1
|
Song Y, Gao L. Spinal Nerve Axotomy: Effects on I h In Vivo and HCNs in DRG Neurons. Int J Mol Sci 2024; 25:12889. [PMID: 39684600 DOI: 10.3390/ijms252312889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
In vitro experiments performed on dissociated dorsal root ganglion (DRG) neurons suggest the involvement of the hyperpolarization-activated cation current (Ih) in enhancing neuronal excitability, potentially contributing to neuropathic pain. However, the more confirmative in vivo information about how nerve injury interacts with Ih is lacking. In this study, Ih was recorded in vivo using the dynamic single-electrode voltage clamp (dSEVC) technique on L5 DRG neurons of normal rats and those seven days after spinal nerve axotomy (SNA). Compared to normal rats, SNA unexpectedly inhibited the activity of Ih channels on A-fiber DRG neurons: (a) the Ih current magnitude, density, and conductance were consistently diminished; and (b) the Ih activation velocity was slowed and the voltage for Ih activation was hyperpolarized. The half-activation voltage (V0.5) exhibited a negative shift, and the time constant for Ih activation was prolonged across all test potentials, indicating the reduced availability of Ih after SNA. To further investigate the mechanisms of SNA on Ih, the underlying HCN channels and the correlated mRNA were quantified and compared. The mRNA expression level of HCN1-4 was uniformly enhanced after SNA, which might have contributed to the increased cytoplasmic HCN1 intensity observed in both medium- and large-sized DRG neurons. This finding contradicted the functional reduction of Ih after SNA. Surprisingly, the HCN labeling pattern was altered after SNA: the labeling area of HCN1 and HCN2 at the membranous ring region of the axotomized large neurons became significantly thinner or absent. We concluded that the diminished ring immunoreactivity for HCN1 and HCN2 correlated with a reduced availability of Ih channels, elucidating the observed decrease in Ih in axotomized A-fiber neurons.
Collapse
Affiliation(s)
- Yuanlong Song
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan,430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan,430030, China
| | - Linlin Gao
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan,430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan,430030, China
| |
Collapse
|
2
|
Bruti G, Foggetti P. Insecure Attachment, Oxytocinergic System and C-Tactile Fibers: An Integrative and Translational Pathophysiological Model of Fibromyalgia and Central Sensitivity Syndromes. Biomedicines 2024; 12:1744. [PMID: 39200209 PMCID: PMC11351601 DOI: 10.3390/biomedicines12081744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/16/2024] [Accepted: 07/27/2024] [Indexed: 09/02/2024] Open
Abstract
Although the pathophysiology of fibromyalgia syndrome has been better understood in recent decades, a unified model of its pathogenesis and an effective therapeutic approach are still far from being realized. The main aim of this article will be to delve into the fundamental mechanisms of the pathophysiology of fibromyalgia conceptualized as stress intolerance syndrome. Using the biopsychosocial model of chronic pain syndromes, we will describe the potential role of the attachment system, C-tactile fibers, and oxytocinergic system dysfunction in the pathophysiology of fibromyalgia syndrome and other central sensitivity syndromes. At the end of the article, the therapeutic implications of this new global and translational pathophysiological model will be briefly discussed.
Collapse
Affiliation(s)
- Gianluca Bruti
- Eurekacademy, Center for International Studies of Cognitive Neurosciences and Integrated Medicine, Antonio Bertoloni 26/C, 00197 Rome, Italy
| | - Paola Foggetti
- Eurekacademy, Center for International Studies of Cognitive Neurosciences and Integrated Medicine, Antonio Bertoloni 26/C, 00197 Rome, Italy
| |
Collapse
|
3
|
Mazur U, Lepiarczyk E, Janikiewicz P, Łopieńska-Biernat E, Majewski MK, Bossowska A. Distribution and Chemistry of Phoenixin-14, a Newly Discovered Sensory Transmission Molecule in Porcine Afferent Neurons. Int J Mol Sci 2023; 24:16647. [PMID: 38068975 PMCID: PMC10706208 DOI: 10.3390/ijms242316647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Phoenixin-14 (PNX), initially discovered in the rat hypothalamus, was also detected in dorsal root ganglion (DRG) cells, where its involvement in the regulation of pain and/or itch sensation was suggested. However, there is a lack of data not only on its distribution in DRGs along individual segments of the spinal cord, but also on the pattern(s) of its co-occurrence with other sensory neurotransmitters. To fill the above-mentioned gap and expand our knowledge about the occurrence of PNX in mammalian species other than rodents, this study examined (i) the pattern(s) of PNX occurrence in DRG neurons of subsequent neuromeres along the porcine spinal cord, (ii) their intraganglionic distribution and (iii) the pattern(s) of PNX co-occurrence with other biologically active agents. PNX was found in approximately 20% of all nerve cells of each DRG examined; the largest subpopulation of PNX-positive (PNX+) cells were small-diameter neurons, accounting for 74% of all PNX-positive neurons found. PNX+ neurons also co-contained calcitonin gene-related peptide (CGRP; 96.1%), substance P (SP; 88.5%), nitric oxide synthase (nNOS; 52.1%), galanin (GAL; 20.7%), calretinin (CRT; 10%), pituitary adenylate cyclase-activating polypeptide (PACAP; 7.4%), cocaine and amphetamine related transcript (CART; 5.1%) or somatostatin (SOM; 4.7%). Although the exact function of PNX in DRGs is not yet known, the high degree of co-localization of this peptide with the main nociceptive transmitters SP and CGRP may suggests its function in modulation of pain transmission.
Collapse
Affiliation(s)
- Urszula Mazur
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland
| | - Ewa Lepiarczyk
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland
| | - Paweł Janikiewicz
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Mariusz Krzysztof Majewski
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland
| | - Agnieszka Bossowska
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland
| |
Collapse
|
4
|
Schirmer A, Croy I, Ackerley R. What are C-tactile afferents and how do they relate to "affective touch"? Neurosci Biobehav Rev 2023; 151:105236. [PMID: 37196923 DOI: 10.1016/j.neubiorev.2023.105236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Since their initial discovery in cats, low-threshold C-fiber mechanoreceptors have become a central interest of scientists studying the affective aspects of touch. Their pursuit in humans, here termed C-tactile (CT) afferents, has led to the establishment of a research field referred to as "affective touch", which is differentiated from "discriminative touch". Presently, we review these developments based on an automated semantic analysis of more than 1000 published abstracts as well as empirical evidence and the solicited opinions of leading experts in the field. Our review provides a historical perspective and update of CT research, it reflects on the meaning of "affective touch", and discusses how current insights challenge established views on the relation between CTs and affective touch. We conclude that CTs support gentle, affective touch, but that not every affective touch experience relies on CTs or must necessarily be pleasant. Moreover, we speculate that currently underappreciated aspects of CT signaling will prove relevant for the manner in which these unique fibers support how humans connect both physically and emotionally.
Collapse
Affiliation(s)
- Annett Schirmer
- Department of Psychology, University of Innsbruck, Innsbruck, Austria.
| | - Ilona Croy
- Department of Psychology, Friedrich Schiller University, Jena, Germany
| | - Rochelle Ackerley
- Aix Marseille Univ, CNRS, LNC (Laboratoire de Neurosciences Cognitives - UMR 7291), Marseille, France.
| |
Collapse
|
5
|
Buhner S, Schäuffele S, Giesbertz P, Demir IE, Zeller F, Traidl-Hoffmann C, Schemann M, Gilles S. Allergen-free extracts from birch, ragweed, and hazel pollen activate human and guinea-pig submucous and spinal sensory neurons. Neurogastroenterol Motil 2023:e14559. [PMID: 36989179 DOI: 10.1111/nmo.14559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 01/16/2023] [Accepted: 02/24/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND Non-allergenic, low molecular weight components of pollen grains are suspected to trigger changes in gut functions, sometimes leading to inflammatory conditions. Based on extensive neuroimmune communication in the gut wall, we investigated the effects of aqueous pollen extracts (APE) on enteric and spinal sensory neurons. METHODS Using Ca2+ and fast potentiometric imaging, we recorded the responses of guinea-pig and human submucous and guinea-pig dorsal root ganglion (DRG) neurons to microejection of low (<3 kDa) and high (≥3 kDa) molecular weight APEs of birch, ragweed, and hazel. Histamine was determined pharmacologically and by mass spectrometry (LC-MS/MS). KEY RESULTS Birch APE<3kDa evoked strong [Ca+2 ]i signals in the vast majority of guinea-pig DRG neurons, and in guinea-pig and human enteric neurons. The effect of birch APE≥3kDa was much weaker. Fast neuroimaging in human enteric neurons revealed an instantaneous spike discharge after microejection of birch, ragweed, and hazel APE<3kDa [median (interquartile range) at 7.0 Hz (6.2/9.8), 5.7 Hz (4.4/7.1), and 8.4 Hz (4.3/12.5), respectively]. The percentage of responding neurons per ganglion were similar [birch 40.0% (33.3/100.0), ragweed 50.8% (34.4/85.6), and hazel 83.3% (57.1/100.0)]. A mixture of histamine receptor (H1-H3) blockers significantly reduced nerve activation evoked by birch and ragweed APEs<3kDa , but was ineffective on hazel. Histamine concentrations in ragweed, birch and hazel APE's < 3 kDa were 0.764, 0.047, and 0.013 μM, respectively. CONCLUSIONS Allergen-free APEs from birch, ragweed, and hazel evoked strong nerve activation. Altered nerve-immune signaling as a result of severe pollen exposure could be a pathophysiological feature of allergic and non-allergic gut inflammation.
Collapse
Affiliation(s)
- Sabine Buhner
- Chair of Human Biology, Technical University Munich, Freising, Germany
| | | | - Pieter Giesbertz
- Molecular Nutrition Unit, Technical University Munich, Freising, Germany
| | - Ihsan Ekin Demir
- University Hospital Rechts der Isar, Technical University Munich, Munich, Germany
| | - Florian Zeller
- Department of Surgery, Academic Hospital Freising, Freising, Germany
| | - Claudia Traidl-Hoffmann
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Christine Kühne Center for Allergy Research and Education (CK-Care), Davos, Switzerland
| | - Michael Schemann
- Chair of Human Biology, Technical University Munich, Freising, Germany
| | - Stefanie Gilles
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
6
|
Chao D, Tran H, Hogan QH, Pan B. Analgesic dorsal root ganglion field stimulation blocks both afferent and efferent spontaneous activity in sensory neurons of rats with monosodium iodoacetate-induced osteoarthritis. Osteoarthritis Cartilage 2022; 30:1468-1481. [PMID: 36030058 PMCID: PMC9588581 DOI: 10.1016/j.joca.2022.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/03/2022] [Accepted: 08/18/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Chronic joint pain is common in patients with osteoarthritis (OA). Non-steroidal anti-inflammatory drugs and opioids are used to relieve OA pain, but they are often inadequately effective. Dorsal root ganglion field stimulation (GFS) is a clinically used neuromodulation approach, although it is not commonly employed for patients with OA pain. GFS showed analgesic effectiveness in our previous study using the monosodium iodoacetate (MIA) - induced OA rat pain model. This study was to evaluate the mechanism of GFS analgesia in this model. METHODS After osteoarthritis was induced by intra-articular injection of MIA, pain behavioral tests were performed. Effects of GFS on the spontaneous activity (SA) were tested with in vivo single-unit recordings from teased fiber saphenous nerve, sural nerve, and dorsal root. RESULTS Two weeks after intra-articular MIA injection, rats developed pain-like behaviors. In vivo single unit recordings from bundles teased from the saphenous nerve and third lumbar (L3) dorsal root of MIA-OA rats showed a higher incidence of SA than those from saline-injected control rats. GFS at the L3 level blocked L3 dorsal root SA. MIA-OA reduced the punctate mechanical force threshold for inducing AP firing in bundles teased from the L4 dorsal root, which reversed to normal with GFS. After MIA-OA, there was increased retrograde SA (dorsal root reflex), which can be blocked by GFS. CONCLUSIONS These results indicate that GFS produces analgesia in MIA-OA rats at least in part by producing blockade of afferent inputs, possibly also by blocking efferent activity from the dorsal horn.
Collapse
Affiliation(s)
- D Chao
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - H Tran
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Q H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - B Pan
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA.
| |
Collapse
|
7
|
Tang Y, Chen Y, Liu R, Li W, Hua B, Bao Y. Wnt Signaling Pathways: A Role in Pain Processing. Neuromolecular Med 2022; 24:233-249. [PMID: 35067780 PMCID: PMC9402773 DOI: 10.1007/s12017-021-08700-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/30/2021] [Indexed: 10/25/2022]
Abstract
The wingless-related integration site (Wnt) signaling pathway plays an essential role in embryonic development and nervous system regulation. It is critically involved in multiple types of neuropathic pain (NP), such as HIV-related NP, cancer pain, diabetic neuralgia, multiple sclerosis-related NP, endometriosis pain, and other painful diseases. Wnt signaling is also implicated in the pain induced by sciatic nerve compression injury and selective spinal nerve ligation. Thus, the Wnt signaling pathway may be a potential therapeutic target for NP.
Collapse
Affiliation(s)
- Yiting Tang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing North Third Ring Road No. 11, Chaoyang District, Beijing, 100029, China
| | - Yupeng Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing North Third Ring Road No. 11, Chaoyang District, Beijing, 100029, China
| | - Rui Liu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China
| | - Weidong Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China
| | - Baojin Hua
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China.
| | - Yanju Bao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
8
|
Slow touch in non-human species: translational research into the C-tactile (CT) afferent system. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2021.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Javed H, Rehmathulla S, Tariq S, Ali MA, Emerald BS, Shehab S. Co-localization of nociceptive markers in the lumbar dorsal root ganglion and spinal cord of dromedary camel. J Comp Neurol 2021; 529:3710-3725. [PMID: 34468017 DOI: 10.1002/cne.25240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 11/12/2022]
Abstract
Nociceptive markers in mice have been identified in two distinct peptidergic and nonpeptidergic neurons in the dorsal root ganglion (DRG) and distributed in different laminae of the dorsal horn of the spinal cord. Recently, however, a study in humans showed a significant overlapping in these two populations. In this study, we investigated the distribution of various nociceptive markers in the lumbar DRG and spinal cord of the dromedary camel. Immunohistochemical data showed a remarkable percentage of total neurons in the DRG expressed IB4 binding (54.5%), calcitonin gene-related peptide (CGRP; 49.5%), transient receptor potential vanilloid 1 (TRPV1; 48.2%), and nitric oxide synthase (NOS; 30.6%). The co-localization data showed that 89.6% and 74.0% of CGRP- and TRPV1-labeled neurons, respectively, were IB4 positive. In addition, 61.6% and 84.2% of TRPV1- and NOS-immunoreactive neurons, respectively, were also co-localized with CGRP. The distribution of IB4, CGRP, TRPV1, substance P, and NOS immunoreactivities in the spinal cord were observed in lamina I and outer lamina II (IIo). Quantitative data showed that 82.4% of IB4-positive nerve terminals in laminae I and IIo were co-localized with CGRP, and 86.0% of CGRP-labeled terminals were co-localized with IB4. Similarly, 85.1% of NOS-labeled nerve terminals were co-localized with CGRP. No neuropeptide Y (NPY) or cholecystokinin (CCK) immunoreactivities were detected in the DRG, and no co-localization between IB4, NPY, and CCK were observed in the spinal cord. Our results demonstrate marked convergence of nociceptive markers in the primary afferent neurons in camels, which is similar to humans rather than the mouse. The data also emphasizes the importance of interspecies differences when selecting ideal animal models for studying nociception and treating chronic pain.
Collapse
Affiliation(s)
- Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Sumisha Rehmathulla
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Mahmoud A Ali
- Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Safa Shehab
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| |
Collapse
|
10
|
Analgesic dorsal root ganglionic field stimulation blocks conduction of afferent impulse trains selectively in nociceptive sensory afferents. Pain 2021; 161:2872-2886. [PMID: 32658148 DOI: 10.1097/j.pain.0000000000001982] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Increased excitability of primary sensory neurons after peripheral nerve injury may cause hyperalgesia and allodynia. Dorsal root ganglion field stimulation (GFS) is effective in relieving clinical pain associated with nerve injury and neuropathic pain in animal models. However, its mechanism has not been determined. We examined effects of GFS on transmission of action potentials (APs) from the peripheral to central processes by in vivo single-unit recording from lumbar dorsal roots in sham injured rats and rats with tibial nerve injury (TNI) in fiber types defined by conduction velocity. Transmission of APs directly generated by GFS (20 Hz) in C-type units progressively abated over 20 seconds, whereas GFS-induced Aβ activity persisted unabated, while Aδ showed an intermediate pattern. Activity generated peripherally by electrical stimulation of the sciatic nerve and punctate mechanical stimulation of the receptive field (glabrous skin) was likewise fully blocked by GFS within 20 seconds in C-type units, whereas Aβ units were minimally affected and a subpopulation of Aδ units was blocked. After TNI, the threshold to induce AP firing by punctate mechanical stimulation (von Frey) was reduced, which was reversed to normal during GFS. These results also suggest that C-type fibers, not Aβ, mainly contribute to mechanical and thermal hypersensitivity (von Frey, brush, acetone) after injury. Ganglion field stimulation produces use-dependent blocking of afferent AP trains, consistent with enhanced filtering of APs at the sensory neuron T-junction, particularly in nociceptive units.
Collapse
|
11
|
Wanasuntronwong A, Punyawattananon V, Rotpenpian N, Meepong R, Srikiatkhachorn A. Nociceptive receptors are expressed differently in trigeminal nociception after lingual nerve injury and unilateral external carotid artery occlusion in rats. Arch Oral Biol 2021; 126:105128. [PMID: 33895544 DOI: 10.1016/j.archoralbio.2021.105128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To investigate the different changes in nociceptive activity between two animal models of trigeminal neuropathic pain: unilateral external carotid artery ischemic reperfusion and lingual nerve crush in rats. DESIGN In this study, changes in nociceptive activity were investigated in unilateral external carotid artery ischemic reperfusion and lingual nerve crush models of trigeminal neuropathic pain in rats. Field excitatory postsynaptic potentials (fEPSPs) evoked by capsaicin application on the tongue of rats were recorded in the trigeminal nucleus caudalis. In addition, immunohistochemistry was performed in the trigeminal ganglia and trigeminal nucleus caudalis. RESULTS The fEPSP in unilateral external carotid artery ischemic reperfusion and lingual nerve crush rats was irregular relative to that in sham rats. In particular, the fEPSP spike in lingual nerve crush rats had a higher amplitude and shorter duration than that in sham rats. Unilateral external carotid artery ischemic reperfusion and lingual nerve crush also increased c-fos expression in the trigeminal nucleus caudalis. Upregulation of transient receptor potential vanilloid 1 in trigeminal ganglion was observed in unilateral external carotid artery ischemic reperfusion and lingual nerve crush rats, whereas upregulation of purinergic receptor subtype 3 in trigeminal ganglion was observed only in lingual nerve crush rats. CONCLUSIONS Although unilateral external carotid artery ischemic reperfusion and lingual nerve crush similarly increased nociceptive activity at the trigeminal nucleus caudalis, the fEPSPs and expression of nociceptive peripheral afferent neurons were different. Therefore, direct and indirect nerve injuries apparently induced the same nociceptive activity by different signaling responses dependent on nociceptive receptors.
Collapse
Affiliation(s)
| | | | | | | | - Anan Srikiatkhachorn
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| |
Collapse
|
12
|
Linher-Melville K, Zhu YF, Sidhu J, Parzei N, Shahid A, Seesankar G, Ma D, Wang Z, Zacal N, Sharma M, Parihar V, Zacharias R, Singh G. Evaluation of the preclinical analgesic efficacy of naturally derived, orally administered oil forms of Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and their 1:1 combination. PLoS One 2020; 15:e0234176. [PMID: 32497151 PMCID: PMC7272035 DOI: 10.1371/journal.pone.0234176] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/20/2020] [Indexed: 01/17/2023] Open
Abstract
Chronic neuropathic pain (NP) is a growing clinical problem for which effective treatments, aside from non-steroidal anti-inflammatory drugs and opioids, are lacking. Cannabinoids are emerging as potentially promising agents to manage neuroimmune effects associated with nociception. In particular, Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and their combination are being considered as therapeutic alternatives for treatment of NP. This study aimed to examine whether sex affects long-term outcomes on persistent mechanical hypersensitivity 7 weeks after ceasing cannabinoid administration. Clinically relevant low doses of THC, CBD, and a 1:1 combination of THC:CBD extracts, in medium chain triglyceride (MCT) oil, were orally gavaged for 14 consecutive days to age-matched groups of male and female sexually mature Sprague Dawley rats. Treatments commenced one day after surgically inducing a pro-nociceptive state using a peripheral sciatic nerve cuff. The analgesic efficacy of each phytocannabinoid was assessed relative to MCT oil using hind paw mechanical behavioural testing once a week for 9 weeks. In vivo intracellular electrophysiology was recorded at endpoint to characterize soma threshold changes in primary afferent sensory neurons within dorsal root ganglia (DRG) innervated by the affected sciatic nerve. The thymus, spleen, and DRG were collected post-sacrifice and analyzed for long-term effects on markers associated with T lymphocytes at the RNA level using qPCR. Administration of cannabinoids, particularly the 1:1 combination of THC, elicited a sustained mechanical anti-hypersensitive effect in males with persistent peripheral NP, which corresponded to beneficial changes in myelinated Aβ mechanoreceptive fibers. Specific immune cell markers associated with T cell differentiation and pro-inflammatory cytokines, previously implicated in repair processes, were differentially up-regulated by cannabinoids in males treated with cannabinoids, but not in females, warranting further investigation into sexual dimorphisms that may underlie treatment outcomes.
Collapse
Affiliation(s)
- Katja Linher-Melville
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Yong Fang Zhu
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jesse Sidhu
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Natalka Parzei
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ayesha Shahid
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gireesh Seesankar
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Danny Ma
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zhi Wang
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Natalie Zacal
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Manu Sharma
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Vikas Parihar
- Michael G. DeGroote Pain Clinic, McMaster University Medical Centre, Hamilton, Ontario, Canada
| | - Ramesh Zacharias
- Michael G. DeGroote Pain Clinic, McMaster University Medical Centre, Hamilton, Ontario, Canada
| | - Gurmit Singh
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
13
|
Zhu YF, Linher-Melville K, Niazmand MJ, Sharma M, Shahid A, Zhu KL, Parzei N, Sidhu J, Haj C, Mechoulam R, Singh G. An evaluation of the anti-hyperalgesic effects of cannabidiolic acid-methyl ester in a preclinical model of peripheral neuropathic pain. Br J Pharmacol 2020; 177:2712-2725. [PMID: 31981216 DOI: 10.1111/bph.14997] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 12/13/2019] [Accepted: 01/06/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Chronic neuropathic pain (NEP) is associated with growing therapeutic cannabis use. To promote quality of life without psychotropic effects, cannabinoids other than Δ9-tetrahydrocannabidiol, including cannabidiol and its precursor cannabidiolic acid (CBDA), are being evaluated. Due to its instability, CBDA has been understudied, particularly as an anti-nociceptive agent. Adding a methyl ester group (CBDA-ME) significantly enhances its stability, facilitating analyses of its analgesic effects in vivo. This study examines early treatment efficacy of CBDA-ME in a rat model of peripherally induced NEP and evaluates sex as a biological variable. EXPERIMENTAL APPROACH After 14 consecutive days of intraperitoneal CBDA-ME administration at 0.01, 0.1 and 1 μg·kg-1 , commencing 1 day after surgically implanting a sciatic nerve-constricting cuff to induce NEP, the anti-nociceptive efficacy of this cannabinoid was assessed in male and female Sprague-Dawley rats relative to vehicle-treated counterparts. In females, 2 and 4 μg·kg-1 daily doses of CBDA-ME were also evaluated. Behavioural tests were performed for hind paw mechanical and thermal withdrawal thresholds once a week for 8 weeks. At endpoint, in vivo electrophysiological recordings were obtained to characterize soma threshold changes in primary sensory neurons. KEY RESULTS In males, CBDA-ME elicited a significant concentration-dependent chronic anti-hyperalgesic effect, also influencing both nociceptive and non-nociceptive mechanoreceptors, which were not observed in females at any of the concentrations tested. CONCLUSION AND IMPLICATIONS Initiating treatment of a peripheral nerve injury with CBDA-ME at an early stage post-surgery provides anti-nociception in males, warranting further investigation into potential sexual dimorphisms underlying this response.
Collapse
Affiliation(s)
- Yong Fang Zhu
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katja Linher-Melville
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Mohammad Javad Niazmand
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Manu Sharma
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ayesha Shahid
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Kan Lun Zhu
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Natalka Parzei
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jesse Sidhu
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Christeene Haj
- Institute for Cannabinoid Research, Hebrew University Medical Faculty, Jerusalem, Israel
| | - Raphael Mechoulam
- Institute for Cannabinoid Research, Hebrew University Medical Faculty, Jerusalem, Israel
| | - Gurmit Singh
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
14
|
Ungard RG, Zhu YF, Yang S, Nakhla P, Parzei N, Zhu KL, Singh G. Response to pregabalin and progesterone differs in male and female rat models of neuropathic and cancer pain. CANADIAN JOURNAL OF PAIN-REVUE CANADIENNE DE LA DOULEUR 2020; 4:39-58. [PMID: 33987485 PMCID: PMC7951160 DOI: 10.1080/24740527.2020.1724776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: Cancer pain involves nervous system damage and pathological neurogenesis. Neuropathic pain arises from damage to the nervous system and is driven by ectopic signaling. Both progesterone and pregabalin are neuroprotective in animal models, and there is evidence that both drugs bind to and inhibit voltage-gated calcium channels. Aims: This study was designed to characterize the effects of progesterone and pregabalin in preclinical models of cancer and neuropathic pain in both sexes. Methods: We measured peripheral sensory signaling by intracellular in vivo electrophysiology and behavioral indicators of pain in rat models of cancer-induced bone pain and neuropathic pain. Results: Female but not male models of cancer pain showed a behavioral response to treatment and pregabalin reduced excitability in C and A high-threshold but not low-threshold sensory neurons of both sexes. Male models of neuropathic pain treated with pregabalin demonstrated higher signaling thresholds only in A high-threshold neurons, and behavioral data indicated a clear recovery to baseline mechanical withdrawal thresholds in all treatment groups. Female rat treatment groups did not show excitability changes in sensory neurons, but all demonstrated higher mechanical withdrawal thresholds than vehicle-treated females, although not to baseline levels. Athymic female rat models of neuropathic pain showed no behavioral or electrophysiological responses to treatment. Conclusions: Both pregabalin and progesterone showed evidence of efficacy in male models of neuropathic pain. These results add to the evidence demonstrating differential effects of treatments for pain in male and female animals and widely differing responses in models of cancer and neuropathic pain.
Collapse
Affiliation(s)
- Robert G Ungard
- Michael G. DeGroote Institute for Pain Research and Care, Medicine, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Yong Fang Zhu
- Michael G. DeGroote Institute for Pain Research and Care, Medicine, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Sarah Yang
- Michael G. DeGroote Institute for Pain Research and Care, Medicine, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Peter Nakhla
- Michael G. DeGroote Institute for Pain Research and Care, Medicine, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Natalka Parzei
- Michael G. DeGroote Institute for Pain Research and Care, Medicine, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Kan Lun Zhu
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gurmit Singh
- Michael G. DeGroote Institute for Pain Research and Care, Medicine, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
15
|
Lawson SN, Fang X, Djouhri L. Nociceptor subtypes and their incidence in rat lumbar dorsal root ganglia (DRGs): focussing on C-polymodal nociceptors, Aβ-nociceptors, moderate pressure receptors and their receptive field depths. CURRENT OPINION IN PHYSIOLOGY 2019; 11:125-146. [PMID: 31956744 PMCID: PMC6959836 DOI: 10.1016/j.cophys.2019.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A recent study with Ca++-sensitive-dyes in neurons in whole DRGs (Table 5) found that much lower percentages of nociceptors were polymodal-nociceptors (PMNs) (Emery et al., 2016), than the 50-80% values in many electrophysiological fiber studies. This conflict highlighted the lack of knowledge about percentages of nociceptor-subtypes in the DRG. This was analysed from intracellularly-recorded neurons in rat lumbar DRGs stimulated from outside the skin. Polymodal nociceptors (PMNs) were 11% of all neurons and 19% of all nociceptors. Most PMNs had C-fibers (CPMNs). Percentages of C-nociceptors that were CPMNs varied with receptive field (RF) depths, whether superficial (∼80%), dermal (25%), deep (0%) or cutaneous (superficial + dermal) (40%). This explains CPMN percentages 40-90%, being highest, in electrophysiological studies using cutaneous nerves, and lowest in studies that also include deep RFs, including ours, and the recent Ca++-imaging studies in whole DRGs. Despite having been originally described in 1967 (Burgess and Perl), both Aβ-nociceptors and Aβ-moderate pressure receptors (MPRs) remain overlooked. Most A-fiber nociceptors in rodents have Aβ-fibers. Of rat lumbar Aβ-nociceptors with superficial RFs, 50% were MPRs with variable medium-low trkA-expression. Despite having conduction velocities at the two extremes for nociceptors, both CPMNs and MPRs have relatively low thresholds, superficial/epidermal RFs and low trkA-expression. For abbreviations used see Table 5.
Collapse
Affiliation(s)
- Sally N Lawson
- The Physiology Department, University of Bristol, Bristol BS8 1TD, UK
| | - Xin Fang
- Qihan BioTech Co. Ltd, Hangzhou, China
| | - Laiche Djouhri
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
16
|
Abstract
The aim of the study was to obtain information on the sensory functions of the thoracolumbar fascia (TLF). The types of nerve fibres present in the TLF were visualized with specific antibodies to neuropeptides and sympathetic fibres. Most data were obtained from the TLF in rats, but some findings from the human fascia are also included. The only receptive nerve ending found was the free nerve ending, i.e. no corpuscular receptors existed in our specimen. An exclusive innervation with free nerve endings speaks for a nociceptive function, but the TLF may also fulfill proprioceptive functions, since many of the free nerve endings have a low mechanical threshold. Most of the fibres could be visualized with antibodies to CGRP [calcitonin gene- related peptide (CGRP)] and SP [substance P (SP)]. The latter ones most likely were nociceptors. The TLF contained a great proportion of postganglionic sympathetic fibres, which may be vasoconstrictors. A comparison between an inflamed and intact fascia showed an increase of the CGRP- and SP-positive fibres in the inflamed TLF. This finding could be one explanation for the low back pain of many patients, since practically all lesions of the fascia are accompanied by a sterile inflammation.
Collapse
Affiliation(s)
- Siegfried Mense
- Department of Neurophysiology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
17
|
TRESK K + Channel Activity Regulates Trigeminal Nociception and Headache. eNeuro 2019; 6:ENEURO.0236-19.2019. [PMID: 31308053 PMCID: PMC6664143 DOI: 10.1523/eneuro.0236-19.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 06/23/2019] [Indexed: 02/07/2023] Open
Abstract
Although TWIK-related spinal cord K+ (TRESK) channel is expressed in all primary afferent neurons in trigeminal ganglia (TG) and dorsal root ganglia (DRG), whether TRESK activity regulates trigeminal pain processing is still not established. Dominant-negative TRESK mutations are associated with migraine but not with other types of pain in humans, suggesting that genetic TRESK dysfunction preferentially affects the generation of trigeminal pain, especially headache. Using TRESK global knock-out mice as a model system, we found that loss of TRESK in all TG neurons selectively increased the intrinsic excitability of small-diameter nociceptors, especially those that do not bind to isolectin B4 (IB4-). Similarly, loss of TRESK resulted in hyper-excitation of the small IB4- dural afferent neurons but not those that bind to IB4 (IB4+). Compared with wild-type littermates, both male and female TRESK knock-out mice exhibited more robust trigeminal nociceptive behaviors, including headache-related behaviors, whereas their body and visceral pain responses were normal. Interestingly, neither the total persistent outward current nor the intrinsic excitability was altered in adult TRESK knock-out DRG neurons, which may explain why genetic TRESK dysfunction is not associated with body and/or visceral pain in humans. We reveal for the first time that, among all primary afferent neurons, TG nociceptors are the most vulnerable to the genetic loss of TRESK. Our findings indicate that endogenous TRESK activity regulates trigeminal nociception, likely through controlling the intrinsic excitability of TG nociceptors. Importantly, we provide evidence that genetic loss of TRESK significantly increases the likelihood of developing headache.
Collapse
|
18
|
Zhu YF, Kwiecien JM, Dabrowski W, Ungard R, Zhu KL, Huizinga JD, Henry JL, Singh G. Cancer pain and neuropathic pain are associated with A β sensory neuronal plasticity in dorsal root ganglia and abnormal sprouting in lumbar spinal cord. Mol Pain 2018; 14:1744806918810099. [PMID: 30324862 PMCID: PMC6243409 DOI: 10.1177/1744806918810099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Evidence suggests that there are both nociceptive and neuropathic components of cancer-induced pain. We have observed that changes in intrinsic membrane properties and excitability of normally non-nociceptive Aβ sensory neurons are consistent in rat models of peripheral neuropathic pain and cancer-induced pain. This has prompted a comparative investigation of the intracellular electrophysiological characteristics of sensory neurons and of the ultrastructural morphology of the dorsal horn in rat models of neuropathic pain and cancer-induced pain. Neuropathic pain model rats were induced with a polyethylene cuff implanted around a sciatic nerve. Cancer-induced pain model rats were induced with mammary rat metastasis tumour-1 rat breast cancer or MATLyLu rat prostate cancer cells implanted into the distal epiphysis of a femur. Behavioural evidence of nociception was detected using von Frey tactile assessment. Aβ-fibre low threshold mechanoreceptor neurons in both cancer-induced pain and neuropathic pain models exhibited slower dynamics of action potential genesis, including a wider action potential duration and lower action potential amplitude compared to those in control animals. Enhanced excitability of Aβ-fibre low threshold mechanoreceptor neurons was also observed in cancer-induced pain and neuropathic pain models. Furthermore, both cancer-induced pain and neuropathic pain models showed abundant abnormal axonal sprouting in bundles of myelinated axons in the ipsilateral spinal laminae IV and V. The patterns of changes show consistency between rat models of cancer-induced pain and neuropathic pain. These findings add to the body of evidence that animal models of cancer-induced pain and neuropathic pain share features that may contribute to the peripheral and central sensitization and tactile hypersensitivity in both pain states.
Collapse
Affiliation(s)
- Yong Fang Zhu
- 1 Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada.,2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Jacek M Kwiecien
- 2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.,3 Department of Clinical Pathomorphology, Medical University of Lublin, Lublin, Poland
| | - Wojciech Dabrowski
- 4 Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Lublin, Poland
| | - Robert Ungard
- 1 Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada.,2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Kan Lun Zhu
- 2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Jan D Huizinga
- 5 Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - James L Henry
- 6 Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Gurmit Singh
- 1 Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada.,2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
19
|
Merighi A. The histology, physiology, neurochemistry and circuitry of the substantia gelatinosa Rolandi (lamina II) in mammalian spinal cord. Prog Neurobiol 2018; 169:91-134. [PMID: 29981393 DOI: 10.1016/j.pneurobio.2018.06.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 06/07/2018] [Accepted: 06/30/2018] [Indexed: 02/06/2023]
Abstract
The substantia gelatinosa Rolandi (SGR) was first described about two centuries ago. In the following decades an enormous amount of information has permitted us to understand - at least in part - its role in the initial processing of pain and itch. Here, I will first provide a comprehensive picture of the histology, physiology, and neurochemistry of the normal SGR. Then, I will analytically discuss the SGR circuits that have been directly demonstrated or deductively envisaged in the course of the intensive research on this area of the spinal cord, with particular emphasis on the pathways connecting the primary afferent fibers and the intrinsic neurons. The perspective existence of neurochemically-defined sets of primary afferent neurons giving rise to these circuits will be also discussed, with the proposition that a cross-talk between different subsets of peptidergic fibers may be the structural and functional substrate of additional gating mechanisms in SGR. Finally, I highlight the role played by slow acting high molecular weight modulators in these gating mechanisms.
Collapse
Affiliation(s)
- Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095 Grugliasco (TO), Italy.
| |
Collapse
|
20
|
Johnson KP, Tran SM, Siegrist EA, Paidimarri KB, Elson MS, Berkowitz A. Turtle Flexion Reflex Motor Patterns Show Windup, Mediated Partly by L-type Calcium Channels. Front Neural Circuits 2017; 11:83. [PMID: 29163064 PMCID: PMC5671496 DOI: 10.3389/fncir.2017.00083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/13/2017] [Indexed: 01/14/2023] Open
Abstract
Windup is a form of multisecond temporal summation in which identical stimuli, delivered seconds apart, trigger increasingly strong neuronal responses. L-type Ca2+ channels have been shown to play an important role in the production of windup of spinal cord neuronal responses, initially in studies of turtle spinal cord and later in studies of mammalian spinal cord. L-type Ca2+ channels have also been shown to contribute to windup of limb withdrawal reflex (flexion reflex) in rats, but flexion reflex windup has not previously been described in turtles and its cellular mechanisms have not been studied. We studied windup of flexion reflex motor patterns, evoked with weak mechanical and electrical stimulation of the dorsal hindlimb foot skin and assessed via a hip flexor (HF) nerve recording, in spinal cord-transected and immobilized turtles in vivo. We found that an L-type Ca2+ channel antagonist, nifedipine, applied at concentrations of 50 μM or 100 μM to the hindlimb enlargement spinal cord, significantly reduced windup of flexion reflex motor patterns, while lower concentrations of nifedipine had no such effect. Nifedipine similarly reduced the amplitude of an individual flexion reflex motor pattern evoked by a stronger mechanical stimulus, in a dose-dependent manner, suggesting that L-type Ca2+ channels contribute to each flexion reflex as well as to multisecond summation of flexion reflex responses in turtles. We also found that we could elicit flexion reflex windup consistently using a 4-g von Frey filament, which is not usually considered a nociceptive stimulus. Thus, it may be that windup can be evoked by a wide range of tactile stimuli and that L-type calcium channels contribute to multisecond temporal summation of diverse tactile stimuli across vertebrates.
Collapse
Affiliation(s)
- Keith P Johnson
- Department of Biology, University of Oklahoma, Norman, OK, United States
| | - Stephen M Tran
- Department of Biology, University of Oklahoma, Norman, OK, United States
| | - Emily A Siegrist
- Department of Biology, University of Oklahoma, Norman, OK, United States
| | | | - Matthew S Elson
- Department of Biology, University of Oklahoma, Norman, OK, United States
| | - Ari Berkowitz
- Department of Biology, University of Oklahoma, Norman, OK, United States.,Cellular and Behavioral Neurobiology Graduate Program, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
21
|
Barry CM, Ji E, Sharma H, Beukes L, Vilimas PI, DeGraaf YC, Matusica D, Haberberger RV. Morphological and neurochemical differences in peptidergic nerve fibers of the mouse vagina. J Comp Neurol 2017; 525:2394-2410. [PMID: 28324630 DOI: 10.1002/cne.24214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/17/2017] [Accepted: 03/08/2017] [Indexed: 11/07/2022]
Abstract
The vagina is innervated by a complex arrangement of sensory, sympathetic, and parasympathetic nerve fibers that contain classical transmitters plus an array of neuropeptides and enzymes known to regulate diverse processes including blood flow and nociception. The neurochemical characteristics and distributions of peptide-containing nerves in the mouse vagina are unknown. This study used multiple labeling immunohistochemistry, confocal maging and analysis to investigate the presence and colocalization of the peptides vasoactive intestinal polypeptide (VIP), calcitonin-gene related peptide (CGRP), substance P (SP), neuropeptide tyrosine (NPY), and the nitric oxide synthesizing enzyme neuronal nitric oxide synthase (nNOS) in nerve fibers of the murine vaginal wall. We compared cervical and vulvar areas of the vagina in young nullipara and older multipara C57Bl/6 mice, and identified differences including that small ganglia were restricted to cervical segments, epithelial fibers were mainly present in vulvar segments and most nerve fibers were found in the lamina propria of the cervical region of the vagina, where a higher number of fibers containing immunoreactivity for VIP, CGRP, SP, or nNOS were found. Two populations of VIP-containing fibers were identified: fibers containing CGRP and fibers containing VIP but not CGRP. Differences between young and older mice were present in multiple layers of the vaginal wall, with older mice showing overall loss of innervation of epithelium of the proximal vagina and reduced proportions of VIP, CGRP, and SP containing nerve fibers in the distal epithelium. The distal vagina also showed increased vascularization and perivascular fibers containing NPY. Immunolabeling of ganglia associated with the vagina indicated the likely origin of some peptidergic fibers. Our results reveal regional differences and age- or parity-related changes in innervation of the mouse vagina, effecting the distribution of neuropeptides with diverse roles in function of the female genital tract.
Collapse
Affiliation(s)
- Christine M Barry
- Anatomy and Histology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Esther Ji
- Anatomy and Histology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Harman Sharma
- Anatomy and Histology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Lara Beukes
- Anatomy and Histology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Patricia I Vilimas
- Anatomy and Histology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Yvette C DeGraaf
- Anatomy and Histology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Dusan Matusica
- Anatomy and Histology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Rainer V Haberberger
- Anatomy and Histology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| |
Collapse
|
22
|
Todd AJ. Identifying functional populations among the interneurons in laminae I-III of the spinal dorsal horn. Mol Pain 2017; 13:1744806917693003. [PMID: 28326935 PMCID: PMC5315367 DOI: 10.1177/1744806917693003] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 12/16/2016] [Indexed: 12/15/2022] Open
Abstract
The spinal dorsal horn receives input from primary afferent axons, which terminate in a modality-specific fashion in different laminae. The incoming somatosensory information is processed through complex synaptic circuits involving excitatory and inhibitory interneurons, before being transmitted to the brain via projection neurons for conscious perception. The dorsal horn is important, firstly because changes in this region contribute to chronic pain states, and secondly because it contains potential targets for the development of new treatments for pain. However, at present, we have only a limited understanding of the neuronal circuitry within this region, and this is largely because of the difficulty in defining functional populations among the excitatory and inhibitory interneurons. The recent discovery of specific neurochemically defined interneuron populations, together with the development of molecular genetic techniques for altering neuronal function in vivo, are resulting in a dramatic improvement in our understanding of somatosensory processing at the spinal level.
Collapse
Affiliation(s)
- Andrew J Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
23
|
Abstract
This study suggests that 5% of lamina I neurons are projection cells, which most express the neurokinin 1 receptor, and that these can generally be distinguished from interneurons based on their larger size. The anterolateral tract (ALT), which originates from neurons in lamina I and the deep dorsal horn, represents a major ascending output through which nociceptive information is transmitted to brain areas involved in pain perception. Although there is detailed quantitative information concerning the ALT in the rat, much less is known about this system in the mouse, which is increasingly being used for studies of spinal pain mechanisms because of the availability of genetically modified lines. The aim of this study was therefore to determine the extent to which information about the ALT in the rat can be extrapolated to the mouse. Our results suggest that as in the rat, most lamina I ALT projection neurons in the lumbar enlargement can be retrogradely labelled from the lateral parabrachial area, that the majority of these cells (∼90%) express the neurokinin 1 receptor (NK1r), and that these are larger than other NK1r-expressing neurons in this lamina. This means that many lamina I spinoparabrachial cells can be identified in NK1r-immunostained sections from animals that have not received retrograde tracer injections. However, we also observed certain species differences, in particular we found that many spinoparabrachial cells in laminae III and IV lack the NK1r, meaning that they cannot be identified based solely on the expression of this receptor. We also provide evidence that the majority of spinoparabrachial cells are glutamatergic and that some express substance P. These findings will be important for studies designed to unravel the complex neuronal circuitry that underlies spinal pain processing.
Collapse
|
24
|
Robarge JD, Duarte DB, Shariati B, Wang R, Flockhart DA, Vasko MR. Aromatase inhibitors augment nociceptive behaviors in rats and enhance the excitability of sensory neurons. Exp Neurol 2016; 281:53-65. [PMID: 27072527 DOI: 10.1016/j.expneurol.2016.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/28/2016] [Accepted: 04/05/2016] [Indexed: 12/22/2022]
Abstract
Although aromatase inhibitors (AIs) are commonly used therapies for breast cancer, their use is limited because they produce arthralgia in a large number of patients. To determine whether AIs produce hypersensitivity in animal models of pain, we examined the effects of the AI, letrozole, on mechanical, thermal, and chemical sensitivity in rats. In ovariectomized (OVX) rats, administering a single dose of 1 or 5mg/kg letrozole significantly reduced mechanical paw withdrawal thresholds, without altering thermal sensitivity. Repeated injection of 5mg/kg letrozole in male rats produced mechanical, but not thermal, hypersensitivity that extinguished when drug dosing was stopped. A single dose of 5mg/kg letrozole or daily dosing of letrozole or exemestane in male rats also augmented flinching behavior induced by intraplantar injection of 1000nmol of adenosine 5'-triphosphate (ATP). To determine whether sensitization of sensory neurons contributed to AI-induced hypersensitivity, we evaluated the excitability of neurons isolated from dorsal root ganglia of male rats chronically treated with letrozole. Both small and medium-diameter sensory neurons isolated from letrozole-treated rats were more excitable, as reflected by increased action potential firing in response to a ramp of depolarizing current, a lower resting membrane potential, and a lower rheobase. However, systemic letrozole treatment did not augment the stimulus-evoked release of the neuropeptide calcitonin gene-related peptide (CGRP) from spinal cord slices, suggesting that the enhanced nociceptive responses were not secondary to an increase in peptide release from sensory endings in the spinal cord. These results provide the first evidence that AIs modulate the excitability of sensory neurons, which may be a primary mechanism for the effect of these drugs to augment pain behaviors in rats.
Collapse
Affiliation(s)
- Jason D Robarge
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - Djane B Duarte
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States; Laboratório de Farmacologia Molecular, Faculdade de Ciências da Saúde, Universidade de Brasília, Brazil.
| | - Behzad Shariati
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - Ruizhong Wang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - David A Flockhart
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - Michael R Vasko
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
25
|
Zhu YF, Ungard R, Seidlitz E, Zacal N, Huizinga J, Henry JL, Singh G. Differences in electrophysiological properties of functionally identified nociceptive sensory neurons in an animal model of cancer-induced bone pain. Mol Pain 2016; 12:12/0/1744806916628778. [PMID: 27030711 PMCID: PMC4994860 DOI: 10.1177/1744806916628778] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/04/2015] [Indexed: 12/31/2022] Open
Abstract
Background Bone cancer pain is often severe, yet little is known about mechanisms generating this type of chronic pain. While previous studies have identified functional alterations in peripheral sensory neurons that correlate with bone tumours, none has provided direct evidence correlating behavioural nociceptive responses with properties of sensory neurons in an intact bone cancer model. Results In a rat model of prostate cancer-induced bone pain, we confirmed tactile hypersensitivity using the von Frey test. Subsequently, we recorded intracellularly from dorsal root ganglion neurons in vivo in anesthetized animals. Neurons remained connected to their peripheral receptive terminals and were classified on the basis of action potential properties, responses to dorsal root stimulation, and to mechanical stimulation of the respective peripheral receptive fields. Neurons included C-, Aδ-, and Aβ-fibre nociceptors, identified by their expression of substance P. We suggest that bone tumour may induce phenotypic changes in peripheral nociceptors and that these could contribute to bone cancer pain. Conclusions This work represents a significant technical and conceptual advance in the study of peripheral nociceptor functions in the development of cancer-induced bone pain. This is the first study to report that changes in sensitivity and excitability of dorsal root ganglion primary afferents directly correspond to mechanical allodynia and hyperalgesia behaviours following prostate cancer cell injection into the femur of rats. Furthermore, our unique combination of techniques has allowed us to follow, in a single neuron, mechanical pain-related behaviours, electrophysiological changes in action potential properties, and dorsal root substance P expression. These data provide a more complete understanding of this unique pain state at the cellular level that may allow for future development of mechanism-based treatments for cancer-induced bone pain.
Collapse
Affiliation(s)
- Yong Fang Zhu
- Michael G. DeGroote Institute for Pain Research and Care, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Robert Ungard
- Michael G. DeGroote Institute for Pain Research and Care, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Eric Seidlitz
- Michael G. DeGroote Institute for Pain Research and Care, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Natalie Zacal
- Michael G. DeGroote Institute for Pain Research and Care, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jan Huizinga
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - James L Henry
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Gurmit Singh
- Michael G. DeGroote Institute for Pain Research and Care, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
26
|
Mense S, Hoheisel U. Evidence for the existence of nociceptors in rat thoracolumbar fascia. J Bodyw Mov Ther 2016; 20:623-8. [PMID: 27634088 DOI: 10.1016/j.jbmt.2016.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/20/2015] [Indexed: 12/28/2022]
Abstract
Recently, the existence of nociceptive fibers in fascia tissue has attracted much interest. Fascia can be a source of pain in several disorders such as fasciitis and non-specific low back pain. However, little is known about the properties of fascia nociceptors and possible changes of the fascia innervation by nociceptors under pathological circumstances. In this histologic study, the density of presumably nociceptive fibers and free nerve endings was determined in the three layers of the rat TLF: inner layer (IL, covering the multifidus muscle), middle layer (ML) and outer layer (OL). As markers for nociceptive fibers, antibodies to the neuropeptides CGRP and SP as well as to the transient receptor potential vanilloid 1 (TRPV1) were used. As a pathological state, inflammation of the TLF was induced with injection of complete Freund's adjuvant. The density of CGRP- and SP-positive fibers was significantly increased in the inner and outer layer of the inflamed fascia. In the thick middle layer, no inflammation-induced change occurred. In additional experiments, a neurogenic inflammation was induced in the fascia by electrical stimulation of dorsal roots. In these experiments, plasma extravasation was visible in the TLF, which is clear functional evidence for the existence of fascia nociceptors. The presence of nociceptors in the TLF and the increased density of presumably nociceptive fibers under chronic painful circumstances may explain the pain from a pathologically altered fascia. The fascia nociceptors probably contribute also to the pain in non-specific low back pain.
Collapse
Affiliation(s)
- Siegfried Mense
- Department of Neurophysiology, Center for Biomedicine and Medical Technology Mannheim, Ruprecht-Karls-University Heidelberg, D 68167, Mannheim, Germany.
| | - Ulrich Hoheisel
- Department of Neurophysiology, Center for Biomedicine and Medical Technology Mannheim, Ruprecht-Karls-University Heidelberg, D 68167, Mannheim, Germany.
| |
Collapse
|
27
|
Djouhri L. Electrophysiological evidence for the existence of a rare population of C-fiber low threshold mechanoreceptive (C-LTM) neurons in glabrous skin of the rat hindpaw. Neurosci Lett 2016; 613:25-9. [DOI: 10.1016/j.neulet.2015.12.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 12/31/2022]
|
28
|
Djouhri L. Aδ-fiber low threshold mechanoreceptors innervating mammalian hairy skin: A review of their receptive, electrophysiological and cytochemical properties in relation to Aδ-fiber high threshold mechanoreceptors. Neurosci Biobehav Rev 2016; 61:225-38. [DOI: 10.1016/j.neubiorev.2015.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/10/2015] [Accepted: 12/18/2015] [Indexed: 01/06/2023]
|
29
|
Marquez M, Boscan P, Weir H, Vogel P, Twedt DC. Comparison of NK-1 Receptor Antagonist (Maropitant) to Morphine as a Pre-Anaesthetic Agent for Canine Ovariohysterectomy. PLoS One 2015; 10:e0140734. [PMID: 26513745 PMCID: PMC4626099 DOI: 10.1371/journal.pone.0140734] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/28/2015] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To compare the NK-1 receptor antagonist maropitant to morphine during and after surgery in dogs undergoing ovariohysterectomy (OHE). METHODS 30 healthy female dogs were randomly divided to receive either a pre-anaesthetic dose of morphine (0.5 mg/kg SQ) or maropitant (1 mg/kg, SQ) prior to OHE. Anaesthesia was induced with propofol and maintained with isoflurane. Expired isoflurane concentration, heart rate (HR), systolic arterial pressure (SAP) and respiratory rate were measured. Post-operative pain scores and appetite were evaluated during the recovery period. Rescue analgesia (morphine 0.1 mg/kg IV) was administered as needed post-operatively based on blinded pain score assessments. RESULTS Although clinically comparable; during surgical stimulation, the maropitant group had lower HR (108±18 vs 115±24 bpm; p = 0.04), lower SAP (114±23 vs 125±23 mmHg; p = 0.003) and required slightly lower percent of isoflurane anaesthetic (1.35±0.2 vs 1.51±0.4%; p = 0.005), when compared to the morphine group. In the recovery period, the maropitant group had lower pain scores at extubation (1.7±0.7 vs 3.4±2.3; p = 0.0001) and were more likely to eat within 3 hours after extubation (64.7 vs 15.3%). However, post-operative rescue analgesia requirements were similar between groups. All other measured parameters were similar between groups. The overall difference observed between groups was small and all monitored and measured parameters were within the expected range for anesthetized dogs. CLINICAL SIGNIFICANCE No major differences in cardiorespiratory parameters or anaesthetic requirements were observed between maropitant and morphine when used as a pre-anesthetic agent for OHE. Further studies are necessary to fully elucidate the benefits of maropitant as a pre-anaesthetic agent for canine OHE.
Collapse
Affiliation(s)
- Megan Marquez
- Department of Clinical Sciences, Veterinary Teaching Hospital, Colorado State University, Fort Collins, Colorado, United States of America
| | - Pedro Boscan
- Department of Clinical Sciences, Veterinary Teaching Hospital, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| | - Heather Weir
- Department of Clinical Sciences, Veterinary Teaching Hospital, Colorado State University, Fort Collins, Colorado, United States of America
| | - Pamela Vogel
- Department of Clinical Sciences, Veterinary Teaching Hospital, Colorado State University, Fort Collins, Colorado, United States of America
| | - David C. Twedt
- Department of Clinical Sciences, Veterinary Teaching Hospital, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
30
|
Comer JD, Pan FC, Willet SG, Haldipur P, Millen KJ, Wright CVE, Kaltschmidt JA. Sensory and spinal inhibitory dorsal midline crossing is independent of Robo3. Front Neural Circuits 2015; 9:36. [PMID: 26257608 PMCID: PMC4511845 DOI: 10.3389/fncir.2015.00036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 07/02/2015] [Indexed: 11/25/2022] Open
Abstract
Commissural neurons project across the midline at all levels of the central nervous system (CNS), providing bilateral communication critical for the coordination of motor activity and sensory perception. Midline crossing at the spinal ventral midline has been extensively studied and has revealed that multiple developmental lineages contribute to this commissural neuron population. Ventral midline crossing occurs in a manner dependent on Robo3 regulation of Robo/Slit signaling and the ventral commissure is absent in the spinal cord and hindbrain of Robo3 mutants. Midline crossing in the spinal cord is not limited to the ventral midline, however. While prior anatomical studies provide evidence that commissural axons also cross the midline dorsally, little is known of the genetic and molecular properties of dorsally-crossing neurons or of the mechanisms that regulate dorsal midline crossing. In this study, we describe a commissural neuron population that crosses the spinal dorsal midline during the last quarter of embryogenesis in discrete fiber bundles present throughout the rostrocaudal extent of the spinal cord. Using immunohistochemistry, neurotracing, and mouse genetics, we show that this commissural neuron population includes spinal inhibitory neurons and sensory nociceptors. While the floor plate and roof plate are dispensable for dorsal midline crossing, we show that this population depends on Robo/Slit signaling yet crosses the dorsal midline in a Robo3-independent manner. The dorsally-crossing commissural neuron population we describe suggests a substrate circuitry for pain processing in the dorsal spinal cord.
Collapse
Affiliation(s)
- John D Comer
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences New York, NY, USA ; Developmental Biology Program, Sloan-Kettering Institute New York, NY, USA ; Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program New York, NY, USA
| | - Fong Cheng Pan
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Spencer G Willet
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Parthiv Haldipur
- Seattle Children's Research Institute, Center for Integrative Brain Research Seattle, WA, USA
| | - Kathleen J Millen
- Seattle Children's Research Institute, Center for Integrative Brain Research Seattle, WA, USA ; Department of Pediatrics, Genetics Division, University of Washington Seattle, WA, USA
| | - Christopher V E Wright
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Julia A Kaltschmidt
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences New York, NY, USA ; Developmental Biology Program, Sloan-Kettering Institute New York, NY, USA
| |
Collapse
|
31
|
Hoheisel U, Rosner J, Mense S. Innervation changes induced by inflammation of the rat thoracolumbar fascia. Neuroscience 2015; 300:351-9. [PMID: 26003735 DOI: 10.1016/j.neuroscience.2015.05.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/12/2015] [Accepted: 05/14/2015] [Indexed: 12/20/2022]
Abstract
Recently, the fascia innervation has become an important issue, particularly the existence of nociceptive fibers. Fascia can be a source of pain in several disorders such as fasciitis and non-specific low back pain. However, nothing is known about possible changes of the fascia innervation under pathological circumstances. This question is important, because theoretically pain from the fascia cannot only be due to increased nociceptor discharges, but also to a denser innervation of the fascia by nociceptive endings. In this histological study, an inflammation was induced in the thoracolumbar fascia (TLF) of rats and the innervation by various fiber types compared between the inflamed and intact TLF. Although the TLF is generally considered to have proprioceptive functions, no corpuscular proprioceptors (Pacini and Ruffini corpuscles) were found. To obtain quantitative data, the length of fibers and free nerve endings were determined in the three layers of the rat TLF: inner layer (IL, adjacent to the multifidus muscle), middle layer (ML) and outer layer (OL). The main results were that the overall innervation density showed little change; however, there were significant changes in some of the layers. The innervation density was significantly decreased in the OL, but this change was partly compensated for by an increase in the IL. The density of substance P (SP)-positive - presumably nociceptive - fibers was significantly increased. In contrast, the postganglionic sympathetic fibers were significantly decreased. In conclusion, the inflamed TLF showed an increase of presumably nociceptive fibers, which may explain the pain from a pathologically altered fascia. The meaning of the decreased innervation by sympathetic fibers is obscure at present. The lack of proprioceptive corpuscular receptors within the TLF does not preclude its role as a proprioceptive structure, because some of the free nerve endings may function as proprioceptors.
Collapse
Affiliation(s)
- U Hoheisel
- Chair of Neurophysiology, Centre for Biomedicine and Medical Technology Mannheim, Ruprecht-Karls-University Heidelberg, 68167 Mannheim, Germany.
| | - J Rosner
- Chair of Neurophysiology, Centre for Biomedicine and Medical Technology Mannheim, Ruprecht-Karls-University Heidelberg, 68167 Mannheim, Germany
| | - S Mense
- Chair of Neurophysiology, Centre for Biomedicine and Medical Technology Mannheim, Ruprecht-Karls-University Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
32
|
Henrich F, Magerl W, Klein T, Greffrath W, Treede RD. Capsaicin-sensitive C- and A-fibre nociceptors control long-term potentiation-like pain amplification in humans. Brain 2015; 138:2505-20. [DOI: 10.1093/brain/awv108] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 02/24/2015] [Indexed: 01/08/2023] Open
|
33
|
Central connectivity of the chorda tympani afferent terminals in the rat rostral nucleus of the solitary tract. Brain Struct Funct 2014; 221:1125-37. [PMID: 25503820 DOI: 10.1007/s00429-014-0959-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 12/06/2014] [Indexed: 10/24/2022]
|
34
|
Gutierrez-Mecinas M, Watanabe M, Todd AJ. Expression of gastrin-releasing peptide by excitatory interneurons in the mouse superficial dorsal horn. Mol Pain 2014; 10:79. [PMID: 25496164 PMCID: PMC4320531 DOI: 10.1186/1744-8069-10-79] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/02/2014] [Indexed: 01/31/2023] Open
Abstract
Background Gastrin-releasing peptide (GRP) and its receptor have been shown to play an important role in the sensation of itch. However, although GRP immunoreactivity has been detected in the spinal dorsal horn, there is debate about whether this originates from primary afferents or local excitatory interneurons. We therefore examined the relation of GRP immunoreactivity to that seen with antibodies that label primary afferent or excitatory interneuron terminals. We tested the specificity of the GRP antibody by preincubating with peptides with which it could potentially cross-react. We also examined tissue from a mouse line in which enhanced green fluorescent protein (EGFP) is expressed under control of the GRP promoter. Results GRP immunoreactivity was seen in both primary afferent and non-primary glutamatergic axon terminals in the superficial dorsal horn. However, immunostaining was blocked by pre-incubation of the antibody with substance P, which is present at high levels in many nociceptive primary afferents. EGFP+ cells in the GRP-EGFP mouse did not express Pax2, and their axons contained the vesicular glutamate transporter 2 (VGLUT2), indicating that they are excitatory interneurons. In most cases, their axons were also GRP-immunoreactive. Multiple-labelling immunocytochemical studies indicated that these cells did not express either of the preprotachykinin peptides, and that they generally lacked protein kinase Cγ, which is expressed by a subset of the excitatory interneurons in this region. Conclusions These results show that GRP is expressed by a distinct population of excitatory interneurons in laminae I-II that are likely to be involved in the itch pathway. They also suggest that the GRP immunoreactivity seen in primary afferents in previous studies may have resulted from cross-reaction of the GRP antibody with substance P or the closely related peptide neurokinin A.
Collapse
Affiliation(s)
| | | | - Andrew J Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
35
|
Pap K, Berta Á, Szőke G, Dunay M, Németh T, Hornok K, Marosfői L, Réthelyi M, Kozsurek M, Puskár Z. Nerve stretch injury induced pain pattern and changes in sensory ganglia in a clinically relevant model of limb-lengthening in rabbits. Physiol Res 2014; 64:571-81. [PMID: 25470524 DOI: 10.33549/physiolres.932752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We used a model of tibial lengthening in rabbits to study the postoperative pain pattern during limb-lengthening and morphological changes in the dorsal root ganglia (DRG), including alteration of substance P (SP) expression. Four groups of animals (naive; OG: osteotomized only group; SDG/FDG: slow/fast distraction groups, with 1 mm/3 mm lengthening a day, respectively) were used. Signs of increasing postoperative pain were detected until the 10(th) postoperative day in OG/SDG/FDG, then they decreased in OG but remained higher in SDG/FDG until the distraction finished, suggesting that the pain response is based mainly on surgical trauma until the 10(th) day, while the lengthening extended its duration and increased its intensity. The only morphological change observed in the DRGs was the presence of large vacuoles in some large neurons of OG/SDG/FDG. Cell size analysis of the S1 DRGs showed no cell loss in any of the three groups; a significant increase in the number of SP-positive large DRG cells in the OG; and a significant decrease in the number of SP-immunoreactive small DRG neurons in the SDG/FDG. Faster and larger distraction resulted in more severe signs of pain sensation, and further reduced the number of SP-positive small cells, compared to slow distraction.
Collapse
Affiliation(s)
- K Pap
- Department of Traumatology, Semmelweis University & Department of Orthopedics and Traumatology, Uzsoki Hospital, Budapest, Hungary, Szentágothai János Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hassan B, Kim JS, Farrag M, Kaufman MP, Ruiz-Velasco V. Alteration of the mu opioid receptor: Ca2+ channel signaling pathway in a subset of rat sensory neurons following chronic femoral artery occlusion. J Neurophysiol 2014; 112:3104-15. [PMID: 25231620 DOI: 10.1152/jn.00630.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The exercise pressor reflex, a crucial component of the cardiovascular response under physiological and pathophysiological states, is activated via metabolic and mechanical mediators that originate from contracting muscles and stimulate group III and IV afferents. We reported previously that stimulation of mu opioid receptors (MOR), expressed in both afferents, led to a significant attenuation of the reflex in rats whose femoral arteries had been occluded for 72 h. The present study examined the effect of arterial occlusion on the signaling components involved in the opioid-mediated modulation of Ca(2+) channels in rat dorsal root ganglion neurons innervating the triceps surae muscles. We focused on neurons that were transfected with cDNA coding for enhanced green fluorescent protein whose expression is driven by the voltage-gated Na(+) channel 1.8 (Na(V)1.8) promoter region, a channel expressed primarily in nociceptive neurons. With the use of a small interference RNA approach, our results show that the pertussis toxin-sensitive Gα(i3) subunit couples MOR with Ca(2+) channels. We observed a significant leftward shift of the MOR agonist [D-Ala2-N-Me-Phe4-Glycol5]-enkephalin concentration-response relationship in neurons isolated from rats with occluded arteries compared with those that were perfused freely. Femoral occlusion did not affect Ca(2+) channel density or the fraction of the main Ca(2+) channel subtype. Furthermore, Western blotting analysis indicated that the leftward shift did not result from either increased Gα(i3) or MOR expression. Finally, all neurons from both groups exhibited an inward current following exposure of the transient potential receptor vanilloid 1 (TRPV1) agonist, 8-methyl-N-vanillyl-6-nonenamide. These findings suggest that sensory neurons mediating the exercise pressor reflex express Na(V)1.8 and TRPV1 channels, and femoral occlusion alters the MOR pharmacological profile.
Collapse
Affiliation(s)
- Bassil Hassan
- Department of Anesthesiology, Penn State College of Medicine, Hershey, Pennsylvania; and
| | - Joyce S Kim
- Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania
| | - Mohamed Farrag
- Department of Anesthesiology, Penn State College of Medicine, Hershey, Pennsylvania; and
| | - Marc P Kaufman
- Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania
| | - Victor Ruiz-Velasco
- Department of Anesthesiology, Penn State College of Medicine, Hershey, Pennsylvania; and
| |
Collapse
|
37
|
Baseer N, Al-Baloushi AS, Watanabe M, Shehab SAS, Todd AJ. Selective innervation of NK1 receptor-lacking lamina I spinoparabrachial neurons by presumed nonpeptidergic Aδ nociceptors in the rat. Pain 2014; 155:2291-300. [PMID: 25168670 PMCID: PMC4247378 DOI: 10.1016/j.pain.2014.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/20/2014] [Accepted: 08/19/2014] [Indexed: 11/30/2022]
Abstract
Fine myelinated (Aδ) nociceptors are responsible for fast, well-localised pain, but relatively little is known about their postsynaptic targets in the spinal cord, and therefore about their roles in the neuronal circuits that process nociceptive information. Here we show that transganglionically transported cholera toxin B subunit (CTb) labels a distinct set of afferents in lamina I that are likely to correspond to Aδ nociceptors, and that most of these lack neuropeptides. The vast majority of lamina I projection neurons can be retrogradely labelled from the lateral parabrachial area, and these can be divided into 2 major groups based on expression of the neurokinin 1 receptor (NK1r). We show that CTb-labelled afferents form contacts on 43% of the spinoparabrachial lamina I neurons that lack the NK1r, but on a significantly smaller proportion (26%) of those that express the receptor. We also confirm with electron microscopy that these contacts are associated with synapses. Among the spinoparabrachial neurons that received contacts from CTb-labelled axons, contact density was considerably higher on NK1r-lacking cells than on those with the NK1r. By comparing the density of CTb contacts with those from other types of glutamatergic bouton, we estimate that nonpeptidergic Aδ nociceptors may provide over half of the excitatory synapses on some NK1r-lacking spinoparabrachial cells. These results provide further evidence that synaptic inputs to dorsal horn projection neurons are organised in a specific way. Taken together with previous studies, they suggest that both NK1r(+) and NK1r-lacking lamina I projection neurons are directly innervated by Aδ nociceptive afferents.
Collapse
Affiliation(s)
- Najma Baseer
- Institute of Neuroscience and Psychology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK
| | - Abdullah S Al-Baloushi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, Japan
| | - Safa A S Shehab
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Andrew J Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
38
|
Kwak IS, Choi YH, Jang YC, Lee YK. Immunohistochemical analysis of neuropeptides (protein gene product 9.5, substance P and calcitonin gene-related peptide) in hypertrophic burn scar with pain and itching. Burns 2014; 40:1661-7. [PMID: 24908181 DOI: 10.1016/j.burns.2014.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 04/02/2014] [Accepted: 04/06/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Neuropeptides have been recently reported as having an important role in wound repair, and relief from pain and itching sensation. The aim of this study was to evaluate the effect of neuropeptides on the wound healing process in hypertrophic scar formation that accompanies severe pain and itching sensation. METHODS We collected forty-three hypertrophic scar specimens from hypertrophic scar release and skin graft under general anesthesia. Immunohistochemical stains for protein gene product (PGP) 9.5, substance P (SP), and calcitonin gene-related peptide (CGRP) were performed. Pain and itching over the scar were recorded using verbal numerical rating scale (VNRS). RESULTS In the epidermis, PGP 9.5, SP, and CGRP were significantly increased in hypertrophic scars compared with matched unburned skin. In the reticular dermis, SP and CGRP were significantly increased in hypertrophic scars compared with control. The pain and itching verbal numerical rating scale in scar group were significantly higher compared to control. In the papillary dermis, the PGP represented significant correlation with Itching P (correlation coefficient 0.698) and the SP represented significant correlation with pain N (correlation coefficient -0.671). In the reticular dermis, the SP represented significant correlation with pain N (correlation coefficient -0.614) and CGRP represented significant correlation with pain P/Itching P (correlation coefficient 0.801/0.611). CONCLUSIONS Neuropeptides such as PGP 9.5, SP, and CGRP seem to affect scarring via sensory neurotransmission, it have a regulatory role for pain and itching sensation in hypertrophic scars.
Collapse
Affiliation(s)
- In Suk Kwak
- Department of Anesthesiology and Pain Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Young Hee Choi
- Department of Pathology, Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, Hwaseong, Korea
| | - Young Chul Jang
- Department of Plastic and Reconstructive Surgery, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Yoon Kyung Lee
- Department of Anesthesiology and Pain Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea.
| |
Collapse
|
39
|
Rau KK, Petruska JC, Cooper BY, Johnson RD. Distinct subclassification of DRG neurons innervating the distal colon and glans penis/distal urethra based on the electrophysiological current signature. J Neurophysiol 2014; 112:1392-408. [PMID: 24872531 DOI: 10.1152/jn.00560.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Spinal sensory neurons innervating visceral and mucocutaneous tissues have unique microanatomic distribution, peripheral modality, and physiological, pharmacological, and biophysical characteristics compared with those neurons that innervate muscle and cutaneous tissues. In previous patch-clamp electrophysiological studies, we have demonstrated that small- and medium-diameter dorsal root ganglion (DRG) neurons can be subclassified on the basis of their patterns of voltage-activated currents (VAC). These VAC-based subclasses were highly consistent in their action potential characteristics, responses to algesic compounds, immunocytochemical expression patterns, and responses to thermal stimuli. For this study, we examined the VAC of neurons retrogradely traced from the distal colon and the glans penis/distal urethra in the adult male rat. The afferent population from the distal colon contained at least two previously characterized cell types observed in somatic tissues (types 5 and 8), as well as four novel cell types (types 15, 16, 17, and 18). In the glans penis/distal urethra, two previously described cell types (types 6 and 8) and three novel cell types (types 7, 14, and 15) were identified. Other characteristics, including action potential profiles, responses to algesic compounds (acetylcholine, capsaicin, ATP, and pH 5.0 solution), and neurochemistry (expression of substance P, CGRP, neurofilament, TRPV1, TRPV2, and isolectin B4 binding) were consistent for each VAC-defined subgroup. With identification of distinct DRG cell types that innervate the distal colon and glans penis/distal urethra, future in vitro studies related to the gastrointestinal and urogenital sensory function in normal as well as abnormal/pathological conditions may be benefitted.
Collapse
Affiliation(s)
- Kristofer K Rau
- Department of Anesthesiology, Department of Anatomical Sciences and Neurobiology, and Kentucky Spinal Cord Injury Research Center, University of Louisville College of Medicine, Louisville, Kentucky; Department of Physiological Sciences, University of Florida College of Veterinary Medicine and McKnight Brain Institute, Gainesville, Florida
| | - Jeffrey C Petruska
- Department of Anatomical Sciences and Neurobiology, Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville College of Medicine, Louisville, Kentucky
| | - Brian Y Cooper
- Department of Oral and Maxillofacial Surgery, Division of Neuroscience, J. Hillis Miller Health Center, University of Florida College of Dentistry and McKnight Brain Institute, Gainesville, Florida; and
| | - Richard D Johnson
- Department of Physiological Sciences, University of Florida College of Veterinary Medicine and McKnight Brain Institute, Gainesville, Florida
| |
Collapse
|
40
|
Barragán-Iglesias P, Rocha-González HI, Pineda-Farias JB, Murbartián J, Godínez-Chaparro B, Reinach PS, Cunha TM, Cunha FQ, Granados-Soto V. Inhibition of peripheral anion exchanger 3 decreases formalin-induced pain. Eur J Pharmacol 2014; 738:91-100. [PMID: 24877687 DOI: 10.1016/j.ejphar.2014.05.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/22/2014] [Accepted: 05/10/2014] [Indexed: 01/01/2023]
Abstract
We determined the role of chloride-bicarbonate anion exchanger 3 in formalin-induced acute and chronic rat nociception. Formalin (1%) produced acute (first phase) and tonic (second phase) nociceptive behaviors (flinching and licking/lifting) followed by long-lasting evoked secondary mechanical allodynia and hyperalgesia in both paws. Local peripheral pre-treatment with the chloride-bicarbonate anion exchanger inhibitors 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid and 4-acetamido-4'-isothiocyanato-2,2'-stilbenedisulfonic acid prevented formalin-induced nociception mainly during phase 2. These drugs also prevented in a dose-dependent fashion long-lasting evoked secondary mechanical allodynia and hyperalgesia in both paws. Furthermore, post-treatment (on day 1 or 6) with 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid reversed established hypersensitivity. Anion exchanger 3 was expressed in dorsal root ganglion neurons and it co-localized with neuronal nuclei protein (NeuN), substance P and purinergic P2X3 receptors. Furthermore, Western blot analysis revealed a band of about 85 kDa indicative of anion exchanger 3 protein expression in dorsal root ganglia of naïve rats, which was enhanced at 1 and 6 days after 1% formalin injection. On the other hand, this rise failed to occur during 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid exposure. These results suggest that anion exchanger 3 is present in dorsal root ganglia and participates in the development and maintenance of short and long-lasting formalin-induced nociception.
Collapse
Affiliation(s)
- Paulino Barragán-Iglesias
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur, México, D.F., Mexico
| | - Héctor I Rocha-González
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, D.F., Mexico
| | - Jorge Baruch Pineda-Farias
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur, México, D.F., Mexico
| | - Janet Murbartián
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur, México, D.F., Mexico
| | - Beatriz Godínez-Chaparro
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, México, D.F., Mexico
| | - Peter S Reinach
- Department of Pharmacology, Riberao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Riberao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Riberao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur, México, D.F., Mexico.
| |
Collapse
|
41
|
Guo Z, Liu P, Ren F, Cao YQ. Nonmigraine-associated TRESK K+ channel variant C110R does not increase the excitability of trigeminal ganglion neurons. J Neurophysiol 2014; 112:568-79. [PMID: 24805079 DOI: 10.1152/jn.00267.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent genetic studies suggest that dysfunction of ion channels and transporters may contribute to migraine pathophysiology. A migraine-associated frameshift mutation in the TWIK-related spinal cord K+ (TRESK) channel results in nonfunctional channels. Moreover, mutant TRESK subunits exert a dominant-negative effect on whole cell TRESK currents and result in hyperexcitability of small-diameter trigeminal ganglion (TG) neurons, suggesting that mutant TRESK may increase the gain of the neuronal circuit underlying migraine headache. However, the nonmigraine-associated TRESK C110R variant exhibits the same effect on TRESK currents as the mutant subunits in Xenopus oocytes, suggesting that dysfunction of TRESK is not sufficient to cause migraine. Here, we confirmed that the C110R variant formed nonfunctional channels and exerted a dominant-negative effect on TRESK currents in HEK293T cells, similar to the migraine-associated mutant TRESK. To compare the functional consequences of TRESK mutations/variants in a more physiological setting, we expressed the mutant TRESK and the C110R variant in cultured mouse TG neurons and investigated their effects on background K+ currents and neuronal excitability. Both mutant TRESK and the C110R variant reduced the endogenous TRESK currents in TG neurons, but the effect of the C110R variant was significantly smaller. Importantly, only TG neurons expressing mutant TRESK subunits, but not those expressing the C110R variant, exhibited a significant increase in excitability. Thus only the migraine-associated TRESK mutation, but not the C110R variant, reduces the endogenous TRESK currents to a degree that affects TG excitability. Our results support a potential causal relationship between the frameshift TRESK mutation and migraine susceptibility.
Collapse
Affiliation(s)
- Zhaohua Guo
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri
| | - Ping Liu
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri
| | - Fei Ren
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri
| | - Yu-Qing Cao
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
42
|
Innervation mapping of the hind paw of the rat using Evans Blue extravasation, Optical Surface Mapping and CASAM. J Neurosci Methods 2014; 229:15-27. [DOI: 10.1016/j.jneumeth.2014.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 11/20/2022]
|
43
|
Dickie AC, Torsney C. The chemerin receptor 23 agonist, chemerin, attenuates monosynaptic C-fibre input to lamina I neurokinin 1 receptor expressing rat spinal cord neurons in inflammatory pain. Mol Pain 2014; 10:24. [PMID: 24716552 PMCID: PMC4023702 DOI: 10.1186/1744-8069-10-24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 04/01/2014] [Indexed: 11/10/2022] Open
Abstract
Background Recent evidence has shown that the chemerin receptor 23 (ChemR23) represents a novel inflammatory pain target, whereby the ChemR23 agonists, resolvin E1 and chemerin, can inhibit inflammatory pain hypersensitivity, by a mechanism that involves normalisation of potentiated spinal cord responses. This study has examined the ability of the ChemR23 agonist, chemerin, to modulate synaptic input to lamina I neurokinin 1 receptor expressing (NK1R+) dorsal horn neurons, which are known to be crucial for the manifestation of inflammatory pain. Results Whole-cell patch-clamp recordings from pre-identified lamina I NK1R+ neurons, in rat spinal cord slices, revealed that chemerin significantly attenuates capsaicin potentiation of miniature excitatory postsynaptic current (mEPSC) frequency, but is without effect in non-potentiated conditions. In tissue isolated from complete Freund’s adjuvant (CFA) treated rats, chemerin significantly reduced the peak amplitude of monosynaptic C-fibre evoked excitatory postsynaptic currents (eEPSCs) in a subset of lamina I NK1R+ neurons, termed chemerin responders. However, chemerin did not alter the peak amplitude of monosynaptic C-fibre eEPSCs in control tissue. Furthermore, paired-pulse recordings in CFA tissue demonstrated that chemerin significantly reduced paired-pulse depression in the subset of neurons classified as chemerin responders, but was without effect in non-responders, indicating that chemerin acts presynaptically to attenuate monosynaptic C-fibre input to a subset of lamina I NK1R+ neurons. Conclusions These results suggest that the reported ability of ChemR23 agonists to attenuate inflammatory pain hypersensitivity may in part be due to a presynaptic inhibition of monosynaptic C-fibre input to lamina I NK1R+ neurons and provides further evidence that ChemR23 represents a promising inflammatory pain target.
Collapse
Affiliation(s)
| | - Carole Torsney
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
44
|
TREK2 expressed selectively in IB4-binding C-fiber nociceptors hyperpolarizes their membrane potentials and limits spontaneous pain. J Neurosci 2014; 34:1494-509. [PMID: 24453337 DOI: 10.1523/jneurosci.4528-13.2014] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ongoing/spontaneous pain behavior is associated with ongoing/spontaneous firing (SF) in adult DRG C-fiber nociceptors (Djouhri et al., 2006). Causes of this SF are not understood. We show here that conducting (sometimes called uninjured) C-nociceptors in neuropathic pain models with more hyperpolarized resting membrane potentials (Ems) have lower SF rates. Understanding the control of their Ems may therefore be important for limiting pathological pain. We report that TREK2, a leak K(+) channel, is selectively expressed in IB4 binding rat C-nociceptors. These IB4(+) C-neurons are ∼10 mV more hyperpolarized than IB4(-) C-neurons in vivo (Fang et al., 2006). TREK2 knockdown by siRNA in these neurons in culture depolarized them by ∼10 mV, suggesting that TREK2 is responsible for this ∼10 mV difference. In vivo, more hyperpolarized C-nociceptor Ems were associated with higher cytoplasmic edge-TREK2 expression (edge-TREK2). Edge-TREK2 decreased in C-neurons 7 d after axotomy, and their Ems depolarized by ∼10 mV. This again supports a contribution of TREK2 to their Ems. These relationships between (1) Em and TREK2, (2) SF rate and Em, and (3) spontaneous pain behavior and C-nociceptor SF rate suggested that TREK2 knockdown might increase spontaneous pain. After CFA-induced inflammation, spontaneous foot lifting (a measure of spontaneous pain) was (1) greater in rats with naturally lower TREK2 in ipsilateral small DRG neurons and (2) increased by siRNA-induced TREK2 knockdown in vivo. We conclude that TREK2 hyperpolarizes IB4 binding C-nociceptors and limits pathological spontaneous pain. Similar TREK2 distributions in small DRG neurons of several species suggest that these role(s) of TREK2 may be widespread.
Collapse
|
45
|
Forrest SL, Osborne PB, Keast JR. Characterization of bladder sensory neurons in the context of myelination, receptors for pain modulators, and acute responses to bladder inflammation. Front Neurosci 2013; 7:206. [PMID: 24223534 PMCID: PMC3819567 DOI: 10.3389/fnins.2013.00206] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/16/2013] [Indexed: 01/23/2023] Open
Abstract
Bladder sensation is mediated by lumbosacral dorsal root ganglion neurons and is essential for normal voiding and nociception. Numerous electrophysiological, structural, and molecular changes occur in these neurons following inflammation. Defining which neurons undergo these changes is critical for understanding the mechanism underlying bladder pain and dysfunction. Our first aim was to define the chemical classes of bladder sensory neurons that express receptors for the endogenous modulators of nociceptor sensitivity, glial cell line-derived neurotrophic factor (GDNF), the related neurotrophic factor, artemin, and estrogens. Bladder sensory neurons of adult female Sprague-Dawley rats were identified with retrograde tracer. Diverse groups of neurons express these receptors, and some neurons express receptors for both neurotrophic factors and estrogens. Lumbar and sacral sensory neurons showed some distinct differences in their expression profile. We also distinguished the chemical profile of myelinated and unmyelinated bladder sensory neurons. Our second aim was to identify bladder sensory neurons likely to be undergoing structural remodeling during inflammation. Following systemic administration of cyclophosphamide (CYP), its renal metabolite acrolein causes transient urothelial loss, exposing local afferent terminals to a toxic environment. CYP induced expression of the injury-related immediate-early gene product, activating transcription factor-3 (ATF-3), in a small population of sacral nitrergic bladder sensory neurons. In conclusion, we have defined the bladder sensory neurons that express receptors for GDNF, artemin and estrogens. Our study has also identified a sub-population of sacral sensory neurons that are likely to be undergoing structural remodeling during acute inflammation of the bladder. Together these results contribute to increased understanding of the neurons that are known to be involved in pain modulation and hyperreflexia during inflammation.
Collapse
Affiliation(s)
- Shelley L Forrest
- Pain Management Research Institute and Kolling Institute, University of Sydney at Royal North Shore Hospital Sydney, NSW, Australia
| | | | | |
Collapse
|
46
|
Ionotropic glutamate receptors and voltage-gated Ca²⁺ channels in long-term potentiation of spinal dorsal horn synapses and pain hypersensitivity. Neural Plast 2013; 2013:654257. [PMID: 24224102 PMCID: PMC3808892 DOI: 10.1155/2013/654257] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 12/18/2022] Open
Abstract
Over the last twenty years of research on cellular mechanisms of pain hypersensitivity, long-term potentiation (LTP) of synaptic transmission in the spinal cord dorsal horn (DH) has emerged as an important contributor to pain pathology. Mechanisms that underlie LTP of spinal DH neurons include changes in the numbers, activity, and properties of ionotropic glutamate receptors (AMPA and NMDA receptors) and of voltage-gated Ca2+ channels. Here, we review the roles and mechanisms of these channels in the induction and expression of spinal DH LTP, and we present this within the framework of the anatomical organization and synaptic circuitry of the spinal DH. Moreover, we compare synaptic plasticity in the spinal DH with classical LTP described for hippocampal synapses.
Collapse
|
47
|
Lu Y, Dong H, Gao Y, Gong Y, Ren Y, Gu N, Zhou S, Xia N, Sun YY, Ji RR, Xiong L. A feed-forward spinal cord glycinergic neural circuit gates mechanical allodynia. J Clin Invest 2013; 123:4050-62. [PMID: 23979158 DOI: 10.1172/jci70026] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/27/2013] [Indexed: 01/02/2023] Open
Abstract
Neuropathic pain is characterized by mechanical allodynia induced by low-threshold myelinated Aβ-fiber activation. The original gate theory of pain proposes that inhibitory interneurons in the lamina II of the spinal dorsal horn (DH) act as "gate control" units for preventing the interaction between innocuous and nociceptive signals. However, our understanding of the neuronal circuits underlying pain signaling and modulation in the spinal DH is incomplete. Using a rat model, we have shown that the convergence of glycinergic inhibitory and excitatory Aβ-fiber inputs onto PKCγ+ neurons in the superficial DH forms a feed-forward inhibitory circuit that prevents Aβ input from activating the nociceptive pathway. This feed-forward inhibition was suppressed following peripheral nerve injury or glycine blockage, leading to inappropriate induction of action potential outputs in the nociceptive pathway by Aβ-fiber stimulation. Furthermore, spinal blockage of glycinergic synaptic transmission in vivo induced marked mechanical allodynia. Our findings identify a glycinergic feed-forward inhibitory circuit that functions as a gate control to separate the innocuous mechanoreceptive pathway and the nociceptive pathway in the spinal DH. Disruption of this glycinergic inhibitory circuit after peripheral nerve injury has the potential to elicit mechanical allodynia, a cardinal symptom of neuropathic pain.
Collapse
Affiliation(s)
- Yan Lu
- Department of Anesthesiology and Pain Management, Xijing Hospital, Fourth Military Medical University, Xian, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Liu P, Xiao Z, Ren F, Guo Z, Chen Z, Zhao H, Cao YQ. Functional analysis of a migraine-associated TRESK K+ channel mutation. J Neurosci 2013; 33:12810-24. [PMID: 23904616 PMCID: PMC3728689 DOI: 10.1523/jneurosci.1237-13.2013] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/28/2013] [Accepted: 06/28/2013] [Indexed: 11/21/2022] Open
Abstract
Recent genetic and functional studies suggest that migraine may result from abnormal activities of ion channels and transporters. A frameshift mutation in the human TWIK-related spinal cord K(+) (TRESK) channel has been identified in migraine with aura patients in a large pedigree. In Xenopus oocytes, mutant TRESK subunits exert a dominant-negative effect on whole-cell TRESK currents. However, questions remain as to whether and how mutant TRESK subunits affect the membrane properties and the excitability of neurons in the migraine circuit. Here, we investigated the functional consequences of the mutant TRESK subunits in HEK293T cells and mouse trigeminal ganglion (TG) neurons. First, we found that mutant TRESK subunits exhibited dominant-negative effects not only on the size of the whole-cell TRESK currents, but also on the level of TRESK channels on the plasma membrane in HEK293T cells. This likely resulted from the heterodimerization of wild-type and mutant TRESK subunits. Next, we expressed mutant TRESK subunits in cultured TG neurons and observed a significant decrease in the lamotrigine-sensitive K(+) current, suggesting that the mutant TRESK subunits have a dominant-negative effect on currents through the endogenous TRESK channels. Current-clamp recordings showed that neurons expressing mutant TRESK subunits had a higher input resistance, a lower current threshold for action potential initiation, and a higher spike frequency in response to suprathreshold stimuli, indicating that the mutation resulted in hyperexcitability of TG neurons. Our results suggest a possible mechanism through which the TRESK mutation increases the susceptibility of migraine headache.
Collapse
Affiliation(s)
- Ping Liu
- Washington University Pain Center and
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Zheman Xiao
- Washington University Pain Center and
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Fei Ren
- Washington University Pain Center and
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Zhaohua Guo
- Washington University Pain Center and
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Ziwei Chen
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Hucheng Zhao
- Washington University Pain Center and
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Yu-Qing Cao
- Washington University Pain Center and
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
49
|
Wu Q, Henry JL. Peripheral drive in Aα/β-fiber neurons is altered in a rat model of osteoarthritis: changes in following frequency and recovery from inactivation. J Pain Res 2013; 6:207-21. [PMID: 23671396 PMCID: PMC3650889 DOI: 10.2147/jpr.s40445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose To determine conduction fidelity of Aα/β-fiber low threshold mechanoreceptors in a model of osteoarthritis (OA). Methods Four weeks after cutting the anterior cruciate ligament and removing the medial meniscus to induce the model, in vivo intracellular recordings were made in ipsilateral L4 dorsal root ganglion neurons. L4 dorsal roots were stimulated to determine the refractory interval and the maximum following frequency of the evoked action potential (AP). Neurons exhibited two types of response to paired pulse stimulation. Results One type of response was characterized by fractionation of the evoked AP into an initial nonmyelinated-spike and a later larger-amplitude somatic-spike at shorter interstimulus intervals. The other type of response was characterized by an all-or-none AP, where the second evoked AP failed altogether at shorter interstimulus intervals. In OA versus control animals, the refractory interval measured in paired pulse testing was less in all low threshold mechanoreceptors. With train stimulation, the maximum rising rate of the nonmyelinated-spike was greater in OA nonmuscle spindle low threshold mechanoreceptors, possibly due to changes in fast kinetics of currents. Maximum following frequency in Pacinian and muscle spindle neurons was greater in model animals compared to controls. Train stimulation also induced an inactivation and fractionation of the AP in neurons that showed fractionation of the AP in paired pulse testing. However, with train stimulation this fractionation followed a different time course, suggesting more than one type of inactivation. Conclusion The data suggest that joint damage can lead to changes in the fidelity of AP conduction of large diameter sensory neurons, muscle spindle neurons in particular, arising from articular and nonarticular tissues in OA animals compared to controls. These changes might influence peripheral drive of spinal excitability and plasticity, thus contributing to OA sensory abnormalities, including OA pain.
Collapse
Affiliation(s)
- Qi Wu
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
50
|
Gerhold KA, Pellegrino M, Tsunozaki M, Morita T, Leitch DB, Tsuruda PR, Brem RB, Catania KC, Bautista DM. The star-nosed mole reveals clues to the molecular basis of mammalian touch. PLoS One 2013; 8:e55001. [PMID: 23383028 PMCID: PMC3559429 DOI: 10.1371/journal.pone.0055001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/21/2012] [Indexed: 01/10/2023] Open
Abstract
Little is known about the molecular mechanisms underlying mammalian touch transduction. To identify novel candidate transducers, we examined the molecular and cellular basis of touch in one of the most sensitive tactile organs in the animal kingdom, the star of the star-nosed mole. Our findings demonstrate that the trigeminal ganglia innervating the star are enriched in tactile-sensitive neurons, resulting in a higher proportion of light touch fibers and lower proportion of nociceptors compared to the dorsal root ganglia innervating the rest of the body. We exploit this difference using transcriptome analysis of the star-nosed mole sensory ganglia to identify novel candidate mammalian touch and pain transducers. The most enriched candidates are also expressed in mouse somatosesensory ganglia, suggesting they may mediate transduction in diverse species and are not unique to moles. These findings highlight the utility of examining diverse and specialized species to address fundamental questions in mammalian biology.
Collapse
Affiliation(s)
- Kristin A Gerhold
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|