1
|
Wang M, Rücklin M, Poelmann RE, de Mooij CL, Fokkema M, Lamers GEM, de Bakker MAG, Chin E, Bakos LJ, Marone F, Wisse BJ, de Ruiter MC, Cheng S, Nurhidayat L, Vijver MG, Richardson MK. Nanoplastics causes extensive congenital malformations during embryonic development by passively targeting neural crest cells. ENVIRONMENT INTERNATIONAL 2023; 173:107865. [PMID: 36907039 DOI: 10.1016/j.envint.2023.107865] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/30/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Nanomaterials are widespread in the human environment as pollutants, and are being actively developed for use in human medicine. We have investigated how the size and dose of polystyrene nanoparticles affects malformations in chicken embryos, and have characterized the mechanisms by which they interfere with normal development. We find that nanoplastics can cross the embryonic gut wall. When injected into the vitelline vein, nanoplastics become distributed in the circulation to multiple organs. We find that the exposure of embryos to polystyrene nanoparticles produces malformations that are far more serious and extensive than has been previously reported. These malformations include major congenital heart defects that impair cardiac function. We show that the mechanism of toxicity is the selective binding of polystyrene nanoplastics nanoparticles to neural crest cells, leading to the death and impaired migration of those cells. Consistent with our new model, most of the malformations seen in this study are in organs that depend for their normal development on neural crest cells. These results are a matter of concern given the large and growing burden of nanoplastics in the environment. Our findings suggest that nanoplastics may pose a health risk to the developing embryo.
Collapse
Affiliation(s)
- Meiru Wang
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands
| | - Martin Rücklin
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands
| | - Robert E Poelmann
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Department of Cardiology, Leiden University Medical Center, The Netherlands
| | - Carmen L de Mooij
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Marjolein Fokkema
- Institute of Psychology, Methodology and Statistics, Pieter de la Court Building, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands
| | - Gerda E M Lamers
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Merijn A G de Bakker
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Ernest Chin
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Lilla J Bakos
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Federica Marone
- Swiss Light Source, Paul Scherrer Institut, Photon Science Department, Forschungsstrasse 111, CH-5232 Villigen, Switzerland
| | - Bert J Wisse
- Department of Anatomy & Embryology, Leiden University Medical Center, The Netherlands
| | - Marco C de Ruiter
- Department of Anatomy & Embryology, Leiden University Medical Center, The Netherlands
| | - Shixiong Cheng
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Luthfi Nurhidayat
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Martina G Vijver
- Institute of Environmental Sciences, Leiden University (CML), Van Steenis Building, Einsteinweg 2, 2333 CC Leiden, The Netherlands
| | - Michael K Richardson
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| |
Collapse
|
2
|
Steele RE, Sanders R, Phillips HM, Bamforth SD. PAX Genes in Cardiovascular Development. Int J Mol Sci 2022; 23:7713. [PMID: 35887061 PMCID: PMC9324344 DOI: 10.3390/ijms23147713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 01/25/2023] Open
Abstract
The mammalian heart is a four-chambered organ with systemic and pulmonary circulations to deliver oxygenated blood to the body, and a tightly regulated genetic network exists to shape normal development of the heart and its associated major arteries. A key process during cardiovascular morphogenesis is the septation of the outflow tract which initially forms as a single vessel before separating into the aorta and pulmonary trunk. The outflow tract connects to the aortic arch arteries which are derived from the pharyngeal arch arteries. Congenital heart defects are a major cause of death and morbidity and are frequently associated with a failure to deliver oxygenated blood to the body. The Pax transcription factor family is characterised through their highly conserved paired box and DNA binding domains and are crucial in organogenesis, regulating the development of a wide range of cells, organs and tissues including the cardiovascular system. Studies altering the expression of these genes in murine models, notably Pax3 and Pax9, have found a range of cardiovascular patterning abnormalities such as interruption of the aortic arch and common arterial trunk. This suggests that these Pax genes play a crucial role in the regulatory networks governing cardiovascular development.
Collapse
Affiliation(s)
| | | | | | - Simon D. Bamforth
- Bioscience Institute, Faculty of Medical Sciences, Newcastle University, Centre for Life, Newcastle NE1 3BZ, UK; (R.E.S.); (R.S.); (H.M.P.)
| |
Collapse
|
3
|
Delalande JM, Nagy N, McCann CJ, Natarajan D, Cooper JE, Carreno G, Dora D, Campbell A, Laurent N, Kemos P, Thomas S, Alby C, Attié-Bitach T, Lyonnet S, Logan MP, Goldstein AM, Davey MG, Hofstra RMW, Thapar N, Burns AJ. TALPID3/KIAA0586 Regulates Multiple Aspects of Neuromuscular Patterning During Gastrointestinal Development in Animal Models and Human. Front Mol Neurosci 2022; 14:757646. [PMID: 35002618 PMCID: PMC8733242 DOI: 10.3389/fnmol.2021.757646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/10/2021] [Indexed: 12/26/2022] Open
Abstract
TALPID3/KIAA0586 is an evolutionary conserved protein, which plays an essential role in protein trafficking. Its role during gastrointestinal (GI) and enteric nervous system (ENS) development has not been studied previously. Here, we analyzed chicken, mouse and human embryonic GI tissues with TALPID3 mutations. The GI tract of TALPID3 chicken embryos was shortened and malformed. Histologically, the gut smooth muscle was mispatterned and enteric neural crest cells were scattered throughout the gut wall. Analysis of the Hedgehog pathway and gut extracellular matrix provided causative reasons for these defects. Interestingly, chicken intra-species grafting experiments and a conditional knockout mouse model showed that ENS formation did not require TALPID3, but was dependent on correct environmental cues. Surprisingly, the lack of TALPID3 in enteric neural crest cells (ENCC) affected smooth muscle and epithelial development in a non-cell-autonomous manner. Analysis of human gut fetal tissues with a KIAA0586 mutation showed strikingly similar findings compared to the animal models demonstrating conservation of TALPID3 and its necessary role in human GI tract development and patterning.
Collapse
Affiliation(s)
- Jean Marie Delalande
- Centre for Immunobiology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Nandor Nagy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Conor J McCann
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Dipa Natarajan
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Julie E Cooper
- Developmental Biology and Cancer Program, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Gabriela Carreno
- Developmental Biology and Cancer Program, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - David Dora
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Alison Campbell
- Department of Paediatric Surgery, Christchurch Hospital, Christchurch, New Zealand
| | - Nicole Laurent
- Génétique et Anomalies du Développement, Université de Bourgogne, Service d'Anatomie Pathologique, Dijon, France
| | - Polychronis Kemos
- Centre for Immunobiology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Sophie Thomas
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163 Institut Imagine, Paris, France
| | - Caroline Alby
- Department of Genetics, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Tania Attié-Bitach
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163 Institut Imagine, Paris, France.,Department of Genetics, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France.,Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Stanislas Lyonnet
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163 Institut Imagine, Paris, France.,Department of Genetics, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France.,Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Malcolm P Logan
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Megan G Davey
- Division of Developmental Biology, The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Robert M W Hofstra
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Alan J Burns
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Division of Neurogastroenterology and Motility, Department of Gastroenterology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom.,Gastrointestinal Drug Discovery Unit, Takeda Pharmaceuticals International, Inc., Cambridge, MA, United States
| |
Collapse
|
4
|
Ahmadpour S, Foghi K, Rezaei F. An aborted case suspected to CHARGE Syndrome; A rare case with cardiac, intestinal and kidney abnormalities. EGYPTIAN JOURNAL OF FORENSIC SCIENCES 2021. [DOI: 10.1186/s41935-021-00259-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
CHARGE syndrome is a life-threatening congenital anomaly. The syndrome associations consist of coloboma, heart disease, atresia of the choanae, retarded growth and development, genital hypoplasia/genitourinary anomalies, and ear anomalies and or hearing loss. The aim of this paper is to describe and discuss a rare case of CHARGE syndrome.
Case presentation
During the routine dissection, atrial septal defect, overriding aorta from both ventricles, patent ductus arteriosus, duodenal anomaly, absent pancreas, right side descending and sigmoid, intestinal herniation in lesser sac, and left kidney anomaly were observed.
Conclusions
This rare case is of importance in re-considering the criteria of CHARGE and understanding the importance of the orchestrated morphologic driving forces of embryonic development.
Collapse
|
5
|
Shi L, Racedo SE, Diacou A, Park T, Zhou B, Morrow BE. Crk and Crkl have shared functions in neural crest cells for cardiac outflow tract septation and vascular smooth muscle differentiation. Hum Mol Genet 2021; 31:1197-1215. [PMID: 34686881 PMCID: PMC9029238 DOI: 10.1093/hmg/ddab313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
CRK and CRKL encode cytoplasmic adaptors that contribute to the etiology of congenital heart disease. Neural crest cells (NCCs) are required for cardiac outflow tract (OFT) septation and aortic arch formation. The roles of Crk/Crkl in NCCs during mouse cardiovascular development remains unknown. To test this, we inactivated Crk and/or Crkl in NCCs. We found that the loss of Crk, rather than Crkl, in NCCs resulted in double outlet right ventricle, while loss of both Crk/Crkl in NCCs resulted in severe defects with earlier lethality due to failed OFT septation and severe dilation of the pharyngeal arch arteries (PAAs). We found that these defects are due to altered cell morphology resulting in reduced localization of NCCs to the OFT and failed integrity of the PAAs, along with reduced expression of Integrin signaling genes. Further, molecular studies identified reduced differentiation of vascular smooth muscle cells that may in part be due to altered Notch signaling. Additionally, there is increased cellular stress that leads to modest increase in apoptosis. Overall, this explains the mechanism for the Crk/Crkl phenotype.
Collapse
Affiliation(s)
- Lijie Shi
- Department of Genetics, Albert Einstein college of Medicine, Bronx, NY, USA
| | - Silvia E Racedo
- Department of Genetics, Albert Einstein college of Medicine, Bronx, NY, USA
| | - Alexander Diacou
- Department of Genetics, Albert Einstein college of Medicine, Bronx, NY, USA
| | - Taeju Park
- Department of Pediatrics, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Bin Zhou
- Department of Genetics, Albert Einstein college of Medicine, Bronx, NY, USA
| | - Bernice E Morrow
- Department of Genetics, Albert Einstein college of Medicine, Bronx, NY, USA
| |
Collapse
|
6
|
New Concepts in the Development and Malformation of the Arterial Valves. J Cardiovasc Dev Dis 2020; 7:jcdd7040038. [PMID: 32987700 PMCID: PMC7712390 DOI: 10.3390/jcdd7040038] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
Although in many ways the arterial and atrioventricular valves are similar, both being derived for the most part from endocardial cushions, we now know that the arterial valves and their surrounding structures are uniquely dependent on progenitors from both the second heart field (SHF) and neural crest cells (NCC). Here, we will review aspects of arterial valve development, highlighting how our appreciation of NCC and the discovery of the SHF have altered our developmental models. We will highlight areas of research that have been particularly instructive for understanding how the leaflets form and remodel, as well as those with limited or conflicting results. With this background, we will explore how this developmental knowledge can help us to understand human valve malformations, particularly those of the bicuspid aortic valve (BAV). Controversies and the current state of valve genomics will be indicated.
Collapse
|
7
|
Stothard CA, Mazzotta S, Vyas A, Schneider JE, Mohun TJ, Henderson DJ, Phillips HM, Bamforth SD. Pax9 and Gbx2 Interact in the Pharyngeal Endoderm to Control Cardiovascular Development. J Cardiovasc Dev Dis 2020; 7:jcdd7020020. [PMID: 32466118 PMCID: PMC7344924 DOI: 10.3390/jcdd7020020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
The correct formation of the aortic arch arteries depends on a coordinated and regulated gene expression profile within the tissues of the pharyngeal arches. Perturbation of the gene regulatory networks in these tissues results in congenital heart defects affecting the arch arteries and the outflow tract of the heart. Aberrant development of these structures leads to interruption of the aortic arch and double outlet right ventricle, abnormalities that are a leading cause of morbidity in 22q11 Deletion Syndrome (DS) patients. We have recently shown that Pax9 functionally interacts with the 22q11DS gene Tbx1 in the pharyngeal endoderm for 4th pharyngeal arch artery morphogenesis, with double heterozygous mice dying at birth with interrupted aortic arch. Mice lacking Pax9 die perinatally with complex cardiovascular defects and in this study we sought to validate further potential genetic interacting partners of Pax9, focussing on Gbx2 which is down-regulated in the pharyngeal endoderm of Pax9-null embryos. Here, we describe the Gbx2-null cardiovascular phenotype and demonstrate a genetic interaction between Gbx2 and Pax9 in the pharyngeal endoderm during cardiovascular development.
Collapse
Affiliation(s)
- Catherine A. Stothard
- Newcastle University Biosciences Institute, Centre for Life, Newcastle-upon-Tyne NE1 3BZ, UK; (C.A.S.); (S.M.); (A.V.); (D.J.H.); (H.M.P.)
| | - Silvia Mazzotta
- Newcastle University Biosciences Institute, Centre for Life, Newcastle-upon-Tyne NE1 3BZ, UK; (C.A.S.); (S.M.); (A.V.); (D.J.H.); (H.M.P.)
| | - Arjun Vyas
- Newcastle University Biosciences Institute, Centre for Life, Newcastle-upon-Tyne NE1 3BZ, UK; (C.A.S.); (S.M.); (A.V.); (D.J.H.); (H.M.P.)
| | | | | | - Deborah J. Henderson
- Newcastle University Biosciences Institute, Centre for Life, Newcastle-upon-Tyne NE1 3BZ, UK; (C.A.S.); (S.M.); (A.V.); (D.J.H.); (H.M.P.)
| | - Helen M. Phillips
- Newcastle University Biosciences Institute, Centre for Life, Newcastle-upon-Tyne NE1 3BZ, UK; (C.A.S.); (S.M.); (A.V.); (D.J.H.); (H.M.P.)
| | - Simon D. Bamforth
- Newcastle University Biosciences Institute, Centre for Life, Newcastle-upon-Tyne NE1 3BZ, UK; (C.A.S.); (S.M.); (A.V.); (D.J.H.); (H.M.P.)
- Correspondence: ; Tel.: +44-191-241-8764
| |
Collapse
|
8
|
Maleki S, Poujade FA, Bergman O, Gådin JR, Simon N, Lång K, Franco-Cereceda A, Body SC, Björck HM, Eriksson P. Endothelial/Epithelial Mesenchymal Transition in Ascending Aortas of Patients With Bicuspid Aortic Valve. Front Cardiovasc Med 2019; 6:182. [PMID: 31921896 PMCID: PMC6928128 DOI: 10.3389/fcvm.2019.00182] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022] Open
Abstract
Thoracic aortic aneurysm (TAA) is the progressive enlargement of the aorta due to destructive changes in the connective tissue of the aortic wall. Aneurysm development is silent and often first manifested by the drastic events of aortic dissection or rupture. As yet, therapeutic agents that halt or reverse the process of aortic wall deterioration are absent, and the only available therapeutic recommendation is elective prophylactic surgical intervention. Being born with a bicuspid instead of the normal tricuspid aortic valve (TAV) is a major risk factor for developing aneurysm in the ascending aorta later in life. Although the pathophysiology of the increased aneurysm susceptibility is not known, recent studies are suggestive of a transformation of aortic endothelium into a more mesenchymal state i.e., an endothelial-to-mesenchymal transition in these individuals. This process involves the loss of endothelial cell features, resulting in junction instability and enhanced vascular permeability of the ascending aorta that may lay the ground for increased aneurysm susceptibility. This finding differentiates and further emphasizes the specific characteristics of aneurysm development in individuals with a bicuspid aortic valve (BAV). This review discusses the possibility of a developmental fate shared between the aortic endothelium and aortic valves. It further speculates about the impact of aortic endothelium phenotypic shift on aneurysm development in individuals with a BAV and revisits previous studies in the light of the new findings.
Collapse
Affiliation(s)
- Shohreh Maleki
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Flore-Anne Poujade
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Otto Bergman
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Jesper R Gådin
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Nancy Simon
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Karin Lång
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Anders Franco-Cereceda
- Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Simon C Body
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Hanna M Björck
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Per Eriksson
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
9
|
Phillips HM, Stothard CA, Shaikh Qureshi WM, Kousa AI, Briones-Leon JA, Khasawneh RR, O'Loughlin C, Sanders R, Mazzotta S, Dodds R, Seidel K, Bates T, Nakatomi M, Cockell SJ, Schneider JE, Mohun TJ, Maehr R, Kist R, Peters H, Bamforth SD. Pax9 is required for cardiovascular development and interacts with Tbx1 in the pharyngeal endoderm to control 4th pharyngeal arch artery morphogenesis. Development 2019; 146:dev.177618. [PMID: 31444215 PMCID: PMC6765178 DOI: 10.1242/dev.177618] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/14/2019] [Indexed: 12/16/2022]
Abstract
Developmental defects affecting the heart and aortic arch arteries are a significant phenotype observed in individuals with 22q11 deletion syndrome and are caused by a microdeletion on chromosome 22q11. TBX1, one of the deleted genes, is expressed throughout the pharyngeal arches and is considered a key gene, when mutated, for the arch artery defects. Pax9 is expressed in the pharyngeal endoderm and is downregulated in Tbx1 mutant mice. We show here that Pax9-deficient mice are born with complex cardiovascular malformations that affect the outflow tract and aortic arch arteries with failure of the 3rd and 4th pharyngeal arch arteries to form correctly. Transcriptome analysis indicated that Pax9 and Tbx1 may function together, and mice double heterozygous for Tbx1/Pax9 presented with a significantly increased incidence of interrupted aortic arch when compared with Tbx1 heterozygous mice. Using a novel Pax9Cre allele, we demonstrated that the site of this Tbx1-Pax9 genetic interaction is the pharyngeal endoderm, therefore revealing that a Tbx1-Pax9-controlled signalling mechanism emanating from the pharyngeal endoderm is required for crucial tissue interactions during normal morphogenesis of the pharyngeal arch artery system. Summary: A strong genetic interaction between Tbx1 and Pax9 that leads to 4th PAA-derived defects in double heterozygous mice is cell-autonomous within the pharyngeal endoderm.
Collapse
Affiliation(s)
- Helen M Phillips
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK
| | - Catherine A Stothard
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK
| | | | | | | | - Ramada R Khasawneh
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK
| | - Chloe O'Loughlin
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK
| | - Rachel Sanders
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK
| | - Silvia Mazzotta
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK
| | - Rebecca Dodds
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK
| | - Kerstin Seidel
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK
| | - Timothy Bates
- School of Dental Sciences, Newcastle University, Newcastle-upon-Tyne NE2 4BW, UK
| | - Mitsushiro Nakatomi
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK
| | - Simon J Cockell
- Bioinformatics Support Unit, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | | | | | - René Maehr
- Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ralf Kist
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK.,School of Dental Sciences, Newcastle University, Newcastle-upon-Tyne NE2 4BW, UK
| | - Heiko Peters
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK
| | - Simon D Bamforth
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK
| |
Collapse
|
10
|
Wang JJ, Liu HX, Song L, Li HR, Yang YP, Zhang T, Jing Y. Isl-1 positive pharyngeal mesenchyme subpopulation and its role in the separation and remodeling of the aortic sac in embryonic mouse heart. Dev Dyn 2019; 248:771-783. [PMID: 31175693 DOI: 10.1002/dvdy.68] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 05/26/2019] [Accepted: 05/31/2019] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Second heart field cells and neural crest cells have been reported to participate in the morphogenesis of the pharyngeal arch arteries (PAAs); however, how the PAAs grow out and are separated from the aortic sac into left and right sections is unknown. RESULTS An Isl-1 positive pharyngeal mesenchyme protrusion in the aortic sac ventrally extends and fuses with the aortic sac wall to form a midsagittal septum that divides the aortic sac. The aortic sac division separates the left and right PAAs to form independent arteries. The midsagittal septum dividing the aortic sac has a different expression pattern from the aortic-pulmonary (AP) septum in which Isl-1 positive cells are absent. At 11 days post-conception (dpc) in a mouse embryo, the Isl-1 positive mesenchyme protrusion appears as a heart-shaped structure, in which subpopulations with Isl-1+ Tbx3+ and Isl-1+ Nkx2.5+ cells are included. CONCLUSIONS The aortic sac is a dynamic structure that is continuously divided during the migration from the pharyngeal mesenchyme to the pericardial cavity. The separation of the aortic sac is not complete until the AP septum divides the aortic sac into the ascending aorta and pulmonary trunk. Moreover, the midsagittal septum and the AP septum are distinct structures.
Collapse
Affiliation(s)
- Jing-Jing Wang
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hui-Xia Liu
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li Song
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hai-Rong Li
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan-Ping Yang
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Tao Zhang
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ya Jing
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
11
|
Cantù C, Felker A, Zimmerli D, Prummel KD, Cabello EM, Chiavacci E, Méndez-Acevedo KM, Kirchgeorg L, Burger S, Ripoll J, Valenta T, Hausmann G, Vilain N, Aguet M, Burger A, Panáková D, Basler K, Mosimann C. Mutations in Bcl9 and Pygo genes cause congenital heart defects by tissue-specific perturbation of Wnt/β-catenin signaling. Genes Dev 2018; 32:1443-1458. [PMID: 30366904 PMCID: PMC6217730 DOI: 10.1101/gad.315531.118] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/22/2018] [Indexed: 12/31/2022]
Abstract
Bcl9 and Pygopus (Pygo) are obligate Wnt/β-catenin cofactors in Drosophila, yet their contribution to Wnt signaling during vertebrate development remains unresolved. Combining zebrafish and mouse genetics, we document a conserved, β-catenin-associated function for BCL9 and Pygo proteins during vertebrate heart development. Disrupting the β-catenin-BCL9-Pygo complex results in a broadly maintained canonical Wnt response yet perturbs heart development and proper expression of key cardiac regulators. Our work highlights BCL9 and Pygo as selective β-catenin cofactors in a subset of canonical Wnt responses during vertebrate development. Moreover, our results implicate alterations in BCL9 and BCL9L in human congenital heart defects.
Collapse
Affiliation(s)
- Claudio Cantù
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Anastasia Felker
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Dario Zimmerli
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Karin D Prummel
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Elena M Cabello
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Elena Chiavacci
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Kevin M Méndez-Acevedo
- Electrochemical Signaling in Development and Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin-Buch, Germany
| | - Lucia Kirchgeorg
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Sibylle Burger
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Jorge Ripoll
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, 28911 Madrid, Spain
| | - Tomas Valenta
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - George Hausmann
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Nathalie Vilain
- Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, 1015 Lausanne, Switzerland
| | - Michel Aguet
- Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, 1015 Lausanne, Switzerland
| | - Alexa Burger
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Daniela Panáková
- Electrochemical Signaling in Development and Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin-Buch, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner site Berlin, 10115 Berlin, Germany
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
12
|
Kugathasan K, Halford MM, Farlie PG, Bates D, Smith DP, Zhang YF, Roy JP, Macheda ML, Zhang D, Wilkinson JL, Kirby ML, Newgreen DF, Stacker SA. Deficiency of the Wnt receptor Ryk causes multiple cardiac and outflow tract defects. Growth Factors 2018; 36:58-68. [PMID: 30035654 DOI: 10.1080/08977194.2018.1491848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Ryk is a member of the receptor tyrosine kinase (RTK) family of proteins that control and regulate cellular processes. It is distinguished by binding Wnt ligands and having no detectable intrinsic protein tyrosine kinase activity suggesting Ryk is a pseudokinase. Here, we show an essential role for Ryk in directing morphogenetic events required for normal cardiac development through the examination of Ryk-deficient mice. We employed vascular corrosion casting, vascular perfusion with contrast dye, and immunohistochemistry to characterize cardiovascular and pharyngeal defects in Ryk-/- embryos. Ryk-/- mice exhibit a variety of malformations of the heart and outflow tract that resemble human congenital heart defects. This included stenosis and interruption of the aortic arch, ventriculoarterial malalignment, ventricular septal defects and abnormal pharyngeal arch artery remodelling. This study therefore defines a key intersection between a subset of growth factor receptors involved in planar cell polarity signalling, the Wnt family and mammalian cardiovascular development.
Collapse
Affiliation(s)
- Kumudhini Kugathasan
- a Ludwig Institute for Cancer Research , Royal Melbourne Hospital , Melbourne , Australia
- b Department of Surgery, Royal Melbourne Hospital , University of Melbourne , Parkville , Australia
| | - Michael M Halford
- a Ludwig Institute for Cancer Research , Royal Melbourne Hospital , Melbourne , Australia
- c Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
| | - Peter G Farlie
- d Craniofacial Development Laboratory , Murdoch Children's Research Institute , Parkville , Australia
| | - Damien Bates
- e Embryology Research Group , Murdoch Children's Research Institute , Parkville , Australia
| | - Darrin P Smith
- a Ludwig Institute for Cancer Research , Royal Melbourne Hospital , Melbourne , Australia
| | - You Fang Zhang
- a Ludwig Institute for Cancer Research , Royal Melbourne Hospital , Melbourne , Australia
- c Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
| | - James P Roy
- c Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
- f Sir Peter MacCallum Department of Oncology , University of Melbourne , Parkville , Australia
| | - Maria L Macheda
- a Ludwig Institute for Cancer Research , Royal Melbourne Hospital , Melbourne , Australia
- c Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
| | - Dong Zhang
- e Embryology Research Group , Murdoch Children's Research Institute , Parkville , Australia
| | - James L Wilkinson
- e Embryology Research Group , Murdoch Children's Research Institute , Parkville , Australia
| | - Margaret L Kirby
- g The Neonatal Perinatal Research Institute, Division of Neonatology , Duke University Medical Center , Durham , NC , USA
| | - Donald F Newgreen
- e Embryology Research Group , Murdoch Children's Research Institute , Parkville , Australia
| | - Steven A Stacker
- a Ludwig Institute for Cancer Research , Royal Melbourne Hospital , Melbourne , Australia
- b Department of Surgery, Royal Melbourne Hospital , University of Melbourne , Parkville , Australia
- c Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
- f Sir Peter MacCallum Department of Oncology , University of Melbourne , Parkville , Australia
| |
Collapse
|
13
|
Maeda K, Asai R, Maruyama K, Kurihara Y, Nakanishi T, Kurihara H, Miyagawa-Tomita S. Postotic and preotic cranial neural crest cells differently contribute to thyroid development. Dev Biol 2015; 409:72-83. [PMID: 26506449 DOI: 10.1016/j.ydbio.2015.10.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 10/17/2015] [Accepted: 10/22/2015] [Indexed: 11/18/2022]
Abstract
Thyroid development and formation vary among species, but in most species the thyroid morphogenesis consists of five stages: specification, budding, descent, bilobation and folliculogenesis. The detailed mechanisms of these stages have not been fully clarified. During early development, the cranial neural crest (CNC) contributes to the thyroid gland. The removal of the postotic CNC (corresponding to rhombomeres 6, 7 and 8, also known as the cardiac neural crest) results in abnormalities of the cardiovascular system, thymus, parathyroid glands, and thyroid gland. To investigate the influence of the CNC on thyroid bilobation process, we divided the CNC into two regions, the postotic CNC and the preotic CNC (from the mesencephalon to rhombomere 5) regions and examined. We found that preotic CNC-ablated embryos had a unilateral thyroid lobe, and confirmed the presence of a single lobe or the absence of lobes in postotic CNC-ablated chick embryos. The thyroid anlage in each region-ablated embryos was of a normal size at the descent stage, but at a later stage, the thyroid in preotic CNC-ablated embryos was of a normal size, conflicting with a previous report in which the thyroid was reduced in size in the postotic CNC-ablated embryos. The postotic CNC cells differentiated into connective tissues of the thyroid in quail-to-chick chimeras. In contrast, the preotic CNC cells did not differentiate into connective tissues of the thyroid. We found that preotic CNC cells encompassed the thyroid anlage from the specification stage to the descent stage. Finally, we found that endothelin-1 and endothelin type A receptor-knockout mice and bosentan (endothelin receptor antagonist)-treated chick embryos showed bilobation anomalies that included single-lobe formation. Therefore, not only the postotic CNC, but also the preotic CNC plays an important role in thyroid morphogenesis.
Collapse
Affiliation(s)
- Kazuhiro Maeda
- Department of Pediatric Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Rieko Asai
- Department of Pediatric Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan; Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuaki Maruyama
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yukiko Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshio Nakanishi
- Department of Pediatric Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Hiroki Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sachiko Miyagawa-Tomita
- Department of Pediatric Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan; Division of Cardiovascular Development and Differentiation, Medical Research Institute, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| |
Collapse
|
14
|
Cavanaugh AM, Huang J, Chen JN. Two developmentally distinct populations of neural crest cells contribute to the zebrafish heart. Dev Biol 2015; 404:103-12. [PMID: 26086691 DOI: 10.1016/j.ydbio.2015.06.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/28/2015] [Accepted: 06/03/2015] [Indexed: 11/25/2022]
Abstract
Cardiac neural crest cells are essential for outflow tract remodeling in animals with divided systemic and pulmonary circulatory systems, but their contributions to cardiac development in animals with a single-loop circulatory system are less clear. Here we genetically labeled neural crest cells and examined their contribution to the developing zebrafish heart. We identified two populations of neural crest cells that contribute to distinct compartments of zebrafish cardiovascular system at different developmental stages. A stream of neural crest cells migrating through pharyngeal arches 1 and 2 integrates into the myocardium of the primitive heart tube between 24 and 30 h post fertilization and gives rise to cardiomyocytes. A second wave of neural crest cells migrating along aortic arch 6 envelops the endothelium of the ventral aorta and invades the bulbus arteriosus after three days of development. Interestingly, while inhibition of FGF signaling has no effect on the integration of neural crest cells to the primitive heart tube, it prevents these cells from contributing to the outflow tract, demonstrating disparate responses of neural crest cells to FGF signaling. Furthermore, neural crest ablation in zebrafish leads to multiple cardiac defects, including reduced heart rate, defective myocardial maturation and a failure to recruit progenitor cells from the second heart field. These findings add to our understanding of the contribution of neural crest cells to the developing heart and provide insights into the requirement for these cells in cardiac maturation.
Collapse
Affiliation(s)
- Ann M Cavanaugh
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles CA 90095, USA
| | - Jie Huang
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles CA 90095, USA
| | - Jau-Nian Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles CA 90095, USA.
| |
Collapse
|
15
|
Bisson JA, Mills B, Paul Helt JC, Zwaka TP, Cohen ED. Wnt5a and Wnt11 inhibit the canonical Wnt pathway and promote cardiac progenitor development via the Caspase-dependent degradation of AKT. Dev Biol 2014; 398:80-96. [PMID: 25482987 DOI: 10.1016/j.ydbio.2014.11.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 01/09/2023]
Abstract
Wnt proteins regulate cell behavior via a canonical signaling pathway that induces β-catenin dependent transcription. It is now appreciated that Wnt/β-catenin signaling promotes the expansion of the second heart field (SHF) progenitor cells that ultimately give-rise to the majority of cardiomyocytes. However, activating β-catenin can also cause the loss of SHF progenitors, highlighting the necessity of precise control over β-catenin signaling during heart development. We recently reported that two non-canonical Wnt ligands, Wnt5a and Wnt11, act cooperatively to attenuate canonical Wnt signaling that would otherwise disrupt the SHF. While these data reveal the essential role of this anti-canonical Wnt5a/Wnt11 signaling in SHF development, the mechanisms by which these ligands inhibit the canonical Wnt pathway are unclear. Wnt11 was previously shown to inhibit β-catenin and promote cardiomyocyte maturation by activating a novel apoptosis-independent function of Caspases. Consistent with these data, we now show that Wnt5a and Wnt11 are capable of inducing Caspase activity in differentiating embryonic stem (ES) cells and that hearts from Wnt5a(-/-); Wnt11(-/-) embryos have diminished Caspase 3 (Casp3) activity. Furthermore, SHF markers are reduced in Casp3 mutant ES cells while the treatment of wild type ES cells with Caspase inhibitors blocked the ability of Wnt5a and Wnt11 to promote SHF gene expression. This finding was in agreement with our in vivo studies in which injecting pregnant mice with Caspase inhibitors reduced SHF marker expression in their gestating embryos. Caspase inhibition also blocked other Wnt5a/Wnt11 induced effects, including the suppression of β-catenin protein expression and activity. Interestingly, Wnt5a/Wnt11 treatment of differentiating ES cells reduced both phosphorylated and total Akt through a Caspase-dependent mechanism and phosphorylated Akt levels were increased in the hearts Caspase inhibitor treated. Surprisingly, inhibition of either Akt or PI3K in ES cells was an equally effective means of increasing SHF markers compared to treatment with Wnt5a/Wnt11. Moreover, Akt inhibition restored SHF gene expression in Casp3 mutant ES cells. Taken together, these findings suggest that Wnt5a/Wnt11 inhibit β-catenin to promote SHF development through Caspase-dependent Akt degradation.
Collapse
Affiliation(s)
- Joseph A Bisson
- Division of Endocrinology and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Bradley Mills
- Division of Endocrinology and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Jay-Christian Paul Helt
- Division of Endocrinology and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Thomas P Zwaka
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ethan David Cohen
- Division of Endocrinology and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
16
|
Karunamuni GH, Ma P, Gu S, Rollins AM, Jenkins MW, Watanabe M. Connecting teratogen-induced congenital heart defects to neural crest cells and their effect on cardiac function. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2014; 102:227-50. [PMID: 25220155 PMCID: PMC4238913 DOI: 10.1002/bdrc.21082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/26/2014] [Indexed: 12/26/2022]
Abstract
Neural crest cells play many key roles in embryonic development, as demonstrated by the abnormalities that result from their specific absence or dysfunction. Unfortunately, these key cells are particularly sensitive to abnormalities in various intrinsic and extrinsic factors, such as genetic deletions or ethanol-exposure that lead to morbidity and mortality for organisms. This review discusses the role identified for a segment of neural crest in regulating the morphogenesis of the heart and associated great vessels. The paradox is that their derivatives constitute a small proportion of cells to the cardiovascular system. Findings supporting that these cells impact early cardiac function raises the interesting possibility that they indirectly control cardiovascular development at least partially through regulating function. Making connections between insults to the neural crest, cardiac function, and morphogenesis is more approachable with technological advances. Expanding our understanding of early functional consequences could be useful in improving diagnosis and testing therapies.
Collapse
Affiliation(s)
- Ganga H. Karunamuni
- Department of Pediatrics, Case Western Reserve University School of Medicine, Case Medical Center Division of Pediatric Cardiology, Rainbow Babies and Children’s Hospital, Cleveland OH 44106
| | - Pei Ma
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Shi Gu
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Andrew M. Rollins
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Michael W. Jenkins
- Department of Pediatrics, Case Western Reserve University School of Medicine, Case Medical Center Division of Pediatric Cardiology, Rainbow Babies and Children’s Hospital, Cleveland OH 44106
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Michiko Watanabe
- Department of Pediatrics, Case Western Reserve University School of Medicine, Case Medical Center Division of Pediatric Cardiology, Rainbow Babies and Children’s Hospital, Cleveland OH 44106
| |
Collapse
|
17
|
Clowes C, Boylan MGS, Ridge LA, Barnes E, Wright JA, Hentges KE. The functional diversity of essential genes required for mammalian cardiac development. Genesis 2014; 52:713-37. [PMID: 24866031 PMCID: PMC4141749 DOI: 10.1002/dvg.22794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 01/04/2023]
Abstract
Genes required for an organism to develop to maturity (for which no other gene can compensate) are considered essential. The continuing functional annotation of the mouse genome has enabled the identification of many essential genes required for specific developmental processes including cardiac development. Patterns are now emerging regarding the functional nature of genes required at specific points throughout gestation. Essential genes required for development beyond cardiac progenitor cell migration and induction include a small and functionally homogenous group encoding transcription factors, ligands and receptors. Actions of core cardiogenic transcription factors from the Gata, Nkx, Mef, Hand, and Tbx families trigger a marked expansion in the functional diversity of essential genes from midgestation onwards. As the embryo grows in size and complexity, genes required to maintain a functional heartbeat and to provide muscular strength and regulate blood flow are well represented. These essential genes regulate further specialization and polarization of cell types along with proliferative, migratory, adhesive, contractile, and structural processes. The identification of patterns regarding the functional nature of essential genes across numerous developmental systems may aid prediction of further essential genes and those important to development and/or progression of disease. genesis 52:713–737, 2014.
Collapse
Affiliation(s)
- Christopher Clowes
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | | | | | | | | | | |
Collapse
|
18
|
Kenchegowda D, Liu H, Thompson K, Luo L, Martin SS, Fisher SA. Vulnerability of the developing heart to oxygen deprivation as a cause of congenital heart defects. J Am Heart Assoc 2014; 3:e000841. [PMID: 24855117 PMCID: PMC4309110 DOI: 10.1161/jaha.114.000841] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Background The heart develops under reduced and varying oxygen concentrations, yet there is little understanding of oxygen metabolism in the normal and mal‐development of the heart. Here we used a novel reagent, the ODD‐Luc hypoxia reporter mouse (oxygen degradation domain, ODD) of Hif‐1α fused to Luciferase (Luc), to assay the activity of the oxygen sensor, prolyl hydroxylase, and oxygen reserve, in the developing heart. We tested the role of hypoxia‐dependent responses in heart development by targeted inactivation of Hif‐1α. Methods and Results ODD‐Luciferase activity was 14‐fold higher in mouse embryonic day 10.5 (E10.5) versus adult heart and liver tissue lysates. ODD‐Luc activity decreased in 2 stages, the first corresponding with the formation of a functional cardiovascular system for oxygen delivery at E15.5, and the second after birth consistent with complete oxygenation of the blood and tissues. Reduction of maternal inspired oxygen to 8% for 4 hours caused minimal induction of luciferase activity in the maternal tissues but robust induction in the embryonic tissues in proportion to the basal activity, indicating a lack of oxygen reserve, and corresponding induction of a hypoxia‐dependent gene program. Bioluminescent imaging of intact embryos demonstrated highest activity in the outflow portion of the E13.5 heart. Hif‐1α inactivation or prolonged hypoxia caused outflow and septation defects only when targeted to this specific developmental window. Conclusions Low oxygen concentrations and lack of oxygen reserve during a critical phase of heart organogenesis may provide a basis for vulnerability to the development of common septation and conotruncal heart defects.
Collapse
Affiliation(s)
- Doreswamy Kenchegowda
- Department of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, MD (D.K., S.A.F.)
| | - Hongbin Liu
- Department of Medicine (Cardiology), Case Western Reserve University, Cleveland, OH (H.L., L.L., S.A.F.)
| | - Keyata Thompson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD (K.T., S.S.M., S.A.F.)
| | - Liping Luo
- Department of Medicine (Cardiology), Case Western Reserve University, Cleveland, OH (H.L., L.L., S.A.F.)
| | - Stuart S Martin
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD (K.T., S.S.M., S.A.F.)
| | - Steven A Fisher
- Department of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, MD (D.K., S.A.F.) Department of Physiology, University of Maryland School of Medicine, Baltimore, MD (K.T., S.S.M., S.A.F.) Department of Medicine (Cardiology), Case Western Reserve University, Cleveland, OH (H.L., L.L., S.A.F.)
| |
Collapse
|
19
|
Olaopa M, Zhou HM, Snider P, Wang J, Schwartz RJ, Moon AM, Conway SJ. Pax3 is essential for normal cardiac neural crest morphogenesis but is not required during migration nor outflow tract septation. Dev Biol 2011; 356:308-22. [PMID: 21600894 PMCID: PMC3143301 DOI: 10.1016/j.ydbio.2011.05.583] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 05/03/2011] [Accepted: 05/04/2011] [Indexed: 11/17/2022]
Abstract
Systemic loss-of-function studies have demonstrated that Pax3 transcription factor expression is essential for dorsal neural tube, early neural crest and muscle cell lineage morphogenesis. Cardiac neural crest cells participate in both remodeling of the pharyngeal arch arteries and outflow tract septation during heart development, but the lineage specific role of Pax3 in neural crest function has not yet been determined. To gain insight into the requirement of Pax3 within the neural crest, we conditionally deleted Pax3 in both the premigratory and migratory neural crest populations via Wnt1-Cre and Ap2α-Cre and via P0-Cre in only the migratory neural crest, and compared these phenotypes to the pulmonary atresia phenotype observed following the systemic loss of Pax3. Surprisingly, using Wnt1-Cre deletion there are no resultant heart defects despite the loss of Pax3 from the premigratory and migratory neural crest. In contrast, earlier premigratory and migratory Ap2α-Cre mediated deletion resulted in double outlet right ventricle alignment heart defects. In order to assess the tissue-specific contribution of neural crest to heart development, genetic ablation of neural crest lineage using a Wnt1-Cre-activated diphtheria toxin fragment-A cell-killing system was employed. Significantly, ablation of Wnt1-Cre-expressing neural crest cells resulted in fully penetrant persistent truncus arteriosus malformations. Combined, the data show that Pax3 is essential for early neural crest progenitor formation, but is not required for subsequent cardiac neural crest progeny morphogenesis involving their migration to the heart or septation of the outflow tract.
Collapse
Affiliation(s)
- Michael Olaopa
- Developmental Biology and Neonatal Medicine Program, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Hong-ming Zhou
- Developmental Biology and Neonatal Medicine Program, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Paige Snider
- Developmental Biology and Neonatal Medicine Program, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Jian Wang
- Developmental Biology and Neonatal Medicine Program, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | | | | | - Simon J. Conway
- Developmental Biology and Neonatal Medicine Program, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
20
|
Thomas PS, Kim J, Nunez S, Glogauer M, Kaartinen V. Neural crest cell-specific deletion of Rac1 results in defective cell-matrix interactions and severe craniofacial and cardiovascular malformations. Dev Biol 2010; 340:613-25. [PMID: 20184871 PMCID: PMC2854286 DOI: 10.1016/j.ydbio.2010.02.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 02/12/2010] [Accepted: 02/12/2010] [Indexed: 11/30/2022]
Abstract
The small GTP-binding protein Rac1, a member of the Rho family of small GTPases, has been implicated in regulation of many cellular processes including adhesion, migration and cytokinesis. These functions have largely been attributed to its ability to reorganize cytoskeleton. While the function of Rac1 is relatively well known in vitro, its role in vivo has been poorly understood. It has previously been shown that in neural crest cells (NCCs) Rac1 is required in a stage-specific manner to acquire responsiveness to mitogenic EGF signals. Here we demonstrate that mouse embryos lacking Rac1 in neural crest cells (Rac1/Wnt1-Cre) showed abnormal craniofacial development including regional ectodermal detachment associated with mesenchymal acellularity culminating in cleft face at E12. Rac1/Wnt1-Cre mutants also displayed inappropriate remodelling of pharyngeal arch arteries and defective outflow tract septation resulting in the formation of a common arterial trunk ('persistent truncus arteriosus' or PTA). The mesenchyme around the aortic sac also developed acellular regions, and the distal aortic sac became grossly dysmorphic, forming a pair of bilateral, highly dilated arterial structures connecting to the dorsal aortas. Smooth muscle cells lacking Rac1 failed to differentiate appropriately, and subpopulations of post-migratory NCCs demonstrated aberrant cell death and attenuated proliferation. These novel data demonstrate that while Rac1 is not required for normal NCC migration in vivo, it plays a critical cell-autonomous role in post-migratory NCCs during craniofacial and cardiac development by regulating the integrity of the craniofacial and pharyngeal mesenchyme.
Collapse
Affiliation(s)
- Penny S Thomas
- Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | | | | | | | | |
Collapse
|
21
|
Nakajima Y. Second lineage of heart forming region provides new understanding of conotruncal heart defects. Congenit Anom (Kyoto) 2010; 50:8-14. [PMID: 20050864 DOI: 10.1111/j.1741-4520.2009.00267.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abnormal heart development causes various congenital heart defects. Recent cardiovascular biology studies have elucidated the morphological mechanisms involved in normal and abnormal heart development. The primitive heart tube originates from the lateral-most part of the heart forming mesoderm and mainly gives rise to the left ventricle. Then, during the cardiac looping, the outflow tract is elongated by the addition of cardiogenic cells from the both pharyngeal and splanchnic mesoderm (corresponding to anterior and secondary heart field, respectively), which originate from the mediocaudal region of the heart forming mesoderm and are later located anteriorly (rostrally) to the dorsal region of the heart tube. Therefore, the heart progenitors that contribute to the outflow tract region are distinct from those that form the left ventricle. The knowledge that there are two different lineages of heart progenitors in the four-chambered heart provides new understanding of the morphological and molecular etiology of conotruncal heart defects.
Collapse
Affiliation(s)
- Yuji Nakajima
- Department of Anatomy and Cell Biology, Osaka City University, Japan.
| |
Collapse
|
22
|
|
23
|
Bicuspid Aortic Valves With Different Spatial Orientations of the Leaflets Are Distinct Etiological Entities. J Am Coll Cardiol 2009; 54:2312-8. [PMID: 19958967 DOI: 10.1016/j.jacc.2009.07.044] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 06/24/2009] [Accepted: 07/06/2009] [Indexed: 11/20/2022]
|