mitophagy in rheumatoid arthritis. Int Immunopharmacol 2022; 113:109407. [PMID: 36379150 DOI: 10.1016/j.intimp.2022.109407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/12/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022]
Abstract
Varying degrees of bone destruction and bone loss occur in the development of rheumatoid arthritis (RA). Nevertheless, the mechanism underlying osteoporosis in the development of RA is not completely elucidated. Recent evidence indicates that mitophagy may play a vital role in regulating the differentiation and function of preosteoblast. Parkin is associated with mitophagy and various inflammatory diseases, but the precise role of Parkin in the treatment of osteoporosis in RA is unclear. In the present study, we found that the abnormal bone metabolism of RA is related to the activation of the mechanistic targets of mTORC1 pathway, and chronic inflammation which regulates the differentiation of preosteoblast through mitophagy. In this study, we found that Parkin was upregulated, and the mitochondrion was damaged in tumor necrosis factor alpha (TNF-α) stimulated preosteoblasts. Rapamycin (RAPA, an mTORC1 pathway blocker) upregulation of Parkin-mediated mitophagy tends to attenuate mitochondrial impairment caused by TNF-α in preosteoblasts. Theexperimentinvivo demonstrated that the combination therapy with TNF-α neutralizing antibody and RAPA significantly reduced osteoporosis in AIA mice. Drug inhibition of this pathway can be a potential treatment for osteoporosis in patients with RA.
Collapse
Affiliation(s)
- Qiyue Chen
- Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Kai Fan
- Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Guangbao Song
- Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Xinqiong Wang
- Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Jinwei Zhang
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Huan Chen
- Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Xuan Qin
- Department of Stomatology, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510378, Guangdong, China
| | - Yao Lu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; Guangdong Key Lab of Orthopedic Technology and Implant, Guangzhou 510010, Guangdong, China.
| | - Weizhong Qi
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China.
| |
Collapse
|
15
|
Inoue Y, Igarashi T, Hasebe Y, Kawagishi-Hotta M, Okuno R, Yamada T, Hasegawa S. Identification of mitochondrial genetic variants associated with human corneocyte size in Japanese women. Exp Dermatol 2022; 31:1944-1948. [PMID: 36067013 DOI: 10.1111/exd.14673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 12/14/2022]
Abstract
Mitochondria have their own DNA (mtDNA). Genetic variants are likely to accumulate in mtDNA, and its base substitution rate is known to be very fast, 10-20 times faster than that of nuclear DNA. For this reason, mtSNPs (mitochondrial genome single nucleotide polymorphisms) are frequently detected in mtDNA. Several thousands of copies of mtDNA are considered to be present in a cell, and variants that have occurred in mtDNA are expected to markedly affect the intracellular energy production system and ROS (reactive oxygen species) kinetics. Therefore, recently, mtSNPs have come to be considered very important as a determinant of the individual constitution such as the life-span and disease susceptibility. In this study, we searched for mtSNPs that affect the individual corneocyte size using samples from 358 Japanese women. As a result, mtSNPs 10609C and 12406A were found to be significantly related to the corneocyte size in the outermost layer of the epidermis. There have been a large number of reports concerning the association between mtSNPs and individual constitution, but little evaluation of their relationships with epidermal properties has been made. The results of the present study first suggested that mtSNPs may affect the epidermal properties in Japanese women.
Collapse
Affiliation(s)
- Yu Inoue
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd, Nagoya, Japan.,Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshio Igarashi
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd, Nagoya, Japan
| | - Yuichi Hasebe
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd, Nagoya, Japan.,Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mika Kawagishi-Hotta
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd, Nagoya, Japan.,Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryosuke Okuno
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd, Nagoya, Japan.,Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takaaki Yamada
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd, Nagoya, Japan
| | - Seiji Hasegawa
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd, Nagoya, Japan.,Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
16
|
Assessment of Dietary Patterns and Supplement Use in Mitochondrial Disease. Clin Nutr ESPEN 2022; 51:461-469. [DOI: 10.1016/j.clnesp.2022.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/06/2022] [Accepted: 06/15/2022] [Indexed: 11/23/2022]
|
17
|
Hipps D, Dobson PF, Warren C, McDonald D, Fuller A, Filby A, Bulmer D, Laude A, Russell O, Deehan DJ, Turnbull DM, Lawless C. Detecting respiratory chain defects in osteoblasts from osteoarthritic patients using imaging mass cytometry. Bone 2022; 158:116371. [PMID: 35192969 DOI: 10.1016/j.bone.2022.116371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/24/2022] [Accepted: 02/15/2022] [Indexed: 01/14/2023]
Abstract
Osteoporosis is a skeletal disease which is characterised by reduced bone mass and microarchitecture, with a subsequent loss of strength that predisposes to fragility and risk of fractures. The pathogenesis of falling bone mineral density, ultimately leading to a diagnosis of osteoporosis is incompletely understood but the disease is currently thought to be multifactorial. Humans are known to accumulate mitochondrial mutations and respiratory chain deficiency with age and mounting evidence suggests that this may indeed be the overarching cause intrinsic to the changing phenotype in advancing age and age-related disease. Mitochondrial mutations are detectable from the age of about 30 years onwards. Mitochondria contain their own genome which encodes 13 essential mitochondrial proteins and accumulates somatic variants at up to 10 times the rate of the nuclear genome. Once the concentration of any pathogenic mitochondrial genome variant exceeds a threshold, respiratory chain deficiency and cellular dysfunction occur. The PolgD257A/D257A mouse model is a knock-in mutant that expresses a proof-reading-deficient version of PolgA, a nuclear encoded subunit of mtDNA polymerase. These mice are a useful model of age-related accumulation of mtDNA mutations in humans since their defective proof-reading mechanism leads to a mitochondrial DNA mutation rate 3-5 times higher than in wild-type mice. These mice showed enhanced levels of age-related osteoporosis along with respiratory chain deficiency in osteoblasts. To explore whether respiratory chain deficiency is also seen in human osteoblasts, we developed a protocol and analysis framework for imaging mass cytometry in bone tissue sections to analyse osteoblasts in situ. By comparing bone tissue sampled at one timepoint from femoral neck of 10 older healthy volunteers aged 40-85 with samples from young patients aged 1-19, we have identified complex I defect in osteoblasts from 6 out of 10 older volunteers, complex II defect in 2 out of 10 older volunteers, complex IV defect in 1 out of 10 older volunteers and complex V defect in 4 out of 10 older volunteers. These observations are consistent with findings from the PolgD257A/D257A mouse model and suggest that respiratory chain deficiency, as a consequence of the accumulation of age-related pathogenic mitochondrial DNA mutations, may play a significant role in the pathogenesis of human age-related osteoporosis.
Collapse
Affiliation(s)
- Daniel Hipps
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; The Newcastle upon Tyne Hospitals NHS Foundation Trust.
| | - Philip F Dobson
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; The Newcastle upon Tyne Hospitals NHS Foundation Trust.
| | - Charlotte Warren
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - David McDonald
- Flow Cytometry Core Facility, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Andrew Fuller
- Flow Cytometry Core Facility, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Andrew Filby
- Flow Cytometry Core Facility, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - David Bulmer
- Bioimaging Unit, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Alex Laude
- Bioimaging Unit, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Oliver Russell
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - David J Deehan
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; The Newcastle upon Tyne Hospitals NHS Foundation Trust.
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Conor Lawless
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
18
|
Fehsel K, Christl J. Comorbidity of osteoporosis and Alzheimer's disease: Is `AKT `-ing on cellular glucose uptake the missing link? Ageing Res Rev 2022; 76:101592. [PMID: 35192961 DOI: 10.1016/j.arr.2022.101592] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/08/2023]
Abstract
Osteoporosis and Alzheimer's disease (AD) are both degenerative diseases. Osteoporosis often proceeds cognitive deficits, and multiple studies have revealed common triggers that lead to energy deficits in brain and bone. Risk factors for osteoporosis and AD, such as obesity, type 2 diabetes, aging, chemotherapy, vitamin deficiency, alcohol abuse, and apolipoprotein Eε4 and/or Il-6 gene variants, reduce cellular glucose uptake, and protective factors, such as estrogen, insulin, exercise, mammalian target of rapamycin inhibitors, hydrogen sulfide, and most phytochemicals, increase uptake. Glucose uptake is a fine-tuned process that depends on an abundance of glucose transporters (Gluts) on the cell surface. Gluts are stored in vesicles under the plasma membrane, and protective factors cause these vesicles to fuse with the membrane, resulting in presentation of Gluts on the cell surface. This translocation depends mainly on AKT kinase signaling and can be affected by a range of factors. Reduced AKT kinase signaling results in intracellular glucose deprivation, which causes endoplasmic reticulum stress and iron depletion, leading to activation of HIF-1α, the transcription factor necessary for higher Glut expression. The link between diseases and aging is a topic of growing interest. Here, we show that diseases that affect the same biochemical pathways tend to co-occur, which may explain why osteoporosis and/or diabetes are often associated with AD.
Collapse
|
19
|
Buccoliero C, Dicarlo M, Pignataro P, Gaccione F, Colucci S, Colaianni G, Grano M. The Novel Role of PGC1α in Bone Metabolism. Int J Mol Sci 2021; 22:ijms22094670. [PMID: 33925111 PMCID: PMC8124835 DOI: 10.3390/ijms22094670] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/19/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) is a protein that promotes transcription of numerous genes, particularly those responsible for the regulation of mitochondrial biogenesis. Evidence for a key role of PGC1α in bone metabolism is very recent. In vivo studies showed that PGC1α deletion negatively affects cortical thickness, trabecular organization and resistance to flexion, resulting in increased risk of fracture. Furthermore, in a mouse model of bone disease, PGC1α activation stimulates osteoblastic gene expression and inhibits atrogene transcription. PGC1α overexpression positively affects the activity of Sirtuin 3, a mitochondrial nicotinammide adenina dinucleotide (NAD)-dependent deacetylase, on osteoblastic differentiation. In vitro, PGC1α overexpression prevents the reduction of mitochondrial density, membrane potential and alkaline phosphatase activity caused by Sirtuin 3 knockdown in osteoblasts. Moreover, PGC1α influences the commitment of skeletal stem cells towards an osteogenic lineage, while negatively affects marrow adipose tissue accumulation. In this review, we will focus on recent findings about PGC1α action on bone metabolism, in vivo and in vitro, and in pathologies that cause bone loss, such as osteoporosis and type 2 diabetes.
Collapse
Affiliation(s)
- Cinzia Buccoliero
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (C.B.); (P.P.); (F.G.); (G.C.)
| | - Manuela Dicarlo
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, 70124 Bari, Italy; (M.D.); (S.C.)
| | - Patrizia Pignataro
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (C.B.); (P.P.); (F.G.); (G.C.)
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, 70124 Bari, Italy; (M.D.); (S.C.)
| | - Francesco Gaccione
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (C.B.); (P.P.); (F.G.); (G.C.)
| | - Silvia Colucci
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, 70124 Bari, Italy; (M.D.); (S.C.)
| | - Graziana Colaianni
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (C.B.); (P.P.); (F.G.); (G.C.)
| | - Maria Grano
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (C.B.); (P.P.); (F.G.); (G.C.)
- Correspondence:
| |
Collapse
|
20
|
Silverstein AR, Flores MK, Miller B, Kim SJ, Yen K, Mehta HH, Cohen P. Mito-Omics and immune function: Applying novel mitochondrial omic techniques to the context of the aging immune system. TRANSLATIONAL MEDICINE OF AGING 2020; 4:132-140. [PMID: 32844137 PMCID: PMC7441040 DOI: 10.1016/j.tma.2020.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 12/01/2022] Open
Abstract
Recent advancements in genomic, transcriptomic, proteomic, and metabolomic techniques have prompted fresh inquiry in the field of aging. Here, we outline the application of these techniques in the context of the mitochondrial genome and suggest their potential for use in exploring the biological mechanisms of the aging immune system.
Collapse
Affiliation(s)
- Ana R Silverstein
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Melanie K Flores
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Brendan Miller
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Hemal H Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
21
|
Wang S, Deng Z, Ma Y, Jin J, Qi F, Li S, Liu C, Lyu FJ, Zheng Q. The Role of Autophagy and Mitophagy in Bone Metabolic Disorders. Int J Biol Sci 2020; 16:2675-2691. [PMID: 32792864 PMCID: PMC7415419 DOI: 10.7150/ijbs.46627] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/12/2020] [Indexed: 12/15/2022] Open
Abstract
Bone metabolic disorders include osteolysis, osteoporosis, osteoarthritis and rheumatoid arthritis. Osteoblasts and osteoclasts are two major types of cells in bone constituting homeostasis. The imbalance between bone formation by osteoblasts and bone resorption by osteoclasts has been shown to have a direct contribution to the onset of these diseases. Recent evidence indicates that autophagy and mitophagy, the selective autophagy of mitochondria, may play a vital role in regulating the proliferation, differentiation and function of osteoblasts and osteoclasts. Several signaling pathways, including PINK1/Parkin, SIRT1, MAPK8/FOXO3, Beclin-1/BECN1, p62/SQSTM1, and mTOR pathways, have been implied in the regulation of autophagy and mitophagy in these cells. Here we review the current progress about the regulation of autophagy and mitophagy in osteoblasts and osteoclasts in these bone metabolic disorders, as well as the molecular signaling activated or deactivated during this process. Together, we hope to draw attention to the role of autophagy and mitophagy in bone metabolic disorders, and their potential as a new target for the treatment of bone metabolic diseases and the requirements of further mechanism studies.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, China.,South China University of Technology-The University of Western Australia Joint Center for Regenerative Medicine Research, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Zhantao Deng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, China
| | - Yuanchen Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, China
| | - Jiewen Jin
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University
| | - Fangjie Qi
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, China.,South China University of Technology-The University of Western Australia Joint Center for Regenerative Medicine Research, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Shuxian Li
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, China.,South China University of Technology-The University of Western Australia Joint Center for Regenerative Medicine Research, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Chang Liu
- South China University of Technology-The University of Western Australia Joint Center for Regenerative Medicine Research, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Feng-Juan Lyu
- South China University of Technology-The University of Western Australia Joint Center for Regenerative Medicine Research, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, China
| |
Collapse
|
22
|
Pal S, Porwal K, Rajak S, Sinha RA, Chattopadhyay N. Selective dietary polyphenols induce differentiation of human osteoblasts by adiponectin receptor 1-mediated reprogramming of mitochondrial energy metabolism. Biomed Pharmacother 2020; 127:110207. [PMID: 32422565 DOI: 10.1016/j.biopha.2020.110207] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/18/2020] [Accepted: 04/28/2020] [Indexed: 12/30/2022] Open
Abstract
Anabolic therapies for osteoporosis including dietary polyphenols promote osteoblast function by influencing its energy metabolism. Among the dietary polyphenols, the beneficial skeletal effects of genistein (an isoflavone), kaempferol (a flavone), resveratrol (RES, a stilbenoid) and epigallocatechin gallate (EGCG, a catechin) have been reported in preclinical studies. We studied the action mechanism of these nutraceuticals on osteoblast bioenergetics. All stimulated differentiation of human fetal osteoblasts (hFOB). However, only EGCG and RES stimulated mitochondrial parameters including basal and maximum respiration, spare respiratory capacity and ATP production (a measure of the activity of electron transport chain/ETC). Increases in these parameters were due to increased mitochondrial biogenesis and consequent upregulation of several mitochondrial proteins including those involved in ETC. Rotenone blocked the osteogenic effect of EGCG and RES suggesting the mediatory action of mitochondria. Both compounds rapidly activated AMPK, and dorsomorphin (an AMPK inhibitor) abolished ATP production stimulated by these compounds. Moreover, EGCG and RES upregulated the mitochondrial biogenesis factor, PGC-1α which is downstream of AMPK activation, and silencing PGC-1α blocked their stimulatory effects on ATP production and hFOB differentiation. Adiponectin receptor 1 (AdipoR1) is an upstream regulator of PGC-1α, and both compounds increased the expression of AdipoR1 but not AdipoR2. Silencing AdipoR1 blocked the upregulation of EGCG/RES-induced PGC-1α and hFOB differentiation. In rat calvarium, both compounds increased AdipoR1, PGC-1α, and RunX2 (the osteoblast transcription factor) with a concomitant increase in mitochondrial copy number and ATP levels. We conclude that EGCG and RES display osteogenic effects by reprogramming osteoblastic bioenergetics by acting as the AdipoR1 agonists.
Collapse
Affiliation(s)
- Subhashis Pal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
| | - Konica Porwal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India.
| |
Collapse
|
23
|
Abstract
Translational genomics represents a broad field of study that combines genome and transcriptome-wide studies in humans and model systems to refine our understanding of human biology and ultimately identify new ways to treat and prevent disease. The approaches to translational genomics can be broadly grouped into two methodologies, forward and reverse genomic translation. Traditional (forward) genomic translation begins with model systems and aims at using unbiased genetic associations in these models to derive insight into biological mechanisms that may also be relevant in human disease. Reverse genomic translation begins with observations made through human genomic studies and refines these observations through follow-up studies using model systems. The ultimate goal of these approaches is to clarify intervenable processes as targets for therapeutic development. In this review, we describe some of the approaches being taken to apply translational genomics to the study of diseases commonly encountered in the neurocritical care setting, including hemorrhagic and ischemic stroke, traumatic brain injury, subarachnoid hemorrhage, and status epilepticus, utilizing both forward and reverse genomic translational techniques. Further, we highlight approaches in the field that could be applied in neurocritical care to improve our ability to identify new treatment modalities as well as to provide important information to patients about risk and prognosis.
Collapse
Affiliation(s)
- Pavlos Myserlis
- Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, CPZN 6818, Boston, MA, 02114, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Farid Radmanesh
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Christopher D Anderson
- Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, CPZN 6818, Boston, MA, 02114, USA.
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
24
|
Moreira A, Das H, Hasi-Zogaj M, Soileau B, Hill A, Bruder JM, Hale DE, Cody JD. Abnormal bone mineral content and density in people with tetrasomy 18p. Am J Med Genet A 2019; 179:417-422. [PMID: 30637922 DOI: 10.1002/ajmg.a.61005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/30/2018] [Accepted: 11/05/2018] [Indexed: 01/22/2023]
Abstract
Tetrasomy 18p is a rare chromosomal abnormality, resulting from an additional iso-chromosome composed of two copies of the short arm. It is characterized by craniofacial abnormalities, neuromuscular dysfunction, and developmental delay. The Chromosome 18 Clinical Research Center has established the largest cohort of individuals with this rare genetic condition. Here, we describe a case series of 21 individuals with tetrasomy 18p who have a previously unreported clinical finding: low bone mineral density. Most individuals met criteria for low bone density despite being relatively young (mean age of 21 years). Clinicians providing care to individuals affected by Tetrasomy 18p should be aware of their increased risk for decreased bone density and pathological fractures.
Collapse
Affiliation(s)
- Alvaro Moreira
- Department of Pediatrics, Division of Neonatology, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,The Chromosome 18 Registry and Research Society, San Antonio, Texas
| | - Hrishikesh Das
- Department of Pediatrics, Division of Neonatology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Minire Hasi-Zogaj
- Department of Pediatrics, Chromosome 18 Clinical Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Bridgette Soileau
- Department of Pediatrics, Chromosome 18 Clinical Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Annice Hill
- Department of Pediatrics, Chromosome 18 Clinical Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Jan M Bruder
- Department of Medicine, Division of Endocrinology, University of Texas Health-San Antonio, San Antonio, Texas
| | - Daniel E Hale
- The Chromosome 18 Registry and Research Society, San Antonio, Texas.,Department of Pediatrics, Division of Endocrinology, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Jannine D Cody
- The Chromosome 18 Registry and Research Society, San Antonio, Texas.,Department of Pediatrics, Chromosome 18 Clinical Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
25
|
Zweers H, Janssen MCH, Leij S, Wanten G. Patients With Mitochondrial Disease Have an Inadequate Nutritional Intake. JPEN J Parenter Enteral Nutr 2017; 42:581-586. [PMID: 28347206 DOI: 10.1177/0148607117699792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/21/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Mitochondrial disease (MD) is a group of disorders caused by dysfunctional mitochondria, the organelles that generate energy for the cell. Malnutrition in patients with MD may lead to increased mitochondrial dysfunction, which may enhance already existing symptoms. The aim of this study was to investigate whether patients with MD have an insufficient or unbalanced food intake and to establish which nutrients and product groups are particularly compromised in this patient group. METHODS In this observational, cross-sectional, retrospective study, sixty 3-day nutrition diaries of adult patients with MD were analyzed and compared with the Dutch recommended daily allowance and the Dutch National Food Consumption Survey (DNFCS). RESULTS The intake of all macronutrients and micronutrients of patients with MD was significantly different from Dutch recommended daily allowance values with the exception of fat and iron. In particular, protein and calcium intake in patients with MD was significantly lower when compared with the DNFCS. Interindividual differences were high. Also, intake of fiber, sugars, saturated fat, and vitamin D differed from recommendations for the overall population. In comparison with DNFCS, the intake of dairy products and drinks was significant lower in patients. CONCLUSIONS Our study demonstrates that many patients with MD have an inadequate diet. Specifically, intake of protein, calcium, dairy products, and fluids were low. Overall, eating a healthy diet seems as difficult for patients with MD as for the general population. Since interindividual differences are high, individual diet counseling is recommended for all adult patients with MD.
Collapse
Affiliation(s)
- Heidi Zweers
- Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, The Netherlands.,Department of Gastroenterology and Hepatology, Radboudumc, Nijmegen, The Netherlands
| | - Mirian C H Janssen
- Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, The Netherlands.,Department of Internal Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Susanne Leij
- Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, The Netherlands.,Department of Gastroenterology and Hepatology, Radboudumc, Nijmegen, The Netherlands
| | - Geert Wanten
- Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, The Netherlands.,Department of Gastroenterology and Hepatology, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
26
|
Finsterer J, Zarrouk-Mahjoub S. Reduced Bone Mineral Density in m.3243A>G Carriers May Be Multifactorial. J Bone Miner Res 2017; 32:2315-2316. [PMID: 28840948 DOI: 10.1002/jbmr.3281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/22/2017] [Indexed: 11/08/2022]
Affiliation(s)
| | - Sinda Zarrouk-Mahjoub
- University of Tunis El Manar, Tunis, Tunisia.,Genomics Platform, Pasteur Institute of Tunis, Tunis, Tunisia
| |
Collapse
|
27
|
Høgild Langdahl J, Frederiksen AL, Andersen PH, Yderstraede KB, Frost M. Reply to: Reduced Bone Mineral Density in m.3243A>G Carriers May Be Multifactorial. J Bone Miner Res 2017; 32:2317-2318. [PMID: 28850729 DOI: 10.1002/jbmr.3280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jakob Høgild Langdahl
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Endocrinology, Hospital of Southwest Jutland, Esbjerg, Denmark
| | - Anja Lisbeth Frederiksen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Per Heden Andersen
- Department of Endocrinology, Hospital of Southwest Jutland, Esbjerg, Denmark
| | | | - Morten Frost
- Department of Endocrinology, Odense University Hospital, ODense, Denmark
| |
Collapse
|
28
|
Nishihara H, Omoto M, Takao M, Higuchi Y, Koga M, Kawai M, Kawano H, Ikeda E, Takashima H, Kanda T. Autopsy case of the C12orf65 mutation in a patient with signs of mitochondrial dysfunction. NEUROLOGY-GENETICS 2017; 3:e171. [PMID: 28804760 PMCID: PMC5532748 DOI: 10.1212/nxg.0000000000000171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/08/2017] [Indexed: 11/16/2022]
Abstract
Objective: To describe the autopsy case of a patient with a homozygous 2-base deletion, c171_172delGA (p.N58fs), in the C12orf65 gene. Methods: We described the clinical history, neuroimaging data, neuropathology, and genetic analysis of the patients with C12orf65 mutations. Results: The patient was a Japanese woman with a history of delayed psychomotor development, primary amenorrhea, and gait disturbance in her 20s. She was hospitalized because of respiratory failure at the age of 60. Pectus excavatum, long fingers and toes, and pes cavus were revealed by physical examination. Her IQ score was 44. Neurologic examination revealed ophthalmoplegia, optic atrophy, dysphagia, distal dominant muscle weakness and atrophy, hyperreflexia at patellar tendon reflex, hyporeflexia at Achilles tendon reflex, and extensor plantar reflexes. At age 60, she died of pneumonia. Lactate levels were elevated in the patient's serum and CSF. T2-weighted brain MRI showed symmetrical hyperintense brainstem lesions. At autopsy, axial sections exposed symmetrical cyst formation with brownish lesions in the upper spinal cord, ventral medulla, pons, dorsal midbrain, and medial hypothalamus. Microscopic analysis of these areas demonstrated mild gliosis with rarefaction. Cell bodies in the choroid plexuses were eosinophilic and swollen. Electron microscopic examination revealed that these cells contained numerous abnormal mitochondria. Whole-exome sequencing revealed the 2-base deletion in C12orf65. Conclusions: We report an autopsy case of the C12orf65 mutation, and findings suggest that mitochondrial dysfunction may underlie the unique clinical presentations.
Collapse
Affiliation(s)
- Hideaki Nishihara
- Department of Neurology and Clinical Neuroscience (H.N., M.O., M. Koga, M. Kawai, T.K.), Department of Laboratory Science (H.K.), Department of Pathology (E.I.), Yamaguchi University Graduate School of Medicine, Japan; Department of Neurology and Cerebrovascular Medicine (M.T.), Saitama International Medical Center, Saitama Medical University, Japan; and Department of Neurology and Geriatrics (Y.H., H.T.), Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Masatoshi Omoto
- Department of Neurology and Clinical Neuroscience (H.N., M.O., M. Koga, M. Kawai, T.K.), Department of Laboratory Science (H.K.), Department of Pathology (E.I.), Yamaguchi University Graduate School of Medicine, Japan; Department of Neurology and Cerebrovascular Medicine (M.T.), Saitama International Medical Center, Saitama Medical University, Japan; and Department of Neurology and Geriatrics (Y.H., H.T.), Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Masaki Takao
- Department of Neurology and Clinical Neuroscience (H.N., M.O., M. Koga, M. Kawai, T.K.), Department of Laboratory Science (H.K.), Department of Pathology (E.I.), Yamaguchi University Graduate School of Medicine, Japan; Department of Neurology and Cerebrovascular Medicine (M.T.), Saitama International Medical Center, Saitama Medical University, Japan; and Department of Neurology and Geriatrics (Y.H., H.T.), Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Yujiro Higuchi
- Department of Neurology and Clinical Neuroscience (H.N., M.O., M. Koga, M. Kawai, T.K.), Department of Laboratory Science (H.K.), Department of Pathology (E.I.), Yamaguchi University Graduate School of Medicine, Japan; Department of Neurology and Cerebrovascular Medicine (M.T.), Saitama International Medical Center, Saitama Medical University, Japan; and Department of Neurology and Geriatrics (Y.H., H.T.), Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Michiaki Koga
- Department of Neurology and Clinical Neuroscience (H.N., M.O., M. Koga, M. Kawai, T.K.), Department of Laboratory Science (H.K.), Department of Pathology (E.I.), Yamaguchi University Graduate School of Medicine, Japan; Department of Neurology and Cerebrovascular Medicine (M.T.), Saitama International Medical Center, Saitama Medical University, Japan; and Department of Neurology and Geriatrics (Y.H., H.T.), Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Motoharu Kawai
- Department of Neurology and Clinical Neuroscience (H.N., M.O., M. Koga, M. Kawai, T.K.), Department of Laboratory Science (H.K.), Department of Pathology (E.I.), Yamaguchi University Graduate School of Medicine, Japan; Department of Neurology and Cerebrovascular Medicine (M.T.), Saitama International Medical Center, Saitama Medical University, Japan; and Department of Neurology and Geriatrics (Y.H., H.T.), Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Hiroo Kawano
- Department of Neurology and Clinical Neuroscience (H.N., M.O., M. Koga, M. Kawai, T.K.), Department of Laboratory Science (H.K.), Department of Pathology (E.I.), Yamaguchi University Graduate School of Medicine, Japan; Department of Neurology and Cerebrovascular Medicine (M.T.), Saitama International Medical Center, Saitama Medical University, Japan; and Department of Neurology and Geriatrics (Y.H., H.T.), Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Eiji Ikeda
- Department of Neurology and Clinical Neuroscience (H.N., M.O., M. Koga, M. Kawai, T.K.), Department of Laboratory Science (H.K.), Department of Pathology (E.I.), Yamaguchi University Graduate School of Medicine, Japan; Department of Neurology and Cerebrovascular Medicine (M.T.), Saitama International Medical Center, Saitama Medical University, Japan; and Department of Neurology and Geriatrics (Y.H., H.T.), Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Hiroshi Takashima
- Department of Neurology and Clinical Neuroscience (H.N., M.O., M. Koga, M. Kawai, T.K.), Department of Laboratory Science (H.K.), Department of Pathology (E.I.), Yamaguchi University Graduate School of Medicine, Japan; Department of Neurology and Cerebrovascular Medicine (M.T.), Saitama International Medical Center, Saitama Medical University, Japan; and Department of Neurology and Geriatrics (Y.H., H.T.), Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience (H.N., M.O., M. Koga, M. Kawai, T.K.), Department of Laboratory Science (H.K.), Department of Pathology (E.I.), Yamaguchi University Graduate School of Medicine, Japan; Department of Neurology and Cerebrovascular Medicine (M.T.), Saitama International Medical Center, Saitama Medical University, Japan; and Department of Neurology and Geriatrics (Y.H., H.T.), Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| |
Collapse
|
29
|
Lane RK, Hilsabeck T, Rea SL. The role of mitochondrial dysfunction in age-related diseases. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1847:1387-400. [PMID: 26050974 PMCID: PMC10481969 DOI: 10.1016/j.bbabio.2015.05.021] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/20/2015] [Accepted: 05/29/2015] [Indexed: 02/08/2023]
Abstract
The aging process is accompanied by the onset of disease and a general decline in wellness. Insights into the aging process have revealed a number of cellular hallmarks of aging, among these epigenetic alterations, loss of proteostasis, mitochondrial dysfunction, cellular senescence, and stem cell exhaustion. Mitochondrial dysfunction increasingly appears to be a common factor connecting several of these hallmarks, driving the aging process and afflicting tissues throughout the body. Recent research has uncovered a much more complex involvement of mitochondria in the cell than has previously been appreciated and revealed novel ways in which mitochondrial defects feed into disease pathology. In this review we evaluate ways in which problems in mitochondria contribute to disease beyond the well-known mechanisms of oxidative stress and bioenergetic deficits, and we predict the direction that mitochondrial disease research will take in years to come.
Collapse
Affiliation(s)
- Rebecca K Lane
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX 78245, USA
| | - Tyler Hilsabeck
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX 78245, USA; The University of Texas, San Antonio, TX 78249, USA
| | - Shane L Rea
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX 78245, USA; Department of Physiology, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| |
Collapse
|
30
|
Weiss KH, Van de Moortele M, Gotthardt DN, Pfeiffenberger J, Seessle J, Ullrich E, Gielen E, Borghs H, Adriaens E, Stremmel W, Meersseman W, Boonen S, Cassiman D. Bone demineralisation in a large cohort of Wilson disease patients. J Inherit Metab Dis 2015; 38:949-56. [PMID: 25663473 DOI: 10.1007/s10545-015-9815-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 01/14/2015] [Accepted: 01/19/2015] [Indexed: 02/07/2023]
Abstract
AIMS AND BACKGROUND We compared the bone mineral density (BMD) of adult Wilson disease (WD) patients (n = 148), with an age- and gender-matched healthy control population (n = 148). Within the WD cohort, correlations of BMD with WD disease parameters, lab results, type of treatment and known osteoporosis risk factors were analysed. METHODS Hip and lumbar spine absolute BMD and T-score were measured by dual-energy X-ray absorptiometry. Osteoporosis and osteopenia were defined as a T-score ≤ -2.5, and between -1 and -2.5, respectively. RESULTS There were significantly more subjects with abnormal T-scores in the WD population (58.8%) than in the control population (45.3%) (χ(2) = 6.65, df = 2, p = 0.036), as there were 50.0% osteopenic and 8.8% osteoporotic WD patients, vs. 41.2% and 4.1%, respectively, in the controls. Especially L2-L4 spine BMD measurements (BMD and T-scores) differed significantly between the WD population and matched controls. L2-L4 spine BMD for WD patients was on average 0.054 g/cm(2) (5.1%) lower than in matched normal controls (0.995 ± 0.156 vs 1.050 ± 0.135; p = 0.002). We found no significant correlation between BMD values and any of the WD disease parameters (e.g. the severity of liver disease), lab results, type of treatment or known osteoporosis risk factors. Duration of D-penicillamine treatment was negatively correlated with femoral BMD value, but in a clinically irrelevant manner, compared to age and gender. Importantly, BMD remained significantly lower in WD patients (n = 89) vs. controls after excluding WD patients with cirrhosis (p = 0.009). CONCLUSIONS Our study suggests that WD is intrinsically associated with bone demineralisation.
Collapse
Affiliation(s)
- Karl Heinz Weiss
- Department of Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yan B, Li J, Zhang L. Identification of B cells participated in the mechanism of postmenopausal women osteoporosis using microarray analysis. Int J Clin Exp Med 2015; 8:1027-1034. [PMID: 25785089 PMCID: PMC4358544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/07/2015] [Indexed: 06/04/2023]
Abstract
To further understand the molecular mechanism of lymphocytes B cells in postmenopausal women osteoporosis. Microarray data (GSE7429) were downloaded from Gene Expression Omnibus, in which B cells were separated from the whole blood of postmenopausal women, including 10 with high bone mineral density (BMD) and 10 with low BMD. Differentially expressed genes (DEGs) between high and low BMD women were identified by Student's t-test, and P < 0.01 was used as the significant criterion. Functional enrichment analysis was performed for up- and down-regulated DEGs using KEGG, REACTOME, and Gene Ontology (GO) databases. Protein-protein interaction network (PPI) of up- and down-regulated DEGs was respectively constructed by Cytoscape software using the STRING data. Total of 169 up-regulated and 69 down-regulated DEGs were identified. Functional enrichment analysis indicated that the genes (ITPA, ATIC, UMPS, HPRT1, COX10 and COX15) might participate in metabolic pathways, MAP3K10 and MAP3K9 might participate in the activation of JNKK activity, COX10 and COX15 might involve in mitochondrial electron transport, and ATIC, UMPS and HPRT1 might involve in transferase activity. MAPK3, ITPA, ATIC, UMPS and HPRT1 with a higher degree in PPI network were identified. MAPK3, MAP3K10, MAP3K9, COX10, COX15, ATIC, UMPS and HPRT1 might participate in the pathogenesis of osteoporosis.
Collapse
|
32
|
Xiang R, Lee AMC, Eindorf T, Javadmanesh A, Ghanipoor-Samami M, Gugger M, Fitzsimmons CJ, Kruk ZA, Pitchford WS, Leviton AJ, Thomsen DA, Beckman I, Anderson GI, Burns BM, Rutley DL, Xian CJ, Hiendleder S. Widespread differential maternal and paternal genome effects on fetal bone phenotype at mid-gestation. J Bone Miner Res 2014; 29:2392-404. [PMID: 24753181 DOI: 10.1002/jbmr.2263] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 03/09/2014] [Accepted: 04/03/2014] [Indexed: 11/06/2022]
Abstract
Parent-of-origin-dependent (epi)genetic factors are important determinants of prenatal development that program adult phenotype. However, data on magnitude and specificity of maternal and paternal genome effects on fetal bone are lacking. We used an outbred bovine model to dissect and quantify effects of parental genomes, fetal sex, and nongenetic maternal effects on the fetal skeleton and analyzed phenotypic and molecular relationships between fetal muscle and bone. Analysis of 51 bone morphometric and weight parameters from 72 fetuses recovered at day 153 gestation (54% term) identified six principal components (PC1-6) that explained 80% of the variation in skeletal parameters. Parental genomes accounted for most of the variation in bone wet weight (PC1, 72.1%), limb ossification (PC2, 99.8%), flat bone size (PC4, 99.7%), and axial skeletal growth (PC5, 96.9%). Limb length showed lesser effects of parental genomes (PC3, 40.8%) and a significant nongenetic maternal effect (gestational weight gain, 29%). Fetal sex affected bone wet weight (PC1, p < 0.0001) and limb length (PC3, p < 0.05). Partitioning of variation explained by parental genomes revealed strong maternal genome effects on bone wet weight (74.1%, p < 0.0001) and axial skeletal growth (93.5%, p < 0.001), whereas paternal genome controlled limb ossification (95.1%, p < 0.0001). Histomorphometric data revealed strong maternal genome effects on growth plate height (98.6%, p < 0.0001) and trabecular thickness (85.5%, p < 0.0001) in distal femur. Parental genome effects on fetal bone were mirrored by maternal genome effects on fetal serum 25-hydroxyvitamin D (96.9%, p < 0.001) and paternal genome effects on alkaline phosphatase (90.0%, p < 0.001) and their correlations with maternally controlled bone wet weight and paternally controlled limb ossification, respectively. Bone wet weight and flat bone size correlated positively with muscle weight (r = 0.84 and 0.77, p < 0.0001) and negatively with muscle H19 expression (r = -0.34 and -0.31, p < 0.01). Because imprinted maternally expressed H19 regulates growth factors by miRNA interference, this suggests muscle-bone interaction via epigenetic factors.
Collapse
Affiliation(s)
- Ruidong Xiang
- Robinson Research Institute, The University of Adelaide, Adelaide, Australia; JS Davies Epigenetics and Genetics Group, School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Adelaide, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ma J, Coarfa C, Qin X, Bonnen PE, Milosavljevic A, Versalovic J, Aagaard K. mtDNA haplogroup and single nucleotide polymorphisms structure human microbiome communities. BMC Genomics 2014; 15:257. [PMID: 24694284 PMCID: PMC4234434 DOI: 10.1186/1471-2164-15-257] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 03/28/2014] [Indexed: 12/13/2022] Open
Abstract
Background Although our microbial community and genomes (the human microbiome) outnumber our genome by several orders of magnitude, to what extent the human host genetic complement informs the microbiota composition is not clear. The Human Microbiome Project (HMP) Consortium established a unique population-scale framework with which to characterize the relationship of microbial community structure with their human hosts. A wide variety of taxa and metabolic pathways have been shown to be differentially distributed by virtue of race/ethnicity in the HMP. Given that mtDNA haplogroups are the maternally derived ancestral genomic markers and mitochondria’s role as the generator for cellular ATP, characterizing the relationship between human mtDNA genomic variants and microbiome profiles becomes of potential marked biologic and clinical interest. Results We leveraged sequencing data from the HMP to investigate the association between microbiome community structures with its own host mtDNA variants. 15 haplogroups and 631 mtDNA nucleotide polymorphisms (mean sequencing depth of 280X on the mitochondria genome) from 89 individuals participating in the HMP were accurately identified. 16S rRNA (V3-V5 region) sequencing generated microbiome taxonomy profiles and whole genome shotgun sequencing generated metabolic profiles from various body sites were treated as traits to conduct association analysis between haplogroups and host clinical metadata through linear regression. The mtSNPs of individuals with European haplogroups were associated with microbiome profiles using PLINK quantitative trait associations with permutation and adjusted for multiple comparisons. We observe that among 139 stool and 59 vaginal posterior fornix samples, several haplogroups show significant association with specific microbiota (q-value < 0.05) as well as their aggregate community structure (Chi-square with Monte Carlo, p < 0.005), which confirmed and expanded previous research on the association of race and ethnicity with microbiome profile. Our results further indicate that mtDNA variations may render different microbiome profiles, possibly through an inflammatory response to different levels of reactive oxygen species activity. Conclusions These data provide initial evidence for the association between host ancestral genome with the structure of its microbiome.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kjersti Aagaard
- Departments of Obstetrics & Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
34
|
Hou L, Zhang X, Dioni L, Barretta F, Dou C, Zheng Y, Hoxha M, Bertazzi PA, Schwartz J, Wu S, Wang S, Baccarelli AA. Inhalable particulate matter and mitochondrial DNA copy number in highly exposed individuals in Beijing, China: a repeated-measure study. Part Fibre Toxicol 2013; 10:17. [PMID: 23628000 PMCID: PMC3649952 DOI: 10.1186/1743-8977-10-17] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 04/12/2013] [Indexed: 12/30/2022] Open
Abstract
Background Mitochondria are both a sensitive target and a primary source of oxidative stress, a key pathway of air particulate matter (PM)-associated diseases. Mitochondrial DNA copy number (MtDNAcn) is a marker of mitochondrial damage and malfunctioning. We evaluated whether ambient PM exposure affects MtDNAcn in a highly-exposed population in Beijing, China. Methods The Beijing Truck Driver Air Pollution Study was conducted shortly before the 2008 Beijing Olympic Games (June 15-July 27, 2008) and included 60 truck drivers and 60 office workers. Personal PM2.5 and elemental carbon (EC, a tracer of traffic particles) were measured during work hours using portable monitors. Post-work blood samples were obtained on two different days. Ambient PM10 was averaged from 27 monitoring stations in Beijing. Blood MtDNAcn was determined by real-time PCR and examined in association with particle levels using mixed-effect models. Results In all participants combined, MtDNAcn was negatively associated with personal EC level measured during work hours (β=−0.059, 95% CI: -0.011; -0.0006, p=0.03); and 5-day (β=−0.017, 95% CI: -0.029;-0.005, p=0.01) and 8-day average ambient PM10 (β=−0.008, 95% CI: -0.043; -0.008, p=0.004) after adjusting for possible confounding factors, including study groups. MtDNAcn was also negatively associated among office workers with EC (β=−0.012, 95% CI: -0.022;-0.002, p=0.02) and 8-day average ambient PM10 (β=−0.030, 95% CI: -0.051;-0.008, p=0.007). Conclusions We observed decreased blood MtDNAcn in association with increased exposure to EC during work hours and recent ambient PM10 exposure. Our results suggest that MtDNAcn may be influenced by particle exposures. Further studies are required to determine the roles of MtDNAcn in the etiology of particle-related diseases.
Collapse
Affiliation(s)
- Lifang Hou
- Department of Preventive Medicine Feinberg, School of Medicine Northwestern University, Chicago, IL 60611, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Qin G, Dong Z, Zeng P, Liu M, Liao X. Association of vitamin D receptor BsmI gene polymorphism with risk of osteoporosis: a meta-analysis of 41 studies. Mol Biol Rep 2012; 40:497-506. [PMID: 23054016 DOI: 10.1007/s11033-012-2086-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 10/03/2012] [Indexed: 12/01/2022]
Abstract
Vitamin D receptor (VDR) BsmI gene polymorphism has been reported to be strongly associated with osteoporosis risk in some studies. However, the results from those studies are still conflicting. We performed a meta-analysis of studies relating the VDR BsmI gene polymorphism to the risk of osteoporosis. The search was performed in the databases of PubMed, Embase, Cochrane Library and CBM-disc (China Biological Medicine Database) as of October 1, 2011, and the eligible investigations were recruited for this meta-analysis. Forty-one investigations were identified for the meta-analysis of association between VDR BsmI gene polymorphism and osteoporosis risk. There lacked an association between VDR BsmI gene polymorphism and osteoporosis risk for overall populations, Caucasians and Asians (overall populations: B vs b: p = 0.65, BB vs (Bb + bb): p = 0.14, bb vs (BB + Bb): p = 0.86; Caucasians: B vs b: p = 0.65, BB vs (Bb + bb): p = 0.38, bb vs (BB + Bb): p = 0.83; Asians: B vs b: p = 0.87, BB vs (Bb + bb): p = 0.62, bb vs (BB + Bb): p = 0.66). In conclusion, VDR BsmI B/b gene polymorphism is not associated with the susceptibility of osteoporosis in overall populations, Caucasians, and Asians.
Collapse
Affiliation(s)
- Gang Qin
- Department of Osteoarthrosis, The First Affiliated Hospital Guangxi Traditional Chinese Medical University, No. 89-9, Dongge Road, Nanning 530023, Guangxi, People's Republic of China.
| | | | | | | | | |
Collapse
|
36
|
Benisch P, Schilling T, Klein-Hitpass L, Frey SP, Seefried L, Raaijmakers N, Krug M, Regensburger M, Zeck S, Schinke T, Amling M, Ebert R, Jakob F. The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors. PLoS One 2012; 7:e45142. [PMID: 23028809 PMCID: PMC3454401 DOI: 10.1371/journal.pone.0045142] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/13/2012] [Indexed: 12/11/2022] Open
Abstract
Primary osteoporosis is an age-related disease characterized by an imbalance in bone homeostasis. While the resorptive aspect of the disease has been studied intensely, less is known about the anabolic part of the syndrome or presumptive deficiencies in bone regeneration. Multipotent mesenchymal stem cells (MSC) are the primary source of osteogenic regeneration. In the present study we aimed to unravel whether MSC biology is directly involved in the pathophysiology of the disease and therefore performed microarray analyses of hMSC of elderly patients (79–94 years old) suffering from osteoporosis (hMSC-OP). In comparison to age-matched controls we detected profound changes in the transcriptome in hMSC-OP, e.g. enhanced mRNA expression of known osteoporosis-associated genes (LRP5, RUNX2, COL1A1) and of genes involved in osteoclastogenesis (CSF1, PTH1R), but most notably of genes coding for inhibitors of WNT and BMP signaling, such as Sclerostin and MAB21L2. These candidate genes indicate intrinsic deficiencies in self-renewal and differentiation potential in osteoporotic stem cells. We also compared both hMSC-OP and non-osteoporotic hMSC-old of elderly donors to hMSC of ∼30 years younger donors and found that the transcriptional changes acquired between the sixth and the ninth decade of life differed widely between osteoporotic and non-osteoporotic stem cells. In addition, we compared the osteoporotic transcriptome to long term-cultivated, senescent hMSC and detected some signs for pre-senescence in hMSC-OP. Our results suggest that in primary osteoporosis the transcriptomes of hMSC populations show distinct signatures and little overlap with non-osteoporotic aging, although we detected some hints for senescence-associated changes. While there are remarkable inter-individual variations as expected for polygenetic diseases, we could identify many susceptibility genes for osteoporosis known from genetic studies. We also found new candidates, e.g. MAB21L2, a novel repressor of BMP-induced transcription. Such transcriptional changes may reflect epigenetic changes, which are part of a specific osteoporosis-associated aging process.
Collapse
Affiliation(s)
- Peggy Benisch
- Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Wuerzburg, Germany
| | - Tatjana Schilling
- Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Wuerzburg, Germany
| | - Ludger Klein-Hitpass
- Institute of Cell Biology (Tumor Research), University Hospital Essen, Essen, Germany
| | - Sönke P. Frey
- Department of Trauma, Hand-, Plastic- and Reconstructive Surgery, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Lothar Seefried
- Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Wuerzburg, Germany
| | - Nadja Raaijmakers
- Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Wuerzburg, Germany
| | - Melanie Krug
- Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Wuerzburg, Germany
| | - Martina Regensburger
- Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Wuerzburg, Germany
| | - Sabine Zeck
- Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Wuerzburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Regina Ebert
- Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Wuerzburg, Germany
| | - Franz Jakob
- Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Wuerzburg, Germany
- * E-mail:
| |
Collapse
|
37
|
Kim JH, Lee DC. Mitochondrial DNA copy number in peripheral blood is associated with femoral neck bone mineral density in postmenopausal women. J Rheumatol 2012; 39:1465-72. [PMID: 22589267 DOI: 10.3899/jrheum.111444] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE It has been suggested that mitochondrial dysfunction is related to aging and metabolic disorders. Yet there are few studies of the relationship between bone mineral density (BMD) and mitochondrial content in humans. We investigated the relationship between BMD and mitochondrial DNA (mtDNA) copy number in peripheral blood of postmenopausal women. METHODS The study included 146 postmenopausal women. Enrolled subjects were taking no medications and had no disorders that altered bone metabolism. We measured BMD using dual-energy x-ray absorptiometry and leukocyte mtDNA copy number using real-time polymerase chain reaction. Anthropometric evaluations and biochemical tests were performed. RESULTS Patients with osteopenia or osteoporosis had lower mtDNA copy numbers than normal subjects (p < 0.0001). Femoral neck BMD was negatively correlated with age (r = -0.01, p = 0.04) and with serum levels of adiponectin (r = -0.22, p = 0.01) and osteocalcin (r = -0.31, p = 0.0001). Serum levels of 25-OH vitamin D (r = 0.32, p < 0.0001) and mtDNA copy number (r = 0.36, p < 0.0001) were positively correlated with femoral neck BMD. Multiple regression analysis showed that mtDNA copy number (ß = 0.156, p < 0.001) was an independent factor associated with femoral neck BMD after adjustment for age, body mass index, waist circumference, waist-hip ratio, blood pressure, homeostatic model assessment of insulin resistance, high-sensitivity C-reactive protein, adiponectin, osteocalcin, homocysteine, lipid profiles, 25-OH vitamin D, and regular exercise. mtDNA copy number was not related to lumbar BMD. CONCLUSION Low mtDNA content in peripheral blood is related to decreased femoral neck BMD in postmenopausal women. Our findings suggest that mitochondrial dysfunction may be a potential pathophysiologic mechanism of osteoporosis in postmenopausal women.
Collapse
Affiliation(s)
- Jung-Ha Kim
- Department of Family Medicine, Chung-Ang University Healthcare Center, Korea
| | | |
Collapse
|
38
|
|