1
|
Arrazola R, Espinosa-Jeffrey A, Serafín N, Harmony T, Quirarte GL. Excitotoxic lesion in the corpus callosum of neonatal rats: A model for encephalopathy of prematurity. Neuroscience 2025; 573:198-213. [PMID: 40096962 DOI: 10.1016/j.neuroscience.2025.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/19/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
Encephalopathy of prematurity (EP) can develop in preterm infants exposed to risk factors like extreme prematurity, low birth weight, hypoxia, infections, and inflammation. These factors can induce excitotoxicity in the brain's gray and white matter, leading to the death of neurons and oligodendrocyte progenitors. Understanding the brain mechanisms of EP requires animal models. In this study, we generated an EP model by injecting N-methyl-D-aspartic acid (NMDA) into the corpus callosum (CC) of neonatal male rats on postnatal day (PND) 5. Rats were divided into five groups: Intact, Vehicle, and three doses of NMDA (3, 4, or 5 μg). On PND 20, we measured the volumes of the CC, motor cortex (MC), and lateral ventricles. The 5 µg NMDA dose caused the largest lesion. We later assessed these structures on PNDs 6, 10, 20, and 30 to monitor lesion progression. We also analyzed myelin basic protein (MBP) expression and counted NeuN-positive cells using immunofluorescent markers. NMDA groups showed reduced MBP expression and fewer NeuN-positive cells in the MC. Additionally, NMDA-treated rats exhibited increased motor activity in the open field and reduced fall latencies in the rotarod task compared to controls. In conclusion, our perinatal excitotoxic lesion model in rats demonstrates structural abnormalities, including decreased MBP and loss of NeuN-positive cells, alongside motor and habituation impairments, resembling those seen in human EP.
Collapse
Affiliation(s)
- Rafael Arrazola
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro. Mexico
| | - Araceli Espinosa-Jeffrey
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Norma Serafín
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro. Mexico
| | - Thalía Harmony
- Unidad de Investigación en Neurodesarrollo, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro, Mexico.
| | - Gina L Quirarte
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro. Mexico.
| |
Collapse
|
2
|
van Veggel L, Schepers M, Tiane A, Kumar V, Willems E, Rombaut B, Noordijk J, Vangansewinkel T, Li A, Wolfs E, Ozcan B, Nouboers E, Moya PR, Sauer DB, Diliën H, Hellings N, Schreiber R, Vanmierlo T. EAAT3 modulation: A potential novel avenue towards remyelination in multiple sclerosis. Biomed Pharmacother 2025; 186:117960. [PMID: 40138922 DOI: 10.1016/j.biopha.2025.117960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Modulating the excitatory amino acid transporter 3 (EAAT3) can be considered a novel approach for the treatment of multiple sclerosis (MS). EAAT3 plays a crucial role in regulating oxidative stress and oligodendrocyte function through its ability to transport cysteine, the rate-limiting building block in the synthesis of the antioxidant glutathione. Therefore, EAAT3 activation is hypothesised to improve oligodendrocyte health and relieve its differentiation block in MS, improving remyelination capacity. Using a cuprizone-induced demyelination model, the effects of EAAT3 overexpression by viral transduction of oligodendrocytes and pharmacological inhibition of EAAT3 were examined. Surprisingly, EAAT3 overexpression significantly hampered remyelination, while EAAT3 inhibition prevented demyelination and improved functional remyelination as assessed by visual evoked potentials and post mortem myelin basic protein fluorescent staining. Next, cellular mechanisms underlying these results were investigated. Consistent with the in vivo findings, post mortem gene expression analysis of the corpus callosum of cuprizone treated animals revealed a trend towards upregulation of oligodendrocyte lineage genes in response to EAAT3 inhibition, supporting its role in oligodendrocyte health and myelination processes. In vitro studies using the human oligodendroglioma (HOG) cell line demonstrated the beneficial effects of EAAT3 inhibition on cellular morphology, indicating potential roles in promoting oligodendrocyte maturation and myelination. In contrast, EAAT3 overexpression appears to hamper these processes. These findings suggest that, contrary to our initial hypothesis, EAAT3 inhibition could improve oligodendrocyte function and myelination processes, highlighting its potential as a therapeutic target for demyelinating disorders. Future studies should address the exact molecular mechanism through which this effect is obtained.
Collapse
Affiliation(s)
- Lieve van Veggel
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium; Department of Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; University MS Center (UMSC), Hasselt-Pelt, Belgium
| | - Melissa Schepers
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium; Department of Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; University MS Center (UMSC), Hasselt-Pelt, Belgium
| | - Assia Tiane
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium; Department of Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; University MS Center (UMSC), Hasselt-Pelt, Belgium
| | - Vijay Kumar
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Emily Willems
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium; Department of Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; University MS Center (UMSC), Hasselt-Pelt, Belgium
| | - Ben Rombaut
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium; Department of Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; University MS Center (UMSC), Hasselt-Pelt, Belgium
| | - Jurrie Noordijk
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, Maastricht, the Netherlands
| | - Tim Vangansewinkel
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Anna Li
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Esther Wolfs
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Berra Ozcan
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Evelien Nouboers
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Pablo R Moya
- Facultad de Ciencias, Instituto de Fisiología, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - David B Sauer
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Hanne Diliën
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, Maastricht, the Netherlands
| | - Niels Hellings
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium; Department of Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Rudy Schreiber
- Section of Psychopharmacology, Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Tim Vanmierlo
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium; Department of Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; University MS Center (UMSC), Hasselt-Pelt, Belgium.
| |
Collapse
|
3
|
Shanks MJ, Cirillo J, Stinear CM, Byblow WD. A novel TMS framework for assessing neurophysiological recovery at the subacute stage after stroke. Clin Neurophysiol 2025; 171:82-94. [PMID: 39889484 DOI: 10.1016/j.clinph.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/29/2024] [Accepted: 01/14/2025] [Indexed: 02/03/2025]
Abstract
OBJECTIVE To use peri-threshold transcranial magnetic stimulation (TMS) intensities to elicit motor evoked potentials (MEPs) during the subacute stage after stroke and assess their association with upper limb motor recovery. METHODS Twenty-five MEP+ patients participated in three sessions at 1, 3, and 6 months post-stroke. Single-pulse TMS across a range of stimulation intensities was used to elicit MEPs in four muscles of the paretic and non-paretic upper limb. At each timepoint, threshold matrices were constructed based on MEP amplitude and persistence. A matrix element was suprathreshold if five out of ten stimulations elicited MEPs ≥ 50 μV. A subthreshold element produced MEPs below this criterion. Dexterity was assessed using the nine hole peg test. RESULTS There were fewer suprathreshold, and more subthreshold elements on the paretic compared to the non-paretic side. The number of suprathreshold elements on the paretic side increased between 1 and 6 months post-stroke. Neither sub- nor supra-threshold elements were associated with dexterity recovery. CONCLUSION The proportion of sub- and supra-threshold elements reflect neurophysiological recovery during the subacute stage after stroke. A threshold matrix framework can identify patients with stable versus dynamic neurophysiology post-stroke. SIGNIFICANCE A compositional analysis framework can quantify neurophysiological recovery after stroke.
Collapse
Affiliation(s)
- Maxine J Shanks
- Department of Exercise Sciences, University of Auckland, New Zealand; Centre for Brain Research, University of Auckland, New Zealand
| | - John Cirillo
- Department of Exercise Sciences, University of Auckland, New Zealand; Discipline of Physiology, School of Biomedicine, The University of Adelaide, Australia
| | - Cathy M Stinear
- Centre for Brain Research, University of Auckland, New Zealand; Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Winston D Byblow
- Department of Exercise Sciences, University of Auckland, New Zealand; Centre for Brain Research, University of Auckland, New Zealand.
| |
Collapse
|
4
|
Sapienza J, Martini F, Comai S, Cavallaro R, Spangaro M, De Gregorio D, Bosia M. Psychedelics and schizophrenia: a double-edged sword. Mol Psychiatry 2025; 30:679-692. [PMID: 39294303 DOI: 10.1038/s41380-024-02743-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024]
Abstract
Psychedelics have shown promising effects in several psychiatric diseases as demonstrated by multiple clinical trials. However, no clinical experiments on patients with schizophrenia have been conducted up to date, except for some old semi-anecdotal studies mainly performed in the time-span '50s-'60s. Notably, these studies reported interesting findings, particularly on the improvement of negative symptoms and social cognition. With no doubts the lack of modern clinical studies is due to the psychomimetic properties of psychedelics, a noteworthy downside that could worsen positive symptoms. However, a rapidly increasing body of evidence has suggested that the mechanisms of action of such compounds partially overlaps with the pathogenic underpinnings of schizophrenia but in an opposite way. These findings suggest that, despite being a controversial issue, the use of psychedelics in the treatment of schizophrenia would be based on a strong biological rationale. Therefore, the aim of our perspective paper is to provide a background on the old experiments with psychedelics performed on patients with schizophrenia, interpreting them in the light of recent molecular findings on their ability to induce neuroplasticity and modulate connectivity, the immune and TAARs systems, neurotransmitters, and neurotropic factors. No systematic approach was adopted in reviewing the evidence given the difficulty to retrieve and interpret old findings. Interestingly, we identified a therapeutic potential of psychedelics in schizophrenia adopting a critical point of view, particularly on negative symptoms and social cognition, and we summarized all the relevant findings. We also identified an eligible subpopulation of chronic patients predominantly burdened by negative symptoms, outlining possible therapeutic strategies which encompass very low doses of psychedelics (microdosing), carefully considering safety and feasibility, to pave the way to future clinical trials.
Collapse
Affiliation(s)
- Jacopo Sapienza
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, Pavia, Italy
| | | | - Stefano Comai
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Roberto Cavallaro
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of medicine, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Danilo De Gregorio
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Marta Bosia
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
5
|
Sharma T, Mehan S, Tiwari A, Khan Z, Gupta GD, Narula AS. Targeting Oligodendrocyte Dynamics and Remyelination: Emerging Therapies and Personalized Approaches in Multiple Sclerosis Management. Curr Neurovasc Res 2025; 21:359-417. [PMID: 39219420 DOI: 10.2174/0115672026336440240822063430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/01/1970] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
Multiple sclerosis (MS) is a progressive autoimmune condition that primarily affects young people and is characterized by demyelination and neurodegeneration of the central nervous system (CNS). This in-depth review explores the complex involvement of oligodendrocytes, the primary myelin- producing cells in the CNS, in the pathophysiology of MS. It discusses the biochemical processes and signalling pathways required for oligodendrocytes to function and remain alive, as well as how they might fail and cause demyelination to occur. We investigate developing therapeutic options that target remyelination, a fundamental component of MS treatment. Remyelination approaches promote the survival and differentiation of oligodendrocyte precursor cells (OPCs), restoring myelin sheaths. This improves nerve fibre function and may prevent MS from worsening. We examine crucial parameters influencing remyelination success, such as OPC density, ageing, and signalling pathway regulation (e.g., Retinoid X receptor, LINGO-1, Notch). The review also examines existing neuroprotective and antiinflammatory medications being studied to see if they can assist oligodendrocytes in surviving and reducing the severity of MS symptoms. The review focuses on medicines that target the myelin metabolism in oligodendrocytes. Altering oligodendrocyte metabolism has been linked to reversing demyelination and improving MS patient outcomes through various mechanisms. We also explore potential breakthroughs, including innovative antisense technologies, deep brain stimulation, and the impact of gut health and exercise on MS development. The article discusses the possibility of personalized medicine in MS therapy, emphasizing the importance of specific medicines based on individual molecular profiles. The study emphasizes the need for reliable biomarkers and improved imaging tools for monitoring disease progression and therapy response. Finally, this review focuses on the importance of oligodendrocytes in MS and the potential for remyelination therapy. It also underlines the importance of continued research to develop more effective treatment regimens, taking into account the complexities of MS pathology and the different factors that influence disease progression and treatment.
Collapse
Affiliation(s)
- Tarun Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Aarti Tiwari
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | | | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
6
|
Nabizadeh F. Brain white matter damage biomarkers. Adv Clin Chem 2024; 125:55-91. [PMID: 39988408 DOI: 10.1016/bs.acc.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
White matter (WM), constituting nearly half of the human brain's mass, is pivotal for the rapid transmission of neural signals across different brain regions, significantly influencing cognitive processes like learning, memory, and problem-solving. The integrity of WM is essential for brain function, and its damage, which can occur due to conditions such as multiple sclerosis (MS), stroke, and traumatic brain injury, results in severe neurological deficits and cognitive decline. The primary objective of this book chapter is to discuss the clinical significance of fluid biomarkers in assessing WM damage within the central nervous system (CNS). It explores the biological underpinnings and pathological changes in WM due to various neurological conditions and details how alterations can be detected and quantified through fluid biomarkers. By examining biomarkers like Myelin Basic Protein (MBP), Neurofilament light chain (NFL), and others, the chapter highlights their role in enhancing diagnostic precision, monitoring disease progression, and guiding therapeutic interventions, thus providing crucial insights into maintaining WM integrity and preventing cognitive and physical disabilities.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, and Alzheimer's Disease Institute, Tehran, Iran.
| |
Collapse
|
7
|
Gobbo D, Rieder P, Fang LP, Buttigieg E, Schablowski M, Damo E, Bosche N, Dallorto E, May P, Bai X, Kirchhoff F, Scheller A. Genetic Downregulation of GABA B Receptors from Oligodendrocyte Precursor Cells Protects Against Demyelination in the Mouse Spinal Cord. Cells 2024; 13:2014. [PMID: 39682762 PMCID: PMC11640606 DOI: 10.3390/cells13232014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
GABAergic signaling and GABAB receptors play crucial roles in regulating the physiology of oligodendrocyte-lineage cells, including their proliferation, differentiation, and myelination. Therefore, they are promising targets for studying how spinal oligodendrocyte precursor cells (OPCs) respond to injuries and neurodegenerative diseases like multiple sclerosis. Taking advantage of the temporally controlled and cell-specific genetic downregulation of GABAB receptors from OPCs, our investigation addresses their specific influence on OPC behavior in the gray and white matter of the mouse spinal cord. Our results show that, while GABAB receptors do not significantly alter spinal cord myelination under physiological conditions, they distinctly regulate the OPC differentiation and Ca2+ signaling. In addition, we investigate the impact of OPC-GABAB receptors in two models of toxic demyelination, namely, the cuprizone and the lysolecithin models. The genetic downregulation of OPC-GABAB receptors protects against demyelination and oligodendrocyte loss. Additionally, we observe the enhanced resilience to cuprizone-induced pathological alterations in OPC Ca2+ signaling. Our results provide valuable insights into the potential therapeutic implications of manipulating GABAB receptors in spinal cord OPCs and deepen our understanding of the interplay between GABAergic signaling and spinal cord OPCs, providing a basis for future research.
Collapse
Affiliation(s)
- Davide Gobbo
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany; (D.G.)
| | - Phillip Rieder
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany; (D.G.)
| | - Li-Pao Fang
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany; (D.G.)
| | - Emeline Buttigieg
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany; (D.G.)
- Institut des Neurosciences de la Timone (INT), Aix-Marseille Université, CNRS UMR7289, 13005 Marseille, France
| | - Moritz Schablowski
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany; (D.G.)
| | - Elisa Damo
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany; (D.G.)
| | - Nathalie Bosche
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany; (D.G.)
| | - Eleonora Dallorto
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany; (D.G.)
| | - Pascal May
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany; (D.G.)
| | - Xianshu Bai
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany; (D.G.)
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, 66421 Homburg, Germany
| | - Frank Kirchhoff
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany; (D.G.)
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, 66421 Homburg, Germany
- Chengdu Center for Gender-Specific Biology and Medicine (CGBM Chengdu), Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Anja Scheller
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany; (D.G.)
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, 66421 Homburg, Germany
| |
Collapse
|
8
|
Pagano Zottola AC, Daubon T, Venkataramani V. Inside help for brain tumors: macrophage-mediated myelin recycling promotes cell state-specific glioblastoma progression. Signal Transduct Target Ther 2024; 9:355. [PMID: 39632801 PMCID: PMC11618411 DOI: 10.1038/s41392-024-02055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/26/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Affiliation(s)
| | - Thomas Daubon
- University of Bordeaux, CNRS, IBGC UMR 5095, Bordeaux, France
| | - Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
9
|
Sapienza J, Agostoni G, Comai S, Nasini S, Dall'Acqua S, Sut S, Spangaro M, Martini F, Bechi M, Buonocore M, Bigai G, Repaci F, Nocera D, Ave C, Guglielmino C, Cocchi F, Cavallaro R, Deste G, Bosia M. Neuroinflammation and kynurenines in schizophrenia: Impact on cognition depending on cognitive functioning and modulatory properties in relation to cognitive remediation and aerobic exercise. Schizophr Res Cogn 2024; 38:100328. [PMID: 39281320 PMCID: PMC11399803 DOI: 10.1016/j.scog.2024.100328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024]
Abstract
Background In the last decade, the kynurenine pathway (KP) has gained attention in the pathogenesis of cognitive impairment in schizophrenia being at the croassroad between neuroinflammation and glutamatergic and cholinergic neurotransmission. However, clinical findings are scarse and conflicting, and the specific contributions of these two systems to the neurobiology of cognitive symptoms are far from being elucidated. Furthermore, little is known about the molecular underpinnings of non-pharmacological interventions for cognitive improvement, including rehabilitation strategies. Methods The current study examined 72 patients with schizophrenia, divided in two clusters depending on the severity of the cognitive impairment, with the aim to evaluate the impact of inflammatory biomarkers and KP metabolites depending on cognitive functioning. Moreover, we studied their possible link to the cognitive outcome in relation to sessions of cognitive remediation therapy (CRT) and aerobic exercise (AE) in a longitudinal arm of 42 patients. Results Neuroinflammation appeared to exert a more pronounced influence on cognition in patients exhibiting a higher cognitive functioning, contrasting with the activation of the KP, which had a greater impact on individuals with a lower cognitive profile. Cognitive improvements after the treatments were negatively predicted by levels of TNF-α and positively predicted by the 3-hydroxykynurenine (3-HK)/kynurenine (KYN) ratio, an index of the kynurenine-3-monooxygenase (KMO) enzyme activity. Conclusion Overall, these findings add novel evidence on the biological underpinnings of cognitive impairment in schizophrenia pointing at a differential role of neuroinflammation and KP metabolites in inducing cognitive deficits depending on the cognitive reserve and predicting outcomes after rehabilitation.
Collapse
Affiliation(s)
- Jacopo Sapienza
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, Pavia, Italy
| | - Giulia Agostoni
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Comai
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
- Division of Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Sofia Nasini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Marco Spangaro
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Martini
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Margherita Bechi
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mariachiara Buonocore
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giorgia Bigai
- School of Medicine, Vita -Salute San Raffaele University, Milan, Italy
| | - Federica Repaci
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Nocera
- School of Medicine, Vita -Salute San Raffaele University, Milan, Italy
| | - Chiara Ave
- School of Medicine, Vita -Salute San Raffaele University, Milan, Italy
| | - Carmelo Guglielmino
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Cocchi
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Cavallaro
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita -Salute San Raffaele University, Milan, Italy
| | - Giacomo Deste
- Department of Mental Health, Spedali Civili Hospital, Brescia, Italy
| | - Marta Bosia
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita -Salute San Raffaele University, Milan, Italy
| |
Collapse
|
10
|
Ortiz-Valladares M, Gonzalez-Perez O, Pedraza-Medina R. Bridging the gap: Prenatal nutrition, myelination, and schizophrenia etiopathogenesis. Neuroscience 2024; 558:58-69. [PMID: 39159841 DOI: 10.1016/j.neuroscience.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
Schizophrenia (SZ) is a complex mental illness characterized by disturbances in thinking, emotionality, and behavior, significantly impacting the quality of life for individuals affected and those around them. The etiology of SZ involves intricate interactions between genetic and environmental factors, although the precise mechanisms remain incompletely understood. Genetic predisposition, neurotransmitter dysregulation (particularly involving dopamine and serotonin), and structural brain abnormalities, including impaired prefrontal cortex function, have been implicated in SZ development. However, increasing evidence reveals the role of environmental factors, such as nutrition, during critical periods like pregnancy and lactation. Epidemiological studies suggest that early malnutrition significantly increases the risk of SZ symptoms manifesting in late adolescence, a crucial period coinciding with peak myelination and brain maturation. Prenatal undernutrition may disrupt myelin formation, rendering individuals more susceptible to SZ pathology. This review explores the potential relationship between prenatal undernutrition, myelin alterations, and susceptibility to SZ. By delineating the etiopathogenesis, examining genetic and environmental factors associated with SZ, and reviewing the relationship between SZ and myelination disorders, alongside the impact of malnutrition on myelination, we aim to examine how malnutrition might be linked to SZ by altering myelination processes, which contribute to increasing the understanding of SZ etiology and help identify targets for intervention and management.
Collapse
Affiliation(s)
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040. México
| | - Ricardo Pedraza-Medina
- Medical Science Postgraduate Program, School of Medicine, University of Colima, Colima 28040. México
| |
Collapse
|
11
|
Edwards NC, Lao PJ, Alshikho MJ, Ericsson OM, Rizvi B, Petersen ME, O’Bryant S, Aguilar LF, Simoes S, Mapstone M, Tudorascu DL, Janelidze S, Hansson O, Handen BL, Christian BT, Lee JH, Lai F, Rosas HD, Zaman S, Lott IT, Yassa MA, Gutierrez J, Wilcock DM, Head E, Brickman AM. Cerebrovascular disease is associated with Alzheimer's plasma biomarker concentrations in adults with Down syndrome. Brain Commun 2024; 6:fcae331. [PMID: 39403075 PMCID: PMC11472828 DOI: 10.1093/braincomms/fcae331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
By age 40 years, over 90% of adults with Down syndrome have Alzheimer's disease pathology and most progress to dementia. Despite having few systemic vascular risk factors, individuals with Down syndrome have elevated cerebrovascular disease markers that track with the clinical progression of Alzheimer's disease, suggesting a role of cerebrovascular disease that is hypothesized to be mediated by inflammatory factors. This study examined the pathways through which small vessel cerebrovascular disease contributes to Alzheimer's disease-related pathophysiology and neurodegeneration in adults with Down syndrome. One hundred eighty-five participants from the Alzheimer's Biomarkers Consortium-Down Syndrome [mean (SD) age = 45.2 (9.3) years] with available MRI and plasma biomarker data were included in this study. White matter hyperintensity (WMH) volumes were derived from T2-weighted fluid-attenuated inversion recovery MRI scans, and plasma biomarker concentrations of amyloid beta 42/40, phosphorylated tau 217, astrocytosis (glial fibrillary acidic protein) and neurodegeneration (neurofilament light chain) were measured with ultrasensitive immunoassays. We examined the bivariate relationships of WMH, amyloid beta 42/40, phosphorylated tau 217 and glial fibrillary acidic protein with age-residualized neurofilament light chain across Alzheimer's disease diagnostic groups. A series of mediation and path analyses examined statistical pathways linking WMH and Alzheimer's disease pathophysiology to promote neurodegeneration in the total sample and groups stratified by clinical diagnosis. There was a direct and indirect bidirectional effect through the glial fibrillary acidic protein of WMH on phosphorylated tau 217 concentration, which was associated with neurofilament light chain concentration in the entire sample. Amongst cognitively stable participants, WMH was directly and indirectly, through glial fibrillary acidic protein, associated with phosphorylated tau 217 concentration, and in those with mild cognitive impairment, there was a direct effect of WMH on phosphorylated tau 217 and neurofilament light chain concentrations. There were no associations of WMH with biomarker concentrations among those diagnosed with dementia. The findings from this cross-sectional study suggest that among individuals with Down syndrome, cerebrovascular disease promotes neurodegeneration by increasing astrocytosis and tau pathophysiology in the presymptomatic phases of Alzheimer's disease, but future studies will need to confirm these associations with longitudinal data. This work joins an emerging literature that implicates cerebrovascular disease and its interface with neuroinflammation as a core pathological feature of Alzheimer's disease in adults with Down syndrome.
Collapse
Affiliation(s)
- Natalie C Edwards
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
- Department of Neuroscience, Columbia University, New York City, NY 10032, USA
| | - Patrick J Lao
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - Mohamad J Alshikho
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - Olivia M Ericsson
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - Batool Rizvi
- Department of Neurobiology & Behavior, University of California, Irvine, CA 92697, USA
| | - Melissa E Petersen
- University of North Texas Health Science Center, Department of Pharmacology and Neuroscience, Fort Worth, TX 76107, USA
| | - Sid O’Bryant
- University of North Texas Health Science Center, Department of Pharmacology and Neuroscience, Fort Worth, TX 76107, USA
| | - Lisi Flores Aguilar
- Department of Pathology and Laboratory Medicine, University of California Irvine School of Medicine, University of California, Irvine, CA 92617, USA
| | - Sabrina Simoes
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - Mark Mapstone
- Department of Neurology, University of California, Irvine, CA 92697, USA
| | - Dana L Tudorascu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund 221 00, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund 221 00, Sweden
- Memory Clinic, Skåne University Hospital, Malmö 214 28, Sweden
| | - Benjamin L Handen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Joseph H Lee
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - Florence Lai
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - H Diana Rosas
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Center for Neuroimaging of Aging and Neurodegenerative Diseases, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
| | - Shahid Zaman
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Ira T Lott
- Department of Pediatrics and Neurology, School of Medicine, University of California, Irvine, CA 92868, USA
| | - Michael A Yassa
- Department of Neurobiology & Behavior, University of California, Irvine, CA 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697, USA
| | - José Gutierrez
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - Donna M Wilcock
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California Irvine School of Medicine, University of California, Irvine, CA 92617, USA
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| |
Collapse
|
12
|
Charmarke-Askar I, Spenlé C, Bagnard D. Complementary strategies to be used in conjunction with animal models for multiple sclerosis drug discovery: adapting preclinical validation of drug candidates to the need of remyelinating strategies. Expert Opin Drug Discov 2024; 19:1115-1124. [PMID: 39039755 DOI: 10.1080/17460441.2024.2382180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION The quest for novel MS therapies focuses on promoting remyelination and neuroprotection, necessitating innovative drug design paradigms and robust preclinical validation methods to ensure efficient clinical translation. The complexity of new drugs action mechanisms is strengthening the need for solid biological validation attempting to address all possible pitfalls and biases precluding access to efficient and safe drugs. AREAS COVERED In this review, the authors describe the different in vitro and in vivo models that should be used to create an integrated approach for preclinical validation of novel drugs, including the evaluation of the action mechanism. This encompasses 2D, 3D in vitro models and animal models presented in such a way to define the appropriate use in a global process of drug screening and hit validation. EXPERT OPINION None of the current available tests allow the concomitant evaluation of anti-inflammatory, immune regulators or remyelinating agents with sufficient reliability. Consequently, the collaborative efforts of academia, industry, and regulatory agencies are essential for establishing standardized protocols, validating novel methodologies, and translating preclinical findings into clinically meaningful outcomes.
Collapse
|
13
|
Barbaresi P, Fabri M, Lorenzi T, Sagrati A, Morroni M. Intrinsic organization of the corpus callosum. Front Physiol 2024; 15:1393000. [PMID: 39035452 PMCID: PMC11259024 DOI: 10.3389/fphys.2024.1393000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/16/2024] [Indexed: 07/23/2024] Open
Abstract
The corpus callosum-the largest commissural fiber system connecting the two cerebral hemispheres-is considered essential for bilateral sensory integration and higher cognitive functions. Most studies exploring the corpus callosum have examined either the anatomical, physiological, and neurochemical organization of callosal projections or the functional and/or behavioral aspects of the callosal connections after complete/partial callosotomy or callosal lesion. There are no works that address the intrinsic organization of the corpus callosum. We review the existing information on the activities that take place in the commissure in three sections: I) the topographical and neurochemical organization of the intracallosal fibers, II) the role of glia in the corpus callosum, and III) the role of the intracallosal neurons.
Collapse
Affiliation(s)
- Paolo Barbaresi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, Ancona, Italy
| | - Mara Fabri
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Teresa Lorenzi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, Ancona, Italy
| | - Andrea Sagrati
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Manrico Morroni
- Electron Microscopy Unit, Azienda Ospedaliero-Universitaria, Ancona, Italy
| |
Collapse
|
14
|
Bufan B, Ćuruvija I, Blagojević V, Grujić-Milanović J, Prijić I, Radosavljević T, Samardžić J, Radosavljevic M, Janković R, Djuretić J. NMDA Receptor Antagonist Memantine Ameliorates Experimental Autoimmune Encephalomyelitis in Aged Rats. Biomedicines 2024; 12:717. [PMID: 38672073 PMCID: PMC11047843 DOI: 10.3390/biomedicines12040717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Aging is closely related to the main aspects of multiple sclerosis (MS). The average age of the MS population is increasing and the number of elderly MS patients is expected to increase. In addition to neurons, N-methyl-D-aspartate receptors (NMDARs) are also expressed on non-neuronal cells, such as immune cells. The aim of this study was to investigate the role of NMDARs in experimental autoimmune encephalomyelitis (EAE) in young and aged rats. Memantine, a non-competitive NMDAR antagonist, was administered to young and aged Dark Agouti rats from day 7 after immunization. Antagonizing NMDARs had a more favourable effect on clinical disease, reactivation, and apoptosis of CD4+ T cells in the target organ of aged EAE rats. The expression of the fractalkine receptor CX3CR1 was increased in memantine-treated rats, but to a greater extent in aged rats. Additionally, memantine increased Nrf2 and Nrf2-regulated enzymes' mRNA expression in brain tissue. The concentrations of superoxide anion radicals, malondialdehyde, and advanced oxidation protein products in brain tissue were consistent with previous results. Overall, our results suggest that NMDARs play a more important role in the pathogenesis of EAE in aged than in young rats.
Collapse
Affiliation(s)
- Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Ivana Ćuruvija
- Department of Research and Development, Institute of Virology, Vaccines and Sera, Torlak, 11000 Belgrade, Serbia; (I.Ć.); (V.B.); (I.P.)
| | - Veljko Blagojević
- Department of Research and Development, Institute of Virology, Vaccines and Sera, Torlak, 11000 Belgrade, Serbia; (I.Ć.); (V.B.); (I.P.)
| | - Jelica Grujić-Milanović
- Institute for Medical Research, National Institute of the Republic of Serbia, Department of Cardiovascular Research, University of Belgrade, 11000 Belgrade, Serbia;
| | - Ivana Prijić
- Department of Research and Development, Institute of Virology, Vaccines and Sera, Torlak, 11000 Belgrade, Serbia; (I.Ć.); (V.B.); (I.P.)
| | - Tatjana Radosavljević
- Institute of Pathological Physiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Janko Samardžić
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (M.R.)
| | - Milica Radosavljevic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (M.R.)
| | - Radmila Janković
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Jasmina Djuretić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
15
|
Husseini L, Geladaris A, Weber MS. Toward identifying key mechanisms of progression in multiple sclerosis. Trends Neurosci 2024; 47:58-70. [PMID: 38102058 DOI: 10.1016/j.tins.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/16/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
A major therapeutic goal in the treatment of multiple sclerosis (MS) is to prevent the accumulation of disability over an often decades-long disease course. Disability progression can result from acute relapses as well as from CNS intrinsic parenchymal disintegration without de novo CNS lesion formation. Research focus has shifted to progression not associated with acute inflammation, as it is not sufficiently controlled by currently available treatments. This review outlines how recent advances in the understanding of the pathogenesis of progressive MS have been facilitated by the development of more precise, less static pathogenetic concepts of progressive MS, as well as by new techniques for the analysis of region-specific proteomic and transcriptomic signatures in the human CNS. We highlight key drivers of MS disease progression and potential targets in its treatment.
Collapse
Affiliation(s)
- Leila Husseini
- Department of Neurology, University Medical Center, Göttingen, Germany
| | - Anastasia Geladaris
- Institute of Neuropathology, University Medical Center, Göttingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, 37073 Göttingen, Germany
| | - Martin S Weber
- Department of Neurology, University Medical Center, Göttingen, Germany; Institute of Neuropathology, University Medical Center, Göttingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, 37073 Göttingen, Germany.
| |
Collapse
|
16
|
Li H, Ghorbani S, Zhang R, Ebacher V, Stephenson EL, Keough MB, Yong VW, Xue M. Prominent elevation of extracellular matrix molecules in intracerebral hemorrhage. Front Mol Neurosci 2023; 16:1251432. [PMID: 38025264 PMCID: PMC10658787 DOI: 10.3389/fnmol.2023.1251432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Background Intracerebral hemorrhage (ICH) is the predominant type of hemorrhagic stroke with high mortality and disability. In other neurological conditions, the deposition of extracellular matrix (ECM) molecules is a prominent obstacle for regenerative processes and an enhancer of neuroinflammation. Whether ECM molecules alter in composition after ICH, and which ECM members may inhibit repair, remain largely unknown in hemorrhagic stroke. Methods The collagenase-induced ICH mouse model and an autopsied human ICH specimen were investigated for expression of ECM members by immunofluorescence microscopy. Confocal image z-stacks were analyzed with Imaris 3D to assess the association of immune cells and ECM molecules. Sections from a mouse model of multiple sclerosis were used as disease and staining controls. Tissue culture was employed to examine the roles of ECM members on oligodendrocyte precursor cells (OPCs). Results Among the lectican chondroitin sulfate proteoglycan (CSPG) members, neurocan but not aggrecan, versican-V1 and versican-V2 was prominently expressed in perihematomal tissue and lesion core compared to the contralateral area in murine ICH. Fibrinogen, fibronectin and heparan sulfate proteoglycan (HSPG) were also elevated after murine ICH while thrombospondin and tenascin-C was not. Confocal microscopy with Imaris 3D rendering co-localized neurocan, fibrinogen, fibronectin and HSPG molecules to Iba1+ microglia/macrophages or GFAP+ astrocytes. Marked differentiation from the multiple sclerosis model was observed, the latter with high versican-V1 and negligible neurocan. In culture, purified neurocan inhibited adhesion and process outgrowth of OPCs, which are early steps in myelination in vivo. The prominent expression of neurocan in murine ICH was corroborated in human ICH sections. Conclusion ICH caused distinct alterations in ECM molecules. Among CSPG members, neurocan was selectively upregulated in both murine and human ICH. In tissue culture, neurocan impeded the properties of oligodendrocyte lineage cells. Alterations to the ECM in ICH may adversely affect reparative outcomes after stroke.
Collapse
Affiliation(s)
- Hongmin Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Samira Ghorbani
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Ruiyi Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Vincent Ebacher
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Erin L. Stephenson
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Michael B. Keough
- Division of Neurosurgery, University of Alberta, Edmonton, AB, Canada
| | - V. Wee Yong
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
17
|
Ramya V, Sarkar N, Bhagat S, Pradhan RK, Varghese AM, Nalini A, Sathyaprabha TN, Raju TR, Vijayalakshmi K. Oligodendroglia Confer Neuroprotection to NSC-34 Motor Neuronal Cells Against the Toxic Insults of Cerebrospinal Fluid from Sporadic Amyotrophic Lateral Sclerosis Patients. Mol Neurobiol 2023; 60:4855-4871. [PMID: 37184766 DOI: 10.1007/s12035-023-03375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/29/2023] [Indexed: 05/16/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disorder with multifactorial pathomechanisms affecting not only motor neurons but also glia. Both astrocytes and microglia get activated and contribute significantly to neurodegeneration. The role of oligodendroglia in such a situation remains obscure, especially in the sporadic form of ALS (SALS), which contributes to 90% of cases. Here, we have investigated the role of oligodendroglia in SALS pathophysiology using a human oligodendroglial cell line, MO3.13, by exposing the cells to cerebrospinal fluid from SALS patients (ALS-CSF; 10% v/v for 48 h). ALS-CSF significantly reduced the viability of MO3.13 cells and down-regulated the expression of oligodendroglia-specific proteins, namely, CNPase and Olig2. Furthermore, to investigate the effect of the observed oligodendroglial changes on motor neurons, NSC-34 motor neuronal cells were co-cultured/supplemented with conditioned/spent medium of MO3.13 cells upon exposure to ALS-CSF. Live cell imaging experiments revealed protection to NSC-34 cells against ALS-CSF toxicity upon co-culture with MO3.13 cells. This was evidenced by the absence of neuronal cytoplasmic vacuolation and beading of neurites, which instead resulted in better neuronal differentiation. Enhanced lactate levels and increased expression of its transporter, MCT-1, with sustained expression of trophic factors, namely, GDNF and BDNF, by MO3.13 cells hint towards metabolic and trophic support provided by the surviving oligodendroglia. Similar metabolic changes were seen in the lumbar spinal cord oligodendroglia of rat neonates intrathecally injected with ALS-CSF. The findings indicate that oligodendroglia are indeed rescuer to the degenerating motor neurons when the astrocytes and microglia turn topsy-turvy.
Collapse
Affiliation(s)
- V Ramya
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India
| | - Nisha Sarkar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India
| | - Savita Bhagat
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India
| | - Raj Kumar Pradhan
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India
| | - Anu Mary Varghese
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India
| | - Talakad N Sathyaprabha
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India
| | - Trichur R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India
| | - K Vijayalakshmi
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India.
| |
Collapse
|
18
|
Nimgampalle M, Chakravarthy H, Sharma S, Shree S, Bhat AR, Pradeepkiran JA, Devanathan V. Neurotransmitter systems in the etiology of major neurological disorders: Emerging insights and therapeutic implications. Ageing Res Rev 2023; 89:101994. [PMID: 37385351 DOI: 10.1016/j.arr.2023.101994] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Neurotransmitters serve as chemical messengers playing a crucial role in information processing throughout the nervous system, and are essential for healthy physiological and behavioural functions in the body. Neurotransmitter systems are classified as cholinergic, glutamatergic, GABAergic, dopaminergic, serotonergic, histaminergic, or aminergic systems, depending on the type of neurotransmitter secreted by the neuron, allowing effector organs to carry out specific functions by sending nerve impulses. Dysregulation of a neurotransmitter system is typically linked to a specific neurological disorder. However, more recent research points to a distinct pathogenic role for each neurotransmitter system in more than one neurological disorder of the central nervous system. In this context, the review provides recently updated information on each neurotransmitter system, including the pathways involved in their biochemical synthesis and regulation, their physiological functions, pathogenic roles in diseases, current diagnostics, new therapeutic targets, and the currently used drugs for associated neurological disorders. Finally, a brief overview of the recent developments in neurotransmitter-based therapeutics for selected neurological disorders is offered, followed by future perspectives in that area of research.
Collapse
Affiliation(s)
- Mallikarjuna Nimgampalle
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | - Harshini Chakravarthy
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India.
| | - Sapana Sharma
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | - Shruti Shree
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | - Anoop Ramachandra Bhat
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | | | - Vasudharani Devanathan
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India.
| |
Collapse
|
19
|
Spalloni A, de Stefano S, Gimenez J, Greco V, Mercuri NB, Chiurchiù V, Longone P. The Ying and Yang of Hydrogen Sulfide as a Paracrine/Autocrine Agent in Neurodegeneration: Focus on Amyotrophic Lateral Sclerosis. Cells 2023; 12:1691. [PMID: 37443723 PMCID: PMC10341301 DOI: 10.3390/cells12131691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Ever since its presence was reported in the brain, the nature and role of hydrogen sulfide (H2S) in the Central Nervous System (CNS) have changed. Consequently, H2S has been elected as the third gas transmitter, along with carbon monoxide and nitric oxide, and a number of studies have focused on its neuromodulatory and protectant functions in physiological conditions. The research on H2S has highlighted its many facets in the periphery and in the CNS, and its role as a double-faced compound, switching from protective to toxic depending on its concentration. In this review, we will focus on the bell-shaped nature of H2S as an angiogenic factor and as a molecule released by glial cells (mainly astrocytes) and non-neuronal cells acting on the surrounding environment (paracrine) or on the releasing cells themselves (autocrine). Finally, we will discuss its role in Amyotrophic Lateral Sclerosis, a paradigm of a neurodegenerative disease.
Collapse
Affiliation(s)
- Alida Spalloni
- Laboratory of Molecular Neurobiology, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.d.S.); (J.G.); (P.L.)
| | - Susanna de Stefano
- Laboratory of Molecular Neurobiology, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.d.S.); (J.G.); (P.L.)
- Department of Systems Medicine, Università di Roma Tor Vergata, 00133 Rome, Italy;
| | - Juliette Gimenez
- Laboratory of Molecular Neurobiology, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.d.S.); (J.G.); (P.L.)
| | - Viviana Greco
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Department of Diagnostic and Laboratory Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Nicola B. Mercuri
- Department of Systems Medicine, Università di Roma Tor Vergata, 00133 Rome, Italy;
- Laboratory of Experimental Neurology, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Valerio Chiurchiù
- Institute of Translational Pharmacology, National Research Council (CNR), 00185 Rome, Italy;
- Laboratory of Resolution of Neuroinflammation, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Patrizia Longone
- Laboratory of Molecular Neurobiology, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.d.S.); (J.G.); (P.L.)
| |
Collapse
|
20
|
Maruyama T, Tanabe S, Uyeda A, Suzuki T, Muramatsu R. Free fatty acids support oligodendrocyte survival in a mouse model of amyotrophic lateral sclerosis. Front Cell Neurosci 2023; 17:1081190. [PMID: 37252191 PMCID: PMC10213402 DOI: 10.3389/fncel.2023.1081190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the white matter degeneration. Although changes in blood lipids are involved in the pathogenesis of neurological diseases, the pathological role of blood lipids in ALS remains unclear. Methods and results We performed lipidome analysis on the plasma of ALS model mice, mutant superoxide dismutase 1 (SOD1G93A) mice, and found that the concentration of free fatty acids (FFAs), including oleic acid (OA) and linoleic acid (LA), decreased prior to disease onset. An in vitro study revealed that OA and LA directly inhibited glutamate-induced oligodendrocytes cell death via free fatty acid receptor 1 (FFAR1). A cocktail containing OA/LA suppressed oligodendrocyte cell death in the spinal cord of SOD1G93A mice. Discussion These results suggested that the reduction of FFAs in the plasma is a pathogenic biomarker for ALS in the early stages, and supplying a deficiency in FFAs is a potential therapeutic approach for ALS by preventing oligodendrocyte cell death.
Collapse
Affiliation(s)
- Takashi Maruyama
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Pharmacoscience, Graduate School of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Shogo Tanabe
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Akiko Uyeda
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tatsunori Suzuki
- Department of Pharmacoscience, Graduate School of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
- Department of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Rieko Muramatsu
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
21
|
Al-Griw MA, Alghazeer R, Ratemi HW, Ben-Othman ME, Tabagah R, Shamlan G, Habibullah MM, Alnajeebi AM, Babteen NA, Eskandrani AA, AL-Farga A, Alansari WS. Blockade of L-Type Ca 2+ Channel Activity Alleviates Oligodendrocyte Pathology following Brain Injury in Male Rats. Curr Issues Mol Biol 2023; 45:3953-3964. [PMID: 37232721 PMCID: PMC10217115 DOI: 10.3390/cimb45050252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 05/27/2023] Open
Abstract
A growing body of studies suggests that Ca2+ signaling controls a variety of biological processes in brain elements. Activation of L-type voltage-operated Ca2+ channels (VOCCs) plays a role in the development of oligodendrocyte (OL) lineage loss, and indicates that the blocking of these channels may be an effective way to inhibit OL lineage cell loss. For this study, 10.5-day-old male Sprague-Dawley rats were used to generate cerebellar tissue slices. The slice tissues were cultured and randomly allocated to one of four groups (six each) and treated as follows: Group I, (sham control); Group II, 0.1% dimethyl sulfoxide (DMSO) only (vehicle control); Group III, injury (INJ); Group IV, (INJ and treatment with NIF). The injury was simulated by exposing the slice tissues to 20 min of oxygen-glucose deprivation (OGD). At 3 days post-treatment, the survival, apoptosis, and proliferation of the OL lineages were measured and compared. Results: In the INJ group, there was a decrease in mature myelin basic protein+ OLs (MBP+ OLs) and their precursors, NG2+ OPCs (Nerve-glia antigen 2+ oligodendrocyte precursor cell), compared with controls. A significant elevation was observed in the NG2+ OPCs and apoptotic MBP+ OLs as confirmed by a TUNEL assay. However, the cell proliferation rate was decreased in NG2+ OPCs. NIF increased OL survival as measured by apoptosis rate in both OL lineages and preserved the rate of proliferation in the NG2+ OPCs. Conclusions: Activation of L-type VOCCs may contribute to OL pathology in association with reduced mitosis of OPCs following brain injury as a strategy to treat demyelinating diseases.
Collapse
Affiliation(s)
- Mohamed A. Al-Griw
- Department of Histology and Genetics, Faculty of Medicine, University of Tripoli, Tripoli 13203, Libya
| | - Rabia Alghazeer
- Department of Chemistry, Faculty of Science, University of Tripoli, Tripoli 50676, Libya
| | - Haithm W. Ratemi
- Department of Genetic Engineering, Biotechnology Research Center (BTRC), Tripoli 30313, Libya
| | - Mohamed E. Ben-Othman
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli 13662, Libya
| | - Refaat Tabagah
- Division Developmental Biology, Zoology Department, Faculty of Sciences, University of Tripoli, Tripoli 13662, Libya
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Mahmmoud M. Habibullah
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Afnan M. Alnajeebi
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Nouf A. Babteen
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Areej A. Eskandrani
- Chemistry Department, Faculty of Science, Taibah University, Medina 30002, Saudi Arabia
| | - Ammar AL-Farga
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Wafa S. Alansari
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| |
Collapse
|
22
|
Glial Cell Metabolic Profile Upon Iron Deficiency: Oligodendroglial and Astroglial Casualties of Bioenergetic Adjustments. Mol Neurobiol 2023; 60:1949-1963. [PMID: 36595194 DOI: 10.1007/s12035-022-03149-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 11/24/2022] [Indexed: 01/04/2023]
Abstract
Iron deficiency (ID) represents one of the most prevalent nutritional deficits, affecting almost two billion people worldwide. Gestational iron deprivation induces hypomyelination due to oligodendroglial maturation deficiencies and is thus a useful experimental model to analyze oligodendrocyte (OLG) requirements to progress to a mature myelinating state. A previous proteomic study in the adult ID brain by our group demonstrated a pattern of dysregulated proteins involved in the tricarboxylic acid cycle and mitochondrial dysfunction. The aim of the present report was to assess bioenergetics metabolism in primary cultures of OLGs and astrocytes (ASTs) from control and ID newborns, on the hypothesis that the regulation of cell metabolism correlates with cell maturation. Oxygen consumption and extracellular acidification rates were measured using a Seahorse extracellular flux analyzer. ID OLGs and ASTs both exhibited decreased spare respiratory capacity, which indicates that ID effectively induces mitochondrial dysfunction. A decrease in glycogen granules was observed in ID ASTs, and an increase in ROS production was detected in ID OLGs. Immunolabeling of structural proteins showed that mitochondrial number and size were increased in ID OLGs, while an increased number of smaller mitochondria was observed in ID ASTs. These results reflect an unfavorable bioenergetic scenario in which ID OLGs fail to progress to a myelinating state, and indicate that the regulation of cell metabolism may impact cell fate decisions and maturation.
Collapse
|
23
|
Graciani AL, Gutierre MU, Coppi AA, Arida RM, Gutierre RC. MYELIN, AGING, AND PHYSICAL EXERCISE. Neurobiol Aging 2023; 127:70-81. [PMID: 37116408 DOI: 10.1016/j.neurobiolaging.2023.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
Myelin sheath is a structure in neurons fabricated by oligodendrocytes and Schwann cells responsible for increasing the efficiency of neural synapsis, impulse transmission, and providing metabolic support to the axon. They present morpho-functional changes during health aging as deformities of the sheath and its fragmentation, causing an increased load on microglial phagocytosis, with Alzheimer's disease aggravating. Physical exercise has been studied as a possible protective agent for the nervous system, offering benefits to neuroplasticity. In this regard, studies in animal models for Alzheimer's and depression reported the efficiency of physical exercise in protecting against myelin degeneration. A reduction of myelin damage during aging has also been observed in healthy humans. Physical activity promotes oligodendrocyte proliferation and myelin preservation during old age, although some controversies remain. In this review, we will address how effective physical exercise can be as a protective agent of the myelin sheath against the effects of aging in physiological and pathological conditions.
Collapse
|
24
|
Luo W, Xu H, Xu L, Jiang W, Chen C, Chang Y, Liu C, Tian Z, Qiu X, Xie C, Li X, Chen H, Lai S, Wu L, Cui Y, Tang C, Qiu W. Remyelination in neuromyelitis optica spectrum disorder is promoted by edaravone through mTORC1 signaling activation. Glia 2023; 71:284-304. [PMID: 36089914 DOI: 10.1002/glia.24271] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/15/2022] [Accepted: 08/27/2022] [Indexed: 01/28/2023]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a severe inflammatory autoimmune disease of the central nervous system that is manifested as secondary myelin loss. Oligodendrocyte progenitor cells (OPCs) are the principal source of myelinating oligodendrocytes (OLs) and are abundant in demyelinated regions of NMOSD patients, thus possibly representing a cellular target for pharmacological intervention. To explore the therapeutic compounds that enhance myelination due to endogenous OPCs, we screened the candidate drugs in mouse neural progenitor cell (NPC)-derived OPCs. We identified drug edaravone, which is approved by the Food and Drug Administration (FDA), as a promoter of OPC differentiation into mature OLs. Edaravone enhanced remyelination in organotypic slice cultures and in mice, even when edaravone was administered following NMO-IgG-induced demyelination, and ameliorated motor impairment in a systemic mouse model of NMOSD. The results of mechanistic studies in NMO-IgG-treated mice and the biopsy samples of the brain tissues of NMOSD patients indicated that the mTORC1 signaling pathway was significantly inhibited, and edaravone promoted OPC maturation and remyelination by activating mTORC1 signaling. Furthermore, pharmacological activation of mTORC1 signaling significantly enhanced myelin regeneration in NMOSD. Thus, edaravone is a potential therapeutic agent that promotes lesion repair in NMOSD patients by enhancing OPC maturation.
Collapse
Affiliation(s)
- Wenjing Luo
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Huiming Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Li Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Wei Jiang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Chen Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yanyu Chang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Chunxin Liu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Zhenming Tian
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Xiusheng Qiu
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Chichu Xie
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Xuejia Li
- Guangzhou SALIAI Stem Cell Science and Technology Co., Ltd., Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong Province, China
| | - Haijia Chen
- Guangzhou SALIAI Stem Cell Science and Technology Co., Ltd., Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong Province, China
| | - Shuiqing Lai
- Department of Endocrinology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Longjun Wu
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Yaxiong Cui
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Advanced Innovation Center for Structural Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Changyong Tang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
25
|
Murray CJ, Vecchiarelli HA, Tremblay MÈ. Enhancing axonal myelination in seniors: A review exploring the potential impact cannabis has on myelination in the aged brain. Front Aging Neurosci 2023; 15:1119552. [PMID: 37032821 PMCID: PMC10073480 DOI: 10.3389/fnagi.2023.1119552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/22/2023] [Indexed: 04/11/2023] Open
Abstract
Consumption of cannabis is on the rise as public opinion trends toward acceptance and its consequent legalization. Specifically, the senior population is one of the demographics increasing their use of cannabis the fastest, but research aimed at understanding cannabis' impact on the aged brain is still scarce. Aging is characterized by many brain changes that slowly alter cognitive ability. One process that is greatly impacted during aging is axonal myelination. The slow degradation and loss of myelin (i.e., demyelination) in the brain with age has been shown to associate with cognitive decline and, furthermore, is a common characteristic of numerous neurological diseases experienced in aging. It is currently not known what causes this age-dependent degradation, but it is likely due to numerous confounding factors (i.e., heightened inflammation, reduced blood flow, cellular senescence) that impact the many cells responsible for maintaining overall homeostasis and myelin integrity. Importantly, animal studies using non-human primates and rodents have also revealed demyelination with age, providing a reliable model for researchers to try and understand the cellular mechanisms at play. In rodents, cannabis was recently shown to modulate the myelination process. Furthermore, studies looking at the direct modulatory impact cannabis has on microglia, astrocytes and oligodendrocyte lineage cells hint at potential mechanisms to prevent some of the more damaging activities performed by these cells that contribute to demyelination in aging. However, research focusing on how cannabis impacts myelination in the aged brain is lacking. Therefore, this review will explore the evidence thus far accumulated to show how cannabis impacts myelination and will extrapolate what this knowledge may mean for the aged brain.
Collapse
Affiliation(s)
- Colin J. Murray
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- *Correspondence: Colin J. Murray,
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Départment de Médicine Moléculaire, Université Laval, Québec City, QC, Canada
- Axe Neurosciences, Center de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
- Marie-Ève Tremblay,
| |
Collapse
|
26
|
Lu KH, Wu TC, Yeh PS. Cytotoxic Lesions beyond the Corpus Callosum Following Acute Meningoencephalitis and Mycoplasma Pneumoniae Infection: A Case Report and Literature Review. Case Rep Neurol 2023; 15:113-119. [PMID: 37497263 PMCID: PMC10368104 DOI: 10.1159/000530944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/24/2023] [Indexed: 07/28/2023] Open
Abstract
Cytotoxic lesions of the corpus callosum (CLOCCs) are secondary lesions associated with a variety of clinical causes. The presence of a small and reversible lesion in the splenium of corpus callosum with restricted diffusion on cranial magnetic resonance imaging is the defining feature. The clinical-radiological manifestations have been documented as mild and reversible. Severer presentations were scarcely reported. In this report, we described a 25-year-old man with preceding fever, worsening somnolence, and convulsions. He was diagnosed with acute meningoencephalitis and Mycoplasma pneumoniae infection after workups. After medical treatments, he had neurological deterioration and progressing CLOCCs from a small oval lesion in the center of splenium extending to the whole corpus callosum and bilaterally adjacent white matter. The patient received intravenous methylprednisolone and immunoglobulin successively, and his neurological conditions improved. The CLOCCs, not always mild and reversible, could present with severe clinicoradiological features.
Collapse
Affiliation(s)
- Kuan-Hsien Lu
- Department of Neurology, Chi-Mei Medical Center, Tainan City, Taiwan
| | - Te-Chang Wu
- Division of Neuroradiology, Department of Radiology, Chi-Mei Medical Center, Tainan City, Taiwan
| | - Poh-Shiow Yeh
- Department of Neurology, Chi-Mei Medical Center, Tainan City, Taiwan
| |
Collapse
|
27
|
Galaburda AM. Animal models of developmental dyslexia. Front Neurosci 2022; 16:981801. [PMID: 36452335 PMCID: PMC9702821 DOI: 10.3389/fnins.2022.981801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/28/2022] [Indexed: 09/10/2024] Open
Abstract
As some critics have stated, the term "developmental dyslexia" refers to a strictly human disorder, relating to a strictly human capacity - reading - so it cannot be modeled in experimental animals, much less so in lowly rodents. However, two endophenotypes associated with developmental dyslexia are eminently suitable for animal modeling: Cerebral Lateralization, as illustrated by the association between dyslexia and non-righthandedness, and Cerebrocortical Dysfunction, as illustrated by the described abnormal structural anatomy and/or physiology and functional imaging of the dyslexic cerebral cortex. This paper will provide a brief review of these two endophenotypes in human beings with developmental dyslexia and will describe the animal work done in my laboratory and that of others to try to shed light on the etiology of and neural mechanisms underlying developmental dyslexia. Some thought will also be given to future directions of the research.
Collapse
Affiliation(s)
- Albert M. Galaburda
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
28
|
Bravi B, Bollettini I, Di Pasquasio C, Falini A, Colombo C, Zanardi R, Poletti S, Benedetti F. Brain spectroscopic measures of glutamatergic and neuronal metabolism and glial activation influence white matter integrity in bipolar depression. Psychiatry Res Neuroimaging 2022; 326:111534. [PMID: 36049317 DOI: 10.1016/j.pscychresns.2022.111534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/27/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022]
Abstract
Bipolar disorder (BD) is associated with alterations in white matter (WM) microstructure, glutamatergic neurotransmission, and glia activity. Previous studies showed higher concentrations of glutamate (Glu), glutamate+glutamine (Glx), and reduced N-acetyl-aspartate (NAA) in BD. We investigated brain concentrations of Glu, Glx, NAA, mI as indirect marker of microglia activation, and Glx/NAA ratio as index of neuronal damage through 1H-MR, and WM integrity with Tract-Based Spatial Statistics in 93 depressed BD patients and 58 healthy controls (HC). We tested for linear effects of cited spectroscopic metabolites on DTI measures of WM integrity with general linear models for each group, then performing a conjunction analysis of Glx/NAA and mI concentration on the same measures. Statistical analyses (whole sample) revealed higher concentration of Glx/NAA, Glx and mI in BD patients compared to HC, and a positive association between mI and the ratio. DTI analyses (87 BD and 35 HC) showed a significant association of Glx/NAA ratio, and mI with WM microstructure. Conjunction analysis revealed a joint negative association between Glx/NAA and mI with fractional anisotropy. This is the first study showing an association between brain metabolites involved in neuronal damage, and glial activation and the alterations in WM consistently reported in BD.
Collapse
Affiliation(s)
- Beatrice Bravi
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Irene Bollettini
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), Vita-Salute San Raffaele University, Milan, Italy
| | - Camilla Di Pasquasio
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Andrea Falini
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy; Vita-Salute San Raffaele University, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), Vita-Salute San Raffaele University, Milan, Italy
| | - Cristina Colombo
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Raffaella Zanardi
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Sara Poletti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy; Vita-Salute San Raffaele University, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), Vita-Salute San Raffaele University, Milan, Italy.
| | - Francesco Benedetti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy; Vita-Salute San Raffaele University, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
29
|
Bayón-Cordero L, Ochoa-Bueno BI, Ruiz A, Ozalla M, Matute C, Sánchez-Gómez MV. GABA Receptor Agonists Protect From Excitotoxic Damage Induced by AMPA in Oligodendrocytes. Front Pharmacol 2022; 13:897056. [PMID: 35959434 PMCID: PMC9360600 DOI: 10.3389/fphar.2022.897056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Oligodendrocytes are the myelin forming cells of the central nervous system, and their vulnerability to excitotoxicity induced by glutamate contributes to the pathogenesis of neurological disorders including brain ischemia and neurodegenerative diseases, such as multiple sclerosis. In addition to glutamate receptors, oligodendrocytes express GABA receptors (GABAR) that are involved in their survival and differentiation. The interactions between glutamate and GABAergic systems are well documented in neurons, under both physiological and pathological conditions, but this potential crosstalk in oligodendrocytes has not been studied in depth. Here, we evaluated the protective effect of GABAR agonists, baclofen (GABAB) and muscimol (GABAA), against AMPA-induced excitotoxicity in cultured rat oligodendrocytes. First, we observed that both baclofen and muscimol reduced cell death and caspase-3 activation after AMPA insult, proving their oligoprotective potential. Interestingly, analysis of the cell-surface expression of calcium-impermeable GluR2 subunits in oligodendrocytes revealed that GABAergic agonists significantly reverted GluR2 internalization induced by AMPA. We determined that baclofen and muscimol also impaired AMPA-induced intracellular calcium increase and subsequent mitochondrial membrane potential alteration, ROS generation, and calpain activation. However, AMPA-triggered activation of Src, Akt, JNK and CREB was not affected by baclofen or muscimol. Overall, our results suggest that GABAR activation initiates alternative molecular mechanisms that attenuate AMPA-mediated apoptotic excitotoxicity in oligodendrocytes by interfering with expression of GluR subunits in membranes and with calcium-dependent intracellular signaling pathways. Together, these findings provide evidence of GABAR agonists as potential oligodendroglial protectants in central nervous system disorders.
Collapse
Affiliation(s)
- Laura Bayón-Cordero
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Blanca Isabel Ochoa-Bueno
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Asier Ruiz
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Marina Ozalla
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Carlos Matute
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - María Victoria Sánchez-Gómez
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| |
Collapse
|
30
|
Murthy VD, McLarty E, Woolard KD, Parker RL, Kortz G, King JN, Poppenga RH, Knipe MF, Dickinson PJ. Case Report: MRI, Clinical, and Pathological Correlates of Bromethalin Toxicosis in Three Dogs. Front Vet Sci 2022; 9:879007. [PMID: 35558887 PMCID: PMC9087846 DOI: 10.3389/fvets.2022.879007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Bromethalin toxicosis is an increasingly common clinical presentation in dogs that may be fatal depending on the extent of intoxication. Antemortem diagnosis of bromethalin toxicosis was achieved in three dogs by demonstration of the active metabolite desmethylbromethalin in fat or serum. Magnetic resonance imaging (MRI) findings were consistent with a diffuse leukoencephalopathy with restricted diffusion and prominent involvement of the corticospinal motor tracts on T2-weighted and diffusion-weighted sequences. Imaging findings were confirmed in one non-surviving dog at necropsy. Resolution of MRI abnormalities was demonstrated in one surviving dog that was consistent with the associated resolution of clinical signs. Initial findings in these dogs support further investigation of specific MRI patterns in cases of leukoencephalopathy to aid differential diagnosis. While antemortem detection of bromethalin and its metabolites confirms exposure, quantitation may be informative as a prognostic biomarker.
Collapse
Affiliation(s)
- Vishal D. Murthy
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Ehren McLarty
- Department of Surgical and Radiological Sciences, University of California, Davis, Davis, CA, United States
| | - Kevin D. Woolard
- Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - Rell L. Parker
- Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Gregg Kortz
- Department of Neurology, VCA Sacramento Veterinary Referral Center, Sacramento, CA, United States
| | - Jamie N. King
- Department of Neurology, VCA Sacramento Veterinary Referral Center, Sacramento, CA, United States
| | - Robert H. Poppenga
- California Animal Health and Food Safety Laboratory System, University of California, Davis, Davis, CA, United States
| | - Marguerite F. Knipe
- Department of Surgical and Radiological Sciences, University of California, Davis, Davis, CA, United States
| | - Peter J. Dickinson
- Department of Surgical and Radiological Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
31
|
Beeraka NM, Vikram PRH, Greeshma MV, Uthaiah CA, Huria T, Liu J, Kumar P, Nikolenko VN, Bulygin KV, Sinelnikov MY, Sukocheva O, Fan R. Recent Investigations on Neurotransmitters' Role in Acute White Matter Injury of Perinatal Glia and Pharmacotherapies-Glia Dynamics in Stem Cell Therapy. Mol Neurobiol 2022; 59:2009-2026. [PMID: 35041139 DOI: 10.1007/s12035-021-02700-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/10/2021] [Indexed: 02/05/2023]
Abstract
Periventricular leukomalacia (PVL) and cerebral palsy are two neurological disease conditions developed from the premyelinated white matter ischemic injury (WMI). The significant pathophysiology of these diseases is accompanied by the cognitive deficits due to the loss of function of glial cells and axons. White matter makes up 50% of the brain volume consisting of myelinated and non-myelinated axons, glia, blood vessels, optic nerves, and corpus callosum. Studies over the years have delineated the susceptibility of white matter towards ischemic injury especially during pregnancy (prenatal, perinatal) or immediately after child birth (postnatal). Impairment in membrane depolarization of neurons and glial cells by ischemia-invoked excitotoxicity is mediated through the overactivation of NMDA receptors or non-NMDA receptors by excessive glutamate influx, calcium, or ROS overload and has been some of the well-studied molecular mechanisms conducive to the injury of white matter. Expression of glutamate receptors (GluR) and transporters (GLT1, EACC1, and GST) has significant influence in glial and axonal-mediated injury of premyelinated white matter during PVL and cerebral palsy. Predominantly, the central premyelinated axons express extensive levels of functional NMDA GluR receptors to confer ischemic injury to premyelinated white matter which in turn invoke defects in neural plasticity. Several underlying molecular mechanisms are yet to be unraveled to delineate the complete pathophysiology of these prenatal neurological diseases for developing the novel therapeutic modalities to mitigate pathophysiology and premature mortality of newborn babies. In this review, we have substantially discussed the above multiple pathophysiological aspects of white matter injury along with glial dynamics, and the pharmacotherapies including recent insights into the application of MSCs as therapeutic modality in treating white matter injury.
Collapse
Affiliation(s)
- Narasimha M Beeraka
- Cancer Center, Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, People's Republic of China
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
| | - P R Hemanth Vikram
- Department of Pharmaceutical Chemistry, JSS Pharmacy College, Mysuru, Karnataka, India
| | - M V Greeshma
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Chinnappa A Uthaiah
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Tahani Huria
- Faculty of Medicine, Benghazi University, Benghazi, Libya
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, LE1 7RH, UK
| | - Junqi Liu
- Cancer Center, Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, People's Republic of China
| | - Pramod Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), SilaKatamur (Halugurisuk), Changsari, Kamrup, 781101, Assam, India
| | - Vladimir N Nikolenko
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
- Department of Normal and Topographic Anatomy, Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Kirill V Bulygin
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
| | - Mikhail Y Sinelnikov
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
- Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Russian Federation
| | - Olga Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Ruitai Fan
- Cancer Center, Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, People's Republic of China.
| |
Collapse
|
32
|
Çavdar S, Köse B, Özkan M, Sur Erdem İ. Comparison of astrocytes and gap junction proteins in the white matter of genetic absence epileptic and control rats: an experimental study. Neurol Res 2022; 44:708-718. [DOI: 10.1080/01616412.2022.2039527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Safiye Çavdar
- Department of Anatomy, Koç University School of Medicine, Istanbul, Turkey
| | - Büşra Köse
- Department of Anatomy, Koç University School of Medicine, Istanbul, Turkey
| | - Mazhar Özkan
- Department of Anatomy, Tekirdağ Namık Kemal University School of Medicine, Istanbul, Turkey
| | - İlknur Sur Erdem
- Department of Molecular Biology, Koç University School of Medicine, Istanbul, Turkey
| |
Collapse
|
33
|
Lee A, Kwon OW, Jung KR, Song GJ, Yang HJ. The effects of Korean Red Ginseng-derived components on oligodendrocyte lineage cells: Distinct facilitatory roles of the non-saponin and saponin fractions, and Rb1, in proliferation, differentiation and myelination. J Ginseng Res 2022; 46:104-114. [PMID: 35035243 PMCID: PMC8753459 DOI: 10.1016/j.jgr.2021.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/21/2021] [Accepted: 04/21/2021] [Indexed: 12/05/2022] Open
Abstract
Background Abnormalities of myelin, which increases the efficiency of action potential conduction, are found in neurological disorders. Korean Red Ginseng (KRG) demonstrates therapeutic efficacy against some of these conditions, however effects on oligodendrocyte (OL)s are not well known. Here, we examined the effects of KRG-derived components on development and protection of OL-lineage cells. Methods Primary OL precursor cell (OPC) cultures were prepared from neonatal mouse cortex. The protective efficacies of the KRG components were examined against inhibitors of mitochondrial respiratory chain activity. For in vivo function of Rb1 on myelination, after 10 days of oral gavage into adult male mice, forebrains were collected. OPC proliferation were assessed by BrdU incorporation, and differentiation and myelination were examined by qPCR, western blot and immunocytochemistry. Results The non-saponin promoted OPC proliferation, while the saponin promoted differentiation. Both processes were mediated by AKT and extracellular regulated kinase (ERK) signaling. KRG extract, the saponin and non-saponin protected OPCs against oxidative stress, and both KRG extract and the saponin significantly increased the expression of the antioxidant enzyme. Among 11 major ginsenosides tested, Rb1 significantly increased OL membrane size in vitro. Moreover, Rb1 significantly increased myelin formation in adult mouse brain. Conclusion All KRG components prevented OPC deaths under oxidative stress. While non-saponin promoted proliferation, saponin fraction increased differentiation and OL membrane size. Furthermore, among all the tested ginsenosides, Rb1 showed the biggest increase in the membrane size and significantly enhanced myelination in vivo. These results imply therapeutic potentials of KRG and Rb1 for myelin-related disorders.
Collapse
Affiliation(s)
- Ahreum Lee
- Korea Institute of Brain Science, Seoul, Republic of Korea.,Department of Integrative Biosciences, University of Brain Education, Cheonan, Republic of Korea
| | - Oh Wook Kwon
- Department of Integrative Biosciences, University of Brain Education, Cheonan, Republic of Korea
| | - Kwi Ryun Jung
- Department of Integrative Biosciences, University of Brain Education, Cheonan, Republic of Korea
| | - Gyun Jee Song
- Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Republic of Korea
| | - Hyun-Jeong Yang
- Korea Institute of Brain Science, Seoul, Republic of Korea.,Department of Integrative Biosciences, University of Brain Education, Cheonan, Republic of Korea
| |
Collapse
|
34
|
Annunziato M, Eeza MNH, Bashirova N, Lawson A, Matysik J, Benetti D, Grosell M, Stieglitz JD, Alia A, Berry JP. An integrated systems-level model of the toxicity of brevetoxin based on high-resolution magic-angle spinning nuclear magnetic resonance (HRMAS NMR) metabolic profiling of zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149858. [PMID: 34482148 DOI: 10.1016/j.scitotenv.2021.149858] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Brevetoxins (PbTx) are a well-recognized group of neurotoxins associated with harmful algal blooms, and specifically recurrent "Florida Red Tides," in marine waters that are linked to impacts on both human and ecosystem health including well-documented "fish kills" and marine mammal mortalities in affected coastal waters. Understanding mechanisms and pathways of PbTx toxicity enables identification of relevant biomarkers to better understand these environmental impacts, and improve monitoring efforts, in relation to this toxin. Toward a systems-level understanding of toxicity, and identification of potential biomarkers, high-resolution magic angle spinning nuclear magnetic resonance (HRMAS NMR) was utilized for metabolic profiling of zebrafish (Danio rerio) embryos, as an established toxicological model, exposed to PbTx-2 (the most common congener in marine waters). Metabolomics studies were, furthermore, complemented by an assessment of the toxicity of PbTx-2 in embryonic stages of zebrafish and mahi-mahi (Coryphaena hippurus), the latter representing an ecologically and geographically relevant marine species of fish, which identified acute embryotoxicity at environmentally relevant (i.e., parts-per-billion) concentrations in both species. HRMAS NMR analysis of intact zebrafish embryos exposed to sub-lethal concentrations of PbTx-2 afforded well-resolved spectra, and in turn, identification of 38 metabolites of which 28 were found to be significantly altered, relative to controls. Metabolites altered by PbTx-2 exposure specifically included those associated with (1) neuronal excitotoxicity, as well as associated neural homeostasis, and (2) interrelated pathways of carbohydrate and energy metabolism. Metabolomics studies, thereby, enabled a systems-level model of PbTx toxicity which integrated multiple metabolic, molecular and cellular pathways, in relation to environmentally relevant concentrations of the toxin, providing insight to not only targets and mechanisms, but potential biomarkers pertinent to environmental risk assessment and monitoring strategies.
Collapse
Affiliation(s)
- Mark Annunziato
- Institute of Environment, Department of Chemistry and Biochemistry, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA
| | - Muhamed N H Eeza
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Narmin Bashirova
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Ariel Lawson
- Institute of Environment, Department of Chemistry and Biochemistry, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA
| | - Jörg Matysik
- Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Daniel Benetti
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA
| | - Martin Grosell
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA
| | - John D Stieglitz
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA
| | - A Alia
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Leiden Institute of Chemistry, Leiden University, 2333 Leiden, the Netherlands.
| | - John P Berry
- Institute of Environment, Department of Chemistry and Biochemistry, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA; Biomolecular Science Institute, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA.
| |
Collapse
|
35
|
Ottino-González J, Uhlmann A, Hahn S, Cao Z, Cupertino RB, Schwab N, Allgaier N, Alia-Klein N, Ekhtiari H, Fouche JP, Goldstein RZ, Li CSR, Lochner C, London ED, Luijten M, Masjoodi S, Momenan R, Oghabian MA, Roos A, Stein DJ, Stein EA, Veltman DJ, Verdejo-García A, Zhang S, Zhao M, Zhong N, Jahanshad N, Thompson PM, Conrod P, Mackey S, Garavan H. White matter microstructure differences in individuals with dependence on cocaine, methamphetamine, and nicotine: Findings from the ENIGMA-Addiction working group. Drug Alcohol Depend 2022; 230:109185. [PMID: 34861493 PMCID: PMC8952409 DOI: 10.1016/j.drugalcdep.2021.109185] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/27/2021] [Accepted: 11/14/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Nicotine and illicit stimulants are very addictive substances. Although associations between grey matter and dependence on stimulants have been frequently reported, white matter correlates have received less attention. METHODS Eleven international sites ascribed to the ENIGMA-Addiction consortium contributed data from individuals with dependence on cocaine (n = 147), methamphetamine (n = 132) and nicotine (n = 189), as well as non-dependent controls (n = 333). We compared the fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD) of 20 bilateral tracts. Also, we compared the performance of various machine learning algorithms in deriving brain-based classifications on stimulant dependence. RESULTS The cocaine and methamphetamine groups had lower regional FA and higher RD in several association, commissural, and projection white matter tracts. The methamphetamine dependent group additionally showed lower regional AD. The nicotine group had lower FA and higher RD limited to the anterior limb of the internal capsule. The best performing machine learning algorithm was the support vector machine (SVM). The SVM successfully classified individuals with dependence on cocaine (AUC = 0.70, p < 0.001) and methamphetamine (AUC = 0.71, p < 0.001) relative to non-dependent controls. Classifications related to nicotine dependence proved modest (AUC = 0.62, p = 0.014). CONCLUSIONS Stimulant dependence was related to FA disturbances within tracts consistent with a role in addiction. The multivariate pattern of white matter differences proved sufficient to identify individuals with stimulant dependence, particularly for cocaine and methamphetamine.
Collapse
Affiliation(s)
- Jonatan Ottino-González
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States.
| | - Anne Uhlmann
- Department of Child & Adolescent Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Sage Hahn
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Zhipeng Cao
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Renata B Cupertino
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Nathan Schwab
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Nicholas Allgaier
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Nelly Alia-Klein
- Department of Psychiatry & Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, New York, United States
| | - Hamed Ekhtiari
- Institute for Cognitive Sciences Studies, University of Tehran, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Jean-Paul Fouche
- SA MRC Genomics and Brain Disorders Unit, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Rita Z Goldstein
- Department of Psychiatry & Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, New York, United States
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University, New Haven, Connecticut, United States
| | - Christine Lochner
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Edythe D London
- Department of Psychiatry and Biobehavioural Sciences, University of California, Los Angeles, California, United States
| | - Maartje Luijten
- Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
| | - Sadegh Masjoodi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Momenan
- Clinical Neuroimaging Research Core, National Institutes on Alcohol Abuse & Alcoholism, National Institutes of Health, Bethesda, Maryland, United States
| | - Mohammad Ali Oghabian
- Neuroimaging & Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Annerine Roos
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa; SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Elliot A Stein
- Neuroimaging Research Branch, Intramural Research Program, National Institute of Drug Abuse, Baltimore, Maryland, United States
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC - location VUMC, Amsterdam, the Netherlands
| | - Antonio Verdejo-García
- School of Psychological Sciences & Turner Institute for Brain & Mental Health, Monash University, Melbourne, Australia
| | - Sheng Zhang
- Department of Psychiatry, Yale University, New Haven, Connecticut, United States
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Zhong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Neda Jahanshad
- Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, San Diego, California, United States
| | - Paul M Thompson
- Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, San Diego, California, United States
| | - Patricia Conrod
- Department of Psychiatry, Université de Montreal, Montreal, Quebec, Canada
| | - Scott Mackey
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States
| |
Collapse
|
36
|
Sood A, Preeti K, Fernandes V, Khatri DK, Singh SB. Glia: A major player in glutamate-GABA dysregulation-mediated neurodegeneration. J Neurosci Res 2021; 99:3148-3189. [PMID: 34748682 DOI: 10.1002/jnr.24977] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022]
Abstract
The imbalance between glutamate and γ-aminobutyric acid (GABA) results in the loss of synaptic strength leading to neurodegeneration. The dogma on the field considered neurons as the main players in this excitation-inhibition (E/I) balance. However, current strategies focusing only on neurons have failed to completely understand this condition, bringing up the importance of glia as an alternative modulator for neuroinflammation as glia alter the activity of neurons and is a source of both neurotrophic and neurotoxic factors. This review's primary goal is to illustrate the role of glia over E/I balance in the central nervous system and its interaction with neurons. Rather than focusing only on the neuronal targets, we take a deeper look at glial receptors and proteins that could also be explored as drug targets, as they are early responders to neurotoxic insults. This review summarizes the neuron-glia interaction concerning GABA and glutamate, possible targets, and its involvement in the E/I imbalance in neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis.
Collapse
Affiliation(s)
- Anika Sood
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Valencia Fernandes
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
37
|
Al-Griw MA, Shmela ME, Elhensheri MM, Bennour EM. HDAC2/3 inhibitor MI192 mitigates oligodendrocyte loss and reduces microglial activation upon injury: A potential role of epigenetics. Open Vet J 2021; 11:447-457. [PMID: 34722210 PMCID: PMC8541718 DOI: 10.5455/ovj.2021.v11.i3.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/04/2021] [Indexed: 12/03/2022] Open
Abstract
Background: During development, oligodendrocyte (OL) lineage cells are susceptible to injury, leading to life-long clinical neurodevelopmental deficits, which lack effective treatments. Drugs targeting epigenetic modifications that inhibit histone deacetylases (HDACs) protect from many clinical neurodegenerative disorders. Aim: This study aimed to investigate the therapeutic potential of histone deacetylase 2/3 (HDAC2/3) inhibitor MI192 on white matter (WM) pathology in a model of neonatal rat brain injury. Methods: Wistar rats (8.5-day-old, n = 32) were used to generate brain tissues. The tissues were cultured and then randomly divided into four groups and treated as following: group I (sham); the tissues were cultured under normoxia, group II (vehicle); DMSO only, group III (injury, INJ); the tissues were exposed to 20 minutes oxygen-glucose deprivation (OGD) insult, and group IV (INJ + MI192); the tissues were subjected to the OGD insult and then treated with the MI192 inhibitor. On culture day 10, the tissues were fixed for biochemical and histological examinations. Results: The results showed that inhibition of HDAC2/3 activity alleviated WM pathology. Specifically, MI192 treatment significantly reduced cell death, minimized apoptosis, and mitigates the loss of the MBP+ OLs and their precursors (NG2+ OPCs). Additionally, MI192 decreased the density of reactive microglia (OX−42+). These findings demonstrate that the inhibition of HDAC2/3 activity post-insult alleviates WM pathology through mechanism(s) including preserving OL lineage cells and suppressing microglial activation. Conclusion: The findings of this study suggest that HDAC2/3 inhibition is a rational strategy to preserve WM or reverse its pathology upon newborn brain injury.
Collapse
Affiliation(s)
- Mohamed A Al-Griw
- Department of Histology and Genetics, Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Mansur E Shmela
- Department of Preventive Medicine, Genetics & Animal Breeding, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | | | - Emad M Bennour
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| |
Collapse
|
38
|
Rayatpour A, Farhangi S, Verdaguer E, Olloquequi J, Ureña J, Auladell C, Javan M. The Cross Talk between Underlying Mechanisms of Multiple Sclerosis and Epilepsy May Provide New Insights for More Efficient Therapies. Pharmaceuticals (Basel) 2021; 14:ph14101031. [PMID: 34681255 PMCID: PMC8541630 DOI: 10.3390/ph14101031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/17/2022] Open
Abstract
Despite the significant differences in pathological background of neurodegenerative diseases, epileptic seizures are a comorbidity in many disorders such as Huntington disease (HD), Alzheimer's disease (AD), and multiple sclerosis (MS). Regarding the last one, specifically, it has been shown that the risk of developing epilepsy is three to six times higher in patients with MS compared to the general population. In this context, understanding the pathological processes underlying this connection will allow for the targeting of the common and shared pathological pathways involved in both conditions, which may provide a new avenue in the management of neurological disorders. This review provides an outlook of what is known so far about the bidirectional association between epilepsy and MS.
Collapse
Affiliation(s)
- Atefeh Rayatpour
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (A.R.); (S.F.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Sahar Farhangi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (A.R.); (S.F.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Ester Verdaguer
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (E.V.); (J.U.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institute of Neuroscience, Universitat de Barcelona, 08035 Barcelona, Spain
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Biomedical Sciences Institute, Health Sciences Faculty, Universidad Autónoma de Chile, Talca 3460000, Chile;
| | - Jesus Ureña
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (E.V.); (J.U.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institute of Neuroscience, Universitat de Barcelona, 08035 Barcelona, Spain
| | - Carme Auladell
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (E.V.); (J.U.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institute of Neuroscience, Universitat de Barcelona, 08035 Barcelona, Spain
- Correspondence: (C.A.); (M.J.)
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (A.R.); (S.F.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
- Cell Science Research Center, Department of Brain and Cognitive Sciences, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 14117-13116, Iran
- Correspondence: (C.A.); (M.J.)
| |
Collapse
|
39
|
Kraguljac NV, Anthony T, Morgan CJ, Jindal RD, Burger MS, Lahti AC. White matter integrity, duration of untreated psychosis, and antipsychotic treatment response in medication-naïve first-episode psychosis patients. Mol Psychiatry 2021; 26:5347-5356. [PMID: 32398721 PMCID: PMC7658031 DOI: 10.1038/s41380-020-0765-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 01/10/2023]
Abstract
It is becoming increasingly clear that longer duration of untreated psychosis (DUP) is associated with adverse clinical outcomes in patients with psychosis spectrum disorders. Because this association is often cited when justifying early intervention efforts, it is imperative to better understand underlying biological mechanisms. We enrolled 66 antipsychotic-naïve first-episode psychosis (FEP) patients and 45 matched healthy controls in this trial. At baseline, we used a human connectome style diffusion-weighted imaging (DWI) sequence to quantify white matter integrity in both groups. Patients then received 16 weeks of treatment with risperidone, 51 FEP completed the trial. We compared whole-brain fractional anisotropy (FA), mean diffusivity, axial diffusivity (AD), and radial diffusivity between groups. To test if structural white matter integrity mediates the relationship between longer DUP and poorer treatment response, we fit a mediator model and estimated indirect effects. We found decreased whole-brain FA and AD in medication-naive FEP compared with controls. In patients, lower FA was correlated with longer DUP (r = -0.32; p = 0.03) and poorer subsequent response to antipsychotic treatment (r = 0.40; p = 0.01). Importantly, we found a significant mediation effect for FA (indirect effect: -2.70; p = 0.03), indicating that DUP exerts its effects on treatment response through affecting white matter integrity. Our data provide empirical support to the idea the DUP may have fundamental pathogenic effects on the natural history of psychosis, suggest a biological mechanism underlying this phenomenon, and underscore the importance of early intervention efforts in this disabling neuropsychiatric syndrome.
Collapse
Affiliation(s)
- Nina Vanessa Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Thomas Anthony
- Department of Electrical and Computer Engineering/ IT Research Computing, University of Alabama at Birmingham
| | | | - Ripu Daman Jindal
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham,Department of Neurology, Birmingham VA Medical Center
| | - Mark Steven Burger
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Adrienne Carol Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| |
Collapse
|
40
|
Youn T, Yang H. Cytotoxic Lesion of the Corpus Callosum (CLOCCs) after SARS-CoV-2 mRNA Vaccination. J Korean Med Sci 2021; 36:e228. [PMID: 34402238 PMCID: PMC8352783 DOI: 10.3346/jkms.2021.36.e228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/04/2021] [Indexed: 01/07/2023] Open
Affiliation(s)
- Taeho Youn
- Department of Internal Medicine, Aerospace Medical Center, Cheongju, Korea
| | - Heewon Yang
- Department of Emergency Medicine, Aerospace Medical Center, Cheongju, Korea.
| |
Collapse
|
41
|
Li XL, Han J, Yan ZR, Zhang BW, Wang HY. Mild encephalitis/encephalopathy with a reversible splenial lesion associated with respiratory syncytial virus infection in infants. J Neurovirol 2021; 27:638-643. [PMID: 34227046 DOI: 10.1007/s13365-021-00992-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/30/2021] [Accepted: 06/18/2021] [Indexed: 10/20/2022]
Abstract
Mild encephalitis/encephalopathy with a reversible splenial lesion (MERS) is a clinicoradiologic syndrome typically characterized by transient mild encephalitis or encephalopathy with reversible lesions being found in the splenium of corpus callosum (SCC) by magnetic resonance imaging (MRI). A variety of pathogens including influenza virus, rotavirus, and adenovirus associated with MERS have been reported. However, respiratory syncytial virus (RSV)-related MERS is relatively rare in infants. In this study, we report two Chinese infants who suffered from RSV-related MERS. Both infants manifested as fever, seizure, and altered states of consciousness with confirmed detections of RSV-RNA in the specimens from throat swab. Clinical symptoms/signs such as apnea and shallow breathing were also noted in these two infants. Furthermore, brain MRI images indicated reversible isolated lesions with transiently reduced diffusion in the SCC. Fortunately, both of these two infants recovered completely following treatment within a month. Our study suggests that RSV may serve as a novel causative agent for MERS in infants. Clinicians should focus more attention on RSV-related MERS in infants in order to improve early accurate diagnosis and therapeutic decision making.
Collapse
Affiliation(s)
- Xue-Lin Li
- Department of Intensive Care Unit, Jining No. 1 People's Hospital, Jining, 272000, China
| | - Jinming Han
- Department of Neurology , Xuanwu Hospital Capital Medical University , 100053, Beijing, China
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Zhong-Rui Yan
- Department of Neurology, Jining No. 1 People's Hospital, Jining, 272000, China
| | - Bing-Wei Zhang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Hai-Yang Wang
- Department of Neurology, Jining No. 1 People's Hospital, Jining, 272000, China.
| |
Collapse
|
42
|
Chesnut M, Hartung T, Hogberg H, Pamies D. Human Oligodendrocytes and Myelin In Vitro to Evaluate Developmental Neurotoxicity. Int J Mol Sci 2021; 22:7929. [PMID: 34360696 PMCID: PMC8347131 DOI: 10.3390/ijms22157929] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 01/01/2023] Open
Abstract
Neurodevelopment is uniquely sensitive to toxic insults and there are concerns that environmental chemicals are contributing to widespread subclinical developmental neurotoxicity (DNT). Increased DNT evaluation is needed due to the lack of such information for most chemicals in common use, but in vivo studies recommended in regulatory guidelines are not practical for the large-scale screening of potential DNT chemicals. It is widely acknowledged that developmental neurotoxicity is a consequence of disruptions to basic processes in neurodevelopment and that testing strategies using human cell-based in vitro systems that mimic these processes could aid in prioritizing chemicals with DNT potential. Myelination is a fundamental process in neurodevelopment that should be included in a DNT testing strategy, but there are very few in vitro models of myelination. Thus, there is a need to establish an in vitro myelination assay for DNT. Here, we summarize the routes of myelin toxicity and the known models to study this particular endpoint.
Collapse
Affiliation(s)
- Megan Chesnut
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (M.C.); (T.H.)
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (M.C.); (T.H.)
- Center for Alternatives to Animal Testing (CAAT-Europe), University of Konstanz, 78464 Konstanz, Germany
| | - Helena Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (M.C.); (T.H.)
| | - David Pamies
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (M.C.); (T.H.)
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), 4055 Basel, Switzerland
| |
Collapse
|
43
|
Ojeda-Pérez B, Campos-Sandoval JA, García-Bonilla M, Cárdenas-García C, Páez-González P, Jiménez AJ. Identification of key molecular biomarkers involved in reactive and neurodegenerative processes present in inherited congenital hydrocephalus. Fluids Barriers CNS 2021; 18:30. [PMID: 34215285 PMCID: PMC8254311 DOI: 10.1186/s12987-021-00263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Periventricular extracellular oedema, myelin damage, inflammation, and glial reactions are common neuropathological events that occur in the brain in congenital hydrocephalus. The periventricular white matter is the most affected region. The present study aimed to identify altered molecular and cellular biomarkers in the neocortex that can function as potential therapeutic targets to both treat and evaluate recovery from these neurodegenerative conditions. The hyh mouse model of hereditary hydrocephalus was used for this purpose. METHODS The hyh mouse model of hereditary hydrocephalus (hydrocephalus with hop gait) and control littermates without hydrocephalus were used in the present work. In tissue sections, the ionic content was investigated using energy dispersive X-ray spectroscopy scanning electron microscopy (EDS-SEM). For the lipid analysis, matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) was performed in frozen sections. The expression of proteins in the cerebral white matter was analysed by mass spectrometry. The oligodendrocyte progenitor cells (OPCs) were studied with immunofluorescence in cerebral sections and whole-mount preparations of the ventricle walls. RESULTS High sodium and chloride concentrations were found indicating oedema conditions in both the periventricular white matter and extending towards the grey matter. Lipid analysis revealed lower levels of two phosphatidylinositol molecular species in the grey matter, indicating that neural functions were altered in the hydrocephalic mice. In addition, the expression of proteins in the cerebral white matter revealed evident deregulation of the processes of oligodendrocyte differentiation and myelination. Because of the changes in oligodendrocyte differentiation in the white matter, OPCs were also studied. In hydrocephalic mice, OPCs were found to be reactive, overexpressing the NG2 antigen but not giving rise to an increase in mature oligodendrocytes. The higher levels of the NG2 antigen, diacylglycerophosphoserine and possibly transthyretin in the cerebrum of hydrocephalic hyh mice could indicate cell reactions that may have been triggered by inflammation, neurocytotoxic conditions, and ischaemia. CONCLUSION Our results identify possible biomarkers of hydrocephalus in the cerebral grey and white matter. In the white matter, OPCs could be reacting to acquire a neuroprotective role or as a delay in the oligodendrocyte maturation.
Collapse
Affiliation(s)
- Betsaida Ojeda-Pérez
- Department of Cell Biology, Genetics, and Physiology, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain
| | - José A Campos-Sandoval
- Servicios Centrales de Apoyo a la Investigación (SCAI), Universidad de Malaga, Malaga, Spain
| | - María García-Bonilla
- Department of Cell Biology, Genetics, and Physiology, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain
| | | | - Patricia Páez-González
- Department of Cell Biology, Genetics, and Physiology, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Malaga, Spain.
- Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain.
| | - Antonio J Jiménez
- Department of Cell Biology, Genetics, and Physiology, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Malaga, Spain.
- Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain.
| |
Collapse
|
44
|
Li W, Ran C, Ma J. Diverse MRI findings and clinical outcomes of acute Marchiafava-Bignami disease. Acta Radiol 2021; 62:904-908. [PMID: 32718180 DOI: 10.1177/0284185120943040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The acute onset of Marchiafava-Bignami disease (MBD) is difficult to capture, and its clinical manifestations are overlapped. Magnetic resonance imaging (MRI) is very useful in the diagnosis of acute MBD. PURPOSE To investigate the MRI features and clinical outcomes of acute MBD. MATERIALS AND METHODS Sagittal T2-weighted (T2W) or T1-weighted (T1W) imaging, axial T1W and T2W imaging, and axial FLAIR and diffusion-weighted imaging (DWI) sequences were performed in 17 patients with acute MBD on 1.5-T MR. According to the different ranges of callosal restricted diffusion, MBD was divided into Type I (n = 7, the completely involved), Type II (n = 5, the mostly involved), and Type III (n = 5, the partly involved). The MRI findings and outcomes of each type were retrospectively analyzed. RESULTS With the reduced range of the callosal restricted diffusion, the callosal atrophy or cavitation was more common: no case of Type I; 1 (20%) case of Type II; and 3 (60%) cases of Type III. With the increased range of callosal restricted diffusion, the extracallosal involvement was more common: 6 (86%) cases of Type I; 3 (60%) cases of Type II; and 1 (20%) case of Type III. During the follow-up, five cases had neuropsychiatric sequelae: 1 (14%) case of type I; 1 (20%) case of Type II; 3 (60%) cases of Type III. CONCLUSION The MRI findings and clinical outcomes of acute MBD are regular. The extensive restricted diffusion of acute MBD may present the curable condition. Callosal heterogeneity may affect the outcome of acute MBD.
Collapse
Affiliation(s)
- Wei Li
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Chao Ran
- Department of Radiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, PR China
| | - Jun Ma
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| |
Collapse
|
45
|
Fu X, Zhou G, Zhuang J, Xu C, Zhou H, Peng Y, Cao Y, Zeng H, Li J, Yan F, Wang L, Chen G. White Matter Injury After Intracerebral Hemorrhage. Front Neurol 2021; 12:562090. [PMID: 34177751 PMCID: PMC8222731 DOI: 10.3389/fneur.2021.562090] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
Spontaneous intracerebral hemorrhage (ICH) accounts for 15% of all stroke cases. ICH is a devastating form of stroke associated with high morbidity, mortality, and disability. Preclinical studies have explored the mechanisms of neuronal death and gray matter damage after ICH. However, few studies have examined the development of white matter injury (WMI) following ICH. Research on WMI indicates that its pathophysiological presentation involves axonal damage, demyelination, and mature oligodendrocyte loss. However, the detailed relationship and mechanism between WMI and ICH remain unclear. Studies of other acute brain insults have indicated that WMI is strongly correlated with cognitive deficits, neurological deficits, and depression. The degree of WMI determines the short- and long-term prognosis of patients with ICH. This review demonstrates the structure and functions of the white matter in the healthy brain and discusses the pathophysiological mechanism of WMI following ICH. Our review reveals that the development of WMI after ICH is complex; therefore, comprehensive treatment is essential. Understanding the relationship between WMI and other brain cells may reveal therapeutic targets for the treatment of ICH.
Collapse
Affiliation(s)
- Xiongjie Fu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guoyang Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianfeng Zhuang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chaoran Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hang Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yucong Peng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Cao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hanhai Zeng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianru Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
46
|
Grecco GG, Chumin EJ, Dzemidzic M, Cheng H, Finn P, Newman S, Dydak U, Yoder KK. Anterior cingulate cortex metabolites and white matter microstructure: a multimodal study of emergent alcohol use disorder. Brain Imaging Behav 2021; 15:2436-2444. [PMID: 34097282 DOI: 10.1007/s11682-020-00443-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 12/27/2022]
Abstract
Multimodal imaging is increasingly used to address neuropathology associated with alcohol use disorder (AUD). Few studies have investigated relationships between metabolite concentrations and white matter (WM) integrity; currently, there are no such data in AUD. In this preliminary study, we used complementary neuroimaging techniques, magnetic resonance spectroscopy (MRS), and diffusion weighted imaging (DWI), to study AUD neurophysiology. We tested for relationships between metabolites in the dorsal anterior cingulate cortex (dACC) and adjacent WM microstructure in young adult AUD and control (CON) subjects. Sixteen AUD and fourteen CON underwent whole-brain DWI and MRS of the dACC. Outcomes were dACC metabolites, and diffusion tensor metrics of dACC-adjacent WM. Multiple linear regression terms included WM region, group, and region × group for prediction of dACC metabolites. dACC myo-inositol was positively correlated with axial diffusivity in the left anterior corona radiata (p < 0.0001) in CON but not AUD (group effect: p < 0.001; region × group: p < 0.001; Bonferroni-corrected). In the bilateral anterior corona radiata and right genu of the corpus callosum, glutamate was negatively related to mean diffusivity in AUD, but not CON subjects (all model terms: p < 0.05, uncorrected). In AUD subjects, dACC glutamate was negatively correlated with AUD symptom severity. This is likely the first integrative study of cortical metabolites and WM integrity in young individuals with AUD. Differential relationships between dACC metabolites and adjacent WM tract integrity in AUD could represent early consequences of hazardous drinking, and/or novel biomarkers of early-stage AUD. Additional studies are required to replicate these findings, and to determine the behavioral relevance of these results.
Collapse
Affiliation(s)
- Gregory G Grecco
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 West 16th Street, GH 4100, Indianapolis, IN, 46202, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.,Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Evgeny J Chumin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 West 16th Street, GH 4100, Indianapolis, IN, 46202, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.,Indiana University Network Science Institute, Bloomington, IN, USA
| | - Mario Dzemidzic
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 West 16th Street, GH 4100, Indianapolis, IN, 46202, USA.,Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hu Cheng
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Peter Finn
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Sharlene Newman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Ulrike Dydak
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 West 16th Street, GH 4100, Indianapolis, IN, 46202, USA.,School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Karmen K Yoder
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 West 16th Street, GH 4100, Indianapolis, IN, 46202, USA. .,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA. .,Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
47
|
Roth LM, Akay-Espinoza C, Grinspan JB, Jordan-Sciutto KL. HIV-induced neuroinflammation inhibits oligodendrocyte maturation via glutamate-dependent activation of the PERK arm of the integrated stress response. Glia 2021; 69:2252-2271. [PMID: 34058792 DOI: 10.1002/glia.24033] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022]
Abstract
Despite combined antiretroviral therapy (cART), HIV-associated neurocognitive disorder (HAND) affects 30-50% of HIV-positive patients. Importantly, persistent white matter pathologies, specifically corpus callosum thinning and disruption of white matter microstructures observed in patients with HAND despite viral control through cART, raise the possibility that HIV infection in the setting of suboptimal cART may perturb oligodendrocyte (OL) maturation, function and/or survival, influencing HAND persistence in the cART era. To examine the effect of HIV infection on OL maturation, we used supernatants of primary human monocyte-derived macrophages infected with HIV (HIV/MDMs) to treat primary cultures of rat oligodendrocyte precursor cells (OPCs) during their differentiation to mature OLs. Using immunostaining for lineage-specific markers, we found that HIV/MDMs significantly inhibited OPC maturation. Based on our previous studies, we examined the potential role of several signaling pathways, including ionotropic glutamate receptors and the integrated stress response (ISR), and found that AMPA receptors (AMPAR)/kainic acid (KA) receptors (KARs) mediated the HIV/MDMs-induced defect in OL maturation. We also found that the treatment of OPC cultures with glutamate or AMPAR/KAR agonists phenocopied this effect. Blocking ISR activation, specifically the PERK arm of the ISR, protected OPCs from HIV/MDMs-mediated inhibition of OL maturation. Further, while glutamate, AMPA, and KA activated the ISR, inhibition of AMPAR/KAR activation prevented ISR induction in OPCs and rescued OL maturation. Collectively, these data identify glutamate signaling via ISR activation as a potential therapeutic pathway to ameliorate white matter pathologies in HAND and highlight the need for further investigation of their contribution to cognitive impairment.
Collapse
Affiliation(s)
- Lindsay M Roth
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Cagla Akay-Espinoza
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Judith B Grinspan
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kelly L Jordan-Sciutto
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
48
|
Lim D, Semyanov A, Genazzani A, Verkhratsky A. Calcium signaling in neuroglia. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 362:1-53. [PMID: 34253292 DOI: 10.1016/bs.ircmb.2021.01.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glial cells exploit calcium (Ca2+) signals to perceive the information about the activity of the nervous tissue and the tissue environment to translate this information into an array of homeostatic, signaling and defensive reactions. Astrocytes, the best studied glial cells, use several Ca2+ signaling generation pathways that include Ca2+ entry through plasma membrane, release from endoplasmic reticulum (ER) and from mitochondria. Activation of metabotropic receptors on the plasma membrane of glial cells is coupled to an enzymatic cascade in which a second messenger, InsP3 is generated thus activating intracellular Ca2+ release channels in the ER endomembrane. Astrocytes also possess store-operated Ca2+ entry and express several ligand-gated Ca2+ channels. In vivo astrocytes generate heterogeneous Ca2+ signals, which are short and frequent in distal processes, but large and relatively rare in soma. In response to neuronal activity intracellular and inter-cellular astrocytic Ca2+ waves can be produced. Astrocytic Ca2+ signals are involved in secretion, they regulate ion transport across cell membranes, and are contributing to cell morphological plasticity. Therefore, astrocytic Ca2+ signals are linked to fundamental functions of the central nervous system ranging from synaptic transmission to behavior. In oligodendrocytes, Ca2+ signals are generated by plasmalemmal Ca2+ influx, or by release from intracellular stores, or by combination of both. Microglial cells exploit Ca2+ permeable ionotropic purinergic receptors and transient receptor potential channels as well as ER Ca2+ release. In this contribution, basic morphology of glial cells, glial Ca2+ signaling toolkit, intracellular Ca2+ signals and Ca2+-regulated functions are discussed with focus on astrocytes.
Collapse
Affiliation(s)
- Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy.
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, Moscow State University, Moscow, Russia; Sechenov First Moscow State Medical University, Moscow, Russia
| | - Armando Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Alexei Verkhratsky
- Sechenov First Moscow State Medical University, Moscow, Russia; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
49
|
Moteki Y, Kobayashi T, Kawamata T. Clinical Significance of Cytotoxic Lesions of the Corpus Callosum in Subarachnoid Hemorrhage Patients: A Retrospective Analysis. Cerebrovasc Dis 2021; 50:405-411. [PMID: 33774621 DOI: 10.1159/000514383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/07/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Cytotoxic lesions of the corpus callosum are secondary lesions induced by significant increases in cytokine levels in the brain and are associated with subarachnoid hemorrhage (SAH). However, their clinical significance in SAH patients remains unclear. METHODS We retrospectively analyzed SAH patients who were treated in our hospital and evaluated between-group differences in the backgrounds, clinical findings, and outcomes between SAH patients who developed cytotoxic lesions of the corpus callosum and those who did not. We further compared patients who achieved good outcomes with those who had poor outcomes. Multivariate logistic regression analysis was used to identify risk factors for poor clinical outcomes. RESULTS We analyzed 159 SAH patients; 17 patients (10.7%) had cytotoxic lesions of the corpus callosum. Patients with cytotoxic lesions of the corpus callosum were more likely to be in a severe condition (World Federation of Neurosurgical Societies grading IV-V: odds ratio [OR], 4.53; 95% confidence interval [95% CI]: 1.60-12.84; p = 0.0042) and have an intraventricular (OR, 5.98; 95% CI: 1.32-27.13; p = 0.0054) or an intraparenchymal hematoma (OR, 3.62; 95% CI: 1.25-10.45; p = 0.023). Patients with cytotoxic lesions of the corpus callosum had a greater propensity of a poor outcome 3 months after onset (modified Rankin Scale score 0-2: OR, 0.22; 95% CI: 0.07-0.66; p = 0.0043). Multivariate analysis confirmed that cytotoxic lesions of the corpus callosum increased the risk of a poor outcome (OR, 4.39; 95% CI: 1.06-18.1; p = 0.037). DISCUSSION/CONCLUSIONS The development of cytotoxic lesions of the corpus callosum may be related to the extent of hematomas in SAH patients. Although they are usually reversible lesions, the development of cytotoxic lesions of the corpus callosum may be a predictor of poor outcomes in SAH patients.
Collapse
Affiliation(s)
- Yosuke Moteki
- Department of Neurosurgery, Ebina General Hospital, Kanagawa, Japan
| | | | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
50
|
Bryant JE, Lahti AC, Briend F, Kraguljac NV. White Matter Neurometabolic Signatures Support the Deficit and Nondeficit Distinction in Antipsychotic-Naïve First-Episode Psychosis Patients. Schizophr Bull 2021; 47:1068-1076. [PMID: 33693906 PMCID: PMC8266628 DOI: 10.1093/schbul/sbab014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The deficit syndrome is thought to be a more homogenous clinical subgroup within the syndrome of schizophrenia that is characterized by enduring negative symptoms. It is hypothesized that distinct pathophysiological processes underlie the subtypes, where the deficit syndrome reflects an early onset nonprogressive developmental process, and the nondeficit form of the illness is characterized by attenuated neuroplasticity secondary to elevated glutamate levels. We used single-voxel magnetic resonance spectroscopy (PRESS; TE: 30 ms) to measure left frontal white matter neurometabolite levels in 61 antipsychotic-naïve first-episode psychosis patients (39 who did not display deficit features, 22 who did display deficit features, assessed with the Schedule for the Deficit Syndrome) and 59 healthy controls. Metabolite levels were quantified with the LCModel. We used a MANCOVA to determine neurometabolite differences between healthy controls, deficit syndrome patients, and nondeficit patients. We report a significant group difference when all metabolites were considered jointly (F[10,208] = 2.16; P = .02). Post hoc analyses showed that patients presenting without deficit features had higher glutamate levels than patients with deficit features and controls. Patients presenting without deficit features also had significantly higher myoinositol levels than controls; myoinositol levels were trend-level higher in patients presenting with deficit features compared to controls. Our data support the idea that the pathophysiology of patients presenting without deficit features may differ from those presenting with deficit features.
Collapse
Affiliation(s)
- James Edward Bryant
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC 501, Birmingham, AL, USA
| | - Adrienne Carol Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC 501, Birmingham, AL, USA
| | - Frederic Briend
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC 501, Birmingham, AL, USA,UMR1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Nina Vanessa Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC 501, Birmingham, AL, USA,To whom correspondence should be addressed; tel: 205-996-7171, e-mail:
| |
Collapse
|