1
|
Abstract
K+ channels enable potassium to flow across the membrane with great selectivity. There are four K+ channel families: voltage-gated K (Kv), calcium-activated (KCa), inwardly rectifying K (Kir), and two-pore domain potassium (K2P) channels. All four K+ channels are formed by subunits assembling into a classic tetrameric (4x1P = 4P for the Kv, KCa, and Kir channels) or tetramer-like (2x2P = 4P for the K2P channels) architecture. These subunits can either be the same (homomers) or different (heteromers), conferring great diversity to these channels. They share a highly conserved selectivity filter within the pore but show different gating mechanisms adapted for their function. K+ channels play essential roles in controlling neuronal excitability by shaping action potentials, influencing the resting membrane potential, and responding to diverse physicochemical stimuli, such as a voltage change (Kv), intracellular calcium oscillations (KCa), cellular mediators (Kir), or temperature (K2P).
Collapse
|
2
|
Boscardin E, Alijevic O, Hummler E, Frateschi S, Kellenberger S. The function and regulation of acid-sensing ion channels (ASICs) and the epithelial Na(+) channel (ENaC): IUPHAR Review 19. Br J Pharmacol 2016; 173:2671-701. [PMID: 27278329 DOI: 10.1111/bph.13533] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/19/2016] [Accepted: 06/02/2016] [Indexed: 12/30/2022] Open
Abstract
Acid-sensing ion channels (ASICs) and the epithelial Na(+) channel (ENaC) are both members of the ENaC/degenerin family of amiloride-sensitive Na(+) channels. ASICs act as proton sensors in the nervous system where they contribute, besides other roles, to fear behaviour, learning and pain sensation. ENaC mediates Na(+) reabsorption across epithelia of the distal kidney and colon and of the airways. ENaC is a clinically used drug target in the context of hypertension and cystic fibrosis, while ASIC is an interesting potential target. Following a brief introduction, here we will review selected aspects of ASIC and ENaC function. We discuss the origin and nature of pH changes in the brain and the involvement of ASICs in synaptic signalling. We expose how in the peripheral nervous system, ASICs cover together with other ion channels a wide pH range as proton sensors. We introduce the mechanisms of aldosterone-dependent ENaC regulation and the evidence for an aldosterone-independent control of ENaC activity, such as regulation by dietary K(+) . We then provide an overview of the regulation of ENaC by proteases, a topic of increasing interest over the past few years. In spite of the profound differences in the physiological and pathological roles of ASICs and ENaC, these channels share many basic functional and structural properties. It is likely that further research will identify physiological contexts in which ASICs and ENaC have similar or overlapping roles.
Collapse
Affiliation(s)
- Emilie Boscardin
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Omar Alijevic
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Edith Hummler
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
3
|
Masia R, Krause DS, Yellen G. The inward rectifier potassium channel Kir2.1 is expressed in mouse neutrophils from bone marrow and liver. Am J Physiol Cell Physiol 2014; 308:C264-76. [PMID: 25472961 DOI: 10.1152/ajpcell.00176.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neutrophils are phagocytic cells that play a critical role in innate immunity by destroying bacterial pathogens. Channels belonging to the inward rectifier potassium channel subfamily 2 (Kir2 channels) have been described in other phagocytes (monocytes/macrophages and eosinophils) and in hematopoietic precursors of phagocytes. Their physiological function in these cells remains unclear, but some evidence suggests a role in growth factor-dependent proliferation and development. Expression of functional Kir2 channels has not been definitively demonstrated in mammalian neutrophils. Here, we show by RT-PCR that neutrophils from mouse bone marrow and liver express mRNA for the Kir2 subunit Kir2.1 but not for other subunits (Kir2.2, Kir2.3, and Kir2.4). In electrophysiological experiments, resting (unstimulated) neutrophils from mouse bone marrow and liver exhibit a constitutively active, external K(+)-dependent, strong inwardly rectifying current that constitutes the dominant current. The reversal potential is dependent on the external K(+) concentration in a Nernstian fashion, as expected for a K(+)-selective current. The current is not altered by changes in external or internal pH, and it is blocked by Ba(2+), Cs(+), and the Kir2-selective inhibitor ML133. The single-channel conductance is in agreement with previously reported values for Kir2.1 channels. These properties are characteristic of homomeric Kir2.1 channels. Current density in short-term cultures of bone marrow neutrophils is decreased in the absence of growth factors that are important for neutrophil proliferation [granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF)]. These results demonstrate that mouse neutrophils express functional Kir2.1 channels and suggest that these channels may be important for neutrophil function, possibly in a growth factor-dependent manner.
Collapse
Affiliation(s)
- Ricard Masia
- Department of Pathology and Laboratory Medicine, Massachusetts General Hospital, Boston, Massachusetts; and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - Daniela S Krause
- Department of Pathology and Laboratory Medicine, Massachusetts General Hospital, Boston, Massachusetts; and
| | - Gary Yellen
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Martino PF, Olesiak S, Batuuka D, Riley D, Neumueller S, Forster HV, Hodges MR. Strain differences in pH-sensitive K+ channel-expressing cells in chemosensory and nonchemosensory brain stem nuclei. J Appl Physiol (1985) 2014; 117:848-56. [PMID: 25150225 DOI: 10.1152/japplphysiol.00439.2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The ventilatory CO2 chemoreflex is inherently low in inbred Brown Norway (BN) rats compared with other strains, including inbred Dahl salt-sensitive (SS) rats. Since the brain stem expression of various pH-sensitive ion channels may be determinants of the CO2 chemoreflex, we tested the hypothesis that there would be fewer pH-sensitive K(+) channel-expressing cells in BN relative to SS rats within brain stem sites associated with respiratory chemoreception, such as the nucleus tractus solitarius (NTS), but not within the pre-Bötzinger complex region, nucleus ambiguus or the hypoglossal motor nucleus. Medullary sections (25 μm) from adult male and female BN and SS rats were stained with primary antibodies targeting TASK-1, Kv1.4, or Kir2.3 K(+) channels, and the total (Nissl-stained) and K(+) channel immunoreactive (-ir) cells counted. For both male and female rats, the numbers of K(+) channel-ir cells within the NTS were reduced in the BN compared with SS rats (P < 0.05), despite equal numbers of total NTS cells. In contrast, we found few differences in the numbers of K(+) channel-ir cells among the strains within the nucleus ambiguus, hypoglossal motor nucleus, or pre-Bötzinger complex regions in both male and female rats. However, there were no predicted functional mutations in each of the K(+) channels studied comparing genomic sequences among these strains. Thus we conclude that the relatively selective reductions in pH-sensitive K(+) channel-expressing cells in the NTS of male and female BN rats may contribute to their severely blunted ventilatory CO2 chemoreflex.
Collapse
Affiliation(s)
- Paul F Martino
- Biology Department, Carthage College, Kenosha, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - S Olesiak
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - D Batuuka
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - D Riley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - S Neumueller
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - H V Forster
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin; and
| | - M R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
5
|
Xu L, Hao Y, Wu X, Yu P, Zhu G, Hong Z. Tenidap, an agonist of the inwardly rectifying K+channel Kir2·3, delays the onset of cortical epileptiform activity in a model of chronic temporal lobe epilepsy. Neurol Res 2013; 35:561-7. [PMID: 23561319 DOI: 10.1179/1743132813y.0000000157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Lan Xu
- Department of NeurologyHuashan Hospital, Fudan University, Shanghai, China
| | - Yong Hao
- Department of NeurologyChanghai Hospital, Second Military Medical University, Shanghai, China
| | - Xunyi Wu
- Department of NeurologyHuashan Hospital, Fudan University, Shanghai, China
| | - Peimin Yu
- Department of NeurologyHuashan Hospital, Fudan University, Shanghai, China
| | - Guoxing Zhu
- Department of NeurologyHuashan Hospital, Fudan University, Shanghai, China
| | - Zhen Hong
- Department of NeurologyHuashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Yu L, Jin X, Cui N, Wu Y, Shi Z, Zhu D, Jiang C. Rosiglitazone selectively inhibits K(ATP) channels by acting on the K(IR) 6 subunit. Br J Pharmacol 2013; 167:26-36. [PMID: 22394376 DOI: 10.1111/j.1476-5381.2012.01934.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Rosiglitazone is an anti-diabetic drug acting as an insulin sensitizer. We recently found that rosiglitazone also inhibits the vascular isoform of ATP-sensitive K(+) channels and compromises vasodilatory effects of β-adrenoceptor activation and pinacidil. As its potency for the channel inhibition is in the micromolar range, rosiglitazone may be used as an effective K(ATP) channel inhibitor for research and therapeutic purposes. Therefore, we performed experiments to determine whether other isoforms of K(ATP) channels are also sensitive to rosiglitazone and what their sensitivities are. EXPERIMENTAL APPROACH K(IR) 6.1/SUR2B, K(IR) 6.2/SUR1, K(IR) 6.2/SUR2A, K(IR) 6.2/SUR2B and K(IR) 6.2ΔC36 channels were expressed in HEK293 cells and were studied using patch-clamp techniques. KEY RESULTS Rosiglitazone inhibited all isoforms of K(ATP) channels in excised patches and in the whole-cell configuration. Its IC(50) was 10 µmol·L(-1) for the K(IR) 6.1/SUR2B channel and ∼45 µmol·L(-1) for K(IR) 6.2/SURx channels. Rosiglitazone also inhibited K(IR) 6.2ΔC36 channels in the absence of the sulphonylurea receptor (SUR) subunit, with potency (IC(50) = 45 µmol·L(-1) ) almost identical to that for K(IR) 6.2/SURx channels. Single-channel kinetic analysis showed that the channel inhibition was mediated by augmentation of the long-lasting closures without affecting the channel open state and unitary conductance. In contrast, rosiglitazone had no effect on K(IR) 1.1, K(IR) 2.1 and K(IR) 4.1 channels, suggesting that the channel inhibitory effect is selective for K(IR) 6.x channels. CONCLUSIONS AND IMPLICATIONS These results suggest a novel K(ATP) channel inhibitor that acts on the pore-forming K(IR) 6.x subunit, affecting the channel gating.
Collapse
Affiliation(s)
- Lei Yu
- Department of Biology, Georgia State University, Atlanta, Georgia 30302-4010, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Wang L, Ma W, Zhu L, Ye D, Li Y, Liu S, Li H, Zuo W, Li B, Ye W, Chen L. ClC-3 is a candidate of the channel proteins mediating acid-activated chloride currents in nasopharyngeal carcinoma cells. Am J Physiol Cell Physiol 2012; 303:C14-23. [DOI: 10.1152/ajpcell.00145.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acid-activated chloride currents have been reported in several cell types and may play important roles in regulation of cell function. However, the molecular identities of the channels that mediate the currents are not defined. In this study, activation of the acid-induced chloride current and the possible candidates of the acid-activated chloride channel were investigated in human nasopharyngeal carcinoma cells (CNE-2Z). A chloride current was activated when extracellular pH was reduced to 6.6 from 7.4. However, a further decrease of extracellular pH to 5.8 inhibited the current. The current was weakly outward-rectified and was suppressed by hypertonicity-induced cell shrinkage and by the chloride channel blockers 5-nitro-2–3-phenylpropylamino benzoic acid (NPPB), tamoxifen, and 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid disodium salt hydrate (DIDS). The permeability sequence of the channel to anions was I− > Br− > Cl− > gluconate−. Among the ClC chloride channels, ClC-3 and ClC-7 were strongly expressed in CNE-2Z cells. Knockdown of ClC-3 expression with ClC-3 small interfering (si)RNA prevented the activation of the acid-induced current, but silence of ClC-7 expression with ClC-7 siRNA did not significantly affect the current. The results suggest that the chloride channel mediating the acid-induced chloride current was volume sensitive. ClC-3 is a candidate of the channel proteins that mediate or regulate the acid-activated chloride current in nasopharyngeal carcinoma cells.
Collapse
Affiliation(s)
- Liwei Wang
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Wenbo Ma
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Linyan Zhu
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, China; and
| | - Dong Ye
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Yuan Li
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, China; and
| | - Shanwen Liu
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Huarong Li
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Wanhong Zuo
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Bingxue Li
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, China; and
| | - Wencai Ye
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Lixin Chen
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, China; and
| |
Collapse
|
8
|
Levin ME, Holt JR. The function and molecular identity of inward rectifier channels in vestibular hair cells of the mouse inner ear. J Neurophysiol 2012; 108:175-86. [PMID: 22496522 DOI: 10.1152/jn.00098.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inner ear hair cells respond to mechanical stimuli with graded receptor potentials. These graded responses are modulated by a host of voltage-dependent currents that flow across the basolateral membrane. Here, we examine the molecular identity and the function of a class of voltage-dependent ion channels that carries the potassium-selective inward rectifier current known as I(K1). I(K1) has been identified in vestibular hair cells of various species, but its molecular composition and functional contributions remain obscure. We used quantitative RT-PCR to show that the inward rectifier gene, Kir2.1, is highly expressed in mouse utricle between embryonic day 15 and adulthood. We confirmed Kir2.1 protein expression in hair cells by immunolocalization. To examine the molecular composition of I(K1), we recorded voltage-dependent currents from type II hair cells in response to 50-ms steps from -124 to -54 in 10-mV increments. Wild-type cells had rapidly activating inward currents with reversal potentials close to the K(+) equilibrium potential and a whole-cell conductance of 4.8 ± 1.5 nS (n = 46). In utricle hair cells from Kir2.1-deficient (Kir2.1(-/-)) mice, I(K1) was absent at all stages examined. To identify the functional contribution of Kir2.1, we recorded membrane responses in current-clamp mode. Hair cells from Kir2.1(-/-) mice had significantly (P < 0.001) more depolarized resting potentials and larger, slower membrane responses than those of wild-type cells. These data suggest that Kir2.1 is required for I(K1) in type II utricle hair cells and contributes to hyperpolarized resting potentials and fast, small amplitude receptor potentials in response to current inputs, such as those evoked by hair bundle deflections.
Collapse
Affiliation(s)
- Michaela E Levin
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | |
Collapse
|
9
|
Chu XP, Papasian CJ, Wang JQ, Xiong ZG. Modulation of acid-sensing ion channels: molecular mechanisms and therapeutic potential. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2011; 3:288-309. [PMID: 22162785 PMCID: PMC3230262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Accepted: 11/17/2011] [Indexed: 05/31/2023]
Abstract
Increases in extracellular proton concentrations, which takes place in physiological conditions such as synaptic signaling and pathological conditions such as tissue inflammation, ischemic stroke, traumatic brain injury, and epileptic seizure, activates a unique family of membrane ion channels; the acid-sensing ion channels (ASICs). All ASICs belong to amiloride-sensitive degenerin/epithelial Na(+) channel superfamily. Four genes encoded at seven sub-units have been identified. ASICs are expressed primarily in neurons and have been shown to play critical roles in synaptic plasticity, learning/memory, fear conditioning, sensory transduction, pain perception, ischemic brain injury, seizure, and other neurological as well as psychological disorders. Although protons are the primary activator for ASICs, the properties and/or level of expression of these channels are modulated dramatically by neuropeptides, di-and polyvalent cations, inflammatory mediators, associated proteins, and protein phosphorylations, etc. Modulation of ASICs can result in profound changes in the activities and functions of these channels in both physiological and pathological processes. In this article, we provide an up to date review on the modulations of ASICs by exogenous agents and endogenous signaling molecules. A better understanding of how ASICs can be modulated should help define new strategies to counteract the deleterious effects of dysregulated ASIC activity.
Collapse
Affiliation(s)
- Xiang-Ping Chu
- Department of Basic Medical Science, University of Missouri-Kansas CityKansas City, MO 64108, USA
| | - Christopher J Papasian
- Department of Basic Medical Science, University of Missouri-Kansas CityKansas City, MO 64108, USA
| | - John Q Wang
- Department of Basic Medical Science, University of Missouri-Kansas CityKansas City, MO 64108, USA
| | - Zhi-Gang Xiong
- Department of Neurobiology, Morehouse School of MedicineAtlanta, GA 30310, USA
| |
Collapse
|
10
|
Trapp S, Tucker SJ, Gourine AV. Respiratory responses to hypercapnia and hypoxia in mice with genetic ablation of Kir5.1 (Kcnj16). Exp Physiol 2011; 96:451-9. [PMID: 21239463 PMCID: PMC3206300 DOI: 10.1113/expphysiol.2010.055848] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 01/11/2011] [Indexed: 12/26/2022]
Abstract
Inward rectifier (Kir) potassium channels contribute to the control of electrical activity in excitable tissues and their activity is modulated by many biochemical factors, including protons. Heteromeric Kir4.1-Kir5.1 channels are highly pH sensitive within the physiological range of pH changes and are strongly expressed by the peripheral chemosensors as well as in the brainstem pH-sensitive areas which mediate respiratory responses to changes in blood and brain levels of P(CO(2))/[H(+)]. In the present study, Kir5.1 knockout mice (Kir5.1(-/-)) were used to determine the role of these channels in the chemosensory control of breathing. We found that Kir5.1(-/-) mice presented with persistent metabolic acidosis and a clear respiratory phenotype. Despite metabolic acidosis, ventilation at rest and in hyperoxic hypercapnia were similar in wild-type and Kir5.1(-/-) mice. Ventilatory responses to hypoxia and normoxic hypercapnia were significantly reduced in Kir5.1(-/-) mice; however, carotid body chemoafferent responses to hypoxia and CO(2) were not affected. In the in situ brainstem-spinal cord preparations with denervated peripheral chemoreceptors, resting phrenic nerve activity and phrenic nerve responses to respiratory acidosis or isohydric hypercapnia were also similar in Kir5.1(-/-) and wild-type mice. In in situ preparations of Kir5.1(-/-) mice with intact peripheral chemoreceptors, application of CN(-) resulted in a significantly reduced phrenic nerve response, suggesting that the relay of peripheral chemosensory information to the CNS is compromised. We suggest that this compensatory modulation of the peripheral chemosensory inputs develops in Kir5.1(-/-) mice in order to counteract the effect of continuing metabolic acidosis on the activity of the peripheral chemoreceptors. These results therefore suggest that despite their intrinsic pH sensitivity, Kir4.1-Kir5.1 channels are dispensable for functional central and peripheral respiratory chemosensitivity.
Collapse
Affiliation(s)
- Stefan Trapp
- Department of Surgery and Cancer, Biophysics Section, Imperial College London, London, UK
| | | | | |
Collapse
|
11
|
The locus coeruleus and central chemosensitivity. Respir Physiol Neurobiol 2010; 173:264-73. [PMID: 20435170 DOI: 10.1016/j.resp.2010.04.024] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 04/23/2010] [Accepted: 04/24/2010] [Indexed: 11/21/2022]
Abstract
The locus coeruleus (LC) lies in the dorsal pons and supplies noradrenergic (NA) input to many regions of the brain, including respiratory control areas. The LC may provide tonic input for basal respiratory drive and is involved in central chemosensitivity since focal acidosis of the region stimulates ventilation and ablation reduces CO(2)-induced increased ventilation. The output of LC is modulated by both serotonergic and glutamatergic inputs. A large percentage of LC neurons are intrinsically activated by hypercapnia. This percentage and the magnitude of their response are highest in young neonates and decrease dramatically after postnatal day P10. The cellular bases for intrinsic chemosensitivity of LC neurons are comprised of multiple factors, primary among them being reduced extracellular and intracellular pH, which inhibit inwardly rectifying and voltage-gated K(+) channels, and activate L-type Ca(2+) channels. Activation of K(Ca) channels in LC neurons may limit their ultimate response to hypercapnia. Finally, the LC mediates central chemosensitivity and contains pH-sensitive neurons in amphibians, suggesting that the LC has a long-standing phylogenetic role in respiratory control.
Collapse
|
12
|
TASK channels contribute to the K+-dominated leak current regulating respiratory rhythm generation in vitro. J Neurosci 2010; 30:4273-84. [PMID: 20335463 DOI: 10.1523/jneurosci.4017-09.2010] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Leak channels regulate neuronal activity and excitability. Determining which leak channels exist in neurons and how they control electrophysiological behavior is fundamental. Here we investigated TASK channels, members of the two-pore domain K(+) channel family, as a component of the K(+)-dominated leak conductance that controls and modulates rhythm generation at cellular and network levels in the mammalian pre-Bötzinger complex (pre-BötC), an excitatory network of neurons in the medulla critically involved in respiratory rhythmogenesis. By voltage-clamp analyses of pre-BötC neuronal current-voltage (I-V) relations in neonatal rat medullary slices in vitro, we demonstrated that pre-BötC inspiratory neurons have a weakly outward-rectifying total leak conductance with reversal potential that was depolarized by approximately 4 mV from the K(+) equilibrium potential, indicating that background K(+) channels are dominant contributors to leak. This K(+) channel component had I-V relations described by constant field theory, and the conductance was reduced by acid and was augmented by the volatile anesthetic halothane, which are all hallmarks of TASK. We established by single-cell RT-PCR that pre-BötC inspiratory neurons express TASK-1 and in some cases also TASK-3 mRNA. Furthermore, acid depolarized and augmented bursting frequency of pre-BötC inspiratory neurons with intrinsic bursting properties. Microinfusion of acidified solutions into the rhythmically active pre-BötC network increased network bursting frequency, halothane decreased bursting frequency, and acid reversed the depressant effects of halothane, consistent with modulation of network activity by TASK channels. We conclude that TASK-like channels play a major functional role in chemosensory modulation of respiratory rhythm generation in the pre-Bötzinger complex in vitro.
Collapse
|
13
|
Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 2010; 90:291-366. [PMID: 20086079 DOI: 10.1152/physrev.00021.2009] [Citation(s) in RCA: 1140] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Inwardly rectifying K(+) (Kir) channels allow K(+) to move more easily into rather than out of the cell. They have diverse physiological functions depending on their type and their location. There are seven Kir channel subfamilies that can be classified into four functional groups: classical Kir channels (Kir2.x) are constitutively active, G protein-gated Kir channels (Kir3.x) are regulated by G protein-coupled receptors, ATP-sensitive K(+) channels (Kir6.x) are tightly linked to cellular metabolism, and K(+) transport channels (Kir1.x, Kir4.x, Kir5.x, and Kir7.x). Inward rectification results from pore block by intracellular substances such as Mg(2+) and polyamines. Kir channel activity can be modulated by ions, phospholipids, and binding proteins. The basic building block of a Kir channel is made up of two transmembrane helices with cytoplasmic NH(2) and COOH termini and an extracellular loop which folds back to form the pore-lining ion selectivity filter. In vivo, functional Kir channels are composed of four such subunits which are either homo- or heterotetramers. Gene targeting and genetic analysis have linked Kir channel dysfunction to diverse pathologies. The crystal structure of different Kir channels is opening the way to understanding the structure-function relationships of this simple but diverse ion channel family.
Collapse
Affiliation(s)
- Hiroshi Hibino
- Department of Pharmacology, Graduate School of Medicine and The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Riley D, Dwinell M, Qian B, Krause KL, Bonis JM, Neumueller S, Marshall BD, Hodges MR, Forster HV. Differences between three inbred rat strains in number of K+ channel-immunoreactive neurons in the medullary raphé nucleus. J Appl Physiol (1985) 2009; 108:1003-10. [PMID: 19926827 DOI: 10.1152/japplphysiol.00625.2009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ventilatory sensitivity to hypercapnia is greater in Dahl salt-sensitive (SS) rats than in Fawn Hooded hypertensive (FHH) and Brown Norway (BN) inbred rats. Since pH-sensitive potassium ion (K(+)) channels are postulated to contribute to the sensing and signaling of changes in CO(2)-H(+) in chemosensitive neurons, we tested the hypothesis that there are more pH-sensitive K(+) channel-immunoreactive (ir) neurons within the medullary raphé nuclei of the highly chemosensitive SS rats than in the other two strains. Medullary tissues from male and female BN, FHH, and SS rats were stained with cresyl violet or with antibodies targeting TASK-1, K(v)1.4, and Kir2.3 channels. K(+) channel-ir neurons were quantified and compared with the total neurons in the region. The total number of neurons in the medullary raphé 1) was greater in male FHH than the other male rats, 2) did not differ among the female rats, and 3) did not differ between sexes. The average number of K(+) channel-ir neurons per section was 30-60 neurons higher in the male SS than in the other rat strains. In contrast, for the females, the number of K(+) channel-ir neurons was greatest in the BN. We also found significant differences in the number of K(+) channel-ir neurons between sexes in SS (males > females) and BN (females > males) rats, but not the FHH strain. Our findings support the hypothesis for males but not for females, suggesting that both genetic background and sex are determinants of K(+) channel immunoreactivity of medullary raphé neurons, and that the expression of pH-sensitive K(+) channels in the medullary raphé does not correlate with the ventilatory sensitivity to hypercapnia.
Collapse
Affiliation(s)
- D Riley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yan X, Zhou H, Zhang J, Shi C, Xie X, Wu Y, Tian C, Shen Y, Long J. Molecular mechanism of inward rectifier potassium channel 2.3 regulation by tax-interacting protein-1. J Mol Biol 2009; 392:967-76. [PMID: 19635485 DOI: 10.1016/j.jmb.2009.07.060] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 06/10/2009] [Accepted: 07/21/2009] [Indexed: 01/02/2023]
Abstract
Inwardly rectifying potassium channel 2.3 (Kir2.3) is specifically targeted on the basolateral membranes of epithelial and neuronal cells, and it thus plays an important role in maintaining potassium homeostasis. Tax-interacting protein-1 (TIP-1), an atypical PDZ-domain-containing protein, binds to Kir2.3 with a high affinity, causing the intracellular accumulation of Kir2.3 in cultured epithelial cells. However, the molecular basis of the TIP-1/Kir2.3 interaction is still poorly understood. Here, we present the crystal structure of TIP-1 in complex with the C-terminal Kir2.3-peptide (residues 436-445) to reveal the molecular details of the interaction between them. Moreover, isothermal titration calorimetry experiments show that the C-terminal Kir2.3-peptide binds much more strongly to TIP-1 than to mammalian Lin-7, indicating that TIP-1 can compete with mammalian Lin-7 to uncouple Kir2.3 from its basolateral membrane anchoring complex. We further show that the phosphorylation/dephosphorylation of Ser443 within the C-terminal Kir2.3 PDZ-binding motif RRESAI dynamically regulates the Kir2.3/TIP-1 association in heterologous HEK293T cells. These data suggest that TIP-1 may act as an important regulator for the endocytic pathway of Kir2.3.
Collapse
Affiliation(s)
- Xiaojie Yan
- Tianjin Key Laboratory of Protein Science, College of Life Science, Nankai University, Tianjin 300071, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Vikstrom KL, Vaidyanathan R, Levinsohn S, O'Connell RP, Qian Y, Crye M, Mills JH, Anumonwo JMB. SAP97 regulates Kir2.3 channels by multiple mechanisms. Am J Physiol Heart Circ Physiol 2009; 297:H1387-97. [PMID: 19633205 DOI: 10.1152/ajpheart.00638.2008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We examined the impact of coexpressing the inwardly rectifying potassium channel, Kir2.3, with the scaffolding protein, synapse-associated protein (SAP) 97, and determined that coexpression of these proteins caused an approximately twofold increase in current density. A combination of techniques was used to determine if the SAP97-induced increase in Kir2.3 whole cell currents resulted from changes in the number of channels in the cell membrane, unitary channel conductance, or channel open probability. In the absence of SAP97, Kir2.3 was found predominantly in a cytoplasmic, vesicular compartment with relatively little Kir2.3 localized to the plasma membrane. The introduction of SAP97 caused a redistribution of Kir2.3, leading to prominent colocalization of Kir2.3 and SAP97 and a modest increase in cell surface Kir2.3. The median Kir2.3 single channel conductance in the absence of SAP97 was approximately 13 pS, whereas coexpression of SAP97 led to a wide distribution of channel events with three distinct peaks centered at 16, 29, and 42 pS. These changes occurred without altering channel open probability, current rectification properties, or pH sensitivity. Thus association of Kir2.3 with SAP97 in HEK293 cells increased channel cell surface expression and unitary channel conductance. However, changes in single channel conductance play the major role in determining whole cell currents in this model system. We further suggest that the SAP97 effect results from SAP97 binding to the Kir2.3 COOH-terminal domain and altering channel conformation.
Collapse
Affiliation(s)
- Karen L Vikstrom
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Yamamoto Y, Ishikawa R, Omoe K, Yoshikawa N, Yamaguchi-Yamada M, Taniguchi K. Immunohistochemical distribution of inwardly rectifying K+ channels in the medulla oblongata of the rat. J Vet Med Sci 2008; 70:265-71. [PMID: 18388426 DOI: 10.1292/jvms.70.265] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The inwardly rectifying K+ channels, Kir1.1, Kir2.3 and Kir4.1-Kir5.1, are the candidate chemosensory molecules for CO2/H+. We determined the mRNA expression and immunohistochemical localization of these channels in the medulla oblongata of the rat. RT-PCR analysis revealed mRNAs of Kir1.1, Kir2.3, Kir4.1 and Kir5.1 were detected in the medulla. The immunoreactivities for Kir1.1, Kir2.3, Kir4.1, and Kir5.1 were observed in the medulla, and immunolabeling pattern was varied by the subunit. Immunoreactivities for Kir1.1 and Kir2.3 were observed in the nerve cell bodies and glial cells both in the chemosensory areas [nucleus tractus solitarius (NTS), nucleus raphe obscurus (RO), pre-Bötzinger complex (PreBötC)] and non-chemosensory area [hypoglossal nucleus (XII), inferior olive nucleus (IO)]. Kir4.1 immunoreactivity was observed in the glial cells and neuropil, especially in XII and IO. Kir5.1 immunoreactivity was observed in the nerve cell bodies in the XII, RO, and PreBötC, but not in the NTS or IO. In the NTS, a dense network of varicose nerve fibers showed immunoreactivity for Kir5.1. Our findings suggest that Kir channels may not act specific to the central chemoreception, but regulate the ionic properties of cellular membranes in various neurons and glial cells.
Collapse
Affiliation(s)
- Yoshio Yamamoto
- Laboratory of Veterinary Biochemistry and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Wang C, Mirshahi UL, Liu B, Jia Z, Mirshahi T, Zhang H. Arachidonic acid activates Kir2.3 channels by enhancing channel-phosphatidyl-inositol 4,5-bisphosphate interactions. Mol Pharmacol 2008; 73:1185-94. [PMID: 18202303 DOI: 10.1124/mol.107.043067] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Kir2.0 channels play a significant role in setting the resting membrane potential, modulating action potential wave form, and buffering extracellular potassium. One member of this family, Kir2.3, is highly expressed in the heart and brain and is modulated by a variety of factors, including arachidonic acid (AA). Using two-electrode voltage clamp and inside-out patch clamp recordings from Xenopus laevis oocytes expressing Kir2.3 channels, we found that AA selectively activated Kir2.3 channels with an EC(50) of 0.59 muM and that this activation required phosphatidyl inositol 4,5-bisphosphate (PIP(2)). We found that AA activated Kir2.3 by enhancing channel-PIP(2) interactions as demonstrated by a shift in PIP(2) activation curve. EC(50) for channel activation by PIP(2) were 36 and 12 muM in the absence and presence of AA, respectively. A single point mutation on the channel C terminus that enhanced basal channel-PIP(2) interactions reduced the sensitivity of the channel to AA. Effects of AA are mediated through cytoplasmic sites on the channel by increasing the open probability, mainly due to more frequent bursts of opening in the presence of PIP(2). Therefore, enhanced interaction with PIP(2) is the molecular mechanism for Kir2.3 channel activation by AA.
Collapse
Affiliation(s)
- Chuan Wang
- Weis Center for Research, Geisinger Clinic, 100 North Academy Avenue, Danville, PA 17822-2621, USA
| | | | | | | | | | | |
Collapse
|
19
|
Hughes BA, Swaminathan A. Modulation of the Kir7.1 potassium channel by extracellular and intracellular pH. Am J Physiol Cell Physiol 2007; 294:C423-31. [PMID: 18094146 DOI: 10.1152/ajpcell.00393.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inwardly rectifying K(+) (K(ir)) channels in the apical membrane of the retinal pigment epithelium (RPE) contribute to extracellular K(+) homeostasis in the distal retina by mediating K(+) secretion. Multiple lines of evidence suggest that these channels are composed of Kir7.1. Previously, we showed that native K(ir) channels in bovine RPE are modulated by changes in intracellular pH in the physiological range. In the present study, we used the Xenopus laevis oocyte expression system to investigate the pH dependence of cloned human Kir7.1 channels and several point mutants involving histidine residues in the NH(2) and COOH termini. Kir7.1 channels were inhibited by strong extracellular acidification and modulated by intracellular pH in a biphasic manner, with maximal activity at about intracellular pH (pH(i)) 7.0 and inhibition by acidification or alkalinization. Replacement of histidine 26 (H26) in the NH(2) terminus with alanine eliminated the requirement of protons for channel activity and increased sensitivity to proton-induced inhibition, resulting in maximal channel activity at alkaline pH(i) and smaller whole cell currents at resting pH(i) compared with wild-type Kir7.1. When H26 was replaced with arginine, the pH(i) sensitivity profile was similar to that of the H26A mutant but with the pK(a) shifted to a more acidic value, giving rise to whole cell current amplitude at resting pH(i) that was comparable to that of wild-type Kir7.1. These results indicate that Kir7.1 channels are modulated by intracellular protons by diverse mechanisms and suggest that H26 is important for channel activation at physiological pH(i) and that it influences an unidentified proton-induced inhibitory mechanism.
Collapse
Affiliation(s)
- Bret A Hughes
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA.
| | | |
Collapse
|
20
|
Jonz MG, Barnes S. Proton modulation of ion channels in isolated horizontal cells of the goldfish retina. J Physiol 2007; 581:529-41. [PMID: 17331999 PMCID: PMC2075170 DOI: 10.1113/jphysiol.2006.125666] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Transient changes in extracellular pH (pH(o)) occur in the retina and may have profound effects on neurotransmission and visual processing due to the pH sensitivity of ion channels. The present study characterized the effects of acidification on the activity of membrane ion channels in isolated horizontal cells (HCs) of the goldfish retina using whole-cell patch-clamp recording. Currents recorded from HCs were characterized by prominent inward rectification at potentials negative to -80 mV, a negative slope conductance between -70 and -40 mV, a sustained inward current, and outward rectification positive to 40 mV. Inward currents were identified as those of inward rectifier K(+) (Kir) channels and Ca(2+) channels by their sensitivity to 10 mM Cs(+) or 20 microm Cd(2+), respectively. Both of these currents were reduced when pH(o) decreased from 7.8 to 6.8. Glutamate (1 mM)-activated currents were also identified, as were hemichannel currents that were enhanced by removal of extracellular Ca(2+) and application of 1 mM quinidine. Both glutamate-activated and hemichannel currents were suppressed by a similar reduction of pH(o). When all of these H(+)-inhibited currents were blocked, a small, sustained inward current at -60 mV increased following a decrease in pH(o) from 7.8 to 6.8. In addition, slope conductance between -70 and -20 mV increased during this acidification. Suppression of this H(+)-activated current by removal of extracellular Na(+), and an extrapolated E(rev) near E(Na), indicated that this current was carried predominantly by Na(+) ions.
Collapse
Affiliation(s)
- Michael G Jonz
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5 Canada.
| | | |
Collapse
|
21
|
Kir2.3 isoform confers pH sensitivity to heteromeric Kir2.1/Kir2.3 channels in HEK293 cells. Heart Rhythm 2006; 4:487-96. [PMID: 17399639 DOI: 10.1016/j.hrthm.2006.12.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 12/14/2006] [Indexed: 09/30/2022]
Abstract
BACKGROUND Data on pH regulation of the cardiac potassium current I(K1) suggest species-dependent differences in the molecular composition of the underlying Kir2 channel proteins. OBJECTIVE The purpose of this study was to test the hypothesis that the presence of the Kir2.3 isoform in heterotetrameric channels modifies channel sensitivity to pH. METHODS Voltage clamp was performed on HEK293 cells stably expressing guinea pig Kir2.1 and/or Kir2.3 isoforms and on sheep cardiac ventricular myocytes at varying extracellular pH (pH(o)) and in the presence of CO(2) to determine the sensitivity of macroscopic currents to pH. Single-channel activity was recorded from the HEK293 stables to determine the mechanisms of the changes in whole cell current. RESULTS Biophysical characteristics of whole-cell and single-channel currents in Kir2.1/Kir2.3 double stables displayed properties attributable to isoform heteromerization. Whole-cell Kir2.1/Kir2.3 currents rectified in a manner reminiscent of Kir2.1 but were significantly inhibited by extracellular acidification in the physiologic range (pK(a) approximately 7.4). Whole-cell currents were more sensitive to a combined extracellular and intracellular acidification produced by CO(2). At pH(o) = 6.0, unitary conductances of heteromeric channels were reduced. Ovine cardiac ventricular cell I(K1) was pH(o) and CO(2) sensitive, consistent with the expression of Kir2.1 and Kir2.3 in this species. CONCLUSION Kir2.1 and Kir2.3 isoforms form heteromeric channels in HEK293. The presence of Kir2.3 subunit(s) in heteromeric channels confers pH sensitivity to the channels. The single and double stable cells presented in this study are useful models for studying physiologic regulation of heteromeric Kir2 channels in mammalian cells.
Collapse
|
22
|
Wang R, Rojas A, Wu J, Piao H, Adams CY, Xu H, Shi Y, Wang Y, Jiang C. Determinant role of membrane helices in K ATP channel gating. J Membr Biol 2005; 204:1-10. [PMID: 16007498 DOI: 10.1007/s00232-005-0741-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Revised: 03/10/2005] [Indexed: 11/25/2022]
Abstract
The ATP-sensitive K(+) (K(ATP)) channels couple chemical signals to cellular activity, in which the control of channel opening and closure (i.e., channel gating) is crucial. Transmembrane helices play an important role in channel gating. Here we report that the gating of Kir6.2, the core subunit of pancreatic and cardiac K(ATP) channels, can be switched by manipulating the interaction between two residues located in transmembrane domains (TM) 1 and 2 of the channel protein. The Kir6.2 channel is gated by ATP and proton, which inhibit and activate the channel, respectively. The channel gating involves two residues, namely, Thr71 and Cys166, located at the interface of the TM1 and TM2. Creation of electrostatic attraction between these sites reverses the channel gating, which makes the ATP an activator and proton an inhibitor of the channel. Electrostatic repulsion with two acidic residues retains or even enhances the wild-type channel gating. A similar switch of the pH-dependent channel gating was observed in the Kir2.1 channel, which is normally pH- insensitive. Thus, the manner in which the TM1 and TM2 helices interact appears to determine whether the channels are open or closed following ligand binding.
Collapse
Affiliation(s)
- R Wang
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue, Atlanta, GA 30303-4010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kim MY, Liang GH, Kim JA, Park SH, Hah JS, Suh SH. Contribution of Na+-K+ pump and KIR currents to extracellular pH-dependent changes of contractility in rat superior mesenteric artery. Am J Physiol Heart Circ Physiol 2005; 289:H792-800. [PMID: 15833810 DOI: 10.1152/ajpheart.00050.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We compared the branches and trunk of rat superior mesenteric artery (SMA) with respect to extracellular pH (pHo)-dependent changes in vascular contractility. Decreases in pHo from 7.8 to 6.4 significantly reduced apparent affinity (pD2) to norepinephrine (NE) and maximal contraction by NE, which were more prominent in larger-diameter arteries. On the other hand, decreases in pHo significantly reduced Ba2+-sensitive K+-induced relaxation (which was evoked by elevation of extracellular K+ concentration from 6 to 12 mM) in the first branch and inhibited inwardly rectifying K+ (KIR) currents in cultured smooth muscle cells (SMCs) of SMA. RT-PCR revealed transcripts for Kir2.1 in the SMCs. Real-time PCR analysis revealed 6.1-, 3.3-, and 2.2-fold increases in the Kir2.1 mRNA-to-β-actin mRNA ratios of SMCs of the third, second, and first branches, respectively, vs. the corresponding relative levels of trunk SMCs. The magnitudes of K+-induced relaxation were significantly greater in smaller-diameter arteries, and there was a strong correlation between the transcript levels of Kir2.1 and K+-induced relaxation. A decrease in pHo reduced ouabain-sensitive K+-induced relaxation and ouabain-induced contraction. A decrease in pHo from 7.4 to 6.4 depolarized membrane potential of the cultured SMCs. From these results, we conclude that an increase in pHo activates KIR currents and the Na+-K+ pump, which then reduces vascular contractility. Inasmuch as KIR channel densities are significantly greater in smaller-diameter arteries, the reduction in vascular contractility on increasing pHo is more pronounced in smaller-diameter arteries.
Collapse
Affiliation(s)
- Moon Young Kim
- Department of Physiology and Medical Research Institute, College of Medicine, Ewha Women's Univ., 911-1 Mok-6-dong, Yang Chun-gu, Seoul, Republic of Korea, 158-710
| | | | | | | | | | | |
Collapse
|
24
|
Putnam RW, Filosa JA, Ritucci NA. Cellular mechanisms involved in CO(2) and acid signaling in chemosensitive neurons. Am J Physiol Cell Physiol 2004; 287:C1493-526. [PMID: 15525685 DOI: 10.1152/ajpcell.00282.2004] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An increase in CO(2)/H(+) is a major stimulus for increased ventilation and is sensed by specialized brain stem neurons called central chemosensitive neurons. These neurons appear to be spread among numerous brain stem regions, and neurons from different regions have different levels of chemosensitivity. Early studies implicated changes of pH as playing a role in chemosensitive signaling, most likely by inhibiting a K(+) channel, depolarizing chemosensitive neurons, and thereby increasing their firing rate. Considerable progress has been made over the past decade in understanding the cellular mechanisms of chemosensitive signaling using reduced preparations. Recent evidence has pointed to an important role of changes of intracellular pH in the response of central chemosensitive neurons to increased CO(2)/H(+) levels. The signaling mechanisms for chemosensitivity may also involve changes of extracellular pH, intracellular Ca(2+), gap junctions, oxidative stress, glial cells, bicarbonate, CO(2), and neurotransmitters. The normal target for these signals is generally believed to be a K(+) channel, although it is likely that many K(+) channels as well as Ca(2+) channels are involved as targets of chemosensitive signals. The results of studies of cellular signaling in central chemosensitive neurons are compared with results in other CO(2)- and/or H(+)-sensitive cells, including peripheral chemoreceptors (carotid body glomus cells), invertebrate central chemoreceptors, avian intrapulmonary chemoreceptors, acid-sensitive taste receptor cells on the tongue, and pain-sensitive nociceptors. A multiple factors model is proposed for central chemosensitive neurons in which multiple signals that affect multiple ion channel targets result in the final neuronal response to changes in CO(2)/H(+).
Collapse
Affiliation(s)
- Robert W Putnam
- Department of Anatomy and Physiology, Wright State University School of Medicine, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA.
| | | | | |
Collapse
|
25
|
Dhamoon AS, Pandit SV, Sarmast F, Parisian KR, Guha P, Li Y, Bagwe S, Taffet SM, Anumonwo JMB. Unique Kir2.x properties determine regional and species differences in the cardiac inward rectifier K+ current. Circ Res 2004; 94:1332-9. [PMID: 15087421 DOI: 10.1161/01.res.0000128408.66946.67] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The inwardly rectifying potassium (Kir) 2.x channels mediate the cardiac inward rectifier potassium current (I(K1)). In addition to differences in current density, atrial and ventricular I(K1) have differences in outward current profiles and in extracellular potassium ([K+]o) dependence. The whole-cell patch-clamp technique was used to study these properties in heterologously expressed Kir2.x channels and atrial and ventricular I(K1) in guinea pig and sheep hearts. Kir2.x channels showed distinct rectification profiles: Kir2.1 and Kir2.2 rectified completely at potentials more depolarized than -30 mV (I approximately 0 pA). In contrast, rectification was incomplete for Kir2.3 channels. In guinea pig atria, which expressed mainly Kir2.1, I(K1) rectified completely. In sheep atria, which predominantly expressed Kir2.3 channels, I(K1) did not rectify completely. Single-channel analysis of sheep Kir2.3 channels showed a mean unitary conductance of 13.1+/-0.1 pS in 15 cells, which corresponded with I(K1) in sheep atria (9.9+/-0.1 pS in 32 cells). Outward Kir2.1 currents were increased in 10 mmol/L [K+]o, whereas Kir2.3 currents did not increase. Correspondingly, guinea pig (but not sheep) atrial I(K1) showed an increase in outward currents in 10 mmol/L [K+]o. Although the ventricles of both species expressed Kir2.1 and Kir2.3, outward I(K1) currents rectified completely and increased in high [K+]o-displaying Kir2.1-like properties. Likewise, outward current properties of heterologously expressed Kir2.1-Kir2.3 complexes in normal and 10 mmol/L [K+]o were similar to Kir2.1 but not Kir2.3. Thus, unique properties of individual Kir2.x isoforms, as well as heteromeric Kir2.x complexes, determine regional and species differences of I(K1) in the heart.
Collapse
Affiliation(s)
- Amit S Dhamoon
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Russo E, Constanti A. Topiramate hyperpolarizes and modulates the slow poststimulus AHP of rat olfactory cortical neurones in vitro. Br J Pharmacol 2004; 141:285-301. [PMID: 14691058 PMCID: PMC1574203 DOI: 10.1038/sj.bjp.0705617] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Accepted: 11/06/2003] [Indexed: 11/09/2022] Open
Abstract
1. The effects of the novel antiepileptic drug topiramate (TPM) were investigated in rat olfactory cortex neurones in vitro using a current/voltage clamp technique. 2. In 80% of recorded cells, bath application of TPM (20 microm) reversibly hyperpolarized and inhibited neuronal repetitive firing by inducing a slow outward membrane current, accompanied by a conductance increase. The response was reproducible after washout, and was most likely carried largely by K(+) ions, although other ionic conductances may also have contributed. 3. In 90% of cells, TPM (20 microm) also enhanced and prolonged the slow (Ca(2+)-dependent) poststimulus afterhyperpolarization (sAHP) and underlying slow outward tail current (sI(AHP)). This effect was due to a selective enhancement/prolongation of an underlying L-type Ca(2+) current that was blocked by nifedipine (20 microm); the TPM response was unlikely to involve an interaction at PKA-dependent phosphorylation sites. 4. The carbonic anhydrase (CA) inhibitor acetazolamide (ACTZ, 20 microm) and the poorly membrane permeant inhibitor benzolamide (BZ, 50 microm) both mimicked the membrane effects of TPM, in generating a slow hyperpolarization (slow outward current under voltage clamp) and sAHP enhancement. ACTZ and BZ occluded the effects of TPM in generating the outward current response, but were additive in producing the sAHP modulatory effect, suggesting different underlying response mechanisms. 5. In bicarbonate/CO(2)-free, HEPES-buffered medium, all the membrane effects of TPM and ACTZ were reproducible, therefore not dependent on CA inhibition. 6. We propose that both novel effects of TPM and ACTZ exerted on cortical neurones may contribute towards their clinical effectiveness as anticonvulsants.
Collapse
Affiliation(s)
- Emilio Russo
- Department of Pharmacology, The School of Pharmacy, 29/39 Brunswick Square, London WC1N 1AX
| | - Andrew Constanti
- Department of Pharmacology, The School of Pharmacy, 29/39 Brunswick Square, London WC1N 1AX
| |
Collapse
|
27
|
Chu XP, Zhu XM, Wei WL, Li GH, Simon RP, MacDonald JF, Xiong ZG. Acidosis decreases low Ca(2+)-induced neuronal excitation by inhibiting the activity of calcium-sensing cation channels in cultured mouse hippocampal neurons. J Physiol 2003; 550:385-99. [PMID: 12777448 PMCID: PMC2343034 DOI: 10.1113/jphysiol.2003.043091] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The effects of extracellular pH (pHo) on calcium-sensing non-selective cation (csNSC) channels in cultured mouse hippocampal neurons were investigated using whole-cell voltage-clamp and current-clamp recordings. Decreasing extracellular Ca2+ concentrations ([Ca2+]o) activated slow and sustained inward currents through the csNSC channels. Decreasing pHo activated amiloride-sensitive transient proton-gated currents which decayed to baseline in several seconds. With proton-gated channels inactivated by pre-perfusion with low pH solution or blocked by amiloride, decreasing pHo to 6.5 inhibited the csNSC currents with a leftward shift of the Ca2+ dose-inhibition curve. Increasing pH to 8.5, on the other hand, caused a rightward shift of the Ca2+ dose-inhibition curve and potentiated the csNSC currents. Intracellular alkalinization following bath perfusion of quinine mimicked the potentiation of the csNSC currents by increasing pHo, while intracellular acidification by addition and subsequent withdrawal of NH4Cl mimicked the inhibition of the csNSC currents by decreasing pHo. Intracellular pH (pHi) imaging demonstrated that decreasing pHo induced a corresponding decrease in pHi. Including 30 mM Hepes in the pipette solution eliminated the effects of quinine and NH4Cl on the csNSC currents, but only partially reduced the effect of lowering pHo. In current-clamp recordings, decreasing [Ca2+]o induced sustained membrane depolarization and excitation of hippocampal neurons. Decreasing pHo to 6.5 inhibited the low [Ca2+]o-induced csNSC channel-mediated membrane depolarization and the excitation of neurons. Our results indicate that acidosis may inhibit low [Ca2+]o-induced neuronal excitation by inhibiting the activity of the csNSC channels. Both the extracellular and the intracellular sites are involved in the proton modulation of the csNSC channels.
Collapse
Affiliation(s)
- Xiang-Ping Chu
- Robert S. Dow Neurobiology Laboratories, Legacy Research, Portland, OR 97232, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Yuan Y, Shimura M, Hughes BA. Regulation of inwardly rectifying K+ channels in retinal pigment epithelial cells by intracellular pH. J Physiol 2003; 549:429-38. [PMID: 12665599 PMCID: PMC2342945 DOI: 10.1113/jphysiol.2003.042341] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/26/2003] [Accepted: 03/11/2003] [Indexed: 11/08/2022] Open
Abstract
Inwardly rectifying K+ (Kir) channels in the apical membrane of the retinal pigment epithelium (RPE) play a key role in the transport of K+ into and out of the subretinal space (SRS), a small extracellular compartment surrounding photoreceptor outer segments. Recent molecular and functional evidence indicates that these channels comprise Kir7.1 channel subunits. The purpose of this study was to determine whether Kir channels in the RPE are modulated by extracellular (pHo) or intracellular pH (pHi), both of which change upon illumination of the dark-adapted retina. The Kir current (IKir) in acutely dissociated bovine RPE cells was recorded in the whole-cell configuration while altering pHo or pHi. In cells dialysed with pipette solution buffered to pH 7.2, step changes in pHo from 7.4 to 8.0, 7.0 or 6.5 had little effect on IKir. Acidification to pHo 6.0, however, caused a transient activation of IKir followed by a slower inhibition. To determine the dependence of IKir on pHi, we altered pHi within individual RPE cells at constant pHo by imposing transmembrane acetate concentration gradients. These experiments revealed a biphasic relationship between IKir and pHi: IKir was maximal at about pHi 7.1, but decreased sharply at more acidic or alkaline levels. To evaluate the role of Kir7.1 channels in the pHi-dependent changes in IKir, we tested the effect of transmembrane acetate concentration gradients on Rb+ currents, which are 10-fold larger than K+ currents for this channel subtype. Inwardly rectifying Rb+ currents were maximal at about pHi 7.0 and were inhibited by intracellular alkalinization or acidification. We conclude that the Kir conductance in the RPE is modulated by intracellular pH in the physiological range and that this reflects the behaviour of Kir7.1 channels. This sensitivity to pHi may provide an important mechanism linking photoreceptor activity and RPE function.
Collapse
Affiliation(s)
- Yukun Yuan
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | | | | |
Collapse
|
29
|
Mao J, Wu J, Chen F, Wang X, Jiang C. Inhibition of G-protein-coupled inward rectifying K+ channels by intracellular acidosis. J Biol Chem 2003; 278:7091-8. [PMID: 12501240 DOI: 10.1074/jbc.m211461200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G-protein-coupled inward rectification K(+) (GIRK) channels play an important role in modulation of synaptic transmission and cellular excitability. The GIRK channels are regulated by diverse intra- and extracellular signaling molecules. Previously, we have shown that GIRK1/GIRK4 channels are activated by extracellular protons. The channel activation depends on a histidine residue in the M1-H5 linker and may play a role in neurotransmission. Here, we show evidence that the heteromeric GIRK1/GIRK4 channels are inhibited by intracellular acidification. This inhibition was produced by selective decrease in the channel open probability with a modest drop in the single-channel conductance. The inhibition does not seem to require G-proteins as it was seen in two G-protein coupling-defective GIRK mutants and in excised patches in the absence of exogenous G-proteins. Three histidine residues in intracellular domains were critical for the inhibition. Individual mutation of His-64, His-228, or His-352 in GIRK4 abolished or greatly diminished the inhibition in homomeric GIRK4. Mutations of any of these histidine residues in GIRK4 or their counterparts in GIRK1 were sufficient to eliminate the pH(i) sensitivity of the heteromeric GIRK1/GIRK4 channels. Thus, the molecular and biophysical bases for the inhibition of GIRK channels by intracellular protons are illustrated. Because of the inequality of the pH(i) and pH(o) in most cells and their relatively independent controls by cellular versus systemic mechanisms, such pH(i) sensitivity may allow these channels to regulate cellular excitability in certain physiological and pathophysiological conditions when intracellular acidosis occurs.
Collapse
Affiliation(s)
- Jinzhe Mao
- Department of Biology, Georgia State University, Atlanta, Georgia 30302-4010, USA
| | | | | | | | | |
Collapse
|
30
|
Mao J, Li L, McManus M, Wu J, Cui N, Jiang C. Molecular determinants for activation of G-protein-coupled inward rectifier K+ (GIRK) channels by extracellular acidosis. J Biol Chem 2002; 277:46166-71. [PMID: 12361957 DOI: 10.1074/jbc.m205438200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synaptic cleft acidification occurs following vesicle release. Such a pH change may affect synaptic transmissions in which G-protein-coupled inward rectifier K(+) (GIRK) channels play a role. To elucidate the effect of extracellular pH (pH(o)) on GIRK channels, we performed experiments on heteromeric GIRK1/GIRK4 channels expressed in Xenopus oocytes. A decrease in pH(o) to 6.2 augmented GIRK1/GIRK4 currents by approximately 30%. The channel activation was reversible and dependent on pH(o) levels. This effect was produced by selective augmentation of single channel conductance without change in the open-state probability. To determine which subunit was involved, we took advantage of homomeric expression of GIRK1 and GIRK4 by introducing a single mutation. We found that homomeric GIRK1-F137S and GIRK4-S143T channels were activated at pH(o) 6.2 by approximately 20 and approximately 70%, respectively. Such activation was eliminated when a histidine residue in the M1-H5 linker was mutated to a non-titratable glutamine, i.e. H116Q in GIRK1 and H120Q in GIRK4. Both of these histidines were required for pH sensing of the heteromeric channels, because the mutation of one of them diminished but not abolished the pH(o) sensitivity. The pH(o) sensitivity of the heteromeric channels was completely lost when both were mutated. Thus, these results suggest that the GIRK-mediated synaptic transmission is determined by both neurotransmitter and protons with the transmitter accounting for only 70% of the effect on postsynaptic cell and protons released together with the transmitter contributing to the other 30%.
Collapse
Affiliation(s)
- Jinzhe Mao
- Department of Biology, Georgia State University, Atlanta, Georgia 30302-4010, USA
| | | | | | | | | | | |
Collapse
|
31
|
Stanfield PR, Nakajima S, Nakajima Y. Constitutively active and G-protein coupled inward rectifier K+ channels: Kir2.0 and Kir3.0. Rev Physiol Biochem Pharmacol 2002; 145:47-179. [PMID: 12224528 DOI: 10.1007/bfb0116431] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Peter R Stanfield
- Molecular Physiology Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
32
|
Wu J, Cui N, Piao H, Wang Y, Xu H, Mao J, Jiang C. Allosteric modulation of the mouse Kir6.2 channel by intracellular H+ and ATP. J Physiol 2002; 543:495-504. [PMID: 12205184 PMCID: PMC2290504 DOI: 10.1113/jphysiol.2002.025247] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The ATP-sensitive K+ (K(ATP)) channels are regulated by intracellular H+ in addition to ATP, ADP, and phospholipids. Here we show evidence for the interaction of H+ with ATP in regulating a cloned K(ATP) channel, i.e. Kir6.2 expressed with and without the SUR1 subunit. Channel sensitivity to ATP decreases at acidic pH, while the pH sensitivity also drops in the presence of ATP. These effects are more evident in the presence of the SUR1 subunit. In the Kir6.2 + SUR1, the pH sensitivity is reduced by about 0.4 pH units with 100 microM ATP and 0.6 pH units with 1 mM ATP, while a decrease in pH from 7.4 to 6.8 lowers the ATP sensitivity by about fourfold. The Kir6.2 + SUR1 currents are strongly activated at pH 5.9-6.5 even in the presence of 1 mM ATP. The modulations appear to take place at His175 and Lys185 that are involved in proton and ATP sensing, respectively. Mutation of His175 completely eliminates the pH effect on the ATP sensitivity. Similarly, the K185E mutant-channel loses the ATP-dependent modulation of the pH sensitivity. Thus, allosteric modulations of the cloned K(ATP) channel by ATP and H+ are demonstrated. Such a regulation allows protons to activate directly the K(ATP) channels and release channel inhibition by intracellular ATP; the pH effect is further enhanced with a decrease in ATP concentration as seen in several pathophysiological conditions.
Collapse
Affiliation(s)
- Jianping Wu
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue, Atlanta, Georgia 30302-4010, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Ballantyne D, Scheid P. Central respiratory chemosensitivity: cellular and network mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 499:17-26. [PMID: 11729873 DOI: 10.1007/978-1-4615-1375-9_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- D Ballantyne
- Institut für Physiologie, Ruhr-Universitat Bochum, Germany
| | | |
Collapse
|
34
|
Inanobe A, Fujita A, Ito M, Tomoike H, Inageda K, Kurachi Y. Inward rectifier K+ channel Kir2.3 is localized at the postsynaptic membrane of excitatory synapses. Am J Physiol Cell Physiol 2002; 282:C1396-403. [PMID: 11997254 DOI: 10.1152/ajpcell.00615.2001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Classical inwardly rectifying K+ channels (Kir2.0) are responsible for maintaining the resting membrane potential near the K+ equilibrium potential in various cells, including neurons. Although Kir2.3 is known to be expressed abundantly in the forebrain, its precise localization has not been identified. Using an antibody specific to Kir2.3, we examined the subcellular localization of Kir2.3 in mouse brain. Kir2.3 immunoreactivity was detected in a granular pattern in restricted areas of the brain, including the olfactory bulb (OB). Immunoelectron microscopy of the OB revealed that Kir2.3 immunoreactivity was specifically clustered on the postsynaptic membrane of asymmetric synapses between granule cells and mitral/tufted cells. The immunoprecipitants for Kir2.3 obtained from brain contained PSD-95 and chapsyn-110, PDZ domain-containing anchoring proteins. In vitro binding assay further revealed that the COOH-terminal end of Kir2.3 is responsible for the association with these anchoring proteins. Therefore, the Kir channel may be involved in formation of the resting membrane potential of the spines and, thus, would affect the response of N-methyl-D-aspartic acid receptor channels at the excitatory postsynaptic membrane.
Collapse
Affiliation(s)
- Atsushi Inanobe
- Department of Pharmacology II, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Schröder W, Seifert G, Hüttmann K, Hinterkeuser S, Steinhäuser C. AMPA receptor-mediated modulation of inward rectifier K+ channels in astrocytes of mouse hippocampus. Mol Cell Neurosci 2002; 19:447-58. [PMID: 11906215 DOI: 10.1006/mcne.2001.1080] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Astrocytes and neurons are tightly associated and recent data suggest a direct signaling between neuronal and glial cells in vivo. To further analyze these interactions, the patch-clamp technique was combined with single-cell RT-PCR in acute hippocampal brain slices. Subsequent to functional analysis, the cytoplasm of the same cell was harvested to perform transcript analysis and identify subunits that underlie inwardly rectifying K+ currents (I(Kir)) in astrocytes of the CA1 stratum radiatum. Transcripts encoding Kir2.1, Kir2.2, or Kir2.3, were encountered in a majority of cells, while Kir4.1 was less frequent. Further investigation revealed that glial Kir channels are rapidly inhibited upon activation of AMPA-type glutamate receptors, most probably due a receptor-mediated influx of Na+, which plugs the channels from the intracellular side. A transient inhibition of I(Kir) in astrocytes in response to neuronal glutamate release and glial AMPA receptor activation represents a further, so far undetected mechanism to balance neuronal excitability.
Collapse
Affiliation(s)
- Wolfgang Schröder
- Experimental Neurobiology, Neurosurgery, University of Bonn, 53105 Bonn, Germany
| | | | | | | | | |
Collapse
|
36
|
Herrero AI, Del Olmo N, González-Escalada JR, Solís JM. Two new actions of topiramate: inhibition of depolarizing GABA(A)-mediated responses and activation of a potassium conductance. Neuropharmacology 2002; 42:210-20. [PMID: 11804617 DOI: 10.1016/s0028-3908(01)00171-x] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Topiramate (TPM) is an antiepileptic with several proposed mechanisms of action including the inhibition of carbonic anhydrase (CA). Since the activity of this enzyme is essential for the generation of GABA(A)-mediated depolarizing responses, which appears to participate in epileptogenesis, we investigated whether TPM could inhibit such a response in rat hippocampal slices using intracellular recordings. Bath perfusion of TPM (20 and 100 microM) reversibly reduced the GABA(A)-mediated depolarizing responses evoked by either synaptic stimulation (GDPSPs) or by pressure application of GABA, but did not modify the GABA(A)-mediated hyperpolarizing postsynaptic potentials. TPM (20 microM) shifted the reversal potential for the GDPSP by -10 mV. Unexpectedly, TPM also induced a steady membrane hyperpolarization associated with a reduction in the input resistance of the cell. This effect was insensitive to tetrodotoxin, and to GABA(A) and GABA(B) receptor antagonists, but was blocked by barium (1 mM). Notably, when the extracellular concentration of K(+) was varied the reversal potential shifted as predicted by the Nernst potential for K(+). Acetazolamide (20 microM), another CA inhibitor, elicited similar effects to those reported here for TPM and occluded the hyperpolarization evoked by TPM. The results of this study support the concept that inhibition of carbonic anhydrase in neurons contributes to the anticonvulsant activity of TPM.
Collapse
Affiliation(s)
- Ana I Herrero
- Servicio de Neurobiología, Depto. de Investigación, Hospital Ramón y Cajal, 28034 Madrid, Spain
| | | | | | | |
Collapse
|
37
|
Liu Y, Liu D, Printzenhoff D, Coghlan MJ, Harris R, Krafte DS. Tenidap, a novel anti-inflammatory agent, is an opener of the inwardly rectifying K+ channel hKir2.3. Eur J Pharmacol 2002; 435:153-60. [PMID: 11821021 DOI: 10.1016/s0014-2999(01)01590-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We studied the effect of a novel anti-inflammatory agent, tenidap, on a cloned inwardly rectifying K+ channel, hKir2.3. Tenidap (a) potently potentiated 86Rb+ efflux through hKir2.3 channels expressed in Chinese hamster ovary cells (EC50=402 nM), (b) reversibly and dose-dependently increased whole-cell and macro-patch hKir2.3 currents (maximum whole-cell current response to tenidap was 230+/-27% of control; EC50=1.3 microM.), and (c) caused dose-dependent and Ba2+-sensitive membrane hyperpolarizations and concurrent decreases in input resistance. Potentiation of hKir2.3 by tenidap was unaffected by inhibitors of phospholipase A2, protein kinase C, or arachidonic acid metabolic pathways. The action of tenidap was not intracellular. Tenidap also had little or no effect on currents flowing through hKir2.1, Kv1.5, and micro1 Na+ channels. Our results demonstrate that tenidap is a potent opener of hKir2.3 and suggest that it can serve as a valuable pharmacological tool for studying physiological and pathological processes involving Kir2.3.
Collapse
Affiliation(s)
- Yi Liu
- Icagen, Inc., 4222 Emperor Boulevard, Suite 460, Durham, NC 27703, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Bayliss DA, Talley EM, Sirois JE, Lei Q. TASK-1 is a highly modulated pH-sensitive 'leak' K(+) channel expressed in brainstem respiratory neurons. RESPIRATION PHYSIOLOGY 2001; 129:159-74. [PMID: 11738652 DOI: 10.1016/s0034-5687(01)00288-2] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Central respiratory chemoreceptors adjust respiratory drive in a homeostatic response to alterations in brain pH and/or P(CO(2)). Multiple brainstem sites are proposed as neural substrates for central chemoreception, but molecular substrates that underlie chemosensitivity in respiratory neurons have not been identified. In rat brainstem neurons expressing transcripts for TASK-1, a two-pore domain K(+) channel, we characterized K(+) currents with kinetic and voltage-dependent properties identical to cloned rat TASK-1 currents. Native currents were sensitive to acid and alkaline shifts in the same physiological pH range as TASK-1 (pK approximately 7.4), and native and cloned pH-sensitive currents were modulated similarly by neurotransmitters and inhalational anesthetics. This pH-sensitive TASK-1 channel is an attractive candidate to mediate chemoreception because it is functionally expressed in respiratory-related neurons, including airway motoneurons and putative chemoreceptor neurons of locus coeruleus (LC). Inhibition of TASK-1 channels by extracellular acidosis can depolarize and increase excitability in those cells, thereby contributing to chemoreceptor function in LC neurons and directly enhancing respiratory motoneuronal output.
Collapse
Affiliation(s)
- D A Bayliss
- Department of Pharmacology, Health Sciences Center, University of Virginia, Box 448, Jordan Hall, Charlottesville, VA 22908, USA.
| | | | | | | |
Collapse
|
39
|
Jiang C, Xu H, Cui N, Wu J. An alternative approach to the identification of respiratory central chemoreceptors in the brainstem. RESPIRATION PHYSIOLOGY 2001; 129:141-57. [PMID: 11738651 DOI: 10.1016/s0034-5687(01)00301-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Central chemoreceptors (CCRs) play a crucial role in autonomic respiration. Although a variety of brainstem neurons are CO(2) sensitive, it remains to know which of them are the CCRs. In this article, we discuss a potential alternative approach that may allow an access to the CCRs. This approach is based on identification of specific molecules that are CO(2) or pH sensitive, exist in brainstem neurons, and regulate cellular excitability. Their molecular identity may provide another measure in addition to the electrophysiologic criteria to indicate the CCRs. The inward rectifier K(+) channels (Kir) seem to be some of the CO(2) sensing molecules, as they regulate membrane potential and cell excitability and are pH sensitive. Among homomeric Kirs, we have found that even the most sensitive Kir1.1 and Kir2.3 have pK approximately 6.8, suggesting that they may not be capable of detecting hypocapnia. We have studied their biophysical properties, and identified a number of amino acid residues and molecular motifs critical for the CO(2) sensing. By comparing all Kirs using the motifs, we found the same amino acid sequence in Kir5.1, and demonstrated the pH sensitivity in heteromeric Kir4.1 and Kir5.1 channels to be pK approximately 7.4. In current clamp, we show evidence that the Kir4.1-Kir5.1 can detect P(CO(2)) changes in either hypercapnic or hypocapnic direction. Our in-situ hybridization studies have indicated that they are coexpressed in brainstem cardio-respiratory nuclei. Thus, it is likely that the heteromeric Kir4.1-Kir5.1 contributes to the CO(2)/pH sensitivity in these neurons. We believe that this line of research intended to identify CO(2) sensing molecules is an important addition to current studies on the CCRs.
Collapse
Affiliation(s)
- C Jiang
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue, Atlanta, GA 30302-4010, USA.
| | | | | | | |
Collapse
|
40
|
Cui N, Giwa LR, Xu H, Rojas A, Abdulkadir L, Jiang C. Modulation of the heteromeric Kir4.1-Kir5.1 channels by P(CO(2)) at physiological levels. J Cell Physiol 2001; 189:229-36. [PMID: 11598908 DOI: 10.1002/jcp.10021] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Several inward rectifier K(+) (Kir) channels are pH-sensitive, making them potential candidates for CO(2) chemoreception in cells. However, there is no evidence showing that Kir channels change their activity at near physiological level of P(CO(2)), as most previous studies were done using high concentrations of CO(2). It is known that the heteromeric Kir4.1-Kir5.1 channels are highly sensitive to intracellular protons with pKa value right at the physiological pH level. Such a pKa value may allow these channels to regulate membrane potentials with modest changes in P(CO(2)). To test this hypothesis, we studied the Kir4.1-Kir5.1 currents expressed in Xenopus oocytes and membrane potentials in the presence and absence of bicarbonate. Evident inhibition of these currents (by approximately 5%) was seen with P(CO(2)) as low as 8 torr. Higher P(CO(2)) levels (23-60 torr) produced stronger inhibitions (by 30-40%). The inhibitions led to graded depolarizations (5-45 mV with P(CO(2)) 8-60 torr). Similar effects were observed in the presence of 24 mM bicarbonate and 5% CO(2). Indeed, the Kir4.1-Kir5.1 currents were enhanced with 3% CO(2) and suppressed with 8% CO(2) in voltage clamp, resulting in hyper- (-9 mV) and depolarization (16 mV) in current clamp, respectively. With physiological concentration of extracellular K(+), the Kir4.1-Kir5.1 channels conduct substantial outward currents that were similarly inhibited by CO(2) as their inward rectifying currents. These results therefore indicate that the heteromeric Kir4.1-Kir5.1 channels are modulated by a modest change in P(CO(2)) levels. Such a modulation alters cellular excitability, and enables the cell to detect hypercapnia and hypocapnia in the presence of bicarbonate.
Collapse
Affiliation(s)
- N Cui
- Department of Biology, Georgia State University, Atlanta, Georgia 30303-4010, USA
| | | | | | | | | | | |
Collapse
|
41
|
Xu H, Wu J, Cui N, Abdulkadir L, Wang R, Mao J, Giwa LR, Chanchevalap S, Jiang C. Distinct histidine residues control the acid-induced activation and inhibition of the cloned K(ATP) channel. J Biol Chem 2001; 276:38690-6. [PMID: 11514573 DOI: 10.1074/jbc.m106595200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The modulation of K(ATP) channels during acidosis has an impact on vascular tone, myocardial rhythmicity, insulin secretion, and neuronal excitability. Our previous studies have shown that the cloned Kir6.2 is activated with mild acidification but inhibited with high acidity. The activation relies on His-175, whereas the molecular basis for the inhibition remains unclear. To elucidate whether the His-175 is indeed the protonation site and what other structures are responsible for the pH-induced inhibition, we performed these studies. Our data showed that the His-175 is the only proton sensor whose protonation is required for the channel activation by acidic pH. In contrast, the channel inhibition at extremely low pH depended on several other histidine residues including His-186, His-193, and His-216. Thus, proton has both stimulatory and inhibitory effects on the Kir6.2 channels, which attribute to two sets of histidine residues in the C terminus.
Collapse
Affiliation(s)
- H Xu
- Department of Biology, Georgia State University, Atlanta, Georgia 30302-4010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Piao H, Cui N, Xu H, Mao J, Rojas A, Wang R, Abdulkadir L, Li L, Wu J, Jiang C. Requirement of multiple protein domains and residues for gating K(ATP) channels by intracellular pH. J Biol Chem 2001; 276:36673-80. [PMID: 11451963 DOI: 10.1074/jbc.m106123200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP-sensitive K(+) channels (K(ATP)) are regulated by pH in addition to ATP, ADP, and phospholipids. In the study we found evidence for the molecular basis of gating the cloned K(ATP) by intracellular protons. Systematic constructions of chimerical Kir6.2-Kir1.1 channels indicated that full pH sensitivity required the N terminus, C terminus, and M2 region. Three amino acid residues were identified in these protein domains, which are Thr-71 in the N terminus, Cys-166 in the M2 region, and His-175 in the C terminus. Mutation of any of them to their counterpart residues in Kir1.1 was sufficient to completely eliminate the pH sensitivity. Creation of these residues rendered the mutant channels clear pH-dependent activation. Thus, critical players in gating K(ATP) by protons are demonstrated. The pH sensitivity enables the K(ATP) to regulate cell excitability in a number of physiological and pathophysiological conditions when pH is low but ATP concentration is normal.
Collapse
Affiliation(s)
- H Piao
- Department of Biology, Georgia State University, Atlanta, Georgia 30302-4010, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Liu Y, Liu D, Heath L, Meyers DM, Krafte DS, Wagoner PK, Silvia CP, Yu W, Curran ME. Direct activation of an inwardly rectifying potassium channel by arachidonic acid. Mol Pharmacol 2001; 59:1061-8. [PMID: 11306688 DOI: 10.1124/mol.59.5.1061] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Arachidonic acid (AA) is an important constituent of membrane phospholipids and can be liberated by activation of cellular phospholipases. AA modulates a variety of ion channels via diverse mechanisms, including both direct effects by AA itself and indirect actions through AA metabolites. Here, we report excitatory effects of AA on a cloned human inwardly rectifying K(+) channel, Kir2.3, which is highly expressed in the brain and heart and is critical in regulating cell excitability. AA potently and reversibly increased Kir2.3 current amplitudes in whole-cell and excised macro-patch recordings (maximal whole-cell response to AA was 258 +/- 21% of control, with an EC(50) value of 447 nM at -97 mV). This effect was apparently caused by an action of AA at an extracellular site and was not prevented by inhibitors of protein kinase C, free oxygen radicals, or AA metabolic pathways. Fatty acids that are not substrates for metabolism also potentiated Kir2.3 current. AA had no effect on the currents flowing through Kir2.1, Kir2.2, or Kir2.4 channels. Experiments with Kir2.1/2.3 chimeras suggested that, although AA may bind to both Kir2.1 and Kir2.3, the transmembrane and/or intracellular domains of Kir2.3 were essential for channel potentiation. These results argue for a direct mechanism of AA modulation of Kir2.3.
Collapse
Affiliation(s)
- Y Liu
- ICAgen, Inc., Durham, North Carolina, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Xu H, Cui N, Yang Z, Wu J, Giwa LR, Abdulkadir L, Sharma P, Jiang C. Direct activation of cloned K(atp) channels by intracellular acidosis. J Biol Chem 2001; 276:12898-902. [PMID: 11278532 DOI: 10.1074/jbc.m009631200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP-sensitive K(+) (K(ATP)) channels may be regulated by protons in addition to ATP, phospholipids, and other nucleotides. Such regulation allows a control of cellular excitability in conditions when pH is low but ATP concentration is normal. However, whether the K(ATP) changes its activity with pH alterations remains uncertain. In this study we showed that the reconstituted K(ATP) was strongly activated during hypercapnia and intracellular acidosis using whole-cell recordings. Further characterizations in excised patches indicated that channel activity increased with a moderate drop in intracellular pH and decreased with strong acidification. The channel activation was produced by a direct action of protons on the Kir6 subunit and relied on a histidine residue that is conserved in all K(ATP). The inhibition appeared to be a result of channel rundown and was not seen in whole-cell recordings. The biphasic response may explain the contradictory pH sensitivity observed in cell-endogenous K(ATP) in excised patches. Site-specific mutations of two residues showed that pH and ATP sensitivities were independent of each other. Thus, these results demonstrate that the proton is a potent activator of the K(ATP). The pH-dependent activation may enable the K(ATP) to control vascular tones, insulin secretion, and neuronal excitability in several pathophysiologic conditions.
Collapse
Affiliation(s)
- H Xu
- Department of Biology, Georgia State University, Atlanta, Georgia 30302-4010, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Liu GX, Derst C, Schlichthörl G, Heinen S, Seebohm G, Brüggemann A, Kummer W, Veh RW, Daut J, Preisig-Müller R. Comparison of cloned Kir2 channels with native inward rectifier K+ channels from guinea-pig cardiomyocytes. J Physiol 2001; 532:115-26. [PMID: 11283229 PMCID: PMC2278533 DOI: 10.1111/j.1469-7793.2001.0115g.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The aim of the study was to compare the properties of cloned Kir2 channels with the properties of native rectifier channels in guinea-pig (gp) cardiac muscle. The cDNAs of gpKir2.1, gpKir2.2, gpKir2.3 and gpKir2.4 were obtained by screening a cDNA library from guinea-pig cardiac ventricle. A partial genomic structure of all gpKir2 genes was deduced by comparison of the cDNAs with the nucleotide sequences derived from a guinea-pig genomic library. The cell-specific expression of Kir2 channel subunits was studied in isolated cardiomyocytes using a multi-cell RT-PCR approach. It was found that gpKir2.1, gpKir2.2 and gpKir2.3, but not gpKir2.4, are expressed in cardiomyocytes. Immunocytochemical analysis with polyclonal antibodies showed that expression of Kir2.4 is restricted to neuronal cells in the heart. After transfection in human embryonic kidney cells (HEK293) the mean single-channel conductance with symmetrical K+ was found to be 30.6 pS for gpKir2.1, 40.0 pS for gpKir2.2 and 14.2 pS for Kir2.3. Cell-attached measurements in isolated guinea-pig cardiomyocytes (n = 351) revealed three populations of inwardly rectifying K+ channels with mean conductances of 34.0, 23.8 and 10.7 pS. Expression of the gpKir2 subunits in Xenopus oocytes showed inwardly rectifying currents. The Ba2+ concentrations required for half-maximum block at -100 mV were 3.24 M for gpKir2.1, 0.51 M for gpKir2.2, 10.26 M for gpKir2.3 and 235 M for gpKir2.4. Ba2+ block of inward rectifier channels of cardiomyocytes was studied in cell-attached recordings. The concentration and voltage dependence of Ba2+ block of the large-conductance inward rectifier channels was virtually identical to that of gpKir2.2 expressed in Xenopus oocytes. Our results suggest that the large-conductance inward rectifier channels found in guinea-pig cardiomyocytes (34.0 pS) correspond to gpKir2.2. The intermediate-conductance (23.8 pS) and low-conductance (10.7 pS) channels described here may correspond to gpKir2.1 and gpKir2.3, respectively.
Collapse
Affiliation(s)
- G X Liu
- Institut für Normale und Pathologische Physiologie, Marburg University Deutschhausstrasse 2, D-35037 Marburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Xu H, Yang Z, Cui N, Giwa LR, Abdulkadir L, Patel M, Sharma P, Shan G, Shen W, Jiang C. Molecular determinants for the distinct pH sensitivity of Kir1.1 and Kir4.1 channels. Am J Physiol Cell Physiol 2000; 279:C1464-71. [PMID: 11029294 DOI: 10.1152/ajpcell.2000.279.5.c1464] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Kir1.1 (ROMK1) is inhibited by hypercapnia and intracellular acidosis with midpoint pH for channel inhibition (pK(a)) of approximately 6.7. Another close relative, Kir4.1 (BIR10), is also pH sensitive with much lower pH sensitivity (pK(a) approximately 6. 0), although it shares a high sequence homology with Kir1.1. To find the molecular determinants for the distinct pH sensitivity, we studied the structure-functional relationship using site-directed mutagenesis. An NH(2)-terminal residue (Lys-53) was found to be responsible for the low pH sensitivity in Kir4.1. Mutation of this lysine to valine (K53V), a residue seen at the same position in Kir1. 1, markedly increased channel sensitivity to CO(2)/pH. Reverse mutation on Kir1.1 (V66K) decreased the CO(2)/pH sensitivities. Interestingly, mutation of these residues to glutamate greatly enhanced the pH sensitivity in both channels. Other contributors to the distinct pH sensitivity were histidine residues in the COOH terminus, whose numbers are fewer in Kir4.1 than Kir1.1. Mutation of two of these histidine residues in Kir1.1 (H342Q/H354N) reduced CO(2)/pH sensitivities, whereas the creation of two histidines (S328H/G340H) in Kir4.1 increased the CO(2)/pH sensitivities. Combined mutations of the lysine and histidine residues in Kir4.1 (K53V/S328H/G340H) gave rise to a channel that had CO(2)/pH sensitivities almost identical to those of the wild-type Kir1.1. Thus the residues demonstrated in our current studies are likely the molecular basis for the distinct pH sensitivity between Kir1.1 and Kir4.1.
Collapse
Affiliation(s)
- H Xu
- Department of Biology, Georgia State University, Atlanta, Georgia 30302-4010, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Xu H, Yang Z, Cui N, Chanchevalap S, Valesky WW, Jiang C. A single residue contributes to the difference between Kir4.1 and Kir1.1 channels in pH sensitivity, rectification and single channel conductance. J Physiol 2000; 528 Pt 2:267-77. [PMID: 11034617 PMCID: PMC2270133 DOI: 10.1111/j.1469-7793.2000.00267.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Kir1.1 and Kir4.1 channels may be involved in the maintenance of pH and K+ homeostasis in renal epithelial cells and CO2 chemoreception in brainstem neurons. To understand the molecular determinants for their characteristic differences, the structure-function relationship was studied using site-directed mutagenesis. According to previous studies, Glu158 in Kir4.1 is likely to be the major rectification controller. This was confirmed in both Kir1.1 and Kir4.1. Mutation of Gly210, the second potential rectification controller, to glutamate did not show any additional effect on the inward rectification. More interestingly, we found that Glu158 in Kir4.1 was also an important residue contributing to single channel conductance and pH sensitivity. The E158N Kir4.1 mutant had a unitary conductance of 35 pS and a midpoint pH for channel inhibition (pKa) value of 6.72, both of which were almost identical to those of the wild-type (WT) Kir1.1. Flickering channel activity was clearly seen in the E158N mutant at positive membrane potentials, which is typical in the WT Kir1.1 but absent in the WT Kir4.1. Reverse mutation in Kir1.1 (N171E) reduced the unitary conductance to 27 pS (23 pS in WT Kir4.1). However, the pH sensitivity of this mutant did not show a marked difference from the WT Kir1.1. Therefore, it is possible that a residue(s) in addition to Asn171 is also involved. Thus we studied several other residues in both M2 and H5 regions. We found that joint mutations of Val140 and Asn171 to residues seen in Kir4.1 greatly reduced the pH sensitivity (pKa 6. 08). The V140T mutation in Kir1.1 led to a unitary conductance of approximately 70 pS, and the G210E mutation in Kir4.1 caused a decrease in pH sensitivity of 0.4 pH units. These results indicate that the pore-forming sequences are targets for modulations of multiple channel-biophysical properties and demonstrate a site contributing to rectification, unitary conductance and proton sensitivity in these Kir channels.
Collapse
Affiliation(s)
- H Xu
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue, Atlanta, GA 30302-4010, USA
| | | | | | | | | | | |
Collapse
|
48
|
Qu Z, Yang Z, Cui N, Zhu G, Liu C, Xu H, Chanchevalap S, Shen W, Wu J, Li Y, Jiang C. Gating of inward rectifier K+ channels by proton-mediated interactions of N- and C-terminal domains. J Biol Chem 2000; 275:31573-80. [PMID: 10896660 DOI: 10.1074/jbc.m003473200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ion channels play an important role in cellular functions, and specific cellular activity can be produced by gating them. One important gating mechanism is produced by intra- or extracellular ligands. Although the ligand-mediated channel gating is an important cellular process, the relationship between ligand binding and channel gating is not well understood. It is possible that ligands are involved in the interactions of different protein domains of the channel leading to opening or closing. To test this hypothesis, we studied the gating of Kir2.3 (HIR) by intracellular protons. Our results showed that hypercapnia or intracellular acidification strongly inhibited these channels. This effect relied on both the N and C termini. The CO(2)/pH sensitivities were abolished or compromised when one of the intracellular termini was replaced. Using purified N- and C-terminal peptides, we found that the N and C termini bound to each other in vitro. Although their binding was weak at pH 7.4, stronger binding was seen at pH 6.6. Two short sequences in the N and C termini were found to be critical for the N/C-terminal interaction. Interestingly, there was no titratable residue in these motifs. To identify the potential protonation sites, we systematically mutated most histidine residues in the intracellular N and C termini. We found that mutations of several histidine residues in the C but not the N terminus had a major effect on channel sensitivities to CO(2) and pH(i). These results suggest that at acidic pH, protons appear to interact with the C-terminal histidine residues and present the C terminus to the N terminus. Consequentially, these two intracellular termini bound to each other through two short motifs and closed the channel. Thus, a novel mechanism for K(+) channel gating is demonstrated, which involves the N- and C-terminal interaction with protons as the mediator.
Collapse
Affiliation(s)
- Z Qu
- Department of Biology, Georgia State University, Atlanta, Georgia 30302-4010, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Perillán PR, Li X, Potts EA, Chen M, Bredt DS, Simard JM. Inward rectifier K(+) channel Kir2.3 (IRK3) in reactive astrocytes from adult rat brain. Glia 2000; 31:181-92. [PMID: 10878604 DOI: 10.1002/1098-1136(200008)31:2<181::aid-glia90>3.0.co;2-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Astrocytic inward rectifying K(+) channels that participate in K(+) spatial buffering in the central nervous system have been extensively investigated, but specific gene products have not been fully identified. We studied primary cultured reactive astrocytes of stellate and polygonal morphology from adult rat brains, as well as stellate astrocytes from neonatal rat brains. Single-channel recordings of cell-attached patches revealed that polygonal reactive astrocytes expressed only one hyperpolarization-activated single-channel conductance of 11-15 pS whose open probability was independent of voltage, whereas stellate reactive and stellate neonatal astrocytes exhibited two conductances, 11-15 pS and 24-27 pS. All three subtypes of astrocytes exhibited a hyperpolarization-activated macroscopic inward K(+) current that was strongly rectifying and was abrogated by 1 mM intracellular Mg(2+) introduced during conventional but not perforated patch whole-cell recording. This Mg(2+)-sensitive current comprised the total inward rectifier current in polygonal reactive astrocytes, but only a fraction of the inward rectifier current in stellate reactive and stellate neonatal astrocytes. Because a strongly rectifying, inward rectifier K(+) channel with a single-channel conductance of 11-15 pS that is voltage independent is consistent with features of Kir2.3 (IRK3), we performed immunofluorescence experiments with anti-Kir2.3 and anti-glial fibrillary acidic protein antibodies. Both antibodies co-localized to all three subtypes of astrocytes in primary culture and to reactive astrocytes in situ within brain and gelatin sponge implants. Our data indicate that astrocytes of both polygonal and stellate morphology, from both adult and neonatal rat brain, express Kir2.3 both in vivo and in vitro. Constitutive expression of Kir2.3 regardless of cell morphology or age of origin of the source tissue suggests an important functional role for this channel in astrocytes.
Collapse
Affiliation(s)
- P R Perillán
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201-1595, USA
| | | | | | | | | | | |
Collapse
|
50
|
Yang Z, Xu H, Cui N, Qu Z, Chanchevalap S, Shen W, Jiang C. Biophysical and molecular mechanisms underlying the modulation of heteromeric Kir4.1-Kir5.1 channels by CO2 and pH. J Gen Physiol 2000; 116:33-45. [PMID: 10871638 PMCID: PMC2229613 DOI: 10.1085/jgp.116.1.33] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
CO2 chemoreception may be related to modulation of inward rectifier K+ channels (Kir channels) in brainstem neurons. Kir4.1 is expressed predominantly in the brainstem and inhibited during hypercapnia. Although the homomeric Kir4.1 only responds to severe intracellular acidification, coexpression of Kir4.1 with Kir5.1 greatly enhances channel sensitivities to CO2 and pH. To understand the biophysical and molecular mechanisms underlying the modulation of these currents by CO2 and pH, heteromeric Kir4. 1-Kir5.1 were studied in inside-out patches. These Kir4.1-Kir5.1 currents showed a single channel conductance of 59 pS with open-state probability (P(open)) approximately 0.4 at pH 7.4. Channel activity reached the maximum at pH 8.5 and was completely suppressed at pH 6.5 with pKa 7.45. The effect of low pH on these currents was due to selective suppression of P(open) without evident effects on single channel conductance, leading to a decrease in the channel mean open time and an increase in the mean closed time. At pH 8.5, single-channel currents showed two sublevels of conductance at approximately 1/4 and 3/4 of the maximal openings. None of them was affected by lowering pH. The Kir4.1-Kir5.1 currents were modulated by phosphatidylinositol-4,5-bisphosphate (PIP2) that enhanced baseline P(open) and reduced channel sensitivity to intracellular protons. In the presence of 10 microM PIP2, the Kir4.1-Kir5.1 showed a pKa value of 7.22. The effect of PIP2, however, was not seen in homomeric Kir4.1 currents. The CO2/pH sensitivities were related to a lysine residue in the NH2 terminus of Kir4.1. Mutation of this residue (K67M, K67Q) completely eliminated the CO2 sensitivity of both homomeric Kir4.1 and heteromeric Kir4.1-Kir5.1. In excised patches, interestingly, the Kir4.1-Kir5.1 carrying K67M mutation remained sensitive to low pHi. Such pH sensitivity, however, disappeared in the presence of PIP2. The effect of PIP2 on shifting the titration curve of wild-type and mutant channels was totally abolished when Arg178 in Kir5.1 was mutated. Thus, these studies demonstrate a heteromeric Kir channel that can be modulated by both acidic and alkaline pH, show the modulation of pH sensitivity of Kir channels by PIP2, and provide information of the biophysical and molecular mechanisms underlying the Kir modulation by intracellular protons.
Collapse
Affiliation(s)
- Zhenjiang Yang
- Department of Biology, Georgia State University, Atlanta, Georgia 30302-4010
| | - Haoxing Xu
- Department of Biology, Georgia State University, Atlanta, Georgia 30302-4010
| | - Ningren Cui
- Department of Biology, Georgia State University, Atlanta, Georgia 30302-4010
| | - Zhiqiang Qu
- Department of Biology, Georgia State University, Atlanta, Georgia 30302-4010
| | | | - Wangzhen Shen
- Department of Biology, Georgia State University, Atlanta, Georgia 30302-4010
| | - Chun Jiang
- Department of Biology, Georgia State University, Atlanta, Georgia 30302-4010
| |
Collapse
|