1
|
Tavanti F, Brancolini G, Perris R. Computational analysis of the structural-functional dynamics of a Co-receptor proteoglycan. Front Mol Biosci 2025; 12:1549177. [PMID: 40201239 PMCID: PMC11975855 DOI: 10.3389/fmolb.2025.1549177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/05/2025] [Indexed: 04/10/2025] Open
Abstract
Nerve-Glial Antigen 2/Chondroitin Sulphate Proteoglycan 4 (NG2/CSPG4) is the largest membrane-intercalated cell surface component of the human proteome known to date. NG2/CSPG4 is endowed with the capability of engaging a myriad of molecular interactions and exert co-receptor functions, of which primary ones are sequestering of growth factors and the anchoring of cells to the extracellular matrix. However, the nature of the interactive dynamics of the proteoglycan remains veiled because of its conspicuous size and structural complexity. By leveraging on a multi-scale in silico approach, we have pioneered a comprehensive computational analysis of the structural-functional traits of the NG2/CSPG4 ectodomain. The modelling highlights an intricate assembly of β-sheet motifs linked together by flexible loops. Furthermore, our in silico predictions highlight that the previously delineated D1 domain may consistently remain more accessible for molecular interplays with respect to the D2 and D3 domains. Based on these findings, we have simulated the structural mechanism through the proteoglycan may serve as a co-receptor for growth factor FGF-2, showing that NG2/CSPG4 bends towards the receptor FGFR-1 for this growth factor and confirming the previously hypothesized trimeric complex formation promoted by FGF-2 dimers bridging the FGFR-1-proteoglycan interaction. The Chondroitin Sulphate Proteoglycan 4 is a large multi-domain transmembrane protein involved in several biological processes including pathological conditions. Despite its importance, it has never been studied at the atomistic level due to its large size. Here, we employed a multi-scale computer simulations approach to study its three-dimensional structure, its movements and co-receptor properties, showing that it can serve as mediator in the growth factor signaling process.
Collapse
Affiliation(s)
- Francesco Tavanti
- COMT – Centre for Molecular and Translational Oncology, University of Parma, Parma, Italy
- Department of Chemical and Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Center S3, CNR Institute of Nanoscience – CNR-NANO, Modena, Italy
| | | | - Roberto Perris
- COMT – Centre for Molecular and Translational Oncology, University of Parma, Parma, Italy
- Department of Chemical and Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
2
|
Czopka T, Monk K, Peri F. Glial Cell Development and Function in the Zebrafish Central Nervous System. Cold Spring Harb Perspect Biol 2024; 16:a041350. [PMID: 38692835 PMCID: PMC11529855 DOI: 10.1101/cshperspect.a041350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Over the past decades the zebrafish has emerged as an excellent model organism with which to study the biology of all glial cell types in nervous system development, plasticity, and regeneration. In this review, which builds on the earlier work by Lyons and Talbot in 2015, we will summarize how the relative ease to manipulate the zebrafish genome and its suitability for intravital imaging have helped understand principles of glial cell biology with a focus on oligodendrocytes, microglia, and astrocytes. We will highlight recent findings on the diverse properties and functions of these glial cell types in the central nervous system and discuss open questions and future directions of the field.
Collapse
Affiliation(s)
- Tim Czopka
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Kelly Monk
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Francesca Peri
- Department of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
3
|
Hamani C, Davidson B, Lipsman N, Abrahao A, Nestor SM, Rabin JS, Giacobbe P, Pagano RL, Campos ACP. Insertional effect following electrode implantation: an underreported but important phenomenon. Brain Commun 2024; 6:fcae093. [PMID: 38707711 PMCID: PMC11069120 DOI: 10.1093/braincomms/fcae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/08/2023] [Accepted: 03/26/2024] [Indexed: 05/07/2024] Open
Abstract
Deep brain stimulation has revolutionized the treatment of movement disorders and is gaining momentum in the treatment of several other neuropsychiatric disorders. In almost all applications of this therapy, the insertion of electrodes into the target has been shown to induce some degree of clinical improvement prior to stimulation onset. Disregarding this phenomenon, commonly referred to as 'insertional effect', can lead to biased results in clinical trials, as patients receiving sham stimulation may still experience some degree of symptom amelioration. Similar to the clinical scenario, an improvement in behavioural performance following electrode implantation has also been reported in preclinical models. From a neurohistopathologic perspective, the insertion of electrodes into the brain causes an initial trauma and inflammatory response, the activation of astrocytes, a focal release of gliotransmitters, the hyperexcitability of neurons in the vicinity of the implants, as well as neuroplastic and circuitry changes at a distance from the target. Taken together, it would appear that electrode insertion is not an inert process, but rather triggers a cascade of biological processes, and, as such, should be considered alongside the active delivery of stimulation as an active part of the deep brain stimulation therapy.
Collapse
Affiliation(s)
- Clement Hamani
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Benjamin Davidson
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Nir Lipsman
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Agessandro Abrahao
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Sean M Nestor
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Jennifer S Rabin
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto M5G 1V7, Canada
| | - Peter Giacobbe
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Rosana L Pagano
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP CEP 01308-060, Brazil
| | - Ana Carolina P Campos
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP CEP 01308-060, Brazil
| |
Collapse
|
4
|
Amlerova Z, Chmelova M, Anderova M, Vargova L. Reactive gliosis in traumatic brain injury: a comprehensive review. Front Cell Neurosci 2024; 18:1335849. [PMID: 38481632 PMCID: PMC10933082 DOI: 10.3389/fncel.2024.1335849] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/01/2024] [Indexed: 01/03/2025] Open
Abstract
Traumatic brain injury (TBI) is one of the most common pathological conditions impacting the central nervous system (CNS). A neurological deficit associated with TBI results from a complex of pathogenetic mechanisms including glutamate excitotoxicity, inflammation, demyelination, programmed cell death, or the development of edema. The critical components contributing to CNS response, damage control, and regeneration after TBI are glial cells-in reaction to tissue damage, their activation, hypertrophy, and proliferation occur, followed by the formation of a glial scar. The glial scar creates a barrier in damaged tissue and helps protect the CNS in the acute phase post-injury. However, this process prevents complete tissue recovery in the late/chronic phase by producing permanent scarring, which significantly impacts brain function. Various glial cell types participate in the scar formation, but this process is mostly attributed to reactive astrocytes and microglia, which play important roles in several brain pathologies. Novel technologies including whole-genome transcriptomic and epigenomic analyses, and unbiased proteomics, show that both astrocytes and microglia represent groups of heterogenic cell subpopulations with different genomic and functional characteristics, that are responsible for their role in neurodegeneration, neuroprotection and regeneration. Depending on the representation of distinct glia subpopulations, the tissue damage as well as the regenerative processes or delayed neurodegeneration after TBI may thus differ in nearby or remote areas or in different brain structures. This review summarizes TBI as a complex process, where the resultant effect is severity-, region- and time-dependent and determined by the model of the CNS injury and the distance of the explored area from the lesion site. Here, we also discuss findings concerning intercellular signaling, long-term impacts of TBI and the possibilities of novel therapeutical approaches. We believe that a comprehensive study with an emphasis on glial cells, involved in tissue post-injury processes, may be helpful for further research of TBI and be the decisive factor when choosing a TBI model.
Collapse
Affiliation(s)
- Zuzana Amlerova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Martina Chmelova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Miroslava Anderova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Lydia Vargova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
5
|
Tai W, Du X, Chen C, Xu XM, Zhang CL, Wu W. NG2 glia reprogramming induces robust axonal regeneration after spinal cord injury. iScience 2024; 27:108895. [PMID: 38318363 PMCID: PMC10839253 DOI: 10.1016/j.isci.2024.108895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/04/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Spinal cord injury (SCI) often leads to neuronal loss, axonal degeneration, and behavioral dysfunction. We recently show that in vivo reprogramming of NG2 glia produces new neurons, reduces glial scaring, and ultimately leads to improved function after SCI. By examining endogenous neurons, we here unexpectedly uncover that NG2 glia reprogramming also induces robust axonal regeneration of the corticospinal tract and serotonergic neurons. Such reprogramming-induced axonal regeneration may contribute to the reconstruction of neural networks essential for behavioral recovery.
Collapse
Affiliation(s)
- Wenjiao Tai
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaolong Du
- Department of Neurological Surgery, Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chen Chen
- Department of Neurological Surgery, Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiao-Ming Xu
- Department of Neurological Surgery, Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chun-Li Zhang
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wei Wu
- Department of Neurological Surgery, Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
6
|
Benarroch E. What Are the Roles of Oligodendrocyte Precursor Cells in Normal and Pathologic Conditions? Neurology 2023; 101:958-965. [PMID: 37985182 PMCID: PMC10663025 DOI: 10.1212/wnl.0000000000208000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 11/22/2023] Open
|
7
|
Xiao Y, Czopka T. Myelination-independent functions of oligodendrocyte precursor cells in health and disease. Nat Neurosci 2023; 26:1663-1669. [PMID: 37653126 DOI: 10.1038/s41593-023-01423-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/27/2023] [Indexed: 09/02/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) are a population of tissue-resident glial cells found throughout the CNS, constituting approximately 5% of all CNS cells and persisting from development to adulthood and aging. The canonical role of OPCs is to give rise to myelinating oligodendrocytes. However, additional functions of OPCs beyond this traditional role as precursors have been suggested for a long time. In this Perspective, we provide an overview of the multiple myelination-independent functions that have been described for OPCs in the context of neuron development, angiogenesis, inflammatory response, axon regeneration and their recently discovered roles in neural circuit remodeling.
Collapse
Affiliation(s)
- Yan Xiao
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Tim Czopka
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
8
|
Perez-Gianmarco L, Kukley M. Understanding the Role of the Glial Scar through the Depletion of Glial Cells after Spinal Cord Injury. Cells 2023; 12:1842. [PMID: 37508505 PMCID: PMC10377788 DOI: 10.3390/cells12141842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Spinal cord injury (SCI) is a condition that affects between 8.8 and 246 people in a million and, unlike many other neurological disorders, it affects mostly young people, causing deficits in sensory, motor, and autonomic functions. Promoting the regrowth of axons is one of the most important goals for the neurological recovery of patients after SCI, but it is also one of the most challenging goals. A key event after SCI is the formation of a glial scar around the lesion core, mainly comprised of astrocytes, NG2+-glia, and microglia. Traditionally, the glial scar has been regarded as detrimental to recovery because it may act as a physical barrier to axon regrowth and release various inhibitory factors. However, more and more evidence now suggests that the glial scar is beneficial for the surrounding spared tissue after SCI. Here, we review experimental studies that used genetic and pharmacological approaches to ablate specific populations of glial cells in rodent models of SCI in order to understand their functional role. The studies showed that ablation of either astrocytes, NG2+-glia, or microglia might result in disorganization of the glial scar, increased inflammation, extended tissue degeneration, and impaired recovery after SCI. Hence, glial cells and glial scars appear as important beneficial players after SCI.
Collapse
Affiliation(s)
- Lucila Perez-Gianmarco
- Achucarro Basque Center for Neuroscience, 48940 Leioa, PC, Spain
- Department of Neurosciences, University of the Basque Country, 48940 Leioa, PC, Spain
| | - Maria Kukley
- Achucarro Basque Center for Neuroscience, 48940 Leioa, PC, Spain
- IKERBASQUE Basque Foundation for Science, 48009 Bilbao, PC, Spain
| |
Collapse
|
9
|
Tai W, Du X, Chen C, Xu XM, Zhang CL, Wu W. NG2 Glia Reprogramming Induces Robust Axonal Regeneration After Spinal Cord Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544792. [PMID: 37398355 PMCID: PMC10312714 DOI: 10.1101/2023.06.14.544792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Spinal cord injury (SCI) often leads to neuronal loss, axonal degeneration and behavioral dysfunction. We recently show that in vivo reprogramming of NG2 glia produces new neurons, reduces glial scaring, and ultimately leads to improved function after SCI. By examining endogenous neurons, we here unexpectedly uncover that NG2 glia reprogramming also induces robust axonal regeneration of the corticospinal tract and serotonergic neurons. Such reprogramming-induced axonal regeneration may contribute to the reconstruction of neural networks essential for behavioral recovery.
Collapse
Affiliation(s)
- Wenjiao Tai
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Authors contributed equally
| | - Xiaolong Du
- Department of Neurological Surgery, Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Authors contributed equally
| | - Chen Chen
- Department of Neurological Surgery, Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiao-Ming Xu
- Department of Neurological Surgery, Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chun-Li Zhang
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wei Wu
- Department of Neurological Surgery, Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
10
|
Thompson C, Evans B, Zhao D, Purcell E. Spatiotemporal Expression of RNA-Seq Identified Proteins at the Electrode Interface. Acta Biomater 2023; 164:209-222. [PMID: 37116634 DOI: 10.1016/j.actbio.2023.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
Implantation of electrodes in the brain can be used to record from or stimulate neural tissues to treat neurological disease and injury. However, the tissue response to implanted devices can limit their functional longevity. Recent RNA-seq datasets identify hundreds of genes associated with gliosis, neuronal function, myelination, and cellular metabolism that are spatiotemporally expressed in neural tissues following the insertion of microelectrodes. To validate mRNA as a predictor of protein expression, this study evaluates a sub-set of RNA-seq identified proteins (RSIP) at 24-hours, 1-week, and 6-weeks post-implantation using quantitative immunofluorescence methods. This study found that expression of RSIPs associated with glial activation (Glial fibrillary acidic protein (GFAP), Polypyrmidine tract binding protein-1 (Ptbp1)), neuronal structure (Neurofilament heavy chain (Nefh), Proteolipid protein-1 (Plp1), Myelin Basic Protein (MBP)), and iron metabolism (Transferrin (TF), Ferritin heavy chain-1 (Fth1)) reinforce transcriptional data. This study also provides additional context to the cellular distribution of RSIPs using a MATLAB-based approach to quantify immunofluorescence intensity within specific cell types. Ptbp1, TF, and Fth1 were found to be spatiotemporally distributed within neurons, astrocytes, microglia, and oligodendrocytes at the device interface relative to distal and contralateral tissues. The altered distribution of RSIPs relative to distal tissue is largely localized within 100µm of the device injury, which approaches the functional recording range of implanted electrodes. This study provides evidence that RNA-sequencing can be used to predict protein-level changes in cortical tissues and that RSIPs can be further investigated to identify new biomarkers of the tissue response that influence signal quality. STATEMENT OF SIGNIFICANCE: : Microelectrode arrays implanted into the brain are useful tools that can be used to study neuroscience and to treat pathological conditions in a clinical setting. The tissue response to these devices, however, can severely limit their functional longevity. Transcriptomics has deepened the understandings of the tissue response by revealing numerous genes which are differentially expressed following device insertion. This manuscript provides validation for the use of transcriptomics to characterize the tissue response by evaluating a subset of known differentially expressed genes at the protein level around implanted electrodes over time. In additional to validating mRNA-to-protein relationships at the device interface, this study has identified emerging trends in the spatiotemporal distribution of proteins involved with glial activation, neuronal remodeling, and essential iron binding proteins around implanted silicon devices. This study additionally provides a new MATLAB based methodology to quantify protein distribution within discrete cell types at the device interface which may be used as biomarkers for further study or therapeutic intervention in the future.
Collapse
Affiliation(s)
- Cort Thompson
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, United States of America; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, United States of America
| | - Blake Evans
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, United States of America; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, United States of America
| | - Dorothy Zhao
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, United States of America; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, United States of America
| | - Erin Purcell
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, United States of America; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, United States of America.
| |
Collapse
|
11
|
Abstract
Neurons in the developing brain undergo extensive structural refinement as nascent circuits adopt their mature form. This physical transformation of neurons is facilitated by the engulfment and degradation of axonal branches and synapses by surrounding glial cells, including microglia and astrocytes. However, the small size of phagocytic organelles and the complex, highly ramified morphology of glia have made it difficult to define the contribution of these and other glial cell types to this crucial process. Here, we used large-scale, serial section transmission electron microscopy (TEM) with computational volume segmentation to reconstruct the complete 3D morphologies of distinct glial types in the mouse visual cortex, providing unprecedented resolution of their morphology and composition. Unexpectedly, we discovered that the fine processes of oligodendrocyte precursor cells (OPCs), a population of abundant, highly dynamic glial progenitors, frequently surrounded small branches of axons. Numerous phagosomes and phagolysosomes (PLs) containing fragments of axons and vesicular structures were present inside their processes, suggesting that OPCs engage in axon pruning. Single-nucleus RNA sequencing from the developing mouse cortex revealed that OPCs express key phagocytic genes at this stage, as well as neuronal transcripts, consistent with active axon engulfment. Although microglia are thought to be responsible for the majority of synaptic pruning and structural refinement, PLs were ten times more abundant in OPCs than in microglia at this stage, and these structures were markedly less abundant in newly generated oligodendrocytes, suggesting that OPCs contribute substantially to the refinement of neuronal circuits during cortical development.
Collapse
|
12
|
Hemati-Gourabi M, Cao T, Romprey MK, Chen M. Capacity of astrocytes to promote axon growth in the injured mammalian central nervous system. Front Neurosci 2022; 16:955598. [PMID: 36203815 PMCID: PMC9530187 DOI: 10.3389/fnins.2022.955598] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/15/2022] [Indexed: 01/02/2023] Open
Abstract
Understanding the regulation of axon growth after injury to the adult central nervous system (CNS) is crucial to improve neural repair. Following acute focal CNS injury, astrocytes are one cellular component of the scar tissue at the primary lesion that is traditionally associated with inhibition of axon regeneration. Advances in genetic models and experimental approaches have broadened knowledge of the capacity of astrocytes to facilitate injury-induced axon growth. This review summarizes findings that support a positive role of astrocytes in axon regeneration and axon sprouting in the mature mammalian CNS, along with potential underlying mechanisms. It is important to recognize that astrocytic functions, including modulation of axon growth, are context-dependent. Evidence suggests that the local injury environment, neuron-intrinsic regenerative potential, and astrocytes’ reactive states determine the astrocytic capacity to support axon growth. An integrated understanding of these factors will optimize therapeutic potential of astrocyte-targeted strategies for neural repair.
Collapse
Affiliation(s)
| | - Tuoxin Cao
- Spinal Cord and Brain Injury Research Center, Lexington, KY, United States
| | - Megan K. Romprey
- Spinal Cord and Brain Injury Research Center, Lexington, KY, United States
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Meifan Chen
- Spinal Cord and Brain Injury Research Center, Lexington, KY, United States
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- *Correspondence: Meifan Chen,
| |
Collapse
|
13
|
Feng Y, Peng Y, Jie J, Yang Y, Yang P. The immune microenvironment and tissue engineering strategies for spinal cord regeneration. Front Cell Neurosci 2022; 16:969002. [PMID: 35990891 PMCID: PMC9385973 DOI: 10.3389/fncel.2022.969002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Regeneration of neural tissue is limited following spinal cord injury (SCI). Successful regeneration of injured nerves requires the intrinsic regenerative capability of the neurons and a suitable microenvironment. However, the local microenvironment is damaged, including insufficient intraneural vascularization, prolonged immune responses, overactive immune responses, dysregulated bioenergetic metabolism and terminated bioelectrical conduction. Among them, the immune microenvironment formed by immune cells and cytokines plays a dual role in inflammation and regeneration. Few studies have focused on the role of the immune microenvironment in spinal cord regeneration. Here, we summarize those findings involving various immune cells (neutrophils, monocytes, microglia and T lymphocytes) after SCI. The pathological changes that occur in the local microenvironment and the function of immune cells are described. We also summarize and discuss the current strategies for treating SCI with tissue-engineered biomaterials from the perspective of the immune microenvironment.
Collapse
Affiliation(s)
- Yuan Feng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yong Peng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jing Jie
- Department of Clinical Laboratory, The First People’s Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Nantong, China
- Jing Jie,
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Yumin Yang,
| | - Pengxiang Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, Harbin, China
- *Correspondence: Pengxiang Yang,
| |
Collapse
|
14
|
Pantazopoulos H, Hossain NM, Chelini G, Durning P, Barbas H, Zikopoulos B, Berretta S. Chondroitin Sulphate Proteoglycan Axonal Coats in the Human Mediodorsal Thalamic Nucleus. Front Integr Neurosci 2022; 16:934764. [PMID: 35875507 PMCID: PMC9298528 DOI: 10.3389/fnint.2022.934764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/21/2022] [Indexed: 12/21/2022] Open
Abstract
Mounting evidence supports a key involvement of the chondroitin sulfate proteoglycans (CSPGs) NG2 and brevican (BCAN) in the regulation of axonal functions, including axon guidance, fasciculation, conductance, and myelination. Prior work suggested the possibility that these functions may, at least in part, be carried out by specialized CSPG structures surrounding axons, termed axonal coats. However, their existence remains controversial. We tested the hypothesis that NG2 and BCAN, known to be associated with oligodendrocyte precursor cells, form axonal coats enveloping myelinated axons in the human brain. In tissue blocks containing the mediodorsal thalamic nucleus (MD) from healthy donors (n = 5), we used dual immunofluorescence, confocal microscopy, and unbiased stereology to characterize BCAN and NG2 immunoreactive (IR) axonal coats and measure the percentage of myelinated axons associated with them. In a subset of donors (n = 3), we used electron microscopy to analyze the spatial relationship between axons and NG2- and BCAN-IR axonal coats within the human MD. Our results show that a substantial percentage (∼64%) of large and medium myelinated axons in the human MD are surrounded by NG2- and BCAN-IR axonal coats. Electron microscopy studies show NG2- and BCAN-IR axonal coats are interleaved with myelin sheets, with larger axons displaying greater association with axonal coats. These findings represent the first characterization of NG2 and BCAN axonal coats in the human brain. The large percentage of axons surrounded by CSPG coats, and the role of CSPGs in axonal guidance, fasciculation, conductance, and myelination suggest that these structures may contribute to several key axonal properties.
Collapse
Affiliation(s)
- Harry Pantazopoulos
- Department of Psychiatry and Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | | | - Gabriele Chelini
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Peter Durning
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont, MA, United States
| | - Helen Barbas
- Department of Health Sciences, Boston University, Boston, MA, United States
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Neural Systems Laboratory, Boston University, Boston, MA, United States
| | - Basilis Zikopoulos
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Neural Systems Laboratory, Boston University, Boston, MA, United States
| | - Sabina Berretta
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Program in Neuroscience, Harvard Medical School, Boston, MA, United States
- *Correspondence: Sabina Berretta,
| |
Collapse
|
15
|
Islam A, Tom VJ. The use of viral vectors to promote repair after spinal cord injury. Exp Neurol 2022; 354:114102. [PMID: 35513025 DOI: 10.1016/j.expneurol.2022.114102] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
Spinal cord injury (SCI) is a devastating event that can permanently disrupt multiple modalities. Unfortunately, the combination of the inhibitory environment at a central nervous system (CNS) injury site and the diminished intrinsic capacity of adult axons for growth results in the failure for robust axonal regeneration, limiting the ability for repair. Delivering genetic material that can either positively or negatively modulate gene expression has the potential to counter the obstacles that hinder axon growth within the spinal cord after injury. A popular gene therapy method is to deliver the genetic material using viral vectors. There are considerations when deciding on a viral vector approach for a particular application, including the type of vector, as well as serotypes, and promoters. In this review, we will discuss some of the aspects to consider when utilizing a viral vector approach to as a therapy for SCI. Additionally, we will discuss some recent applications of gene therapy to target extrinsic and/or intrinsic barriers to promote axon regeneration after SCI in preclinical models. While still in early stages, this approach has potential to treat those living with SCI.
Collapse
Affiliation(s)
- Ashraful Islam
- Drexel University College of Medicine, Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA
| | - Veronica J Tom
- Drexel University College of Medicine, Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Chelyshev YA, Kabdesh IM, Mukhamedshina YO. Extracellular Matrix in Neural Plasticity and Regeneration. Cell Mol Neurobiol 2022; 42:647-664. [PMID: 33128689 PMCID: PMC11441266 DOI: 10.1007/s10571-020-00986-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/22/2020] [Indexed: 12/19/2022]
Abstract
The extracellular matrix (ECM) is a fundamental component of biological tissues. The ECM in the central nervous system (CNS) is unique in both composition and function. Functions such as learning, memory, synaptogenesis, and plasticity are regulated by numerous ECM molecules. The neural ECM acts as a non-specific physical barrier that modulates neuronal plasticity and axon regeneration. There are two specialized types of ECM in the CNS, diffuse perisynaptic ECM and condensed ECM, which selectively surround the perikaryon and initial part of dendritic trees in subtypes of neurons, forming perineuronal nets. This review presents the current knowledge about the role of important neuronal ECM molecules in maintaining the basic functions of a neuron, including electrogenesis and the ability to form neural circuits. The review mainly focuses on the role of ECM components that participate in the control of key events such as cell survival, axonal growth, and synaptic remodeling. Particular attention is drawn to the numerous molecular partners of the main ECM components. These regulatory molecules are integrated into the cell membrane or disposed into the matrix itself in solid or soluble form. The interaction of the main matrix components with molecular partners seems essential in molecular mechanisms controlling neuronal functions. Special attention is paid to the chondroitin sulfate proteoglycan 4, type 1 transmembrane protein, neural-glial antigen 2 (NG2/CSPG4), whose cleaved extracellular domain is such a molecular partner that it not only acts directly on neural and vascular cells, but also exerts its influence indirectly by binding to resident ECM molecules.
Collapse
Affiliation(s)
- Yurii A Chelyshev
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan, Russia
| | - Ilyas M Kabdesh
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kremlevskaya St 18, Kazan, Tatarstan, Russia, 420008
| | - Yana O Mukhamedshina
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan, Russia.
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kremlevskaya St 18, Kazan, Tatarstan, Russia, 420008.
| |
Collapse
|
17
|
Kabdesh IM, Mukhamedshina YO, Arkhipova SS, Sabirov DK, Kuznecov MS, Vyshtakalyuk AB, Rizvanov AA, James V, Chelyshev YA. Cellular and Molecular Gradients in the Ventral Horns With Increasing Distance From the Injury Site After Spinal Cord Contusion. Front Cell Neurosci 2022; 16:817752. [PMID: 35221924 PMCID: PMC8866731 DOI: 10.3389/fncel.2022.817752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
To identify cellular and molecular gradients following spinal cord injury (SCI), a rat contusion model of severe SCI was used to investigate the expression of NG2 and molecules that identify astrocytes and axons of the ventral horns (VH) at different distances on 7 and 30 days post-injury (dpi). A gradient of expression of NG2+/Olig2+ cells was determined, with the highest concentrations focused close to the injury site. A decrease in NG2 mean intensity correlates with a decrease in the number of NG2+ cells more distally. Immunoelectron microscopy subsequently revealed the presence of NG2 in connection with the membrane and within the cytoplasm of NG2+ glial cells and in large amounts within myelin membranes. Analysis of the astrocyte marker GFAP showed increased expression local to injury site from 7 dpi, this increase in expression spread more distally from the injury site by 30 dpi. Paradoxically, astrocyte perisynaptic processes marker GLT-1 was only increased in expression in areas remote from the epicenter, which was traced both at 7 and 30 dpi. Confocal microscopy showed a significant decrease in the number of 5-HT+ axons at a distance from the epicenter in the caudal direction, which is consistent with a decrease in β3-tubulin in these areas. The results indicate significant cellular and molecular reactions not only in the area of the gray matter damage but also in adjacent and remote areas, which is important for assessing the possibility of long-distance axonal growth.
Collapse
Affiliation(s)
- Ilyas M Kabdesh
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Yana O Mukhamedshina
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia.,Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan, Russia
| | - Svetlana S Arkhipova
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Davran K Sabirov
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Maxim S Kuznecov
- Department of Epidemiology and Evidence Based Medicine, Kazan State Medical University, Kazan, Russia
| | - Alexandra B Vyshtakalyuk
- FRC Kazan Scientific Center of RAS, A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan, Russia.,Department of Zoology and General Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Albert A Rizvanov
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Victoria James
- Biodiscovery Institute, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Yuri A Chelyshev
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan, Russia
| |
Collapse
|
18
|
Shi L, Rocha M, Zhang W, Jiang M, Li S, Ye Q, Hassan SH, Liu L, Adair MN, Xu J, Luo J, Hu X, Wechsler LR, Chen J, Shi Y. Genome-wide transcriptomic analysis of microglia reveals impaired responses in aged mice after cerebral ischemia. J Cereb Blood Flow Metab 2020; 40:S49-S66. [PMID: 32438860 PMCID: PMC7687039 DOI: 10.1177/0271678x20925655] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/24/2020] [Accepted: 04/13/2020] [Indexed: 12/25/2022]
Abstract
Senescence-associated alterations in microglia may have profound impact on cerebral homeostasis and stroke outcomes. However, the lack of a transcriptome-wide comparison between young and aged microglia in the context of ischemia limits our understanding of aging-related mechanisms. Herein, we performed RNA sequencing analysis of microglia purified from cerebral hemispheres of young adult (10-week-old) and aged (18-month-old) mice five days after distal middle cerebral artery occlusion or after sham operation. Considerable transcriptional differences were observed between young and aged microglia in healthy brains, indicating heightened chronic inflammation in aged microglia. Following stroke, the overall transcriptional activation was more robust (>13-fold in the number of genes upregulated) in young microglia than in aged microglia. Gene clusters with functional implications in immune inflammatory responses, immune cell chemotaxis, tissue remodeling, and cell-cell interactions were markedly activated in microglia of young but not aged stroke mice. Consistent with the genomic profiling predictions, post-stroke cerebral infiltration of peripheral immune cells was markedly decreased in aged mice compared to young mice. Moreover, post-ischemic aged microglia demonstrated reduced interaction with neighboring neurons and diminished polarity toward the infarct lesion. These alterations in microglial gene response and behavior may contribute to aging-driven vulnerability and poorer recovery after ischemic stroke.
Collapse
Affiliation(s)
- Ligen Shi
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marcelo Rocha
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wenting Zhang
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ming Jiang
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sicheng Li
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qing Ye
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Sulaiman H Hassan
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Liqiang Liu
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maya N Adair
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jing Xu
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jianhua Luo
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaoming Hu
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Lawrence R Wechsler
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Chen
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Yejie Shi
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Mellai M, Annovazzi L, Bisogno I, Corona C, Crociara P, Iulini B, Cassoni P, Casalone C, Boldorini R, Schiffer D. Chondroitin Sulphate Proteoglycan 4 (NG2/CSPG4) Localization in Low- and High-Grade Gliomas. Cells 2020; 9:E1538. [PMID: 32599896 PMCID: PMC7349878 DOI: 10.3390/cells9061538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/05/2020] [Accepted: 06/16/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Neuron glial antigen 2 or chondroitin sulphate proteoglycan 4 (NG2/CSPG4) is expressed by immature precursors/progenitor cells and is possibly involved in malignant cell transformation. The aim of this study was to investigate its role on the progression and survival of sixty-one adult gliomas and nine glioblastoma (GB)-derived cell lines. METHODS NG2/CSPG4 protein expression was assessed by immunohistochemistry and immunofluorescence. Genetic and epigenetic alterations were detected by molecular genetic techniques. RESULTS NG2/CSPG4 was frequently expressed in IDH-mutant/1p19q-codel oligodendrogliomas (59.1%) and IDH-wild type GBs (40%) and rarely expressed in IDH-mutant or IDH-wild type astrocytomas (14.3%). Besides tumor cells, NG2/CSPG4 immunoreactivity was found in the cytoplasm and/or cell membranes of reactive astrocytes and vascular pericytes/endothelial cells. In GB-derived neurospheres, it was variably detected according to the number of passages of the in vitro culture. In GB-derived adherent cells, a diffuse positivity was found in most cells. NG2/CSPG4 expression was significantly associated with EGFR gene amplification (p = 0.0005) and poor prognosis (p = 0.016) in astrocytic tumors. CONCLUSION The immunoreactivity of NG2/CSPG4 provides information on the timing of the neoplastic transformation and could have prognostic and therapeutic relevance as a promising tumor-associated antigen for antibody-based immunotherapy in patients with malignant gliomas.
Collapse
Affiliation(s)
- Marta Mellai
- Dipartimento di Scienze della Salute, Scuola di Medicina, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (M.M.); (R.B.)
- Centro Interdipartimentale di Ricerca Traslazionale sulle Malattie Autoimmuni e Allergiche (CAAD), Università del Piemonte Orientale (UPO), Corso Trieste 15A, 28100 Novara, Italy
- Fondazione Edo ed Elvo Tempia Valenta—ONLUS, Via Malta 3, 13900 Biella, Italy
| | - Laura Annovazzi
- Ex Centro Ricerche/Fondazione Policlinico di Monza, Via P. Micca 29, 13100 Vercelli, Italy; (L.A.); (I.B.); (D.S.)
| | - Ilaria Bisogno
- Ex Centro Ricerche/Fondazione Policlinico di Monza, Via P. Micca 29, 13100 Vercelli, Italy; (L.A.); (I.B.); (D.S.)
| | - Cristiano Corona
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (C.C.); (P.C.); (B.I.)
| | - Paola Crociara
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (C.C.); (P.C.); (B.I.)
| | - Barbara Iulini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (C.C.); (P.C.); (B.I.)
| | - Paola Cassoni
- Dipartimento di Scienze Mediche, Università di Torino/Città della Salute e della Scienza, Via Santena 7, 10126 Torino, Italy;
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (C.C.); (P.C.); (B.I.)
| | - Renzo Boldorini
- Dipartimento di Scienze della Salute, Scuola di Medicina, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (M.M.); (R.B.)
| | - Davide Schiffer
- Ex Centro Ricerche/Fondazione Policlinico di Monza, Via P. Micca 29, 13100 Vercelli, Italy; (L.A.); (I.B.); (D.S.)
| |
Collapse
|
20
|
Yang T, Dai Y, Chen G, Cui S. Dissecting the Dual Role of the Glial Scar and Scar-Forming Astrocytes in Spinal Cord Injury. Front Cell Neurosci 2020; 14:78. [PMID: 32317938 PMCID: PMC7147295 DOI: 10.3389/fncel.2020.00078] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/18/2020] [Indexed: 12/19/2022] Open
Abstract
Recovery from spinal cord injury (SCI) remains an unsolved problem. As a major component of the SCI lesion, the glial scar is primarily composed of scar-forming astrocytes and plays a crucial role in spinal cord regeneration. In recent years, it has become increasingly accepted that the glial scar plays a dual role in SCI recovery. However, the underlying mechanisms of this dual role are complex and need further clarification. This dual role also makes it difficult to manipulate the glial scar for therapeutic purposes. Here, we briefly discuss glial scar formation and some representative components associated with scar-forming astrocytes. Then, we analyze the dual role of the glial scar in a dynamic perspective with special attention to scar-forming astrocytes to explore the underlying mechanisms of this dual role. Finally, taking the dual role of the glial scar into account, we provide several pieces of advice on novel therapeutic strategies targeting the glial scar and scar-forming astrocytes.
Collapse
Affiliation(s)
- Tuo Yang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.,Medical School of Nantong University, Nantong, China
| | - YuJuan Dai
- Medical School of Nantong University, Nantong, China
| | - Gang Chen
- Department of Tissue and Embryology, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| | - ShuSen Cui
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
Roselló-Busquets C, Hernaiz-Llorens M, Soriano E, Martínez-Mármol R. Nystatin Regulates Axonal Extension and Regeneration by Modifying the Levels of Nitric Oxide. Front Mol Neurosci 2020; 13:56. [PMID: 32317932 PMCID: PMC7146717 DOI: 10.3389/fnmol.2020.00056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/17/2020] [Indexed: 12/19/2022] Open
Abstract
Nystatin is a pharmacological agent commonly used for the treatment of oral, mucosal and cutaneous fungal infections. Nystatin has also been extensively applied to study the cellular function of cholesterol-enriched structures because of its ability to bind and extract cholesterol from mammalian membranes. In neurons, cholesterol level is tightly regulated, being essential for synapse and dendrite formation, and axonal guidance. However, the action of Nystatin on axon regeneration has been poorly evaluated. Here, we examine the effect of Nystatin on primary cultures of hippocampal neurons, showing how acute dose (minutes) of Nystatin increases the area of growth cones, and chronic treatment (days) enhances axon length, axon branching, and axon regeneration post-axotomy. We describe two alternative signaling pathways responsible for the observed effects and activated at different concentrations of Nystatin. At elevated concentrations, Nystatin promotes growth cone expansion through phosphorylation of Akt; whereas, at low concentrations, Nystatin enhances axon length and regrowth by increasing nitric oxide levels. Together, our findings indicate new signaling pathways of Nystatin and propose this compound as a novel regulator of axon regeneration.
Collapse
Affiliation(s)
- Cristina Roselló-Busquets
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Marc Hernaiz-Llorens
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ramon Martínez-Mármol
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), University of Queensland, St Lucia Campus, Brisbane, QLD, Australia
| |
Collapse
|
22
|
Russo C, Patanè M, Vicario N, Di Bella V, Cosentini I, Barresi V, Gulino R, Pellitteri R, Russo A, Stanzani S. Olfactory Ensheathing Cells express both Ghrelin and Ghrelin Receptor in vitro: a new hypothesis in favor of a neurotrophic effect. Neuropeptides 2020; 79:101997. [PMID: 31784044 DOI: 10.1016/j.npep.2019.101997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022]
Abstract
Olfactory Ensheathing Cells (OECs) are glial cells able to secrete different neurotrophic growth factors and thus promote axonal growth, also acting as a mechanical support. In the olfactory system, during development, they drive the non-myelinated axons of the Olfactory Receptor Neurons (ORNs) towards the Olfactory Bulb (OB). Ghrelin (Ghre), a gut-brain peptide hormone, and its receptor (GHS-R 1a) are expressed in different parts of the central nervous system. In the last few years, this peptide has stimulated particular interest as results show it to be a neuroprotective factor with antioxidant, anti-inflammatory and anti-apoptotic properties. Our previous studies showed that OB mitral cells express Ghre, thus being able to play an important role in regulating food behavior in response to odors. In this study, we investigated the presence of Ghre and GHS-R 1a in primary mouse OECs. The expression of both Ghre and its receptor was assessed by an immunocytochemical technique, Western Blot and Polymerase Chain Reaction (PCR) analysis. Our results demonstrated that OECs are able to express both Ghre and GHS-R 1a and that these proteins are detectable after extensive passages in vitro; in addition, PCR analysis further confirmed these data. Therefore, we can hypothesize that Ghre and GHS-R 1a interact with a reinforcement function, in the peripheral olfactory circuit, providing a neurotrophic support to the synaptic interaction between ORNs and mitral cells.
Collapse
Affiliation(s)
- Cristina Russo
- Dept Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Italy
| | - Martina Patanè
- Dept Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Italy
| | - Nunzio Vicario
- Dept Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Italy
| | - Virginia Di Bella
- Dept Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Italy
| | - Ilaria Cosentini
- Dept Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Italy
| | - Vincenza Barresi
- Dept Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Italy
| | - Rosario Gulino
- Dept Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Italy
| | - Rosalia Pellitteri
- Inst for Biomedical Research and Innovation, National Research Council, Catania, Italy
| | - Antonella Russo
- Dept Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Italy.
| | - Stefania Stanzani
- Dept Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Italy
| |
Collapse
|
23
|
Wellman SM, Li L, Yaxiaer Y, McNamara I, Kozai TDY. Revealing Spatial and Temporal Patterns of Cell Death, Glial Proliferation, and Blood-Brain Barrier Dysfunction Around Implanted Intracortical Neural Interfaces. Front Neurosci 2019; 13:493. [PMID: 31191216 PMCID: PMC6546924 DOI: 10.3389/fnins.2019.00493] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022] Open
Abstract
Improving the long-term performance of neural electrode interfaces requires overcoming severe biological reactions such as neuronal cell death, glial cell activation, and vascular damage in the presence of implanted intracortical devices. Past studies traditionally observe neurons, microglia, astrocytes, and blood-brain barrier (BBB) disruption around inserted microelectrode arrays. However, analysis of these factors alone yields poor correlation between tissue inflammation and device performance. Additionally, these studies often overlook significant biological responses that can occur during acute implantation injury. The current study employs additional histological markers that provide novel information about neglected tissue components-oligodendrocytes and their myelin structures, oligodendrocyte precursor cells, and BBB -associated pericytes-during the foreign body response to inserted devices at 1, 3, 7, and 28 days post-insertion. Our results reveal unique temporal and spatial patterns of neuronal and oligodendrocyte cell loss, axonal and myelin reorganization, glial cell reactivity, and pericyte deficiency both acutely and chronically around implanted devices. Furthermore, probing for immunohistochemical markers that highlight mechanisms of cell death or patterns of proliferation and differentiation have provided new insight into inflammatory tissue dynamics around implanted intracortical electrode arrays.
Collapse
Affiliation(s)
- Steven M. Wellman
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
| | - Lehong Li
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yalikun Yaxiaer
- Eberly College of Science, Pennsylvania State University, University Park, PA, United States
| | - Ingrid McNamara
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Takashi D. Y. Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, United States
| |
Collapse
|
24
|
He M, Xiang Z, Xu L, Duan Y, Li F, Chen J. Lipopolysaccharide induces human olfactory ensheathing glial apoptosis by promoting mitochondrial dysfunction and activating the JNK-Bnip3-Bax pathway. Cell Stress Chaperones 2019; 24:91-104. [PMID: 30374881 PMCID: PMC6363633 DOI: 10.1007/s12192-018-0945-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023] Open
Abstract
Olfactory ensheathing glia (OEG) play an important role in regulating the regeneration of an injured nervous system. However, chronic inflammation damage reduces the viability of OEG via poorly understood mechanisms. We aimed to investigate the pathological responses of OEG in response to LPS-mediated inflammation stress in vitro. The results indicated that lipopolysaccharide (LPS) treatment significantly reduced the viability of OEG in a dose-dependent fashion. Mechanistically, LPS stimuli induced mitochondrial oxidative damage, mitochondrial fragmentation, mitochondrial metabolism disruption, and mitochondrial apoptosis activation. Furthermore, we verified that LPS modulated mitochondrial apoptosis by promoting Bax upregulation, and this process was regulated by the JNK-Bnip3 pathway. Inhibition of the JNK-Bnip3 pathway prevented LPS-mediated Bax activation, thus attenuating OEG apoptosis. Altogether, our data illustrated that LPS-mediated inflammation injury evoked mitochondrial abnormalities in OEG damage via the JNK-Bnip3-Bax pathway. This finding provides a potential target to protect OEG against chronic inflammation stress.
Collapse
Affiliation(s)
- Maowei He
- Bengbu Medical College, Affiliated Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA, Fuzhou, 350025, China
| | - Zimin Xiang
- Department of Orthopedics, Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA, Fuzhou, 350025, China
| | - Libin Xu
- Department of Orthopedics, Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA, Fuzhou, 350025, China
| | - Yanting Duan
- Bengbu Medical College, Affiliated Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA, Fuzhou, 350025, China
| | - Fangqin Li
- Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jianmei Chen
- Department of Orthopedics, Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA, Fuzhou, 350025, China.
| |
Collapse
|
25
|
Ferrer I. Oligodendrogliopathy in neurodegenerative diseases with abnormal protein aggregates: The forgotten partner. Prog Neurobiol 2018; 169:24-54. [DOI: 10.1016/j.pneurobio.2018.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 12/31/2022]
|
26
|
Tang BL. Promoting axonal regeneration through exosomes: An update of recent findings on exosomal PTEN and mTOR modifiers. Brain Res Bull 2018; 143:123-131. [DOI: 10.1016/j.brainresbull.2018.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/13/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022]
|
27
|
The Significance of Chondroitin Sulfate Proteoglycan 4 (CSPG4) in Human Gliomas. Int J Mol Sci 2018; 19:ijms19092724. [PMID: 30213051 PMCID: PMC6164575 DOI: 10.3390/ijms19092724] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/15/2022] Open
Abstract
Neuron glial antigen 2 (NG2) is a chondroitin sulphate proteoglycan 4 (CSPG4) that occurs in developing and adult central nervous systems (CNSs) as a marker of oligodendrocyte precursor cells (OPCs) together with platelet-derived growth factor receptor α (PDGFRα). It behaves variably in different pathological conditions, and is possibly involved in the origin and progression of human gliomas. In the latter, NG2/CSPG4 induces cell proliferation and migration, is highly expressed in pericytes, and plays a role in neoangiogenesis. NG2/CSPG4 expression has been demonstrated in oligodendrogliomas, astrocytomas, and glioblastomas (GB), and it correlates with malignancy. In rat tumors transplacentally induced by N-ethyl-N-nitrosourea (ENU), NG2/CSPG4 expression correlates with PDGFRα, Olig2, Sox10, and Nkx2.2, and with new vessel formation. In this review, we attempt to summarize the normal and pathogenic functions of NG2/CSPG4, as well as its potential as a therapeutic target.
Collapse
|
28
|
NG2/CSPG4 and progranulin in the posttraumatic glial scar. Matrix Biol 2018; 68-69:571-588. [DOI: 10.1016/j.matbio.2017.10.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 12/17/2022]
|
29
|
Liu S, Ren C, Qu X, Wu X, Dong F, Chand YK, Fan H, Yao R, Geng D. miR-219 attenuates demyelination in cuprizone-induced demyelinated mice by regulating monocarboxylate transporter 1. Eur J Neurosci 2018; 45:249-259. [PMID: 27873367 DOI: 10.1111/ejn.13485] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 12/14/2022]
Abstract
Remyelination is limited in patients with multiple sclerosis (MS) due to the difficulties in recruiting proliferating oligodendrocyte precursors (OPCs), the inhibition of OPC differentiation and/or maturation, and/or failure in the generation of the myelin sheath. In vitro studies have revealed that miR-219 is necessary for OPC differentiation and monocarboxylate transporter 1 (MCT1) plays a vital role in oligodendrocyte maturation and myelin synthesis. Herein, we hypothesized that miR-219 might promote oligodendrocyte differentiation and attenuate demyelination in a cuprizone (CPZ)-induced demyelinated model by regulating the expression of MCT1. We found that CPZ-treated mice exhibited significantly increased anxiety in the open field test. However, miR-219 reduced anxiety as shown by an increase in the total distance, the central distance and the mean amount of time spent in the central area. miR-219 decreased the quantity of OPCs and increased the number of oligodendrocytes and the level of myelin basic protein (MBP) and cyclic nucleotide 3' phosphodiesterase (CNP) protein. Ultrastructural studies further confirmed that the extent of demyelination was attenuated by miR-219 overexpression. Meanwhile, miR-219 also greatly enhanced MCT1 expression via suppression of oligodendrocyte differentiation inhibitors, Sox6 and Hes5, treatment with the MCT1 inhibitor α-cyano-4-hydroxycinnamate (4-CIN) reduced the number of oligodendrocytes and the protein levels of MBP and CNP. Taken together, these results suggest a novel mode of action of miR-219 via MCT1 in vivo and may provide a new potential remyelination therapeutic target.
Collapse
Affiliation(s)
- Sihan Liu
- Research Center for Neurobiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221000, China.,Department of Neurology, Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221009, China
| | - Chuanlu Ren
- Department of Laboratory, No. 100 Hospital of CPLA, Suzhou, China
| | - Xuebin Qu
- Research Center for Neurobiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221000, China
| | - Xiuxiang Wu
- Research Center for Neurobiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221000, China
| | - Fuxing Dong
- Research Center for Neurobiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221000, China
| | - Yadav Kaushal Chand
- Research Center for Neurobiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221000, China
| | - Hongbin Fan
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221009, China
| | - Ruiqin Yao
- Research Center for Neurobiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221000, China
| | - Deqin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221009, China
| |
Collapse
|
30
|
Ou-yang L, Liu Y, Wang BY, Cao P, Zhang JJ, Huang YY, Shen Y, Lyu JX. Carnosine suppresses oxygen-glucose deprivation/recovery-induced proliferation and migration of reactive astrocytes of rats in vitro. Acta Pharmacol Sin 2018; 39:24-34. [PMID: 28933425 DOI: 10.1038/aps.2017.126] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/05/2017] [Indexed: 12/16/2022]
Abstract
Glial scar formation resulted from excessive astrogliosis limits axonal regeneration and impairs recovery of function, thus an intervention to ameliorate excessive astrogliosis is crucial for the recovery of neurological function after cerebral ischemia. In this study we investigated the effects of carnosine, an endogenous water-soluble dipeptide (β-alanyl-L-histidine), on astrogliosis of cells exposed to oxygen-glucose deprivation/recovery (OGD/R) in vitro. Primary cultured rat astrocytes exhibited a significant increase in proliferation at 24 h recovery after OGD for 2 h. Pretreatment with carnosine (5 mmol/L) caused G1 arrest of reactive astrocytes, significantly attenuated OGD/R-induced increase in cyclin D1 protein expression and suppressed OGD/R-induced proliferation of reactive astrocytes. Carnosine treatment also reversed glycolysis and ATP production, which was elevated at 24 h recovery after OGD. A marked increase in migration of reactive astrocytes was observed at 24 h after OGD, whereas carnosine treatment reversed the expression levels of MMP-9 and suppressed the migration of astrocytes. Furthermore, carnosine also improved neurite growth of cortical neurons co-cultured with astrocytes under ischemic conditions. These results demonstrate that carnosine may be a promising candidate for inhibiting astrogliosis and promoting neurological function recovery after ischemic stroke.
Collapse
|
31
|
Proliferating NG2-Cell-Dependent Angiogenesis and Scar Formation Alter Axon Growth and Functional Recovery After Spinal Cord Injury in Mice. J Neurosci 2017; 38:1366-1382. [PMID: 29279310 DOI: 10.1523/jneurosci.3953-16.2017] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 11/18/2017] [Accepted: 12/17/2017] [Indexed: 01/10/2023] Open
Abstract
Spinal cord injury (SCI) induces a centralized fibrotic scar surrounded by a reactive glial scar at the lesion site. The origin of these scars is thought to be perivascular cells entering lesions on ingrowing blood vessels and reactive astrocytes, respectively. However, two NG2-expressing cell populations, pericytes and glia, may also influence scar formation. In the periphery, new blood vessel growth requires proliferating NG2+ pericytes; if this were also true in the CNS, then the fibrotic scar would depend on dividing NG2+ pericytes. NG2+ glial cells (also called oligodendrocyte progenitors or polydendrocytes) also proliferate after SCI and accumulate in large numbers among astrocytes in the glial scar. Their effect there, if any, is unknown. We show that proliferating NG2+ pericytes and glia largely segregate into the fibrotic and glial scars, respectively; therefore, we used a thymidine kinase/ganciclovir paradigm to ablate both dividing NG2+ cell populations to determine whether either scar was altered. Results reveal that loss of proliferating NG2+ pericytes in the lesion prevented intralesion angiogenesis and completely abolished the fibrotic scar. The glial scar was also altered in the absence of acutely dividing NG2+ cells, displaying discontinuous borders and significantly reduced GFAP density. Collectively, these changes enhanced edema, prolonged hemorrhage, and impaired forelimb functional recovery. Interestingly, after halting GCV at 14 d postinjury, scar elements and vessels entered the lesions over the next 7 d, as did large numbers of axons that were not present in controls. Collectively, these data reveal that acutely dividing NG2+ pericytes and glia play fundamental roles in post-SCI tissue remodeling.SIGNIFICANCE STATEMENT Spinal cord injury (SCI) is characterized by formation of astrocytic and fibrotic scars, both of which are necessary for lesion repair. NG2+ cells may influence both scar-forming processes. This study used a novel transgenic mouse paradigm to ablate proliferating NG2+ cells after SCI to better understand their role in repair. For the first time, our data show that dividing NG2+ pericytes are required for post-SCI angiogenesis, which in turn is needed for fibrotic scar formation. Moreover, loss of cycling NG2+ glia and pericytes caused significant multicellular tissue changes, including altered astrocyte responses and impaired functional recovery. This work reveals previously unknown ways in which proliferating NG2+ cells contribute to endogenous repair after SCI.
Collapse
|
32
|
Dimou L, Simons M. Diversity of oligodendrocytes and their progenitors. Curr Opin Neurobiol 2017; 47:73-79. [PMID: 29078110 DOI: 10.1016/j.conb.2017.09.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/18/2017] [Accepted: 09/21/2017] [Indexed: 01/01/2023]
Abstract
The established function of oligodendrocytes and their progenitors is to drive the cellular events of myelination, a highly diversified process necessary to match the needs of various neuronal subtypes and networks. The morphological and molecular heterogeneity of oligodendrocytes and their progenitors point to functions beyond establishing saltatory nerve conduction. Here, we review the diversity in the oligodendroglial lineage as well as the classical and new functions identified for oligodendrocytes and their progenitors. Because oligodendroglia remain highly responsive to environmental changes, they likely contribute to various neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Leda Dimou
- Molecular and Translational Neuroscience, Department of Neurology, Ulm University, 89081 Ulm, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany.
| | - Mikael Simons
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany; Institute of Neuronal Cell Biology, Technical University Munich, 80805 Munich, Germany; German Center for Neurodegenerative Disease (DZNE), 81377 Munich, Germany; Max Planck Institute of Experimental Medicine, Cellular Neuroscience, 37075 Göttingen, Germany.
| |
Collapse
|
33
|
Deletion of the Fractalkine Receptor, CX3CR1, Improves Endogenous Repair, Axon Sprouting, and Synaptogenesis after Spinal Cord Injury in Mice. J Neurosci 2017; 37:3568-3587. [PMID: 28264978 DOI: 10.1523/jneurosci.2841-16.2017] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 01/12/2023] Open
Abstract
Impaired signaling via CX3CR1, the fractalkine receptor, promotes recovery after traumatic spinal contusion injury in mice, a benefit achieved in part by reducing macrophage-mediated injury at the lesion epicenter. Here, we tested the hypothesis that CX3CR1-dependent changes in microglia and macrophage functions also will enhance neuroplasticity, at and several segments below the injury epicenter. New data show that in the presence of inflammatory stimuli, CX3CR1-deficient (CX3CR1-/-) microglia and macrophages adopt a reparative phenotype and increase expression of genes that encode neurotrophic and gliogenic proteins. At the lesion epicenter (mid-thoracic spinal cord), the microenvironment created by CX3CR1-/- microglia/macrophages enhances NG2 cell responses, axon sparing, and sprouting of serotonergic axons. In lumbar spinal cord, inflammatory signaling is reduced in CX3CR1-/- microglia. This is associated with reduced dendritic pathology and improved axonal and synaptic plasticity on ventral horn motor neurons. Together, these data indicate that CX3CR1, a microglia-specific chemokine receptor, is a novel therapeutic target for enhancing neuroplasticity and recovery after SCI. Interventions that specifically target CX3CR1 could reduce the adverse effects of inflammation and augment activity-dependent plasticity and restoration of function. Indeed, limiting CX3CR1-dependent signaling could improve rehabilitation and spinal learning.SIGNIFICANCE STATEMENT Published data show that genetic deletion of CX3CR1, a microglia-specific chemokine receptor, promotes recovery after traumatic spinal cord injury in mice, a benefit achieved in part by reducing macrophage-mediated injury at the lesion epicenter. Data in the current manuscript indicate that CX3CR1 deletion changes microglia and macrophage function, creating a tissue microenvironment that enhances endogenous repair and indices of neuroplasticity, at and several segments below the injury epicenter. Interventions that specifically target CX3CR1 might be used in the future to reduce the adverse effects of intraspinal inflammation and augment activity-dependent plasticity (e.g., rehabilitation) and restoration of function.
Collapse
|
34
|
Ampofo E, Schmitt BM, Menger MD, Laschke MW. The regulatory mechanisms of NG2/CSPG4 expression. Cell Mol Biol Lett 2017; 22:4. [PMID: 28536635 PMCID: PMC5415841 DOI: 10.1186/s11658-017-0035-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/22/2017] [Indexed: 12/24/2022] Open
Abstract
Neuron-glial antigen 2 (NG2), also known as chondroitin sulphate proteoglycan 4 (CSPG4), is a surface type I transmembrane core proteoglycan that is crucially involved in cell survival, migration and angiogenesis. NG2 is frequently used as a marker for the identification and characterization of certain cell types, but little is known about the mechanisms regulating its expression. In this review, we provide evidence that the regulation of NG2 expression underlies inflammation and hypoxia and is mediated by methyltransferases, transcription factors, including Sp1, paired box (Pax) 3 and Egr-1, and the microRNA miR129-2. These regulatory factors crucially determine NG2-mediated cellular processes such as glial scar formation in the central nervous system (CNS) or tumor growth and metastasis. Therefore, they are potential targets for the establishment of novel NG2-based therapeutic strategies in the treatment of CNS injuries, cancer and other conditions of these types.
Collapse
Affiliation(s)
- Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Beate M Schmitt
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
35
|
Umezawa H, Naito Y, Tanaka K, Yoshioka K, Suzuki K, Sudo T, Hagihara M, Hatano M, Tatsumi K, Kasuya Y. Genetic and Pharmacological Inhibition of p38α Improves Locomotor Recovery after Spinal Cord Injury. Front Pharmacol 2017; 8:72. [PMID: 28261102 PMCID: PMC5313485 DOI: 10.3389/fphar.2017.00072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/06/2017] [Indexed: 01/02/2023] Open
Abstract
One of the mitogen-activated protein kinases, p38α plays a crucial role in various inflammatory diseases and apoptosis of various types of cells. In this study, we investigated the pathophysiological roles of p38α in spinal cord injury (SCI), using a mouse model. Lateral hemisection at T9 of the SC was performed in wild type (WT) and p38α+/- mice (p38α-/- showed embryonic lethality). p38α+/- mice showed a better functional recovery from SCI-associated paralyzed hindlimbs compared to WT mice at 7 days post-injury (dpi), which remained until 28 dpi (an end time point of monitoring the behavior). In histopathological analysis at 28 dpi, there was more axonal regeneration with remyelination on the caudal side of the lesion epicenter in p38α+/- mice than in WT mice. At 7 dpi, infiltration of inflammatory cells into the lesion and expression of cytokines in the lesion were reduced in p38α+/- mice compared with WT mice. At the same time point, the number of apoptotic oligodendrocytes in the white matter at the caudal boarder of the lesion of p38α+/- mice was lower than that of WT mice. At 14 dpi, more neural and oligodendrocyte precursor cells in the gray matter and white matter, respectively, were observed around the lesion epicenter of p38α+/- mice compared with the case of WT mice. At the same time point, astrocytic scar formation was less apparent in p38α+/- than in WT mice, while compaction of inflammatory immune cells associated with the wound contraction was more apparent in p38α+/- than in WT mice. Furthermore, we verified the effectiveness of oral administration of SB239063, a p38α inhibitor on the hindlimb locomotor recovery after SCI. These results suggest that p38α deeply contributes to the pathogenesis of SCI and that inhibition of p38α is a beneficial strategy to recovery from SCI.
Collapse
Affiliation(s)
- Hiroki Umezawa
- Department of Respirology, Graduate School of Medicine, Chiba UniversityChiba, Japan; Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba UniversityChiba, Japan; Department of Biomedical Science, Graduate School of Medicine, Chiba UniversityChiba, Japan
| | - Yusuke Naito
- Department of Respirology, Graduate School of Medicine, Chiba UniversityChiba, Japan; Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba UniversityChiba, Japan; Department of Biomedical Science, Graduate School of Medicine, Chiba UniversityChiba, Japan
| | - Kensuke Tanaka
- Department of Respirology, Graduate School of Medicine, Chiba UniversityChiba, Japan; Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba UniversityChiba, Japan
| | - Kento Yoshioka
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba UniversityChiba, Japan; Department of Biomedical Science, Graduate School of Medicine, Chiba UniversityChiba, Japan
| | - Kenichi Suzuki
- Department of Respirology, Graduate School of Medicine, Chiba UniversityChiba, Japan; Department of Biomedical Science, Graduate School of Medicine, Chiba UniversityChiba, Japan
| | - Tatsuhiko Sudo
- Chemical Biology Core Facility and Antibiotics Laboratory, RIKEN Advanced Science Institute Saitama, Japan
| | | | - Masahiko Hatano
- Department of Biomedical Science, Graduate School of Medicine, Chiba University Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University Chiba, Japan
| | - Yoshitoshi Kasuya
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba UniversityChiba, Japan; Department of Biomedical Science, Graduate School of Medicine, Chiba UniversityChiba, Japan
| |
Collapse
|
36
|
Torper O, Götz M. Brain repair from intrinsic cell sources: Turning reactive glia into neurons. PROGRESS IN BRAIN RESEARCH 2017; 230:69-97. [PMID: 28552236 DOI: 10.1016/bs.pbr.2016.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The replacement of lost neurons in the brain due to injury or disease holds great promise for the treatment of neurological disorders. However, logistical and ethical hurdles in obtaining and maintaining viable cells for transplantation have proven difficult to overcome. In vivo reprogramming offers an alternative, to bypass many of the restrictions associated with an exogenous cell source as it relies on a source of cells already present in the brain. Recent studies have demonstrated the possibility to target and reprogram glial cells into functional neurons with high efficiency in the murine brain, using virally delivered transcription factors. In this chapter, we explore the different populations of glial cells, how they react to injury and how they can be exploited for reprogramming purposes. Further, we review the most significant publications and how they have contributed to the understanding of key aspects in direct reprogramming needed to take into consideration, like timing, cell type targeted, and regional differences. Finally, we discuss future challenges and what remains to be explored in order to determine the potential of in vivo reprogramming for future brain repair.
Collapse
Affiliation(s)
- Olof Torper
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, Planegg, Germany; Institute of Stem Cell Research, Helmholtz Center Munich, Munich, Germany; SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilians University Munich, Planegg, Germany
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, Planegg, Germany; Institute of Stem Cell Research, Helmholtz Center Munich, Munich, Germany; SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilians University Munich, Planegg, Germany.
| |
Collapse
|
37
|
Barton MJ, John JS, Clarke M, Wright A, Ekberg J. The Glia Response after Peripheral Nerve Injury: A Comparison between Schwann Cells and Olfactory Ensheathing Cells and Their Uses for Neural Regenerative Therapies. Int J Mol Sci 2017; 18:E287. [PMID: 28146061 PMCID: PMC5343823 DOI: 10.3390/ijms18020287] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/14/2017] [Accepted: 01/17/2017] [Indexed: 01/04/2023] Open
Abstract
The peripheral nervous system (PNS) exhibits a much larger capacity for regeneration than the central nervous system (CNS). One reason for this difference is the difference in glial cell types between the two systems. PNS glia respond rapidly to nerve injury by clearing debris from the injury site, supplying essential growth factors and providing structural support; all of which enhances neuronal regeneration. Thus, transplantation of glial cells from the PNS is a very promising therapy for injuries to both the PNS and the CNS. There are two key types of PNS glia: olfactory ensheathing cells (OECs), which populate the olfactory nerve, and Schwann cells (SCs), which are present in the rest of the PNS. These two glial types share many similar morphological and functional characteristics but also exhibit key differences. The olfactory nerve is constantly turning over throughout life, which means OECs are continuously stimulating neural regeneration, whilst SCs only promote regeneration after direct injury to the PNS. This review presents a comparison between these two PNS systems in respect to normal physiology, developmental anatomy, glial functions and their responses to injury. A thorough understanding of the mechanisms and differences between the two systems is crucial for the development of future therapies using transplantation of peripheral glia to treat neural injuries and/or disease.
Collapse
Affiliation(s)
- Matthew J Barton
- Menzies Health Institute Queensland, Griffith University, Nathan QLD 4111, Australia.
- Clem Jones Centre for Neurobiology & Stem Cell Research, Griffith University, Nathan QLD 4111, Australia.
| | - James St John
- Menzies Health Institute Queensland, Griffith University, Nathan QLD 4111, Australia.
- Clem Jones Centre for Neurobiology & Stem Cell Research, Griffith University, Nathan QLD 4111, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia.
| | - Mary Clarke
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia.
| | - Alison Wright
- Faculty of Health and Medical Science, Bond University, Robina, QLD 4226, Australia.
| | - Jenny Ekberg
- Clem Jones Centre for Neurobiology & Stem Cell Research, Griffith University, Nathan QLD 4111, Australia.
- Faculty of Health and Medical Science, Bond University, Robina, QLD 4226, Australia.
| |
Collapse
|
38
|
Fernandez-Castaneda A, Gaultier A. Adult oligodendrocyte progenitor cells - Multifaceted regulators of the CNS in health and disease. Brain Behav Immun 2016; 57:1-7. [PMID: 26796621 PMCID: PMC4940337 DOI: 10.1016/j.bbi.2016.01.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/28/2015] [Accepted: 01/11/2016] [Indexed: 01/17/2023] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) are the often-overlooked fourth glial cell type in the central nervous system (CNS), comprising about 5% of the CNS. For a long time, our vision of OPC function was limited to the generation of mature oligodendrocytes. However, new studies have highlighted the multifaceted nature of OPCs. During homeostatic and pathological conditions, OPCs are the most proliferative cell type in the CNS, a property not consistent with the need to generate new oligodendrocytes. Indeed, OPCs modulate neuronal activity and OPC depletion in the brain can trigger depressive-like behavior. More importantly, OPCs are actively recruited to injury sites, where they orchestrate glial scar formation and contribute to the immune response. The following is a comprehensive analysis of the literature on OPC function beyond myelination, in the context of the healthy and diseased adult CNS.
Collapse
Affiliation(s)
- Anthony Fernandez-Castaneda
- Center for Brain Immunology and Glia, Department of Neuroscience, Graduate Program in Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Alban Gaultier
- Center for Brain Immunology and Glia, Department of Neuroscience, Graduate Program in Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
39
|
Briggs DI, Angoa-Pérez M, Kuhn DM. Prolonged Repetitive Head Trauma Induces a Singular Chronic Traumatic Encephalopathy-Like Pathology in White Matter Despite Transient Behavioral Abnormalities. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2869-2886. [PMID: 27662795 DOI: 10.1016/j.ajpath.2016.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/06/2016] [Accepted: 07/11/2016] [Indexed: 12/14/2022]
Abstract
Repetitive mild traumatic brain injury (rmTBI), resulting from insults caused by an external mechanical force that disrupts normal brain function, has been linked to the development of neurodegenerative diseases, such as chronic traumatic encephalopathy and Alzheimer disease; however, neither the severity nor frequency of head injury required to trigger adverse behavioral outcomes is well understood. In this study, the administration of 30 head impacts using two different weights to lightly anesthetized, completely unrestrained mice established a paradigm that simulates the highly repetitive nature of sports- and military-related head injury. As the number of head impacts increases, the time to recover consciousness diminishes; however, both the sensorimotor function and behavioral outcomes of impacted mice evolve during the ensuing weeks. Postmortem analyses reveal robust Alzheimer disease and chronic traumatic encephalopathy-like conditions that manifest in a singular manner throughout the white matter concomitant with evidence of chronic oligodendrogenesis. Our data suggest that latency to recover the righting reflex may be an inadequate measure of injury severity and imply that exposure to repeated head impacts may mask the severity of an underlying and developing neuropathologic condition that does not manifest itself until long after head collisions cease. In addition, our data indicate that there is a cumulative and dose-dependent effect of repetitive head impacts that induces the neurobehavioral and neuropathologic outcomes seen in humans with a history of rmTBI.
Collapse
Affiliation(s)
- Denise I Briggs
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, Michigan; Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan.
| | - Mariana Angoa-Pérez
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, Michigan; Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Donald M Kuhn
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, Michigan; Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
40
|
Ferrara G, Errede M, Girolamo F, Morando S, Ivaldi F, Panini N, Bendotti C, Perris R, Furlan R, Virgintino D, Kerlero de Rosbo N, Uccelli A. NG2, a common denominator for neuroinflammation, blood-brain barrier alteration, and oligodendrocyte precursor response in EAE, plays a role in dendritic cell activation. Acta Neuropathol 2016; 132:23-42. [PMID: 27026411 PMCID: PMC4911384 DOI: 10.1007/s00401-016-1563-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/15/2016] [Accepted: 03/15/2016] [Indexed: 02/07/2023]
Abstract
In adult CNS, nerve/glial-antigen 2 (NG2) is expressed by oligodendrocyte progenitor cells (OPCs) and is an early marker of pericyte activation in pathological conditions. NG2 could, therefore, play a role in experimental autoimmune encephalomyelitis (EAE), a disease associated with increased blood–brain barrier (BBB) permeability, inflammatory infiltrates, and CNS damage. We induced EAE in NG2 knock-out (NG2KO) mice and used laser confocal microscopy immunofluorescence and morphometry to dissect the effect of NG2 KO on CNS pathology. NG2KO mice developed milder EAE than their wild-type (WT) counterparts, with less intense neuropathology associated with a significant improvement in BBB stability. In contrast to WT mice, OPC numbers did not change in NG2KO mice during EAE. Through FACS and confocal microscopy, we found that NG2 was also expressed by immune cells, including T cells, macrophages, and dendritic cells (DCs). Assessment of recall T cell responses to the encephalitogen by proliferation assays and ELISA showed that, while WT and NG2KO T cells proliferated equally to the encephalitogenic peptide MOG35-55, NG2KO T cells were skewed towards a Th2-type response. Because DCs could be responsible for this effect, we assessed their expression of IL-12 by PCR and intracellular FACS. IL-12-expressing CD11c+ cells were significantly decreased in MOG35-55-primed NG2KO lymph node cells. Importantly, in WT mice, the proportion of IL-12-expressing cells was significantly lower in CD11c+ NG2- cells than in CD11c+ NG2+ cells. To assess the relevance of NG2 at immune system and CNS levels, we induced EAE in bone-marrow chimeric mice, generated with WT recipients of NG2KO bone-marrow cells and vice versa. Regardless of their original phenotype, mice receiving NG2KO bone marrow developed milder EAE than those receiving WT bone marrow. Our data suggest that NG2 plays a role in EAE not only at CNS/BBB level, but also at immune response level, impacting on DC activation and thereby their stimulation of reactive T cells, through controlling IL-12 expression.
Collapse
|
41
|
Hackett AR, Lee DH, Dawood A, Rodriguez M, Funk L, Tsoulfas P, Lee JK. STAT3 and SOCS3 regulate NG2 cell proliferation and differentiation after contusive spinal cord injury. Neurobiol Dis 2016; 89:10-22. [PMID: 26804026 PMCID: PMC4785033 DOI: 10.1016/j.nbd.2016.01.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 10/22/2022] Open
Abstract
NG2 cells, also known as oligodendrocyte progenitors or polydendrocytes, are a major component of the glial scar that forms after spinal cord injury. NG2 cells react to injury by proliferating around the lesion site and differentiating into oligodendrocytes and astrocytes, but the molecular mechanism is poorly understood. In this study, we tested the role of the transcription factor STAT3, and its suppressor SOCS3, in NG2 cell proliferation and differentiation after spinal cord injury. Using knockout mice in which STAT3 or SOCS3 are genetically deleted specifically in NG2 cells, we found that deletion of STAT3 led to a reduction in oligodendrogenesis, while deletion of SOCS3 led to enhanced proliferation of NG2 cells within the glial scar after spinal cord injury. Additionally, STAT3 and SOCS3 were not required for astrogliogenesis from NG2 cells after spinal cord injury. Interestingly, genetic deletion of STAT3 and SOCS3 did not have opposing effects, suggesting that SOCS3 may have targets other than the STAT3 pathway in NG2 cells after spinal cord injury. Altogether, our data show that both STAT3 and SOCS3 play important, yet unexpected, roles in NG2 cell proliferation and differentiation after spinal cord injury.
Collapse
Affiliation(s)
- Amber R Hackett
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Do-Hun Lee
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Abdul Dawood
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Mario Rodriguez
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Lucy Funk
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Pantelis Tsoulfas
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Jae K Lee
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
42
|
Haas SJP, Zhou X, Machado V, Wree A, Krieglstein K, Spittau B. Expression of Tgfβ1 and Inflammatory Markers in the 6-hydroxydopamine Mouse Model of Parkinson's Disease. Front Mol Neurosci 2016; 9:7. [PMID: 26869879 PMCID: PMC4737885 DOI: 10.3389/fnmol.2016.00007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/14/2016] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that is characterized by loss of midbrain dopaminergic (mDA) neurons in the substantia nigra (SN). Microglia-mediated neuroinflammation has been described as a common hallmark of PD and is believed to further trigger the progression of neurodegenerative events. Injections of 6-hydroxydopamine (6-OHDA) are widely used to induce degeneration of mDA neurons in rodents as an attempt to mimic PD and to study neurodegeneration, neuroinflammation as well as potential therapeutic approaches. In the present study, we addressed microglia and astroglia reactivity in the SN and the caudatoputamen (CPu) after 6-OHDA injections into the medial forebrain bundle (MFB), and further analyzed the temporal and spatial expression patterns of pro-inflammatory and anti-inflammatory markers in this mouse model of PD. We provide evidence that activated microglia as well as neurons in the lesioned SN and CPu express Transforming growth factor β1 (Tgfβ1), which overlaps with the downregulation of pro-inflammatory markers Tnfα, and iNos, and upregulation of anti-inflammatory markers Ym1 and Arg1. Taken together, the data presented in this study suggest an important role for Tgfβ1 as a lesion-associated factor that might be involved in regulating microglia activation states in the 6-OHDA mouse model of PD in order to prevent degeneration of uninjured neurons by microglia-mediated release of neurotoxic factors such as Tnfα and nitric oxide (NO).
Collapse
Affiliation(s)
| | - Xiaolai Zhou
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Albert-Ludwigs-UniversityFreiburg, Germany; Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthaca, NY, USA
| | - Venissa Machado
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Albert-Ludwigs-UniversityFreiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-UniversityFreiburg, Germany; Faculty of Biology, Albert-Ludwigs-UniversityFreiburg, Germany
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center Rostock, Germany
| | - Kerstin Krieglstein
- Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Germany
| | - Björn Spittau
- Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Germany
| |
Collapse
|
43
|
Lentiviral Vector-Mediated p27kip1 Expression Facilitates Recovery After Spinal Cord Injury. Mol Neurobiol 2015; 53:6043-6056. [DOI: 10.1007/s12035-015-9498-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
|
44
|
The hippocampus participates in the control of locomotion speed. Neuroscience 2015; 311:207-15. [PMID: 26597762 DOI: 10.1016/j.neuroscience.2015.10.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/30/2015] [Accepted: 10/20/2015] [Indexed: 12/25/2022]
Abstract
The hippocampus role in sensory-motor integration remains unclear. In these experiments we study its function in the locomotor control. To establish the connection between the hippocampus and the locomotor system, electrical stimulation in the CA1 region was applied and EMG recordings were obtained. We also evaluated the hindlimbs and forelimbs kinematic patterns in rats with a penetrating injury (PI) in the hippocampus as well as in a cortex-injured group (CI), which served as control. After the PI, tamoxifen a selective estrogen receptor modulator (SERM) that has been described as a neuroprotector and antiinflammatory drug, or vehicle was administered. Electrical stimulation in the hippocampus produces muscle contractions in the contralateral triceps, when 6 Hz or 8 Hz pulse trains were applied. The penetrating injury in the hippocampus reduced the EMG amplitude after the electrical stimulation. At 7 DPI (days post-injury) we observed an increase in the strides speed in all four limbs of the non-treated group, decreasing the correlation percentage of the studied joints. After 15 DPI the strides speed in the non-treated returned to normal. These changes did not occur in the tamoxifen group nor in cortex-injured group. After 30 days, the nontreated group presented a reduction in the number of pyramidal cell layer neurons at the injury site, in comparison to the tam-treated group. The loss of neurons, may cause the interruption of the trisynaptic circuit and changes in the locomotion speed. Tamoxifen preserves the pyramidal neurons after the injury, probably resulting in the strides speed recovery.
Collapse
|
45
|
Siebert JR, Eade AM, Osterhout DJ. Biomaterial Approaches to Enhancing Neurorestoration after Spinal Cord Injury: Strategies for Overcoming Inherent Biological Obstacles. BIOMED RESEARCH INTERNATIONAL 2015; 2015:752572. [PMID: 26491685 PMCID: PMC4600545 DOI: 10.1155/2015/752572] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/22/2015] [Indexed: 01/14/2023]
Abstract
While advances in technology and medicine have improved both longevity and quality of life in patients living with a spinal cord injury, restoration of full motor function is not often achieved. This is due to the failure of repair and regeneration of neuronal connections in the spinal cord after injury. In this review, the complicated nature of spinal cord injury is described, noting the numerous cellular and molecular events that occur in the central nervous system following a traumatic lesion. In short, postinjury tissue changes create a complex and dynamic environment that is highly inhibitory to the process of neural regeneration. Strategies for repair are outlined with a particular focus on the important role of biomaterials in designing a therapeutic treatment that can overcome this inhibitory environment. The importance of considering the inherent biological response of the central nervous system to both injury and subsequent therapeutic interventions is highlighted as a key consideration for all attempts at improving functional recovery.
Collapse
Affiliation(s)
- Justin R. Siebert
- Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, PA 15601, USA
| | - Amber M. Eade
- Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, PA 15601, USA
| | - Donna J. Osterhout
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
46
|
Feng JF, Gao XF, Pu YY, Burnstock G, Xiang Z, He C. P2X7 receptors and Fyn kinase mediate ATP-induced oligodendrocyte progenitor cell migration. Purinergic Signal 2015; 11:361-9. [PMID: 26099359 DOI: 10.1007/s11302-015-9458-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/12/2015] [Indexed: 12/19/2022] Open
Abstract
Recruitment of oligodendrocyte precursor cells (OPCs) to the lesions is the most important event for remyelination after central nervous system (CNS) injury or in demyelinating diseases. However, the underlying molecular mechanism is not fully understood. In the present study, we found high concentrations of ATP could increase the number of migrating OPCs in vitro, while after pretreatment with oxidized ATP (a P2X7 receptor antagonist), the promotive effect was attenuated. The promotive effect of 2'(3')-O-(4-benzoylbenzoyl) adenosine 5'-triphosphate (BzATP) (a P2X7 receptor agonist) was more potent than ATP. After incubation with BzATP, the activity of Fyn, one member of the Src family of kinases, was enhanced. Moreover, the interaction between P2X7 and Fyn was identified by co-immunoprecipitation. After blocking the activity of Fyn or down-regulating the expression of Fyn, the migration of OPCs induced by BzATP was inhibited. These data indicate that P2X7 receptors/Fyn may mediate ATP-induced OPC migration under pathological conditions.
Collapse
Affiliation(s)
- Ji-Feng Feng
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education, Neuroscience Research Center of Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
47
|
Dimou L, Gallo V. NG2-glia and their functions in the central nervous system. Glia 2015; 63:1429-51. [PMID: 26010717 DOI: 10.1002/glia.22859] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/04/2015] [Indexed: 12/12/2022]
Abstract
In the central nervous system, NG2-glia represent a neural cell population that is distinct from neurons, astrocytes, and oligodendrocytes. While in the past the main role ascribed to these cells was that of progenitors for oligodendrocytes, in the last years it has become more obvious that they have further functions in the brain. Here, we will discuss some of the most current and highly debated issues regarding NG2-glia: Do these cells represent a heterogeneous population? Can they give rise to different progenies, and does this change under pathological conditions? How do they respond to injury or pathology? What is the role of neurotransmitter signaling between neurons and NG2-glia? We will first give an overview on the developmental origin of NG2-glia, and then discuss whether their distinct properties in different brain regions are the result of environmental influences, or due to intrinsic differences. We will then review and discuss their in vitro differentiation potential and in vivo lineage under physiological and pathological conditions, together with their electrophysiological properties in distinct brain regions and at different developmental stages. Finally, we will focus on their potential to be used as therapeutic targets in demyelinating and neurodegenerative diseases. Therefore, this review article will highlight the importance of NG2-glia not only in the healthy, but also in the diseased brain.
Collapse
Affiliation(s)
- L Dimou
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University, Munich, 80336, Germany.,Institute for Stem Cell Research, Helmholtz Zentrum Munich, Neuherberg, 85764, Germany
| | - V Gallo
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, District of Columbia
| |
Collapse
|
48
|
Vadivelu S, Stewart TJ, Qu Y, Horn K, Liu S, Li Q, Silver J, McDonald JW. NG2+ progenitors derived from embryonic stem cells penetrate glial scar and promote axonal outgrowth into white matter after spinal cord injury. Stem Cells Transl Med 2015; 4:401-11. [PMID: 25713464 DOI: 10.5966/sctm.2014-0107] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The glial scar resulting from spinal cord injury is rich in chondroitin sulfate proteoglycan (CSPG), a formidable barrier to axonal regeneration. We explored the possibility of breaching that barrier by first examining the scar in a functional in vitro model. We found that embryonic stem cell-derived neural lineage cells (ESNLCs) with prominent expression of nerve glial antigen 2 (NG2) survived, passed through an increasingly inhibitory gradient of CSPG, and expressed matrix metalloproteinase 9 (MMP-9) at the appropriate stage of their development. Outgrowth of axons from ESNLCs followed because the migrating cells sculpted pathways in which CSPG was degraded. The degradative mechanism involved MMP-9 but not MMP-2. To confirm these results in vivo, we transplanted ESNLCs directly into the cavity of a contused spinal cord 9 days after injury. A week later, ESNLCs survived and were expressing both NG2 and MMP-9. Their axons had grown through long distances (>10 mm), although they preferred to traverse white rather than gray matter. These data are consistent with the concept that expression of inhibitory CSPG within the injury scar is an important impediment to regeneration but that NG2+ progenitors derived from ESNLCs can modify the microenvironment to allow axons to grow through the barrier. This beneficial action may be partly due to developmental expression of MMP-9. We conclude that it might eventually be possible to encourage axonal regeneration in the human spinal cord by transplanting ESNLCs or other cells that express NG2.
Collapse
Affiliation(s)
- Sudhakar Vadivelu
- The International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at the Kennedy Krieger Institute, Baltimore, Maryland, USA; Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Department of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Todd J Stewart
- The International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at the Kennedy Krieger Institute, Baltimore, Maryland, USA; Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Department of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yun Qu
- The International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at the Kennedy Krieger Institute, Baltimore, Maryland, USA; Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Department of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kevin Horn
- The International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at the Kennedy Krieger Institute, Baltimore, Maryland, USA; Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Department of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Su Liu
- The International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at the Kennedy Krieger Institute, Baltimore, Maryland, USA; Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Department of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Qun Li
- The International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at the Kennedy Krieger Institute, Baltimore, Maryland, USA; Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Department of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jerry Silver
- The International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at the Kennedy Krieger Institute, Baltimore, Maryland, USA; Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Department of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John W McDonald
- The International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at the Kennedy Krieger Institute, Baltimore, Maryland, USA; Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Department of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
49
|
Entrapment via synaptic-like connections between NG2 proteoglycan+ cells and dystrophic axons in the lesion plays a role in regeneration failure after spinal cord injury. J Neurosci 2015; 34:16369-84. [PMID: 25471575 DOI: 10.1523/jneurosci.1309-14.2014] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NG2 is purportedly one of the most growth-inhibitory chondroitin sulfate proteoglycans (CSPGs) produced after spinal cord injury. Nonetheless, once the severed axon tips dieback from the lesion core into the penumbra they closely associate with NG2+ cells. We asked if proteoglycans play a role in this tight cell-cell interaction and whether overadhesion upon these cells might participate in regeneration failure in rodents. Studies using varying ratios of CSPGs and adhesion molecules along with chondroitinase ABC, as well as purified adult cord-derived NG2 glia, demonstrate that CSPGs are involved in entrapping neurons. Once dystrophic axons become stabilized upon NG2+ cells, they form synaptic-like connections both in vitro and in vivo. In NG2 knock-out mice, sensory axons in the dorsal columns dieback further than their control counterparts. When axons are double conditioned to enhance their growth potential, some traverse the lesion core and express reduced amounts of synaptic proteins. Our studies suggest that proteoglycan-mediated entrapment upon NG2+ cells is an additional obstacle to CNS axon regeneration.
Collapse
|
50
|
Xiang P, Zhu L, Jiang H, He BP. The activation of NG2 expressing cells is downstream to microglial reaction and mediated by the transforming growth factor beta 1. J Neuroimmunol 2015; 279:50-63. [PMID: 25670001 DOI: 10.1016/j.jneuroim.2015.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/25/2014] [Accepted: 01/14/2015] [Indexed: 11/30/2022]
Abstract
In the present study, we investigated the mechanism of activation of NG2 expressing cells. Application of microglial inhibitors not only attenuated morphological changes but also significantly retarded increase in the number of NG2 expressing cells. Intracerebral injection of TGF-β1 led to a profound activation of NG2 glia as well as an earlier accumulation of NG2(+)-microglia, whilst inhibition of TGF-β1 Smad2/3 signalling pathway eventually attenuated their active responses. We conclude that the activation of NG2 expressing cells is an event downstream to microglial reaction and TGF-β1 secreted from microglia might play an important role in modulation of the function of NG2 expressing cells.
Collapse
Affiliation(s)
- Ping Xiang
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lie Zhu
- Department of Plastic Surgery, Chang Zheng Hospital, Shanghai, China
| | - Hua Jiang
- Department of Plastic Surgery, Chang Zheng Hospital, Shanghai, China
| | - Bei Ping He
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|