1
|
Brown AL, Koskella B, Boots M. How host-microbiome/holobiont evolution depends on whether the microbiome affects host lifespan or fecundity. J Evol Biol 2025; 38:41-49. [PMID: 39513573 DOI: 10.1093/jeb/voae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/28/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
There is overwhelming evidence that the microbiome can be important to host physiology and fitness. As such, there is interest in and some theoretical work on understanding when hosts and microbiomes (co)evolve so that microbes benefit hosts and hosts favour beneficial microbes. However, the outcome of evolution likely depends on how microbes benefit hosts. Here, we use adaptive dynamics to investigate how host and symbiont evolution depend on whether symbionts increase host lifespan or host reproduction in a simple model of host and symbiont dynamics. In addition, we investigate 2 ways hosts release (and transmit) symbionts: by releasing symbionts steadily during their lifetime or by releasing them at reproduction, potentially increasing symbionts' chances of infecting the host's offspring. The former is strict horizontal transmission, whereas the latter is also a form of indirect or "pseudovertical" transmission. Our first key result is that the evolution of symbionts that benefit host fecundity requires pseudovertical transmission, while the evolution of symbionts that benefit host lifespan does not. Furthermore, our second key result is that when investing in host benefits is costly to the free-living symbiont stage, intermediate levels of pseudovertical transmission are needed for selection to favour beneficial symbionts. This is true regardless of fitness effects because release at reproduction increases the free-living symbiont population, which increases competition for hosts. Consequently, hosts could evolve away from traits that favour beneficial symbionts. Generally, our work emphasizes the importance of different forms of vertical transmission and fitness benefits in host, microbiome, and holobiont evolution as highlighted by our prediction that the evolution of fecundity-increasing symbionts requires parent-to-offspring transmission.
Collapse
Affiliation(s)
- Alexandra L Brown
- Department of Integrative Biology, University of California, Berkeley, CA, United States
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, CA, United States
| | - Mike Boots
- Department of Integrative Biology, University of California, Berkeley, CA, United States
- Department of Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| |
Collapse
|
2
|
Wang Y, Du Y. Hypothesis for Molecular Evolution in the Pre-Cellular Stage of the Origin of Life. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70001. [PMID: 39832384 DOI: 10.1002/wrna.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/29/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025]
Abstract
Life was originated from inorganic world and had experienced a long period of evolution in about 3.8 billion years. The time for emergence of the pioneer creations on Earth is debatable nowadays, and how the scenario for the prebiotic molecular interactions is still mysterious. Before the spreading of cellular organisms, chemical evolution was perhaps prevailing for millions of years, in which inorganic biosynthesis was ultimately replaced by biochemical reactions. Understanding the major molecular players and their interactions toward cellular life is fundamental for current medical science and extraterrestrial life exploration. In this review, we propose a road map for the primordial molecular evolution in early Earth, which probably occurred adjacent to hydrothermal vents with a strong gradient of organic molecules, temperature, and metal contents. Natural selection of the macromolecules with strong secondary structures and catalytic centers is associated with decreasing of overall entropy of the biopolymers. Our review may shed lights into the important selection of gene-coding RNA with secondary structures from large amounts of random biopolymers and formation of ancient ribosomes with biological machines supporting the basic life processes. Integration of the free environmental ribosomes by the early cellular life as symbiotic molecular machines is probably the earliest symbiosis on Earth.
Collapse
Affiliation(s)
- Yong Wang
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People's Republic of China
- Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People's Republic of China
| | - Yiling Du
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People's Republic of China
| |
Collapse
|
3
|
Iwai S. A simple model and rules for the evolution of microbial mutualistic symbiosis with positive fitness feedbacks. Theor Popul Biol 2024; 160:14-24. [PMID: 39384161 DOI: 10.1016/j.tpb.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
The evolution of microbe-microbe mutualistic symbiosis is considered to be promoted by repeated exchanges of fitness benefits, which can generate positive fitness feedbacks ('partner fidelity feedback') between species. However, previous evolutionary models for mutualism have not captured feedback dynamics or coupling of fitness between species. Here, a simple population model is developed to understand the evolution of mutualistic symbiosis in which two microbial species (host and symbiont) continuously grow and exchange fitness benefits to generate feedback dynamics but do not strictly control each other. The assumption that individual microbes provide constant amounts of resources, which are equally divided among interacting partner individual, enables us to reveal a simple rule for the evolution of costly mutualism with positive fitness feedbacks: the product of the benefit-to-cost ratios for each species exceeds one. When this condition holds, high cooperative investment levels are favored in both species regardless of the amount invested by each partner. The model is then extended to examine how symbiont mutation, immigration, or switching affects the spread of selfish or cooperative symbionts, which decrease and increase their investment levels, respectively. In particular, when a host associates with numerous symbionts without enforcement, neither mutation nor immigration but rather random switching would allow the spread of cooperative symbionts. Examples using symbiont switching for evolution would include large ciliates hosting numerous intracellular endosymbionts. The simple model and rules would provide a basis for understanding the evolution of microbe-microbe mutualistic symbiosis with positive fitness feedbacks and without enforcement mechanisms.
Collapse
Affiliation(s)
- Sosuke Iwai
- Department of Biology, Faculty of Education, Hirosaki University, Hirosaki 036-8560, Japan.
| |
Collapse
|
4
|
Myers A, Martin B, Yonenaga J, Agrawal AA, Weber MG. A global assessment of plant-mite mutualism and its ecological drivers. Proc Natl Acad Sci U S A 2024; 121:e2309475121. [PMID: 39560650 PMCID: PMC11621742 DOI: 10.1073/pnas.2309475121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/26/2024] [Indexed: 11/20/2024] Open
Abstract
Mutualisms are mediated by adaptive traits of interacting organisms and play a central role in the ecology and evolution of species. Thousands of plant species possess tiny structures called "domatia" that house mites which protect plants from pests, yet these traits remain woefully understudied. Here, we release a worldwide database of species with mite domatia and provide an evaluation of the phylogenetic and geographic distribution of this mutualistic trait. With >2,500 additions based on digital herbarium scans and published reports, we increased the number of known species with domatia by 27% and, importantly, documented their absence in >4,000 species. We show that mite domatia likely evolved hundreds of times among flowering plants, occurring in an estimated ~10% of woody species representing over a quarter of all angiosperm families. Contrary to classic hypotheses about the evolutionary drivers of mutualism, we find that mite domatia evolved more frequently in temperate regions and in deciduous lineages; this pattern is concordant with a large-scale geographic transition from predominantly ant-based plant defense mutualisms in the tropics to mite-based defense mutualisms in temperate climates. Our data also reveal a pattern of evolutionary convergence in domatia morphology, with tuft-form domatia more likely to evolve in dry temperate habitats and pit domatia more likely to evolve in wet tropical environments. We have shown climate-associated drivers of mite domatia evolution, demonstrating their utility and power as an evolutionarily replicated system for the study of plant defense mutualisms.
Collapse
Affiliation(s)
- Andrew Myers
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI48103
- Michigan Nature Association, Okemos, MI48864
| | - Bruce Martin
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI48103
- Department of Plant Biology, Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, MI48823
| | - Jenna Yonenaga
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | - Anurag A. Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY14853
| | - Marjorie G. Weber
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI48103
| |
Collapse
|
5
|
Pena R, Tibbett M. Mycorrhizal symbiosis and the nitrogen nutrition of forest trees. Appl Microbiol Biotechnol 2024; 108:461. [PMID: 39249589 PMCID: PMC11384646 DOI: 10.1007/s00253-024-13298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
Terrestrial plants form primarily mutualistic symbiosis with mycorrhizal fungi based on a compatible exchange of solutes between plant and fungal partners. A key attribute of this symbiosis is the acquisition of soil nutrients by the fungus for the benefit of the plant in exchange for a carbon supply to the fungus. The interaction can range from mutualistic to parasitic depending on environmental and physiological contexts. This review considers current knowledge of the functionality of ectomycorrhizal (EM) symbiosis in the mobilisation and acquisition of soil nitrogen (N) in northern hemisphere forest ecosystems, highlighting the functional diversity of the fungi and the variation of symbiotic benefits, including the dynamics of N transfer to the plant. It provides an overview of recent advances in understanding 'mycorrhizal decomposition' for N release from organic or mineral-organic forms. Additionally, it emphasises the taxon-specific traits of EM fungi in soil N uptake. While the effects of EM communities on tree N are likely consistent across different communities regardless of species composition, the sink activities of various fungal taxa for tree carbon and N resources drive the dynamic continuum of mutualistic interactions. We posit that ectomycorrhizas contribute in a species-specific but complementary manner to benefit tree N nutrition. Therefore, alterations in diversity may impact fungal-plant resource exchange and, ultimately, the role of ectomycorrhizas in tree N nutrition. Understanding the dynamics of EM functions along the mutualism-parasitism continuum in forest ecosystems is essential for the effective management of ecosystem restoration and resilience amidst climate change. KEY POINTS: • Mycorrhizal symbiosis spans a continuum from invested to appropriated benefits. • Ectomycorrhizal fungal communities exhibit a high functional diversity. • Tree nitrogen nutrition benefits from the diversity of ectomycorrhizal fungi.
Collapse
Affiliation(s)
- Rodica Pena
- Department of Sustainable Land Management, School of Agriculture, Policy and Development, University of Reading, Reading, UK.
- Department of Silviculture, Transilvania University of Brasov, Brasov, Romania.
| | - Mark Tibbett
- Department of Sustainable Land Management, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| |
Collapse
|
6
|
Bronstein JL, Sridhar H. Connecting and integrating cooperation within and between species. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230203. [PMID: 39034697 PMCID: PMC11293865 DOI: 10.1098/rstb.2023.0203] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/31/2023] [Accepted: 01/24/2024] [Indexed: 07/23/2024] Open
Abstract
There has long been a fundamental divide in the study of cooperation: researchers focus either on cooperation within species, including but not limited to sociality, or else on cooperation between species, commonly termed mutualism. Here, we explore the ecologically and evolutionarily significant ways in which within- and between-species cooperation interact. We highlight two primary cross-linkages. First, cooperation of one type can change the context in which cooperation of the other type functions, and thus potentially its outcome. We delineate three possibilities: (i) within-species cooperation modulates benefits for a heterospecific partner; (ii) between-species cooperation affects the dynamics of within-species cooperation; and (iii) both processes take place interactively. The second type of cross-linkage emerges when resources or services that cooperation makes available are obtainable either from members of the same species or from different species. This brings cooperation at the two levels into direct interaction, to some extent obscuring the distinction between them. We expand on these intersections between within- and between-species cooperation in a diversity of taxa and interaction types. These interactions have the potential to weave together social networks and trophic dynamics, contributing to the structure and functioning of ecological communities in ways that are just beginning to be explored. This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.
Collapse
Affiliation(s)
- Judith L. Bronstein
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ85721, USA
| | - Hari Sridhar
- Konrad Lorenz Institute for Evolution and Cognition Research, KlosterneuburgA-3400, Austria
| |
Collapse
|
7
|
Agarwal R, Gupta M, Sen R, Panchal A, E S N, Raychoudhury R. Investigation into how Odontotermes obesus maintains a predominantly Termitomyces monoculture in their fungus combs suggests a potential partnership with both fungi and bacteria. Commun Biol 2024; 7:1010. [PMID: 39154098 PMCID: PMC11330501 DOI: 10.1038/s42003-024-06708-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
Fungus-growing termites, like Odontotermes obesus, cultivate Termitomyces as their sole food source on fungus combs which are continuously maintained with foraged plant materials. This necessary augmentation also increases the threat of introducing non-specific fungi capable of displacing Termitomyces. The magnitude of this threat and how termites prevent the invasion of such fungi remain largely unknown. This study identifies these non-specific fungi by establishing the pan-mycobiota of O. obesus from the fungus comb and termite castes. Furthermore, to maximize the identification of such fungi, the mycobiota of the decaying stages of the unattended fungus comb were also assessed. The simultaneous assessment of the microbiota and the mycobiota of these stages identified possible interactions between the fungal and bacterial members of this community. Based on these findings, we propose possible interactions among the crop fungus Termitomyces, the weedy fungus Pseudoxylaria and some bacterial symbiotes. These possibilities were then tested with in vitro interaction assays which suggest that Termitomyces, Pseudoxylaria and certain potential bacterial symbiotes possess anti-fungal capabilities. We propose a multifactorial interaction model of these microbes, under the care of the termites, to explain how their interactions can maintain a predominantly Termitomyces monoculture.
Collapse
Affiliation(s)
- Renuka Agarwal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali IISER Mohali, Knowledge City, Manauli, Punjab, India
| | - Manisha Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali IISER Mohali, Knowledge City, Manauli, Punjab, India
| | - Ruchira Sen
- PG Department of Zoology, Sri Guru Gobind Singh College, Chandigarh, India
| | - Aanchal Panchal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali IISER Mohali, Knowledge City, Manauli, Punjab, India
| | - Nimisha E S
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali IISER Mohali, Knowledge City, Manauli, Punjab, India
| | - Rhitoban Raychoudhury
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali IISER Mohali, Knowledge City, Manauli, Punjab, India.
| |
Collapse
|
8
|
de Freitas STF, Faria G, Silva FG, Batista MA, Augusto DSS, Dyszy FH, Vitorino LC. The morphoanatomy of Serjania erecta Radlk (Sapindaceae) provides evidence of biotrophic interactions by endophytic fungi within leaves. PeerJ 2023; 11:e15980. [PMID: 37727689 PMCID: PMC10506578 DOI: 10.7717/peerj.15980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/08/2023] [Indexed: 09/21/2023] Open
Abstract
Background The leaves of Serjania erecta Radlk (Sapindaceae) are renowned in ethnobotany for their medicinal properties and are significant as a medicinal resource for traditional Brazilian communities. As necrotic spots are common on these leaves, indicating interaction with phytopathogenic fungi, it was hypothesized that biotrophic fungal species colonize the leaf tissues of S. erecta. Methods To test this hypothesis, we employed standard techniques in plant anatomy, which enabled us to investigate the interaction of fungal structures with plant tissues and describe the morphoanatomical and histochemical characteristics of the epidermis and limbus of S. erecta. Results The anatomical analysis showed the existence of leaf teeth on the leaf tips. Additionally, hyphae, conidiospores, and spores of Bipolaris/Curvularia species were detected on the adaxial epidermis. Moreover, melanized microsclerotia were found in glandular areas of the leaf teeth and the phloem, providing evidence of biotrophic behavior. The hypothesis that biotrophic phytopathogenic fungi interact with S. erecta leaf tissues was confirmed, despite the presence of many bioactive compounds (such as flavonoids, alkaloids, and essential oils), as evidenced by histochemical analyses. The presence of tector, glandular, and scabiform trichomes on the leaf teeth and epidermis was also revealed. This study presents, for the first time, the synthesis of essential oils and alkaloids in the leaves of S. erecta. Additionally, it investigates previously unexplained aspects of the anatomy and histochemistry of the species, as well as its interaction with resident microorganisms. Therefore, it is recommended that future research focus on extracting and characterizing the oils and alkaloids of S. erecta, as well as exploring other aspects related to its microbiome and its relationship.
Collapse
Affiliation(s)
- Samylla Tássia Ferreira de Freitas
- Graduate Program in Agricultural Sciences, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rio Verde, Brazil
| | - Giselle Faria
- Graduate Program in Agricultural Sciences, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rio Verde, Brazil
| | - Fabiano Guimarães Silva
- Graduate Program in Agricultural Sciences, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rio Verde, Brazil
| | - Marco Aurélio Batista
- Graduate Program in Natural Resources of the Cerrado, Universidade Estadual de Goiás, Anápolis, Brazil
| | - Damiana Souza Santos Augusto
- Graduate Program in Agricultural Sciences, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rio Verde, Brazil
| | - Fábio Henrique Dyszy
- Graduate Program in Biodiversity and Conservation, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rio Verde, Brazil
| | - Luciana Cristina Vitorino
- Graduate Program in Biodiversity and Conservation, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rio Verde, Brazil
| |
Collapse
|
9
|
Moser C, Buckner W, Sarian M, Winking J. Aggressive Mimicry and the Evolution of the Human Cognitive Niche. HUMAN NATURE (HAWTHORNE, N.Y.) 2023; 34:456-475. [PMID: 37672174 PMCID: PMC10543935 DOI: 10.1007/s12110-023-09458-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/20/2023] [Indexed: 09/07/2023]
Abstract
The evolutionary origins of deception and its functional role in our species is a major focus of research in the science of human origins. Several hypotheses have been proposed for its evolution, often packaged under either the Social Brain Hypothesis, which emphasizes the role that the evolution of our social systems may have played in scaffolding our cognitive traits, and the Foraging Brain Hypothesis, which emphasizes how changes in the human dietary niche were met with subsequent changes in cognition to facilitate foraging of difficult-to-acquire foods. Despite substantive overlap, these hypotheses are often presented as competing schools of thought, and there have been few explicitly proposed theoretical links unifying the two. Utilizing cross-cultural data gathered from the Human Relations Area Files (HRAF), we identify numerous (n = 357) examples of the application of deception toward prey across 145 cultures. By comparing similar behaviors in nonhuman animals that utilize a hunting strategy known as aggressive mimicry, we suggest a potential pathway through which the evolution of deception may have taken place. Rather than deception evolving as a tactic for deceiving conspecifics, we suggest social applications of deception in humans could have evolved from an original context of directing these behaviors toward prey. We discuss this framework with regard to the evolution of other mental traits, including language, Theory of Mind, and empathy.
Collapse
Affiliation(s)
- Cody Moser
- Department of Cognitive and Information Sciences, University of California, Merced, Merced, CA, USA.
| | - William Buckner
- Human Systems and Behavior Lab, Department of Anthropology, Boston University, Boston, MA, USA
| | - Melina Sarian
- Department of Anthropology, University of California, Davis, Davis, CA, USA
| | - Jeffrey Winking
- Department of Anthropology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
10
|
Alencar CLDS, Nogueira A, Vicente RE, Coutinho ÍAC. Plant species with larger extrafloral nectaries produce better quality nectar when needed and interact with the best ant partners. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4613-4627. [PMID: 37115640 DOI: 10.1093/jxb/erad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 04/27/2023] [Indexed: 06/19/2023]
Abstract
Few studies have explored the phenotypic plasticity of nectar production on plant attractiveness to ants. Here, we investigate the role of extrafloral nectary (EFN) size on the productivity of extrafloral nectar in three sympatric legume species. We hypothesized that plant species with larger EFNs (i) have higher induced nectar secretion after herbivory events, and (ii) are more likely to interact with more protective (i.e. dominant) ant partners. We target 90 plants of three Chamaecrista species in the field. We estimated EFN size and conducted field experiments to evaluate any differences in nectar traits before and after leaf damage to investigate the phenotypic plasticity of nectar production across species. We conducted multiple censuses of ant species feeding on EFNs over time. Plant species increased nectar descriptors after leaf damage, but in different ways. Supporting our hypothesis, C. duckeana, with the largest EFN size, increased all nectar descriptors, with most intense post-herbivory-induced response, taking its place as the most attractive to ants, including dominant species. EFN size variation was an excellent indicator of nectar productivity across species. The higher control over reward production in plants with larger sized EFNs reflects an induction mechanism under damage that reduces costs and increases the potential benefits of indirect biotic defences.
Collapse
Affiliation(s)
- Cícero Luanderson da Silva Alencar
- Universidade Federal do Ceará, campus do Pici, Centro de Ciências, Departamento de Biologia, Laboratório de Morfoanatomia Funcional de Plantas, Programa de Pós-graduação em Ecologia e Recursos Naturais, Fortaleza, CE, Brazil
| | - Anselmo Nogueira
- Laboratório de Interações Planta-Animal (LIPA), Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Ricardo Eduardo Vicente
- Instituto Nacional da Mata Atlântica, Ministério da Ciência, Tecnologia e Inovações, Santa Teresa, ES, Brazil
| | - Ítalo Antônio Cotta Coutinho
- Universidade Federal do Ceará, campus do Pici, Centro de Ciências, Departamento de Biologia, Laboratório de Morfoanatomia Funcional de Plantas, Programa de Pós-graduação em Ecologia e Recursos Naturais, Fortaleza, CE, Brazil
| |
Collapse
|
11
|
Leimar O, McNamara JM. Game theory in biology: 50 years and onwards. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210509. [PMID: 36934762 PMCID: PMC10024991 DOI: 10.1098/rstb.2021.0509] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/31/2022] [Indexed: 03/20/2023] Open
Abstract
Game theory in biology gained prominence 50 years ago, when Maynard Smith & Price formulated the concept of an evolutionarily stable strategy (ESS). Their aim was to explain why conflicts between animals of the same species usually are of a 'limited war' type, not causing serious injury. They emphasized that game theory is an alternative to previous ideas about group selection, which were used by ethologists to explain limited aggression. Subsequently, the ESS concept was applied to many phenomena with frequency dependence in the evolutionary success of strategies, including sex allocation, alternative mating types, contest behaviour and signalling, cooperation, and parental care. Both the analyses of signalling and cooperation were inspired by similar problems in economics and attracted much attention in biology. Here we give a perspective on which of the ambitions in the field have been achieved, with a focus on contest behaviour and cooperation. We evaluate whether the game-theoretical study of the evolution of cooperation has measured up to expectations in explaining the behaviour of non-human animals. We also point to potentially fruitful directions for the field, and emphasize the importance of incorporating realistic behavioural mechanisms into models. This article is part of the theme issue 'Half a century of evolutionary games: a synthesis of theory, application and future directions'.
Collapse
Affiliation(s)
- Olof Leimar
- Department of Zoology, Stockholm University, Stockholm 106 91, Sweden
| | - John M. McNamara
- School of Mathematics, University of Bristol, Bristol BS8 1UG, UK
| |
Collapse
|
12
|
Horning AL, Koury SS, Meachum M, Kuehn KA, Hoeksema JD. Dirt cheap: an experimental test of controls on resource exchange in an ectomycorrhizal symbiosis. THE NEW PHYTOLOGIST 2023; 237:987-998. [PMID: 36346200 DOI: 10.1111/nph.18603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
To distinguish among hypotheses on the importance of resource-exchange ratios in outcomes of mutualisms, we measured resource (carbon (C), nitrogen (N), and phosphorus (P)) transfers and their ratios, between Pinus taeda seedlings and two ectomycorrhizal (EM) fungal species, Rhizopogon roseolus and Pisolithus arhizus in a laboratory experiment. We evaluated how ambient light affected those resource fluxes and ratios over three time periods (10, 20, and 30 wk) and the consequences for plant and fungal biomass accrual, in environmental chambers. Our results suggest that light availability is an important factor driving absolute fluxes of N, P, and C, but not exchange ratios, although its effects vary among EM fungal species. Declines in N : C and P : C exchange ratios over time, as soil nutrient availability likely declined, were consistent with predictions of biological market models. Absolute transfer of P was an important predictor of both plant and fungal biomass, consistent with the excess resource-exchange hypothesis, and N transfer to plants was positively associated with fungal biomass. Altogether, light effects on resource fluxes indicated mixed support for various theoretical frameworks, while results on biomass accrual better supported the excess resource-exchange hypothesis, although among-species variability is in need of further characterization.
Collapse
Affiliation(s)
- Amber L Horning
- Department of Biology, University of Mississippi, PO Box 1848, University, MS, 38677, USA
| | - Stephanie S Koury
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, 118 College Drive #5018, Hattiesburg, MS, 39406-0001, USA
| | - Mariah Meachum
- Department of Biology, University of Mississippi, PO Box 1848, University, MS, 38677, USA
| | - Kevin A Kuehn
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, 118 College Drive #5018, Hattiesburg, MS, 39406-0001, USA
| | - Jason D Hoeksema
- Department of Biology, University of Mississippi, PO Box 1848, University, MS, 38677, USA
| |
Collapse
|
13
|
Martin JS, Jaeggi AV, Koski SE. The social evolution of individual differences: Future directions for a comparative science of personality in social behavior. Neurosci Biobehav Rev 2023; 144:104980. [PMID: 36463970 DOI: 10.1016/j.neubiorev.2022.104980] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
Personality is essential for understanding the evolution of cooperation and conflict in behavior. However, personality science remains disconnected from the field of social evolution, limiting our ability to explain how personality and plasticity shape phenotypic adaptation in social behavior. Researchers also lack an integrative framework for comparing personality in the contextualized and multifaceted behaviors central to social interactions among humans and other animals. Here we address these challenges by developing a social evolutionary approach to personality, synthesizing theory, methods, and organizing questions in the study of individuality and sociality in behavior. We critically review current measurement practices and introduce social reaction norm models for comparative research on the evolution of personality in social environments. These models demonstrate that social plasticity affects the heritable variance of personality, and that individual differences in social plasticity can further modify the rate and direction of adaptive social evolution. Future empirical studies of frequency- and density-dependent social selection on personality are crucial for further developing this framework and testing adaptive theory of social niche specialization.
Collapse
Affiliation(s)
- Jordan S Martin
- Human Ecology Group, Institute of Evolutionary Medicine, University of Zurich, Switzerland.
| | - Adrian V Jaeggi
- Human Ecology Group, Institute of Evolutionary Medicine, University of Zurich, Switzerland.
| | - Sonja E Koski
- Organismal and Evolutionary Biology, University of Helsinki, Finland.
| |
Collapse
|
14
|
Lloyd-Jones DJ, St Clair JJH, Cram DL, Yassene O, van der Wal JEM, Spottiswoode CN. When wax wanes: competitors for beeswax stabilize rather than jeopardize the honeyguide–human mutualism. Proc Biol Sci 2022; 289:20221443. [PMID: 36448420 PMCID: PMC9709655 DOI: 10.1098/rspb.2022.1443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Many mutualisms are exploited by third-party species, which benefit without providing anything in return. Exploitation can either destabilize or promote mutualisms, via mechanisms that are highly dependent on the ecological context. Here we study a remarkable bird–human mutualism, in which wax-eating greater honeyguides (
Indicator indicator
) guide humans (
Homo sapiens
) to wild bees' nests, in an exchange of knowledge about the location of nests for access to the wax combs inside. We test whether the depletion of wax by mammalian and avian exploiter species either threatens or stabilizes the mutualism. Using camera traps, we monitored feeding visits to wax comb made available following honey harvests. We found that greater honeyguides face competition for wax from conspecifics and nine exploiter species, five of which were not previously known to consume wax. Our results support the hypothesis that heterospecific exploiters stabilize the mutualism, because wax depletion by these competitors probably limits feeding opportunities for conspecific exploiters, favouring the early-arriving individual that guided humans to the bees’ nest. These findings highlight the importance of the ecological context of species interactions and provide further evidence for how mutualisms can persist because of, and not in spite of, exploitation by third-party species.
Collapse
Affiliation(s)
- David J. Lloyd-Jones
- FitzPatrick Institute of African Ornithology, University of Cape Town, Cape Town 7700, South Africa
| | - James J. H. St Clair
- Department of Zoology, University of Cambridge, Cambridge CB2 1TN, UK
- School of Biology, University of St Andrews, St Andrews KY16 9AJ, UK
| | - Dominic L. Cram
- Department of Zoology, University of Cambridge, Cambridge CB2 1TN, UK
| | - Orlando Yassene
- Mariri Environmental Centre, Concession L5 South, Niassa Special Reserve, Niassa Province, Mozambique
| | | | - Claire N. Spottiswoode
- FitzPatrick Institute of African Ornithology, University of Cape Town, Cape Town 7700, South Africa
- Department of Zoology, University of Cambridge, Cambridge CB2 1TN, UK
| |
Collapse
|
15
|
Marfurt SM, Allen SJ, Bizzozzero MR, Willems EP, King SL, Connor RC, Kopps AM, Wild S, Gerber L, Wittwer S, Krützen M. Association patterns and community structure among female bottlenose dolphins: environmental, genetic and cultural factors. Mamm Biol 2022; 102:1373-1387. [PMID: 36998433 PMCID: PMC10040398 DOI: 10.1007/s42991-022-00259-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 05/16/2022] [Indexed: 11/06/2022]
Abstract
AbstractSocial structuring from assortative associations may affect individual fitness, as well as population-level processes. Gaining a broader understanding of social structure can improve our knowledge of social evolution and inform wildlife conservation. We investigated association patterns and community structure of female Indo-Pacific bottlenose dolphins (Tursiops aduncus) in Shark Bay, Western Australia, assessing the role of kinship, shared culturally transmitted foraging techniques, and habitat similarity based on water depth. Our results indicated that associations are influenced by a combination of uni- and biparental relatedness, cultural behaviour and habitat similarity, as these were positively correlated with a measure of dyadic association. These findings were matched in a community level analysis. Members of the same communities overwhelmingly shared the same habitat and foraging techniques, demonstrating a strong homophilic tendency. Both uni- and biparental relatedness between dyads were higher within than between communities. Our results illustrate that intraspecific variation in sociality in bottlenose dolphins is influenced by a complex combination of genetic, cultural, and environmental aspects.
Collapse
Affiliation(s)
- Svenja M. Marfurt
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, 8057 Zurich, Switzerland
| | - Simon J. Allen
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, 8057 Zurich, Switzerland
- School of Biological Sciences, University of Western Australia, Perth, WA 6009 Australia
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ UK
| | - Manuela R. Bizzozzero
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, 8057 Zurich, Switzerland
| | - Erik P. Willems
- Department of Anthropology, University of Zurich, 8057 Zurich, Switzerland
| | - Stephanie L. King
- School of Biological Sciences, University of Western Australia, Perth, WA 6009 Australia
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ UK
| | | | - Anna M. Kopps
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - Sonja Wild
- Cognitive and Cultural Ecology Research Group, Max Planck Institute of Animal Behaviour, Am Obstberg 1, 78315 Radolfzell, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstrasse 10, 78464 Constance, Germany
| | - Livia Gerber
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, 8057 Zurich, Switzerland
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - Samuel Wittwer
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, 8057 Zurich, Switzerland
| | - Michael Krützen
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
16
|
Gilby IC, Machanda ZP. Advanced cognition in wild chimpanzees: lessons from observational studies. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Mine JG, Slocombe KE, Willems EP, Gilby IC, Yu M, Thompson ME, Muller MN, Wrangham RW, Townsend SW, Machanda ZP. Vocal signals facilitate cooperative hunting in wild chimpanzees. SCIENCE ADVANCES 2022; 8:eabo5553. [PMID: 35905190 PMCID: PMC9337754 DOI: 10.1126/sciadv.abo5553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/15/2022] [Indexed: 05/22/2023]
Abstract
Cooperation and communication likely coevolved in humans. However, the evolutionary roots of this interdependence remain unclear. We address this issue by investigating the role of vocal signals in facilitating a group cooperative behavior in an ape species: hunting in wild chimpanzees. First, we show that bark vocalizations produced before hunt initiation are reliable signals of behavioral motivation, with barkers being most likely to participate in the hunt. Next, we find that barks are associated with greater hunter recruitment and more effective hunting, with shorter latencies to hunting initiation and prey capture. Our results indicate that the coevolutionary relationship between vocal communication and group-level cooperation is not unique to humans in the ape lineage and is likely to have been present in our last common ancestor with chimpanzees.
Collapse
Affiliation(s)
- Joseph G. Mine
- Department of Comparative Language Science, University of Zürich, Zürich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution, University of Zürich, Zürich, Switzerland
| | | | - Erik P. Willems
- Department of Anthropology, University of Zürich, Zürich, Switzerland
| | - Ian C. Gilby
- School of Human Evolution and Social Change, and Institute of Human Origins, Arizona State University, Tempe, AZ, USA
| | - Miranda Yu
- Departments of Anthropology and Biology, Tufts University, Medford, MA, USA
| | | | - Martin N. Muller
- Department of Anthropology, University of New Mexico, Albuquerque, NM, USA
| | - Richard W. Wrangham
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Simon W. Townsend
- Department of Comparative Language Science, University of Zürich, Zürich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution, University of Zürich, Zürich, Switzerland
- Department of Psychology, University of Warwick, Warwick, UK
| | - Zarin P. Machanda
- Departments of Anthropology and Biology, Tufts University, Medford, MA, USA
| |
Collapse
|
18
|
Quintero F, Touitou S, Magris M, Zuberbühler K. The Evolution of Food Calls: Vocal Behaviour of Sooty Mangabeys in the Presence of Food. Front Psychol 2022; 13:897318. [PMID: 35846626 PMCID: PMC9282157 DOI: 10.3389/fpsyg.2022.897318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
The two main theories of food-associated calls in animals propose functions either in cooperative recruitment or competitive spacing. However, not all social animals produce food calls and it is largely unclear under what circumstances this call type evolves. Sooty mangabeys (Cercocebus atys) do not have food calls, but they frequently produce grunts during foraging, their most common vocalisation. We found that grunt rates were significantly higher when subjects were foraging in the group’s periphery and with small audiences, in line with the cooperative recruitment hypothesis. In a subsequent field experiment we presented highly desired food items and found that discovering individuals called, unless harassed by competitors, but that the calls never attracted others, confirming that the grunts do not convey any information referential to food. Our data thus suggest that the evolution of cooperative food calling is a two-step process, starting with increased motivation to vocalise in the feeding context, followed by the evolution of acoustic variants derived from context-general contact calls. This evolutionary transition may only occur in species that feed on clumped, high-quality resources where social feeding is competitive, a condition not met in sooty mangabeys.
Collapse
Affiliation(s)
- Fredy Quintero
- Department of Comparative Cognition, Institute of Biology, Université de Neuchâtel, Neuchâtel, Switzerland
- Centre Suisse de Recherches Scientifiques, Taï Monkey Project, Abidjan, Côte d’Ivoire
- *Correspondence: Fredy Quintero,
| | - Sonia Touitou
- Centre Suisse de Recherches Scientifiques, Taï Monkey Project, Abidjan, Côte d’Ivoire
| | - Martina Magris
- Centre Suisse de Recherches Scientifiques, Taï Monkey Project, Abidjan, Côte d’Ivoire
| | - Klaus Zuberbühler
- Department of Comparative Cognition, Institute of Biology, Université de Neuchâtel, Neuchâtel, Switzerland
- Centre Suisse de Recherches Scientifiques, Taï Monkey Project, Abidjan, Côte d’Ivoire
- School of Psychology and Neurosciences, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
19
|
van Leeuwen CHA, Villar N, Mendoza Sagrera I, Green AJ, Bakker ES, Soons MB, Galetti M, Jansen PA, Nolet BA, Santamaría L. A seed dispersal effectiveness framework across the mutualism–antagonism continuum. OIKOS 2022. [DOI: 10.1111/oik.09254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Nacho Villar
- Dept of Aquatic Ecology, Netherlands Inst. of Ecology (NIOO‐KNAW) Wageningen the Netherlands
- Inst. de Biociências, Depto de Biodiversidade, Univ. Estadual Paulista (UNESP) Rio Claro São Paulo Brazil
| | | | | | - Elisabeth S. Bakker
- Dept of Aquatic Ecology, Netherlands Inst. of Ecology (NIOO‐KNAW) Wageningen the Netherlands
- Wildlife Ecology and Conservation Group, Wageningen Univ. Wageningen the Netherlands
| | - Merel B. Soons
- Ecology and Biodiversity Group, Inst. of Environmental Biology, Utrecht Univ. Utrecht the Netherlands
| | - Mauro Galetti
- Inst. de Biociências, Depto de Biodiversidade, Univ. Estadual Paulista (UNESP) Rio Claro São Paulo Brazil
- Dept of Biology, Univ. of Miami Coral Gables FL USA
| | - Patrick A. Jansen
- Wildlife Ecology and Conservation Group, Wageningen Univ. Wageningen the Netherlands
- Smithsonian Tropical Research Inst. Panamá República de Panamá
| | - Bart A. Nolet
- Dept of Animal Ecology, Netherlands Inst. of Ecology (NIOO‐KNAW) Wageningen the Netherlands
| | | |
Collapse
|
20
|
Hamilton RA, Gazda SK, King SL, Stakhammar J, Connor IC. Bottlenose dolphin communication during a role-specialized group foraging task. Behav Processes 2022; 200:104691. [PMID: 35750114 DOI: 10.1016/j.beproc.2022.104691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/16/2022] [Accepted: 06/18/2022] [Indexed: 11/02/2022]
Abstract
A division of labor with role specialization is defined as individuals specializing in a subtask during repetitions of a group task. While this behavior is ubiquitous among humans, there are only four candidates found among non-eusocial mammals: lions, mice, chimpanzees, and bottlenose dolphins. Bottlenose dolphins in the Cedar Keys, Florida, engage in role specialized "driver-barrier feeding", where a "driver" dolphin herds mullet towards "barrier" dolphins. Thus trapped, the mullet leap out of the water where the dolphins catch them in air. To investigate whether dolphins use acoustic cues or signals to coordinate this behavior, vocalizations were recorded before and during driver-barrier feeding. Results of fine-scale audio and video analysis during 81 events by 7 different driver individuals suggest that barrier animals coordinate movements during these events by cueing on the driver's echolocation. Analyses of dolphin whistle occurrence before driving events versus another foraging technique, which does not involve role specialization, revealed significantly higher whistle production immediately prior to driver-barrier events. Possible whistle functions include signaling motivation, recruiting individuals to participate, and/or behavioral coordination. While the use of cues and signals is common in humans completing role-specialized tasks, this is the first study to investigate the use of vocalizations in the coordination of a role-specialized behavior in a non-human mammal.
Collapse
Affiliation(s)
- Rebecca A Hamilton
- Biology Department, University of Massachusetts Dartmouth, North Dartmouth, MA, USA.
| | | | - Stephanie L King
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | | | - Ichard C Connor
- Biology Department, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| |
Collapse
|
21
|
Ruotsalainen AL, Kauppinen M, Wäli PR, Saikkonen K, Helander M, Tuomi J. Dark septate endophytes: mutualism from by-products? TRENDS IN PLANT SCIENCE 2022; 27:247-254. [PMID: 34756535 DOI: 10.1016/j.tplants.2021.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/31/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Plant roots are abundantly colonized by dark septate endophytic (DSE) fungi in virtually all ecosystems. DSE fungi are functionally heterogeneous and their relationships with plants range from antagonistic to mutualistic. Here, we consider the role of by-product benefits in DSE and other root-fungal symbioses. We compared host investments against symbiont-derived benefits for the host plant and categorized these benefits as by-products or benefits requiring reciprocal investment from the host. By-product benefits may provide the variability required for the evolution of invested mutualisms between the host and symbiont. We suggest that DSE could be considered as 'a by-product mutualist transitional phase' in the evolution of cooperative mycorrhizal symbionts from saprotrophic fungi.
Collapse
Affiliation(s)
- Anna L Ruotsalainen
- Department of Ecology and Genetics, POB 3000, University of Oulu, FI-90014 Oulu, Finland.
| | - Miia Kauppinen
- Biodiversity Unit, University of Turku, FI-20014 Turku, Finland
| | - Piippa R Wäli
- Department of Ecology and Genetics, POB 3000, University of Oulu, FI-90014 Oulu, Finland; Natural Resources Institute Finland (Luke), Ounasjoentie 6, FI-96200 Rovaniemi, Finland
| | - Kari Saikkonen
- Biodiversity Unit, University of Turku, FI-20014 Turku, Finland
| | - Marjo Helander
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Juha Tuomi
- Meritie 43, FI-29900 Merikarvia, Finland
| |
Collapse
|
22
|
Prakash S, Kumar A, Okla MK, Ahmad AL, Abbas ZK, Al-Ghamdi AA, Beemster G, AbdElgawad H. Physiological responses of the symbiotic shrimp Ancylocaris brevicarpalis and its host sea anemone Stichodactyla haddoni to ocean acidification. MARINE POLLUTION BULLETIN 2022; 175:113287. [PMID: 35114544 DOI: 10.1016/j.marpolbul.2021.113287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
In this study, the physiology of symbiotic 'peacock-tail' shrimp Ancylocaris brevicarpalis and its host 'Haddon's carpet' sea anemone Stichodactyla haddoni were tested under lowered pH (7.7) and control (8.1) conditions. The biochemical responses such as digestive enzyme (AP), organic acids (lactate and succinate), oxidative damages (MDA), antioxidants metabolites/enzymes (ASC, GSH, SOD, CAT, APX, GPX, GR, POX, and PHOX), and detoxification enzyme (GST) were measured. The AP showed insignificantly reduced values in both the organisms in lowered pH conditions compared to control indicating the effect of abiotic stress. The hierarchical clustering analysis indicated low MDA in sea anemone can be explained by higher POX, APX, GR, ASC, and GSH levels compared to shrimps. However, the detoxification enzyme GST showed less activity in sea anemones compared to shrimps. The results suggest that A. brevicarpalis and sea anemone S. haddoni may have deleterious effects when exposed to short-term acidification stress.
Collapse
Affiliation(s)
- Sanjeevi Prakash
- Centre for Climate Change Studies, Sathybama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai 600119, Tamil Nadu, India; Sathyabama Marine Research Station, Sallimalai Street, Rameswaram 623526, Tamil Nadu, India.
| | - Amit Kumar
- Centre for Climate Change Studies, Sathybama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai 600119, Tamil Nadu, India; Sathyabama Marine Research Station, Sallimalai Street, Rameswaram 623526, Tamil Nadu, India
| | - Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - ALhimadi Ahmad
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Zahid Khorshid Abbas
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah A Al-Ghamdi
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Gerrit Beemster
- University of Antwerp, Department of Biology, Integrated Molecular Plant Physiology Research Group, Antwerp, Belgium
| | - Hamada AbdElgawad
- University of Antwerp, Department of Biology, Integrated Molecular Plant Physiology Research Group, Antwerp, Belgium; Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
23
|
Cao L, Jansen PA, Wang B, Yan C, Wang Z, Chen J. Mutual cheating strengthens a tropical seed dispersal mutualism. Ecology 2021; 103:e03574. [PMID: 34706058 DOI: 10.1002/ecy.3574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/16/2021] [Accepted: 07/07/2021] [Indexed: 11/07/2022]
Abstract
While cheating can cause the degradation or collapse of mutualisms, mutualisms may theoretically stabilize or strengthen if the cheating is mutual. Here, we present an asymmetric two-player game model to explore the evolutionary dynamics of mutual cheating in a mutualistic interaction. We found that the interaction evolved towards mutual cheating if cheating can help both partners obtain higher benefits or if counter-cheating yields more benefits to victims than simply tolerating exploitation by partners. Then, we present empirical evidence for such mutual cheating strengthening a seed dispersal mutualism in which rodents disperse seeds by scatter hoarding, rodents sabotage seed germination by pruning radicles, and seeds escape rodents by resprouting. By tracking >8000 Pittosporopsis kerrii seeds throughout the dispersal process in a tropical forest in southwest China, we found that rodents provided better dispersal to seeds that they pruned, i.e., pruned seeds were dispersed farther and were more likely to establish seedlings than unpruned seeds. Compared to unpruned seeds, pruned seeds retained more of their nutrients, i.e., dry mass of pruned seeds was greater than that of unpruned seeds, and were stored for longer by rodents. These findings indicate that mutual cheating benefited both partners. Payoffs estimated from the field experiments indicated that mutual cheating was indeed favored in rodents and plants P. kerrii, and that neither partner was enslaved by the other under mutual cheating. Rather, the mutualism remained stable because the partners were able to exploit each other, and each partner attempted to gain the maximum benefits from the interaction. Our findings indicate that mutual cheating between two mutualists can enhance and stabilize mutualisms.
Collapse
Affiliation(s)
- Lin Cao
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China.,Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Patrick A Jansen
- Department of Environmental Sciences, Wageningen University, PO Box 47, 6700 AA, Wageningen, The Netherlands.,Smithsonian Tropical Research Institute, Apartado, 0843-03092, Republic of Panama
| | - Bo Wang
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China.,School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Chuan Yan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhenyu Wang
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Jin Chen
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| |
Collapse
|
24
|
Li LL, Plotnik JM, Xia SW, Meaux E, Quan RC. Cooperating elephants mitigate competition until the stakes get too high. PLoS Biol 2021; 19:e3001391. [PMID: 34582437 PMCID: PMC8478180 DOI: 10.1371/journal.pbio.3001391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/15/2021] [Indexed: 12/05/2022] Open
Abstract
Cooperation is ubiquitous in the animal kingdom as it aims to maximize benefits through joint action. Selection, however, may also favor competitive behaviors that could violate cooperation. How animals mitigate competition is hotly debated, with particular interest in primates and little attention paid thus far to nonprimates. Using a loose-string pulling apparatus, we explored cooperative and competitive behavior, as well as mitigation of the latter, in semi-wild Asian elephants (Elephas maximus). Our results showed that elephants first maintained a very high cooperation rate (average = 80.8% across 45 sessions). Elephants applied “block,” “fight back,” “leave,” “move side,” and “submission” as mitigation strategies and adjusted these strategies according to their affiliation and rank difference with competition initiators. They usually applied a “fight back” mitigation strategy as a sanction when competition initiators were low ranking or when they had a close affiliation, but were submissive if the initiators were high ranking or when they were not closely affiliated. However, when the food reward was limited, the costly competitive behaviors (“monopoly” and “fight”) increased significantly, leading to a rapid breakdown in cooperation. The instability of elephant cooperation as a result of benefit reduction mirrors that of human society, suggesting that similar fundamental principles may underlie the evolution of cooperation across species. This study shows that in a task requiring coordinated pulling, elephants compete for access to food but work to mitigate competition in order to maintain cooperation. If the cost of competition becomes too high, however, cooperation breaks down entirely. This behavior mirrors that seen in humans and other great apes, suggesting that certain cooperative mechanisms are not unique to primates.
Collapse
Affiliation(s)
- Li-Li Li
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China and Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Nay Pyi Taw, Myanmar
- University of Chinese Academy of Sciences, Beijing, China
| | - Joshua M. Plotnik
- Department of Psychology, Hunter College, City University of New York, New York, New York, United States of America
- Department of Psychology, The Graduate Center, City University of New York, New York, New York, United States of America
- * E-mail: (JMP); (R-CQ)
| | - Shang-Wen Xia
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Estelle Meaux
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Rui-Chang Quan
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China and Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Nay Pyi Taw, Myanmar
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, China
- * E-mail: (JMP); (R-CQ)
| |
Collapse
|
25
|
Steidinger BS, Peay KG. Optimal Allocation Ratios: A Square Root Relationship between the Ratios of Symbiotic Costs and Benefits. Am Nat 2021; 198:460-472. [PMID: 34559611 DOI: 10.1086/716182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractAll organisms struggle to make sense of environmental stimuli in order to maximize their fitness. For animals, the responses of single cells and superorganisms to stimuli are generally proportional to stimulus ratios, a phenomenon described by Weber's law. However, Weber's law has not yet been used to predict how plants respond to stimuli generated from their symbiotic partners. Here we develop a model for quantitatively predicting the ratios of carbon (C) allocation to symbionts that provide nutrients to their plant host. Consistent with Weber's law, our model demonstrates that the optimal ratio of resources allocated to a less beneficial relative to a more beneficial symbiont scale to the ratio of the growth benefits of the two strains. As C allocation to symbionts increases, the ratio of C allocation to two strains approaches the square root of the ratio of symbiotic growth benefits (e.g., a worse symbiont providing one-fourth the benefits gets 1/4=1/2 the C of a better symbiont). We document a compelling correspondence between our square root model prediction and a meta-analysis of experimental literature on C allocation. This type of preferential allocation can promote coexistence between more beneficial and less beneficial symbionts, offering a potential mechanism behind the high diversity of microbial symbionts observed in nature.
Collapse
|
26
|
Six DL, Klepzig KD. Context Dependency in Bark Beetle-Fungus Mutualisms Revisited: Assessing Potential Shifts in Interaction Outcomes Against Varied Genetic, Ecological, and Evolutionary Backgrounds. Front Microbiol 2021; 12:682187. [PMID: 34054789 PMCID: PMC8149605 DOI: 10.3389/fmicb.2021.682187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
Context dependency occurs when biological interactions shift in sign or magnitude depending upon genetic, abiotic, and biotic context. Most models of mutualism address systems where interaction outcomes slide along a mutualism-antagonism continuum as environmental conditions vary altering cost-benefit relationships. However, these models do not apply to the many mutualisms that involve by-product benefits and others that do not have antagonistic alternate states. The ubiquity of such mutualisms indicates a need for different approaches and models to understand how environmental variability influences their strength, stability, and ecological roles. In this paper, we apply the concept of context dependency to mutualisms among bark beetles and fungi that span a variety of life strategies and exposures to environmental variability. Bark beetles and their mutualist fungi co-construct a niche based on by-product benefits that allows them to exist in a resource that is otherwise intractable or inaccessible. For the closest of these partnerships, this has resulted in some of the most influential agents of forest mortality in conifer forests worldwide. Understanding these symbioses is key to understanding their influence on forest structure and dynamics and responses to change. We found no evidence that bark beetle mutualisms change in sign as conditions vary, only in magnitude, and that the "closest" (and most environmentally influential) of these partnerships have evolved behaviors and mechanisms to reduce context-dependency and stabilize benefit delivery. The bark beetle-fungus symbioses most likely to slide along a mutualism-antagonism continuum are those involving loosely associated facultative symbionts that may provide benefits under some circumstances and that are horizontally transmitted by the beetle host. Additionally, some symbiotic fungi are never mutualists - these "third party" fungi are exploiters and may shift from commensalism to antagonism depending on environmental context. Our assessment indicates that a careful differentiation between bark beetle-fungus partnerships is crucial to understanding how they influence forests and respond to environmental variability.
Collapse
Affiliation(s)
- Diana L Six
- Department of Ecosystem and Conservation Science, The University of Montana, Missoula, MT, United States
| | | |
Collapse
|
27
|
Gerber L, Wittwer S, Allen SJ, Holmes KG, King SL, Sherwin WB, Wild S, Willems EP, Connor RC, Krützen M. Cooperative partner choice in multi-level male dolphin alliances. Sci Rep 2021; 11:6901. [PMID: 33767258 PMCID: PMC7994371 DOI: 10.1038/s41598-021-85583-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/22/2021] [Indexed: 12/28/2022] Open
Abstract
Investigations into cooperative partner choice should consider both potential and realised partners, allowing for the comparison of traits across all those available. Male bottlenose dolphins form persisting multi-level alliances. Second-order alliances of 4–14 males are the core social unit, within which 2–3 males form first-order alliances to sequester females during consortships. We compared social bond strength, relatedness and age similarity of potential and realised partners of individual males in two age periods: (i) adolescence, when second-order alliances are formed from all available associates, and (ii) adulthood, when first-order allies are selected from within second-order alliances. Social bond strength during adolescence predicted second-order alliance membership in adulthood. Moreover, males preferred same-aged or older males as second-order allies. Within second-order alliances, non-mating season social bond strength predicted first-order partner preferences during mating season consortships. Relatedness did not influence partner choice on either alliance level. There is thus a striking resemblance between male dolphins, chimpanzees and humans, where closely bonded non-relatives engage in higher-level, polyadic cooperative acts. To that end, our study extends the scope of taxa in which social bonds rather than kinship explain cooperation, providing the first evidence that such traits might have evolved independently in marine and terrestrial realms.
Collapse
Affiliation(s)
- Livia Gerber
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, 8057, Zurich, Switzerland.
| | - Samuel Wittwer
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, 8057, Zurich, Switzerland
| | - Simon J Allen
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, 8057, Zurich, Switzerland.,School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK.,School of Biological Sciences and Oceans Institute, University of Western Australia, Crawley, WA, 6009, Australia
| | - Kathryn G Holmes
- School of Biological Sciences and Oceans Institute, University of Western Australia, Crawley, WA, 6009, Australia
| | - Stephanie L King
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK.,School of Biological Sciences and Oceans Institute, University of Western Australia, Crawley, WA, 6009, Australia
| | - William B Sherwin
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Sonja Wild
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464, Konstanz, Germany.,Cognitive and Cultural Ecology Research Group, Max Planck Institute of Animal Behavior, 78315, Radolfzell, Germany
| | - Erik P Willems
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, 8057, Zurich, Switzerland
| | - Richard C Connor
- Biology Department, UMASS Dartmouth, North Dartmouth, MA, 02747, USA
| | - Michael Krützen
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, 8057, Zurich, Switzerland
| |
Collapse
|
28
|
Zorzal G, Camarota F, Dias M, Vidal DM, Lima E, Fregonezi A, Campos RI. The dear enemy effect drives conspecific aggressiveness in an Azteca-Cecropia system. Sci Rep 2021; 11:6158. [PMID: 33731789 PMCID: PMC7970830 DOI: 10.1038/s41598-021-85070-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/24/2021] [Indexed: 01/31/2023] Open
Abstract
Territoriality is costly, and the accurate identification of intruders and the decision to perform aggressive responses are key behavioral traits in social animals. We studied aggression among individuals belonging to close and distant nests of the plant-ant Azteca muelleri, which lives in stems of the pioneer tree Cecropia glaziovii. More specifically, we aim to investigate if the DE (dear-enemy effect-less aggression towards neighbors than strangers) or NN (nasty-neighbor effect-less aggression to strangers than neighbors) effects or even none of them apply for this iconic Azteca-Cecropia system. We further checked if ant aggression towards conspecifics is related to cuticular hydrocarbon profiles (CHCs), which provide chemical cues for nestmate recognition. Therefore, we sampled 46 nests of A. muelleri in three Brazilian Atlantic forest fragments and performed behavioral trials within and between sites. Consistently with the DE effect, we found higher aggression levels in 'between sites' versus 'within sites' treatments as well as a positive effect of spatial distance on ant aggressiveness. We found no effect of the overall dissimilarities on CHC blend on ant aggressiveness, but of one CHC class, the methylated alkanes. Overall, we provide key insights on nest-mate recognition in obligatory ant-plant mutualisms.
Collapse
Affiliation(s)
- Gabriela Zorzal
- Programa de Pós-Graduação Em Ecologia, Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570900, Brazil
| | - Flávio Camarota
- Programa de Pós-Graduação Em Ecologia, Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570900, Brazil
| | - Marcondes Dias
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Diogo M Vidal
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eraldo Lima
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Aline Fregonezi
- Programa de Pós-Graduação Em Ecologia, Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570900, Brazil
| | - Ricardo I Campos
- Programa de Pós-Graduação Em Ecologia, Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570900, Brazil.
| |
Collapse
|
29
|
Komo L, Hedouin V, Charabidze D. Benefits of heterospecific aggregation on necromass: influence of temperature, group density, and composition on fitness-related traits. INSECT SCIENCE 2021; 28:144-152. [PMID: 32067410 DOI: 10.1111/1744-7917.12766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/19/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Necrophagous blowflies (Diptera: Calliphoridae) such as Calliphora vicina, a cold-tolerant species, and Lucilia sericata, a warm-adapted species, are pioneer carrion-breeder. Although these two species have different temperature preferences, larvae aggregate actively and often feed simultaneously on carrion. The hypothesis to be tested was that L. sericata benefits from the association with C. vicina at lower temperatures (i.e., 15 °C) and that C. vicina derives greater benefits from this association at higher temperatures (i.e., 28 °C). Therefore, both species were raised at these two constant temperatures from first instars to adults under three different conditions: monospecific low-density, monospecific high-density, and heterospecific high-density. The time until larval migration, surface area of puparia, and survival rates were determined for each condition. Differences between these fitness-related traits were found between species, temperatures, group densities, and species compositions. At 28 °C, C. vicina larvae bred in heterospecific groups migrated significantly earlier and in higher numbers than that under same density conspecific conditions, with a lower mortality rate. At 15 °C, both species benefited from high-density heterospecific associations, expressed by faster development and larger puparia. In conclusion, necrophagous larvae benefited from heterospecific aggregations at suboptimal temperatures by adapting their migration time to that of the faster species. Since temperature changes throughout the day and over the year, the beneficiary of such a collective association also changes. The costs involved and deviations to the temperature-size rule highlight the complexity of the carrion ecosystem.
Collapse
Affiliation(s)
- Larissa Komo
- CHU Lille, EA 7367-UTML-Unite de Taphonomie Medico-Legale, University of Lille, Lille, 59000, France
| | - Valéry Hedouin
- CHU Lille, EA 7367-UTML-Unite de Taphonomie Medico-Legale, University of Lille, Lille, 59000, France
| | - Damien Charabidze
- CHU Lille, EA 7367-UTML-Unite de Taphonomie Medico-Legale, University of Lille, Lille, 59000, France
| |
Collapse
|
30
|
Chomicki G, Kiers ET, Renner SS. The Evolution of Mutualistic Dependence. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-110218-024629] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While the importance of mutualisms across the tree of life is recognized, it is not understood why some organisms evolve high levels of dependence on mutualistic partnerships, while other species remain autonomous or retain or regain minimal dependence on partners. We identify four main pathways leading to the evolution of mutualistic dependence. Then, we evaluate current evidence for three predictions: ( a) Mutualisms with different levels of dependence have distinct stabilizing mechanisms against exploitation and cheating, ( b) less dependent mutualists will return to autonomy more often than those that are highly dependent, and ( c) obligate mutualisms should be less context dependent than facultative ones. Although we find evidence supporting all three predictions, we stress that mutualistic partners follow diverse paths toward—and away from—dependence. We also highlight the need to better examine asymmetry in partner dependence. Recognizing how variation in dependence influences the stability, breakdown, and context dependence of mutualisms generates new hypotheses regarding how and why the benefits of mutualistic partnerships differ over time and space.
Collapse
Affiliation(s)
- Guillaume Chomicki
- Department of Bioscience, Durham University, Durham DH1 3LE, United Kingdom
| | - E. Toby Kiers
- Department of Ecological Science, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Susanne S. Renner
- Systematic Botany and Mycology, Department of Biology, University of Munich (LMU), 80638 Munich, Germany
| |
Collapse
|
31
|
Zachar I, Boza G. Endosymbiosis before eukaryotes: mitochondrial establishment in protoeukaryotes. Cell Mol Life Sci 2020; 77:3503-3523. [PMID: 32008087 PMCID: PMC7452879 DOI: 10.1007/s00018-020-03462-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 12/25/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
Endosymbiosis and organellogenesis are virtually unknown among prokaryotes. The single presumed example is the endosymbiogenetic origin of mitochondria, which is hidden behind the event horizon of the last eukaryotic common ancestor. While eukaryotes are monophyletic, it is unlikely that during billions of years, there were no other prokaryote-prokaryote endosymbioses as symbiosis is extremely common among prokaryotes, e.g., in biofilms. Therefore, it is even more precarious to draw conclusions about potentially existing (or once existing) prokaryotic endosymbioses based on a single example. It is yet unknown if the bacterial endosymbiont was captured by a prokaryote or by a (proto-)eukaryote, and if the process of internalization was parasitic infection, slow engulfment, or phagocytosis. In this review, we accordingly explore multiple mechanisms and processes that could drive the evolution of unicellular microbial symbioses with a special attention to prokaryote-prokaryote interactions and to the mitochondrion, possibly the single prokaryotic endosymbiosis that turned out to be a major evolutionary transition. We investigate the ecology and evolutionary stability of inter-species microbial interactions based on dependence, physical proximity, cost-benefit budget, and the types of benefits, investments, and controls. We identify challenges that had to be conquered for the mitochondrial host to establish a stable eukaryotic lineage. Any assumption about the initial interaction of the mitochondrial ancestor and its contemporary host based solely on their modern relationship is rather perilous. As a result, we warn against assuming an initial mutually beneficial interaction based on modern mitochondria-host cooperation. This assumption is twice fallacious: (i) endosymbioses are known to evolve from exploitative interactions and (ii) cooperativity does not necessarily lead to stable mutualism. We point out that the lack of evidence so far on the evolution of endosymbiosis from mutual syntrophy supports the idea that mitochondria emerged from an exploitative (parasitic or phagotrophic) interaction rather than from syntrophy.
Collapse
Affiliation(s)
- István Zachar
- Evolutionary Systems Research Group, Institute of Evolution, Centre for Ecological Research, Klebelsberg Kunó str. 3., Tihany, 8237, Hungary.
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Department of Plant Taxonomy and Ecology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, 1117, Hungary.
- Center for the Conceptual Foundations of Science, Parmenides Foundation, Kirchplatz 1, 82049, Munich, Germany.
| | - Gergely Boza
- Evolutionary Systems Research Group, Institute of Evolution, Centre for Ecological Research, Klebelsberg Kunó str. 3., Tihany, 8237, Hungary
- Evolution and Ecology Program, International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, 2361, Laxenburg, Austria
| |
Collapse
|
32
|
McGetrick J, Brucks D, Marshall-Pescini S, Range F. No evidence for a relationship between breed cooperativeness and inequity aversion in dogs. PLoS One 2020; 15:e0233067. [PMID: 32555709 PMCID: PMC7299310 DOI: 10.1371/journal.pone.0233067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/27/2020] [Indexed: 01/06/2023] Open
Abstract
Inequity aversion, the resistance to inequitable outcomes, has been demonstrated in a wide variety of animal species. Inequity aversion was hypothesised to have co-evolved with cooperation but only limited evidence supports this. Dogs provide a suitable model species to test this hypothesis as dogs were previously shown to be inequity averse and dog breeds vary in the extent to which they were selected for cooperativeness. Here, we compared the response of 12 individuals of "cooperative worker" breeds with that of 12 individuals of "independent worker" breeds in the "paw task" previously used to demonstrate inequity aversion in dogs. We also compared the two breed groups' subsequent social behaviours in a food tolerance test and free interaction session. Although subjects in both breed groups were inequity averse, we found no considerable difference between the groups in the extent of the negative response to inequity or in the impact of the inequity on subsequent social behaviours. However, we found differences between the breed groups in the response to reward omission with cooperative breeds tending to work for longer than independent breeds. Additionally, in the free interaction session, individuals of cooperative breeds spent more time in proximity to their partner in the baseline condition than individuals of independent breeds. Overall, our results do not provide support for the hypothesis that inequity aversion and cooperation co-evolved. However, they illuminate potential differences in selection pressures experienced by cooperative worker and independent worker dog breeds throughout their evolutionary history.
Collapse
Affiliation(s)
- Jim McGetrick
- Domestication Lab, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
- Comparative Cognition Unit, Messerli Research Institute, University of Veterinary Medicine, Medical University of Vienna & University of Vienna, Vienna, Austria
| | - Désirée Brucks
- Comparative Cognition Unit, Messerli Research Institute, University of Veterinary Medicine, Medical University of Vienna & University of Vienna, Vienna, Austria
- Institute for Agricultural Sciences, ETH Zürich, Zürich, Switzerland
| | - Sarah Marshall-Pescini
- Domestication Lab, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
- Comparative Cognition Unit, Messerli Research Institute, University of Veterinary Medicine, Medical University of Vienna & University of Vienna, Vienna, Austria
| | - Friederike Range
- Domestication Lab, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
- Comparative Cognition Unit, Messerli Research Institute, University of Veterinary Medicine, Medical University of Vienna & University of Vienna, Vienna, Austria
| |
Collapse
|
33
|
McCue LM, Cioffi WR, Heithaus MR, Barrè L, Connor RC. Synchrony, leadership, and association in male Indo‐pacific bottlenose dolphins (
Tursiops aduncus
). Ethology 2020. [DOI: 10.1111/eth.13025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Laura M. McCue
- University of Massachusetts‐Dartmouth North Dartmouth MA USA
| | - William R. Cioffi
- University Program in Ecology Duke University Marine Lab Beaufort NC USA
| | - Michael R. Heithaus
- School of Environment, Arts and Society Florida International University North Miami FL USA
| | - Lynne Barrè
- West Coast Region Protected Resources Division NOAA Fisheries Service Seattle WA USA
| | | |
Collapse
|
34
|
Smith NW, Shorten PR, Altermann E, Roy NC, McNabb WC. The Classification and Evolution of Bacterial Cross-Feeding. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00153] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
35
|
Auster PJ, Cortés J, Alvarado JJ, Beita-Jiménez A. Coordinated hunting behaviors of mixed-species groups of piscivores and associated species at Isla del Coco National Park (Eastern Tropical Pacific). NEOTROPICAL ICHTHYOLOGY 2019. [DOI: 10.1590/1982-0224-20180165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT Studies of mixed-species groups of animals can reveal emergent complexities of collective behaviors. In this study we collected data on mixed-species hunting groups composed primarily of piscivorous fishes (species composition, abundance, behavioral interactions) and used both multivariate and network analyses to quantify pair-wise and guild level behavioral relationships. Our results indicate that such collective behaviors exhibit consistent patterns of associations (33 species with 282 pair-wise links within the observed network) with 10 dominant species accounting for 60% of pair-wise interactions. Species richness within groups varied (mean = 2.4, range 2-6 species) as did group size (mean = 8.1 individuals, range 2-80). Mixed-species groups, in general, were composed of species representing morphologically diverse forms that appeared to enhance access to shelter sites and implement diverse strategies for prey capture. It is noteworthy that the composition of groups did not reflect the relative abundances of their component species within the overall community of fishes, suggesting that group membership was an elective choice. The identification of these patterns, assuming they are persistent features of these communities, can be used as a foundation for studies to assess dynamics of mixed-species relationships, rates of predator success based on group membership, demographic consequences, and responses to variations in habitat attributes and associated prey resources. Such information could be used to interpret the nature of multispecies interactions within predator communities and potentially aid in conservation and management.
Collapse
Affiliation(s)
- Peter J. Auster
- University of Connecticut, USA; Sea Research Foundation,, USA
| | - Jorge Cortés
- Universidad de Costa Rica, Costa Rica; Universidad de Costa Rica, Costa Rica
| | - Juan José Alvarado
- Universidad de Costa Rica, Costa Rica; Universidad de Costa Rica, Costa Rica
| | - Andrés Beita-Jiménez
- Universidad de Costa Rica, Costa Rica; Universidad de Costa Rica, Costa Rica; Memorial University of Newfoundland, Canada
| |
Collapse
|
36
|
O’Brien AM, Sawers RJH, Ross-Ibarra J, Strauss SY. Evolutionary Responses to Conditionality in Species Interactions across Environmental Gradients. Am Nat 2018; 192:715-730. [DOI: 10.1086/700118] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
|
38
|
Bacterial Adaptation to the Host's Diet Is a Key Evolutionary Force Shaping Drosophila-Lactobacillus Symbiosis. Cell Host Microbe 2018; 24:109-119.e6. [PMID: 30008290 PMCID: PMC6054917 DOI: 10.1016/j.chom.2018.06.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/27/2018] [Accepted: 05/11/2018] [Indexed: 01/09/2023]
Abstract
Animal-microbe facultative symbioses play a fundamental role in ecosystem and organismal health. Yet, due to the flexible nature of their association, the selection pressures that act on animals and their facultative symbionts remain elusive. Here we apply experimental evolution to Drosophila melanogaster associated with its growth-promoting symbiont Lactobacillus plantarum, representing a well-established model of facultative symbiosis. We find that the diet of the host, rather than the host itself, is a predominant driving force in the evolution of this symbiosis. Furthermore, we identify a mechanism resulting from the bacterium's adaptation to the diet, which confers growth benefits to the colonized host. Our study reveals that bacterial adaptation to the host's diet may be the foremost step in determining the evolutionary course of a facultative animal-microbe symbiosis. L. plantarum experimental evolution leads to the improvement of its symbiotic benefit L. plantarum increases its growth-promotion ability by adapting to Drosophila diet Mutation of ackA gene enhances both L. plantarum fitness and benefit to the host N-acetyl-glutamine production is sufficient to improve L. plantarum growth promotion
Collapse
|
39
|
Sivan J, Curry OS, Van Lissa CJ. Excavating the Foundations: Cognitive Adaptations for Multiple Moral Domains. EVOLUTIONARY PSYCHOLOGICAL SCIENCE 2018. [DOI: 10.1007/s40806-018-0154-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Volland JM, Schintlmeister A, Zambalos H, Reipert S, Mozetič P, Espada-Hinojosa S, Turk V, Wagner M, Bright M. NanoSIMS and tissue autoradiography reveal symbiont carbon fixation and organic carbon transfer to giant ciliate host. THE ISME JOURNAL 2018; 12:714-727. [PMID: 29426952 PMCID: PMC5854253 DOI: 10.1038/s41396-018-0069-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 10/03/2017] [Accepted: 10/09/2017] [Indexed: 11/09/2022]
Abstract
The giant colonial ciliate Zoothamnium niveum harbors a monolayer of the gammaproteobacteria Cand. Thiobios zoothamnicoli on its outer surface. Cultivation experiments revealed maximal growth and survival under steady flow of high oxygen and low sulfide concentrations. We aimed at directly demonstrating the sulfur-oxidizing, chemoautotrophic nature of the symbionts and at investigating putative carbon transfer from the symbiont to the ciliate host. We performed pulse-chase incubations with 14C- and 13C-labeled bicarbonate under varying environmental conditions. A combination of tissue autoradiography and nanoscale secondary ion mass spectrometry coupled with transmission electron microscopy was used to follow the fate of the radioactive and stable isotopes of carbon, respectively. We show that symbiont cells fix substantial amounts of inorganic carbon in the presence of sulfide, but also (to a lesser degree) in the absence of sulfide by utilizing internally stored sulfur. Isotope labeling patterns point to translocation of organic carbon to the host through both release of these compounds and digestion of symbiont cells. The latter mechanism is also supported by ultracytochemical detection of acid phosphatase in lysosomes and in food vacuoles of ciliate cells. Fluorescence in situ hybridization of freshly collected ciliates revealed that the vast majority of ingested microbial cells were ectosymbionts.
Collapse
Affiliation(s)
- Jean-Marie Volland
- Department of Limnology and Bio-Oceanography, University of Vienna, Vienna, Austria.
| | - Arno Schintlmeister
- Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology" and Large-Instrument Facility for Advanced Isotope Research, University of Vienna, Vienna, Austria
| | - Helena Zambalos
- Department of Limnology and Bio-Oceanography, University of Vienna, Vienna, Austria
| | - Siegfried Reipert
- Cell Imaging and Ultrastructure Research (CIUS), University of Vienna, Vienna, Austria
| | - Patricija Mozetič
- National Institute of Biology, Marine Biology Station, Piran, Slovenia
| | | | - Valentina Turk
- National Institute of Biology, Marine Biology Station, Piran, Slovenia
| | - Michael Wagner
- Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology" and Large-Instrument Facility for Advanced Isotope Research, University of Vienna, Vienna, Austria
| | - Monika Bright
- Department of Limnology and Bio-Oceanography, University of Vienna, Vienna, Austria
| |
Collapse
|
41
|
|
42
|
Nagelkerken I, Pitt KA, Rutte MD, Geertsma RC. Ocean acidification alters fish-jellyfish symbiosis. Proc Biol Sci 2017; 283:rspb.2016.1146. [PMID: 27358374 DOI: 10.1098/rspb.2016.1146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/15/2016] [Indexed: 12/20/2022] Open
Abstract
Symbiotic relationships are common in nature, and are important for individual fitness and sustaining species populations. Global change is rapidly altering environmental conditions, but, with the exception of coral-microalgae interactions, we know little of how this will affect symbiotic relationships. We here test how the effects of ocean acidification, from rising anthropogenic CO2 emissions, may alter symbiotic interactions between juvenile fish and their jellyfish hosts. Fishes treated with elevated seawater CO2 concentrations, as forecast for the end of the century on a business-as-usual greenhouse gas emission scenario, were negatively affected in their behaviour. The total time that fish (yellowtail scad) spent close to their jellyfish host in a choice arena where they could see and smell their host was approximately three times shorter under future compared with ambient CO2 conditions. Likewise, the mean number of attempts to associate with jellyfish was almost three times lower in CO2-treated compared with control fish, while only 63% (high CO2) versus 86% (control) of all individuals tested initiated an association at all. By contrast, none of three fish species tested were attracted solely to jellyfish olfactory cues under present-day CO2 conditions, suggesting that the altered fish-jellyfish association is not driven by negative effects of ocean acidification on olfaction. Because shelter is not widely available in the open water column and larvae of many (and often commercially important) pelagic species associate with jellyfish for protection against predators, modification of the fish-jellyfish symbiosis might lead to higher mortality and alter species population dynamics, and potentially have flow-on effects for their fisheries.
Collapse
Affiliation(s)
- Ivan Nagelkerken
- Southern Seas Ecology Laboratories, School of Biological Sciences and The Environment Institute, The University of Adelaide, DX 650 418, Adelaide, South Australia 5005, Australia
| | - Kylie A Pitt
- Griffith School of Environment and Australian Rivers Institute (ARI)-Coast and Estuaries, Griffith University, Gold Coast campus, Queensland 4222, Australia
| | - Melchior D Rutte
- Southern Seas Ecology Laboratories, School of Biological Sciences and The Environment Institute, The University of Adelaide, DX 650 418, Adelaide, South Australia 5005, Australia
| | - Robbert C Geertsma
- Southern Seas Ecology Laboratories, School of Biological Sciences and The Environment Institute, The University of Adelaide, DX 650 418, Adelaide, South Australia 5005, Australia
| |
Collapse
|
43
|
Gilby IC, Machanda ZP, O'Malley RC, Murray CM, Lonsdorf EV, Walker K, Mjungu DC, Otali E, Muller MN, Emery Thompson M, Pusey AE, Wrangham RW. Predation by female chimpanzees: Toward an understanding of sex differences in meat acquisition in the last common ancestor of Pan and Homo. J Hum Evol 2017; 110:82-94. [PMID: 28778463 PMCID: PMC5570454 DOI: 10.1016/j.jhevol.2017.06.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 06/22/2017] [Accepted: 06/28/2017] [Indexed: 11/21/2022]
Abstract
Among modern foraging societies, men hunt more than women, who mostly target relatively low-quality, reliable resources (i.e., plants). This difference has long been assumed to reflect human female reproductive constraints, particularly caring for and provisioning mates and offspring. Long-term studies of chimpanzees (Pan troglodytes) enable tests of hypotheses about the possible origins of human sex differences in hunting, prior to pair-bonding and regular provisioning. We studied two eastern chimpanzee communities (Kasekela, Mitumba) in Gombe, Tanzania and one (Kanyawara) in Kibale, Uganda. Relative to males, females had low hunting rates in all three communities, even where they encountered red colobus monkeys (the primary prey of chimpanzees) as often as males did. There was no evidence that clinging offspring hampered female hunting. Instead, consistent with the hypothesis that females should be more risk-averse than males, females at all three sites specialized in low-cost prey (terrestrial/sedentary prey at Gombe; black and white colobus monkeys at Kanyawara). Female dominance rank was positively correlated with red colobus hunting probability only at Kasekela, suggesting that those in good physical condition were less sensitive to the costs of possible failure. Finally, the potential for carcass appropriation by males deterred females at Kasekela (but not Kanyawara or Mitumba) from hunting in parties containing many adult males. Although chimpanzees are not direct analogs of the last common ancestor (LCA) of Pan and Homo, these results suggest that before the emergence of social obligations regarding sharing and provisioning, constraints on hunting by LCA females did not necessarily stem from maternal care. Instead, they suggest that a risk-averse foraging strategy and the potential for losing prey to males limited female predation on vertebrates. Sex differences in hunting behavior would likely have preceded the evolution of the sexual division of labor among modern humans.
Collapse
Affiliation(s)
- Ian C Gilby
- School of Human Evolution and Social Change, and Institute of Human Origins, Arizona State University, Tempe, AZ 85287, USA.
| | - Zarin P Machanda
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Department of Anthropology, Tufts University, Medford, MA 02155, USA.
| | - Robert C O'Malley
- Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA.
| | - Carson M Murray
- Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA.
| | - Elizabeth V Lonsdorf
- Department of Psychology and Biological Foundations of Behavior Program, Franklin & Marshall College, Lancaster, PA 17603, USA.
| | - Kara Walker
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA.
| | - Deus C Mjungu
- Gombe Stream Research Centre, The Jane Goodall Institute, Kigoma, Tanzania.
| | - Emily Otali
- Kibale Chimpanzee Project, Fort Portal, Uganda.
| | - Martin N Muller
- Department of Anthropology, University of New Mexico, Albuquerque, NM 87131, USA.
| | | | - Anne E Pusey
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA.
| | - Richard W Wrangham
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
44
|
Suppression of emission rates improves sonar performance by flying bats. Sci Rep 2017; 7:41641. [PMID: 28139707 PMCID: PMC5282581 DOI: 10.1038/srep41641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/21/2016] [Indexed: 12/04/2022] Open
Abstract
Echolocating bats face the challenge of actively sensing their environment through their own emissions, while also hearing calls and echoes of nearby conspecifics. How bats mitigate interference is a long-standing question that has both ecological and technological implications, as biosonar systems continue to outperform man-made sonar systems in noisy, cluttered environments. We recently showed that perched bats decreased calling rates in groups, displaying a behavioral strategy resembling the back-off algorithms used in artificial communication networks to optimize information throughput at the group level. We tested whether free-tailed bats (Tadarida brasiliensis) would employ such a coordinated strategy while performing challenging flight maneuvers, and report here that bats navigating obstacles lowered emission rates when hearing artificial playback of another bat’s calls. We measured the impact of acoustic interference on navigation performance and show that the calculated reductions in interference rates are sufficient to reduce interference and improve obstacle avoidance. When bats flew in pairs, each bat responded to the presence of the other as an obstacle by increasing emissions, but hearing the sonar emissions of the nearby bat partially suppressed this response. This behavior supports social cohesion by providing a key mechanism for minimizing mutual interference.
Collapse
|
45
|
Mogilski JK, Welling LLM. Honest Signaling. EVOLUTIONARY PSYCHOLOGICAL SCIENCE 2016. [DOI: 10.1007/s40806-016-0058-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Herman LM. The multiple functions of male song within the humpback whale (Megaptera novaeangliae) mating system: review, evaluation, and synthesis. Biol Rev Camb Philos Soc 2016; 92:1795-1818. [PMID: 28677337 DOI: 10.1111/brv.12309] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 11/29/2022]
Abstract
Humpback whales (Megaptera novaeangliae) are seasonal breeders, annually migrating from high-latitude summer feeding grounds to low-latitude winter breeding grounds. The social matrix on the winter grounds is a loose network of interacting individuals and groups and notably includes lone males that produce long bouts of complex song that collectively yield an asynchronous chorus. Occasionally, a male will sing while accompanying other whales. Despite a wealth of knowledge about the social matrix, the full characterization of the mating system remains unresolved, without any firm consensus, as does the function of song within that system. Here, I consider and critically analyse three proposed functions of song that have received the most attention in the literature: female attraction to individual singers, determining or facilitating male-male interactions, and attracting females to a male aggregation within the context of a lekking system. Female attraction suggests that humpback song is an advertisement and invitation to females, but field observations and song playback studies reveal that female visits to individual singers are virtually absent. Other observations suggest instead that females might convey their presence to singers (or to other males) through the percussive sounds of flipper or tail slapping or possibly through vocalizations. There is some evidence for male-male interactions, both dominance and affiliative: visits to singers are almost always other lone males not singing at that time. The joiner may be seeking a coalition with the singer to engage cooperatively in attempts to obtain females, or may be seeking to disrupt the song or to affirm his dominance. Some observations support one or the other intent. However, other observations, in part based on the brevity of most pairings, suggest that the joiner is prospecting, seeking to determine whether the singer is accompanying a female, and if not soon departs. In the lekking hypothesis, the aggregation of vocalizing males on a winter ground and the visits there by non-maternal females apparently for mating meet the fundamental definition of a lekking system and its role though communal display in attracting females to the aggregation, although not to an individual singer. Communal singing is viewed as a form of by-product mutualism in which individuals benefit one another as incidental consequences of their own selfish actions. Possibly, communal singing may also act to stimulate female receptivity. Thus, there are both limitations and merit in all three proposals. Full consideration of song as serving multiple functions is therefore necessary to understand its role in the mating system and the forces acting on the evolution of song. I suggest that song may be the prime vector recruiting colonists to new winter grounds pioneered by vagrant males as population pressures increase or as former winter grounds become unavailable or undesirable, with such instances documented relatively recently. Speculatively, song may have evolved historically as an aggregating call during the dynamic ocean conditions and resulting habitat uncertainties in the late Miocene-early Pliocene epochs when Megaptera began to proliferate. Early song may have been comprised of simpler precursor sounds that through natural selection and ritualization evolved into complex song.
Collapse
Affiliation(s)
- Louis M Herman
- Department of Psychology, University of Hawaii at Manoa and The Dolphin Institute
| |
Collapse
|
47
|
Leal LC, Peixoto PEC. Decreasing water availability across the globe improves the effectiveness of protective ant-plant mutualisms: a meta-analysis. Biol Rev Camb Philos Soc 2016; 92:1785-1794. [DOI: 10.1111/brv.12307] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/21/2016] [Accepted: 09/26/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Laura C. Leal
- Programa de pós-graduação em Zoologia; Universidade Estadual de Feira de Santana; Feira de Santana 44036-900 Brazil
- Departamento de Ciências Biológicas; Universidade Federal de São Paulo; 09972-270 Diadema Brazil
| | - Paulo E. C. Peixoto
- Programa de pós-graduação em Zoologia; Universidade Estadual de Feira de Santana; Feira de Santana 44036-900 Brazil
- Laboratório de Entomologia; Universidade Estadual de Feira de Santana; Feira de Santana 44036-900 Brazil
| |
Collapse
|
48
|
André JB, Nolfi S. Evolutionary robotics simulations help explain why reciprocity is rare in nature. Sci Rep 2016; 6:32785. [PMID: 27616139 PMCID: PMC5018820 DOI: 10.1038/srep32785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 05/09/2016] [Indexed: 11/09/2022] Open
Abstract
The relative rarity of reciprocity in nature, contrary to theoretical predictions that it should be widespread, is currently one of the major puzzles in social evolution theory. Here we use evolutionary robotics to solve this puzzle. We show that models based on game theory are misleading because they neglect the mechanics of behavior. In a series of experiments with simulated robots controlled by artificial neural networks, we find that reciprocity does not evolve, and show that this results from a general constraint that likely also prevents it from evolving in the wild. Reciprocity can evolve if it requires very few mutations, as is usually assumed in evolutionary game theoretic models, but not if, more realistically, it requires the accumulation of many adaptive mutations.
Collapse
Affiliation(s)
- Jean-Baptiste André
- Institut des Sciences de l'Evolution, Université de Montpellier, CNRS, IRD, EPHE CC 065 Place Eugène Bataillon 34095 Montpellier cedex 05, France
| | - Stefano Nolfi
- CNR, Institute of Cognitive Sciences and Technologies, Laboratory of Autonomous Robots and Artificial Life, Via S. Martino della Battaglia 44, 00185, Roma, Italy
| |
Collapse
|
49
|
|
50
|
Freeman NJ, Young C, Barrett L, Henzi SP. Coalition Formation by Male Vervet Monkeys (Chlorocebus pygerythrus) in South Africa. Ethology 2015. [DOI: 10.1111/eth.12447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Natalie J. Freeman
- Department of Psychology; University of Lethbridge; Lethbridge AB Canada
- Applied Behavioural Ecology and Ecosystems Research Unit; University of South Africa; Florida Gauteng South Africa
| | - Christopher Young
- Department of Psychology; University of Lethbridge; Lethbridge AB Canada
- Applied Behavioural Ecology and Ecosystems Research Unit; University of South Africa; Florida Gauteng South Africa
| | - Louise Barrett
- Department of Psychology; University of Lethbridge; Lethbridge AB Canada
- Applied Behavioural Ecology and Ecosystems Research Unit; University of South Africa; Florida Gauteng South Africa
| | - S. Peter Henzi
- Department of Psychology; University of Lethbridge; Lethbridge AB Canada
- Applied Behavioural Ecology and Ecosystems Research Unit; University of South Africa; Florida Gauteng South Africa
| |
Collapse
|