1
|
Ma J, Son AY, Son Y, Wang PY, Hwang PM. Mitochondrial innate immune signaling in skeletal muscle adaptation to exercise. Trends Endocrinol Metab 2025:S1043-2760(25)00119-5. [PMID: 40514287 DOI: 10.1016/j.tem.2025.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 05/08/2025] [Accepted: 05/19/2025] [Indexed: 06/16/2025]
Abstract
Exercise-induced inflammation is regarded as a response to muscle damage from mechanical stress, but controlled immune signaling can be beneficial by promoting metabolic adaptation which, for example, decreases obesity and lowers the risk of diabetes. In addition to oxidative metabolism, mitochondria play a central role in initiating innate immune signaling. We review recent work that has identified the cGAS-STING-NF-κB signaling pathway, activated by the downregulation of mitochondrial proteins CHCHD4 and TRIAP1, as mediating skeletal muscle adaptation to exercise training as well as potentially promoting cellular resilience to environmental stresses. Notably, CHCHD4 haploinsufficiency prevents obesity in aging mice; therefore, this innate immune signaling pathway could be targeted to achieve some of the health benefits of exercise.
Collapse
Affiliation(s)
- Jin Ma
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Annie Yujin Son
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Youlim Son
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Ping-Yuan Wang
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Paul M Hwang
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Ji P, Grande-Allen KJ, Balaji S, Birla RK, Keswani SG. Shear Stress Conditioning Promotes a Pro-Inflammatory Response in Porcine Endocardial Endothelial Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636291. [PMID: 39975174 PMCID: PMC11838557 DOI: 10.1101/2025.02.03.636291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
PURPOSE Discrete subaortic stenosis (DSS) is a congenital heart disease characterized by a narrowing of the passage below the aortic valve in the left ventricular outflow tract (LVOT) [1]. While endocardial endothelial cells (EECs) are known to play a role in DSS, the response of these cells to shear stress is not known. In this study, we hypothesize that the response of EECs to shear stress in the LVOT is a mediator of DSS. METHODS To test this hypothesis, we conditioned porcine EECs to controlled shear stress regimes using cone and plate bioreactors. Subsequently, we quantified the concentration of proinflammatory cytokine in the conditioned media using the Luminex assay. Bulk-RNA sequencing was used to quantify changes in the genotype of the shear stress conditioned EECs. RESULTS The expression of CD31 was knocked down and subsequently, the changes in release of shear stress induced proinflammatory cytokines released by EECs quantified using the Luminex assay. The results of these studies show that the inflammatory cytokines were highly selected in the conditioning medium, and under bioreactor treatment the cell activated the PI3K-AKT and TNF-a signaling, which also triggered the other immune cell responses though Th1, Th2 and Th17 cell differentiation pathways. Furthermore, CD31 was identified as a mediator of the pro-inflammatory response of shear stress conditioned EECs. CONCLUSIONS The studies provide a clear link between shear stress, and the subsequent proinflammatory response of EECs as a mediator of DSS.
Collapse
Affiliation(s)
- Pengfei Ji
- Laboratory for Regenerative Tissue Repair, Texas Children’s Hospital, Houston, Texas, USA
- Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, Texas, USA
- Division of Congenital Heart Surgery, Texas Children’s Hospital, Houston, Texas, USA
- Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
- Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, Texas, USA
| | | | - Swathi Balaji
- Laboratory for Regenerative Tissue Repair, Texas Children’s Hospital, Houston, Texas, USA
- Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
- Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, Texas, USA
| | - Ravi K. Birla
- Laboratory for Regenerative Tissue Repair, Texas Children’s Hospital, Houston, Texas, USA
- Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, Texas, USA
- Division of Congenital Heart Surgery, Texas Children’s Hospital, Houston, Texas, USA
- Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
- Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, Texas, USA
| | - Sundeep G. Keswani
- Laboratory for Regenerative Tissue Repair, Texas Children’s Hospital, Houston, Texas, USA
- Division of Congenital Heart Surgery, Texas Children’s Hospital, Houston, Texas, USA
- Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
- Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
3
|
D’Almeida TZ, Gomes MJ, Engel LE, Giometti IC, Ferreira NZ, Stuani R, Corrêa CR, Castoldi RC, Nunes SG, Aguiar AF, Castilho AC, Okoshi MP, Pacagnelli FL. Effects of high-intensity interval training on physical performance, systolic blood pressure, oxidative stress and inflammatory markers in skeletal muscle of spontaneously hypertensive rats. PLoS One 2025; 20:e0316441. [PMID: 39903719 PMCID: PMC11793773 DOI: 10.1371/journal.pone.0316441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 12/11/2024] [Indexed: 02/06/2025] Open
Abstract
AIM To investigate whether high-intensity interval training (HIIT) improves physical performance, systolic blood pressure, and markers of oxidative stress and inflammation in skeletal muscle of spontaneously hypertensive rats (SHR). METHODS Nineteen male SHR rats were randomly assigned to two groups: sedentary (SHRC) and trained (SHR+T). The SHR+T group trained five times a week for eight weeks on a treadmill, while the SHR group remained without any exercise stimulus throughout the experimental period. Maximum physical performance and systolic blood pressure (SBP) were assessed before and after the training period. The following variables were measured in the tibialis anterior (TA) muscle: gene expression of the NADPH oxidase complex (NOX2, NOX4, p22phox, p47phox) and the NF-kB pathway (NF-kB and Ik-B), lipid peroxidation (malonaldehyde; MDA), protein carbonylation, hydrophilic antioxidant capacity (HAC) and pro-inflammatory cytokines (IL-6 and TNF-α). RESULTS SHR+T rats showed higher physical performance and levels of IL-6, and lower SBP and protein carbonylation (p<0.05), compared with SHRC rats. No significant differences (p>0.05) were observed in the other variables. SIGNIFICANCE Our results indicate that HIIT is an effective non-pharmacologic strategy to improve physical performance, reduce SBP, and modulate the skeletal muscle oxidative damage and inflammation in hypertensive rats.
Collapse
Affiliation(s)
| | - Mariana Janini Gomes
- Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX, United States of America
| | | | | | - Natalia Zamberlan Ferreira
- Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX, United States of America
| | - Rafael Stuani
- Postgraduate Program in Animal Science, UNOESTE, Presidente Prudente, Brazil
- Postgraduate Program in Health Science, UNOESTE, Presidente Prudente, Brazil
| | | | - Robson Chacon Castoldi
- Department of Pharmacology, Institute of Biosciences, Júlio de Mesquita Filho Paulista State University, Botucatu, São Paulo, Brazil
| | - Sarah Gomes Nunes
- Postgraduate Program in Animal Science, UNOESTE, Presidente Prudente, Brazil
| | - Andreo Fernando Aguiar
- Postgraduate Program in Physical Exercise in Health Promotion, Northern University of Paraná, Londrina, PR, Brazil
| | | | | | | |
Collapse
|
4
|
Rodrigues KB, Weng Z, Graham ZA, Lavin K, McAdam J, Tuggle SC, Peoples B, Seay R, Yang S, Bamman MM, Broderick TJ, Montgomery SB. Exercise intensity and training alter the innate immune cell type and chromosomal origins of circulating cell-free DNA in humans. Proc Natl Acad Sci U S A 2025; 122:e2406954122. [PMID: 39805013 PMCID: PMC11761974 DOI: 10.1073/pnas.2406954122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 11/06/2024] [Indexed: 01/16/2025] Open
Abstract
Exercising regularly promotes health, but these benefits are complicated by acute inflammation induced by exercise. A potential source of inflammation is cell-free DNA (cfDNA), yet the cellular origins, molecular causes, and immune system interactions of exercise-induced cfDNA are unclear. To study these, 10 healthy individuals were randomized to a 12-wk exercise program of either high-intensity tactical training (HITT) or traditional moderate-intensity training (TRAD). Blood plasma was collected pre- and postexercise at weeks 0 and 12 and after 4 wk of detraining upon program completion. Whole-genome enzymatic methylation sequencing (EM-seq) with cell-type proportion deconvolution was applied to cfDNA obtained from the 50 plasma samples and paired to concentration measurements for 90 circulating cytokines. Acute exercise increased the release of cfDNA from neutrophils, dendritic cells (DCs), and macrophages proportional to exercise intensity. Exercise training reduced cfDNA released in HITT participants but not TRAD and from DCs and macrophages but not neutrophils. For most participants, training lowered mitochondrial cfDNA at rest, even after detraining. Using a sequencing analysis approach we developed, we concluded that rapid ETosis, a process of cell death where cells release DNA extracellular traps, was the likely source of cfDNA, demonstrated by enrichment of nuclear DNA. Further, several cytokines were induced by acute exercise, such as IL-6, IL-10, and IL-16, and training attenuated the induction of only IL-6 and IL-17F. Cytokine levels were not associated with cfDNA induction, suggesting that these cytokines are not the main cause of exercise-induced cfDNA. Overall, exercise intensity and training modulated cfDNA release and cytokine responses, contributing to the anti-inflammatory effects of regular exercise.
Collapse
Affiliation(s)
- Kameron B. Rodrigues
- Department of Pathology, Stanford University School of Medicine, Stanford, CA94305
| | - Ziming Weng
- Department of Pathology, Stanford University School of Medicine, Stanford, CA94305
| | - Zachary A. Graham
- Healthspan, Resilience and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, FL32502
| | - Kaleen Lavin
- Healthspan, Resilience and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, FL32502
| | - Jeremy McAdam
- Healthspan, Resilience and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, FL32502
| | - S. Craig Tuggle
- Healthspan, Resilience and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, FL32502
| | - Brandon Peoples
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL35294
| | - Regina Seay
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL35294
| | - Sufen Yang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL35294
| | - Marcas M. Bamman
- Healthspan, Resilience and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, FL32502
| | - Timothy J. Broderick
- Healthspan, Resilience and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, FL32502
| | | |
Collapse
|
5
|
Samant V, Prabhu A. Exercise, exerkines and exercise mimetic drugs: Molecular mechanisms and therapeutics. Life Sci 2024; 359:123225. [PMID: 39522716 DOI: 10.1016/j.lfs.2024.123225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/09/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Chronic diseases linked with sedentary lifestyles and poor dietary habits are increasingly common in modern society. Exercise is widely acknowledged to have a plethora of health benefits, including its role in primary prevention of various chronic conditions like type 2 diabetes mellitus, obesity, cardiovascular disease, and several musculoskeletal as well as degenerative disorders. Regular physical activity induces numerous physiological adaptations that contribute to these positive effects, primarily observed in skeletal muscle but also impacting other tissues. There is a growing interest among researchers in developing pharmaceutical interventions that mimic the beneficial effects of exercise for therapeutic applications. Exercise mimetic medications have the potential to be helpful aids in enhancing functional outcomes for patients with metabolic dysfunction, neuromuscular and musculoskeletal disorders. Some of the potential targets for exercise mimetics include pathways involved in metabolism, mitochondrial function, inflammation, and tissue regeneration. The present review aims to provide an exhaustive overview of the current understanding of exercise physiology, the role of exerkines and biomolecular pathways, and the potential applications of exercise mimetic drugs for the treatment of several diseases.
Collapse
Affiliation(s)
- Vedant Samant
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Arati Prabhu
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India.
| |
Collapse
|
6
|
Hayden CM, Begue G, Gamboa JL, Baar K, Roshanravan B. Review of Exercise Interventions to Improve Clinical Outcomes in Nondialysis CKD. Kidney Int Rep 2024; 9:3097-3115. [PMID: 39534200 PMCID: PMC11551061 DOI: 10.1016/j.ekir.2024.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/22/2024] [Accepted: 07/26/2024] [Indexed: 11/16/2024] Open
Abstract
Exercise interventions in chronic kidney disease (CKD) have received growing interest, with over 30 meta-analyses published in the past 5 years. The potential benefits of exercise training in CKD range from slowing disease progression to improving comorbidities and quality of life. Nevertheless, there is a lack of large, randomized control trials in diverse populations, particularly regarding exercise in nondialysis-dependent CKD (NDD). When exercise interventions are implemented, they often lack fundamental features of exercise training such as progressive overload, personalization, and specificity. Furthermore, the physiology of exercise and CKD-specific barriers appear poorly understood. This review explores the potential benefits of exercise training in NDD, draws lessons from previous interventions and other fields, and provides several basic tools that may help improve interventions in research and practice.
Collapse
Affiliation(s)
- Christopher M.T. Hayden
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, California, USA
| | - Gwénaëlle Begue
- Kinesiology Department, California State University, Sacramento, California, USA
| | - Jorge L. Gamboa
- Department of Medicine, Division of Clinical Pharmacology. Vanderbilt University. Nashville, Tennessee, USA
| | - Keith Baar
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, California, USA
- Department of Physiology and Membrane Biology, University of California Davis, Davis, California, USA
| | - Baback Roshanravan
- Department of Medicine, Division of Nephrology. University of California Davis. Sacramento, California, USA
| |
Collapse
|
7
|
Jeppesen JS, Caldwell HG, Lossius LO, Melin AK, Gliemann L, Bangsbo J, Hellsten Y. Low energy availability increases immune cell formation of reactive oxygen species and impairs exercise performance in female endurance athletes. Redox Biol 2024; 75:103250. [PMID: 38936255 PMCID: PMC11260862 DOI: 10.1016/j.redox.2024.103250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
INTRODUCTION The effects of low energy availability (LEA) on the immune system are poorly understood. This study examined the effects of 14 days of LEA on immune cell redox balance and inflammation at rest and in response to acute exercise, and exercise performance in female athletes. METHODS Twelve female endurance athletes (age: 26.8 ± 3.4 yrs, maximum oxygen uptake (V˙O2max): 55.2 ± 5.1 mL × min-1 × kg-1) were included in a randomized, single-blinded crossover study. They were allocated to begin with either 14 days of optimal energy availability diet (OEA, 52 ± 2 kcal × kg fat free mass (FFM)-1 × day-1) or LEA diet (22 ± 2 kcal × kg FFM-1 × day-1), followed by 3 days of refueling (OEA) with maintained training volume. Peripheral blood mononuclear cells (PBMCs) were isolated, and plasma obtained at rest before and after each dietary period. The PBMCs were used for analysis of mitochondrial respiration and H2O2 emission and specific proteins. Exercise performance was assessed on cycle by a 20-min time trial and time to exhaustion at an intensity corresponding to ∼110 % V˙O2max). RESULTS LEA was associated with a 94 % (P = 0.003) increase in PBMC NADPH oxidase 2 protein content, and a 22 % (P = 0.013) increase in systemic cortisol. LEA also caused an alteration of several inflammatory related proteins (P < 0.05). Acute exercise augmented H2O2 emission in PBMCs (P < 0.001) following both OEA and LEA, but to a greater extent following LEA. LEA also reduced the mobilization of white blood cells with acute exercise. After LEA, performance was reduced in both exercise tests (P < 0.001), and the reduced time trial performance remained after the 3 days of refueling (P < 0.001). CONCLUSION 14 days of LEA in female athletes increased cortisol levels and had a pronounced effect on the immune system, including increased capacity for ROS production, altered plasma inflammatory proteome and lowered exercise induced mobilization of leukocytes. Furthermore, LEA resulted in a sustained impairment in exercise performance.
Collapse
Affiliation(s)
- Jan S Jeppesen
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Hannah G Caldwell
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Lone O Lossius
- Linnaeus University, Department of Sport Science, Växjö/Kalmar, Sweden
| | - Anna K Melin
- Linnaeus University, Department of Sport Science, Växjö/Kalmar, Sweden
| | - Lasse Gliemann
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Jens Bangsbo
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Ylva Hellsten
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Jheng JR, DesJardin JT, Chen YY, Huot JR, Bai Y, Cook T, Hibbard LM, Rupp JM, Fisher A, Zhang Y, Duarte JD, Desai AA, Machado RF, Simon MA, Lai YC. Plasma Proteomics Identifies B2M as a Regulator of Pulmonary Hypertension in Heart Failure With Preserved Ejection Fraction. Arterioscler Thromb Vasc Biol 2024; 44:1570-1583. [PMID: 38813697 PMCID: PMC11208054 DOI: 10.1161/atvbaha.123.320270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Pulmonary hypertension (PH) represents an important phenotype in heart failure with preserved ejection fraction (HFpEF). However, management of PH-HFpEF is challenging because mechanisms involved in the regulation of PH-HFpEF remain unclear. METHODS We used a mass spectrometry-based comparative plasma proteomics approach as a sensitive and comprehensive hypothesis-generating discovery technique to profile proteins in patients with PH-HFpEF and control subjects. We then validated and investigated the role of one of the identified proteins using in vitro cell cultures, in vivo animal models, and independent cohort of human samples. RESULTS Plasma proteomics identified high protein abundance levels of B2M (β2-microglobulin) in patients with PH-HFpEF. Interestingly, both circulating and skeletal muscle levels of B2M were increased in mice with skeletal muscle SIRT3 (sirtuin-3) deficiency or high-fat diet-induced PH-HFpEF. Plasma and muscle biopsies from a validation cohort of PH-HFpEF patients were found to have increased B2M levels, which positively correlated with disease severity, especially pulmonary capillary wedge pressure and right atrial pressure at rest. Not only did the administration of exogenous B2M promote migration/proliferation in pulmonary arterial vascular endothelial cells but it also increased PCNA (proliferating cell nuclear antigen) expression and cell proliferation in pulmonary arterial vascular smooth muscle cells. Finally, B2m deletion improved glucose intolerance, reduced pulmonary vascular remodeling, lowered PH, and attenuated RV hypertrophy in mice with high-fat diet-induced PH-HFpEF. CONCLUSIONS Patients with PH-HFpEF display higher circulating and skeletal muscle expression levels of B2M, the magnitude of which correlates with disease severity. Our findings also reveal a previously unknown pathogenic role of B2M in the regulation of pulmonary vascular proliferative remodeling and PH-HFpEF. These data suggest that circulating and skeletal muscle B2M can be promising targets for the management of PH-HFpEF.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Humans
- Male
- Mice
- Middle Aged
- beta 2-Microglobulin/genetics
- beta 2-Microglobulin/blood
- beta 2-Microglobulin/metabolism
- Biomarkers/blood
- Case-Control Studies
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Heart Failure/physiopathology
- Heart Failure/metabolism
- Heart Failure/blood
- Heart Failure/genetics
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/blood
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/genetics
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Skeletal/metabolism
- Proteomics/methods
- Pulmonary Artery/physiopathology
- Pulmonary Artery/metabolism
- Sirtuin 3/genetics
- Sirtuin 3/metabolism
- Stroke Volume
- Vascular Remodeling
- Ventricular Function, Left
Collapse
Affiliation(s)
- Jia-Rong Jheng
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine (J.-R.J., Y.B., T.C., A.F., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
| | | | - Yi-Yun Chen
- Academia Sinica Common Mass Spectrometry Facilities for Proteomics and Protein Modification Analysis, Nankang, Taipei, Taiwan (Y.-Y.C.)
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan (Y.-Y.C.)
| | - Joshua R. Huot
- Department of Anatomy, Cell Biology and Physiology (J.R.H., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
| | - Yang Bai
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine (J.-R.J., Y.B., T.C., A.F., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang (Y.B.)
| | - Todd Cook
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine (J.-R.J., Y.B., T.C., A.F., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
| | - Lainey M. Hibbard
- Department of Medical and Molecular Genetics (L.M.H., J.M.R.), Indiana University School of Medicine, Indianapolis
| | - Jennifer M. Rupp
- Department of Medical and Molecular Genetics (L.M.H., J.M.R.), Indiana University School of Medicine, Indianapolis
| | - Amanda Fisher
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine (J.-R.J., Y.B., T.C., A.F., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, PA (Y.Z.)
| | - Julio D. Duarte
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville (J.D.D.)
| | - Ankit A. Desai
- Krannert Cardiovascular Research Center (A.A.D.), Indiana University School of Medicine, Indianapolis
| | - Roberto F. Machado
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine (J.-R.J., Y.B., T.C., A.F., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
- Department of Anatomy, Cell Biology and Physiology (J.R.H., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
| | - Marc A. Simon
- Division of Cardiology, University of California, San Francisco (J.T.D.J., M.A.S.)
| | - Yen-Chun Lai
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine (J.-R.J., Y.B., T.C., A.F., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
- Department of Anatomy, Cell Biology and Physiology (J.R.H., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
| |
Collapse
|
9
|
Sabu J, Thida AM, Seong G, Mohiuddin A, Attia H, Agaronov M, Chiu E. Gastroesophageal Junction Adenocarcinoma With Skeletal Muscle Metastases: A Case Report and Literature Review. Cureus 2024; 16:e63855. [PMID: 39099909 PMCID: PMC11297803 DOI: 10.7759/cureus.63855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Esophageal and gastroesophageal junction (GEJ) malignancies are aggressive, and survival is poor once metastasis occurs. The most common sites of metastatic involvement include the liver, lymph nodes, lung, peritoneum, adrenal glands, bone, and brain, while skeletal muscle (SM) involvement is rare. We report a case of a 68-year-old female who presented with intractable emesis for one month and was found to have a primary GEJ adenocarcinoma measuring up to 6.7 cm. Endoscopic biopsy revealed poorly differentiated GEJ adenocarcinoma with positive AE1/AE3 immunostains. Positron emission tomography/computed tomography and magnetic resonance imaging revealed metastases to the omentum and left lower extremity SMs, including the proximal adductor longus, adductor magnus, and gluteus minimus. This study reviews the literature on SM metastasis in esophageal and GEJ cancer, GEJ cancer classification, incidence, treatment, and prognosis.
Collapse
Affiliation(s)
- Jacob Sabu
- Department of Medicine, State University of New York (SUNY) Downstate Health Sciences University/Kings County Hospital, New York, USA
| | - Aye M Thida
- Department of Hematology and Oncology, State University of New York (SUNY) Downstate Health Sciences University/Kings County Hospital, New York, USA
| | - Gyuhee Seong
- Department of Medicine, State University of New York (SUNY) Downstate Health Sciences University/Kings County Hospital, New York, USA
| | - Amena Mohiuddin
- Department of Hematology and Oncology, State University of New York (SUNY) Downstate Health Sciences University/Kings County Hospital, New York, USA
| | - Hagar Attia
- Department of Pathology and Laboratory Medicine, State University of New York (SUNY) Downstate Health Sciences University/Kings County Hospital, New York, USA
| | - Maksim Agaronov
- Department of Pathology and Laboratory Medicine, State University of New York (SUNY) Downstate Health Sciences University/Kings County Hospital, New York, USA
| | - Edwin Chiu
- Department of Hematology and Oncology, State University of New York (SUNY) Downstate Health Sciences University/Kings County Hospital, New York, USA
| |
Collapse
|
10
|
Walzik D, Wences Chirino TY, Zimmer P, Joisten N. Molecular insights of exercise therapy in disease prevention and treatment. Signal Transduct Target Ther 2024; 9:138. [PMID: 38806473 PMCID: PMC11133400 DOI: 10.1038/s41392-024-01841-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Despite substantial evidence emphasizing the pleiotropic benefits of exercise for the prevention and treatment of various diseases, the underlying biological mechanisms have not been fully elucidated. Several exercise benefits have been attributed to signaling molecules that are released in response to exercise by different tissues such as skeletal muscle, cardiac muscle, adipose, and liver tissue. These signaling molecules, which are collectively termed exerkines, form a heterogenous group of bioactive substances, mediating inter-organ crosstalk as well as structural and functional tissue adaption. Numerous scientific endeavors have focused on identifying and characterizing new biological mediators with such properties. Additionally, some investigations have focused on the molecular targets of exerkines and the cellular signaling cascades that trigger adaption processes. A detailed understanding of the tissue-specific downstream effects of exerkines is crucial to harness the health-related benefits mediated by exercise and improve targeted exercise programs in health and disease. Herein, we review the current in vivo evidence on exerkine-induced signal transduction across multiple target tissues and highlight the preventive and therapeutic value of exerkine signaling in various diseases. By emphasizing different aspects of exerkine research, we provide a comprehensive overview of (i) the molecular underpinnings of exerkine secretion, (ii) the receptor-dependent and receptor-independent signaling cascades mediating tissue adaption, and (iii) the clinical implications of these mechanisms in disease prevention and treatment.
Collapse
Affiliation(s)
- David Walzik
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Tiffany Y Wences Chirino
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
| | - Niklas Joisten
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
- Division of Exercise and Movement Science, Institute for Sport Science, University of Göttingen, 37075, Göttingen, Lower Saxony, Germany.
| |
Collapse
|
11
|
Vandecruys M, De Smet S, De Beir J, Renier M, Leunis S, Van Criekinge H, Glorieux G, Raes J, Vanden Wyngaert K, Nagler E, Calders P, Monbaliu D, Cornelissen V, Evenepoel P, Van Craenenbroeck AH. Revitalizing the Gut Microbiome in Chronic Kidney Disease: A Comprehensive Exploration of the Therapeutic Potential of Physical Activity. Toxins (Basel) 2024; 16:242. [PMID: 38922137 PMCID: PMC11209503 DOI: 10.3390/toxins16060242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Both physical inactivity and disruptions in the gut microbiome appear to be prevalent in patients with chronic kidney disease (CKD). Engaging in physical activity could present a novel nonpharmacological strategy for enhancing the gut microbiome and mitigating the adverse effects associated with microbial dysbiosis in individuals with CKD. This narrative review explores the underlying mechanisms through which physical activity may favorably modulate microbial health, either through direct impact on the gut or through interorgan crosstalk. Also, the development of microbial dysbiosis and its interplay with physical inactivity in patients with CKD are discussed. Mechanisms and interventions through which physical activity may restore gut homeostasis in individuals with CKD are explored.
Collapse
Affiliation(s)
- Marieke Vandecruys
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (M.V.); or (P.E.)
| | - Stefan De Smet
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, 3000 Leuven, Belgium;
| | - Jasmine De Beir
- Department of Rehabilitation Sciences, Ghent University, 9000 Ghent, Belgium; (J.D.B.); (P.C.)
| | - Marie Renier
- Group Rehabilitation for Internal Disorders, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium; (M.R.); (V.C.)
| | - Sofie Leunis
- Department of Microbiology, Immunology and Transplantation, Abdominal Transplantation, KU Leuven, 3000 Leuven, Belgium; (S.L.); (H.V.C.); (D.M.)
| | - Hanne Van Criekinge
- Department of Microbiology, Immunology and Transplantation, Abdominal Transplantation, KU Leuven, 3000 Leuven, Belgium; (S.L.); (H.V.C.); (D.M.)
| | - Griet Glorieux
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, 9000 Ghent, Belgium; (G.G.); (K.V.W.); (E.N.)
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Institute for Medical Research, 3000 Leuven, Belgium;
- VIB-KU Leuven Center for Microbiology, 3000 Leuven, Belgium
| | - Karsten Vanden Wyngaert
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, 9000 Ghent, Belgium; (G.G.); (K.V.W.); (E.N.)
| | - Evi Nagler
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, 9000 Ghent, Belgium; (G.G.); (K.V.W.); (E.N.)
| | - Patrick Calders
- Department of Rehabilitation Sciences, Ghent University, 9000 Ghent, Belgium; (J.D.B.); (P.C.)
| | - Diethard Monbaliu
- Department of Microbiology, Immunology and Transplantation, Abdominal Transplantation, KU Leuven, 3000 Leuven, Belgium; (S.L.); (H.V.C.); (D.M.)
- Transplantoux Foundation, 3000 Leuven, Belgium
| | - Véronique Cornelissen
- Group Rehabilitation for Internal Disorders, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium; (M.R.); (V.C.)
| | - Pieter Evenepoel
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (M.V.); or (P.E.)
- Department of Nephrology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Amaryllis H. Van Craenenbroeck
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (M.V.); or (P.E.)
- Department of Nephrology, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
12
|
Gonzalez-Ponce F, Ramirez-Villafaña M, Gomez-Ramirez EE, Saldaña-Cruz AM, Gallardo-Moya SG, Rodriguez-Jimenez NA, Jacobo-Cuevas H, Nava-Valdivia CA, Avalos-Salgado FA, Totsuka-Sutto S, Cardona-Muñoz EG, Valdivia-Tangarife ER. Role of Myostatin in Rheumatoid Arthritis: A Review of the Clinical Impact. Diagnostics (Basel) 2024; 14:1085. [PMID: 38893612 PMCID: PMC11171688 DOI: 10.3390/diagnostics14111085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/12/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease that affects synovial joints and that frequently involves extra-articular organs. A multiplicity of interleukins (IL) participates in the pathogenesis of RA, including IL-6, IL-1β, transforming growth factor-beta (TGF-β), and tumor necrosis factor (TNF)-α; immune cells such as monocytes, T and B lymphocytes, and macrophages; and auto-antibodies, mainly rheumatoid factor and anti-citrullinated protein antibodies (ACPAs). Skeletal muscle is also involved in RA, with many patients developing muscle wasting and sarcopenia. Several mechanisms are involved in the myopenia observed in RA, and one of them includes the effects of some interleukins and myokines on myocytes. Myostatin is a myokine member of the TGF-β superfamily; the overproduction of myostatin acts as a negative regulator of growth and differentiates the muscle fibers, limiting their number and size. Recent studies have identified abnormalities in the serum myostatin levels of RA patients, and these have been found to be associated with muscle wasting and other manifestations of severe RA. This review analyzes recent information regarding the relationship between myostatin levels and clinical manifestations of RA and the relevance of myostatin as a therapeutic target for future research.
Collapse
Affiliation(s)
- Fabiola Gonzalez-Ponce
- Instituto de Terapeutica Experimental y Clínica, Programa de Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (F.G.-P.); (M.R.-V.); (E.E.G.-R.); (A.M.S.-C.); (N.A.R.-J.); (S.T.-S.); (E.G.C.-M.)
| | - Melissa Ramirez-Villafaña
- Instituto de Terapeutica Experimental y Clínica, Programa de Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (F.G.-P.); (M.R.-V.); (E.E.G.-R.); (A.M.S.-C.); (N.A.R.-J.); (S.T.-S.); (E.G.C.-M.)
| | - Eli Efrain Gomez-Ramirez
- Instituto de Terapeutica Experimental y Clínica, Programa de Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (F.G.-P.); (M.R.-V.); (E.E.G.-R.); (A.M.S.-C.); (N.A.R.-J.); (S.T.-S.); (E.G.C.-M.)
| | - Ana Miriam Saldaña-Cruz
- Instituto de Terapeutica Experimental y Clínica, Programa de Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (F.G.-P.); (M.R.-V.); (E.E.G.-R.); (A.M.S.-C.); (N.A.R.-J.); (S.T.-S.); (E.G.C.-M.)
| | - Sergio Gabriel Gallardo-Moya
- Programa de Doctorado en Farmacología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico; (S.G.G.-M.); (F.A.A.-S.)
| | - Norma Alejandra Rodriguez-Jimenez
- Instituto de Terapeutica Experimental y Clínica, Programa de Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (F.G.-P.); (M.R.-V.); (E.E.G.-R.); (A.M.S.-C.); (N.A.R.-J.); (S.T.-S.); (E.G.C.-M.)
| | - Heriberto Jacobo-Cuevas
- Programa de Postdoctorado, Departamento de Psicología Básica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Cesar Arturo Nava-Valdivia
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Felipe Alexis Avalos-Salgado
- Programa de Doctorado en Farmacología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico; (S.G.G.-M.); (F.A.A.-S.)
| | - Sylvia Totsuka-Sutto
- Instituto de Terapeutica Experimental y Clínica, Programa de Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (F.G.-P.); (M.R.-V.); (E.E.G.-R.); (A.M.S.-C.); (N.A.R.-J.); (S.T.-S.); (E.G.C.-M.)
| | - Ernesto German Cardona-Muñoz
- Instituto de Terapeutica Experimental y Clínica, Programa de Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (F.G.-P.); (M.R.-V.); (E.E.G.-R.); (A.M.S.-C.); (N.A.R.-J.); (S.T.-S.); (E.G.C.-M.)
| | | |
Collapse
|
13
|
Yu MG, Gordin D, Fu J, Park K, Li Q, King GL. Protective Factors and the Pathogenesis of Complications in Diabetes. Endocr Rev 2024; 45:227-252. [PMID: 37638875 PMCID: PMC10911956 DOI: 10.1210/endrev/bnad030] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/13/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Chronic complications of diabetes are due to myriad disorders of numerous metabolic pathways that are responsible for most of the morbidity and mortality associated with the disease. Traditionally, diabetes complications are divided into those of microvascular and macrovascular origin. We suggest revising this antiquated classification into diabetes complications of vascular, parenchymal, and hybrid (both vascular and parenchymal) tissue origin, since the profile of diabetes complications ranges from those involving only vascular tissues to those involving mostly parenchymal organs. A major paradigm shift has occurred in recent years regarding the pathogenesis of diabetes complications, in which the focus has shifted from studies on risks to those on the interplay between risk and protective factors. While risk factors are clearly important for the development of chronic complications in diabetes, recent studies have established that protective factors are equally significant in modulating the development and severity of diabetes complications. These protective responses may help explain the differential severity of complications, and even the lack of pathologies, in some tissues. Nevertheless, despite the growing number of studies on this field, comprehensive reviews on protective factors and their mechanisms of action are not available. This review thus focused on the clinical, biochemical, and molecular mechanisms that support the idea of endogenous protective factors, and their roles in the initiation and progression of chronic complications in diabetes. In addition, this review also aimed to identify the main needs of this field for future studies.
Collapse
Affiliation(s)
- Marc Gregory Yu
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Daniel Gordin
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
- Department of Nephrology, University of Helsinki and Helsinki University Central Hospital, Stenbäckinkatu 9, FI-00029 Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Jialin Fu
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Kyoungmin Park
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Qian Li
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - George Liang King
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
14
|
Radványi Á, Röszer T. Interleukin-6: An Under-Appreciated Inducer of Thermogenic Adipocyte Differentiation. Int J Mol Sci 2024; 25:2810. [PMID: 38474057 DOI: 10.3390/ijms25052810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Adipose tissue inflammation is a key factor leading to obesity-associated immune disorders, such as insulin resistance, beta cell loss in the pancreatic islets, meta-inflammation, and autoimmunity. Inhibiting adipose tissue inflammation is considered a straightforward approach to abrogate these diseases. However, recent findings show that certain pro-inflammatory cytokines are essential for the proper differentiation and functioning of adipocytes. Lipolysis is stimulated, and the thermogenic competence of adipocytes is unlocked by interleukin-6 (IL-6), a cytokine that was initially recognized as a key trigger of adipose tissue inflammation. Coherently, signal transducer and activator of transcription 3 (STAT3), which is a signal transducer for IL-6, is necessary for thermogenic adipocyte development. Given the impact of thermogenic adipocytes in increasing energy expenditure and reducing body adiposity, functions of IL-6 in the adipose tissue have gained attention recently. In this review, we show that IL-6 signaling may protect from excess fat accumulation by stimulating thermogenesis in adipocytes.
Collapse
Affiliation(s)
- Ádám Radványi
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Tamás Röszer
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
15
|
Kanbay M, Copur S, Yildiz AB, Tanriover C, Mallamaci F, Zoccali C. Physical exercise in kidney disease: A commonly undervalued treatment modality. Eur J Clin Invest 2024; 54:e14105. [PMID: 37814427 DOI: 10.1111/eci.14105] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Physical inactivity has been identified as a risk factor for multiple disorders and a strong association exists between chronic kidney disease (CKD) and a sedentary lifestyle. Even though physical activity is crucial in the development and progression of disease, the general focus of the current medical practice is the pharmacological perspective of diseases with inadequate emphasis on lifestyle intervention. METHODS In this narrative review we explain the pathophysiological mechanisms underlying the beneficial effects of physical exercise on CKD in addition to discussing the clinical studies and trials centred on physical exercise in patients with CKD. RESULTS Physical activity influences several pathophysiological mechanisms including inflammation, oxidative stress, vascular function, immune response and macromolecular metabolism. While exercise can initially induce stress responses like inflammation and oxidative stress, long-term physical activity leads to protective countermeasures and overall improved health. Trials in pre-dialysis CKD patients show that exercise can lead to reductions in body weight, inflammation markers and fasting plasma glucose. Furthermore, it improves patients' functional capacity, cardiorespiratory fitness and quality of life. The effects of exercise on kidney function have been inconsistent in these trials. In haemodialysis, peritoneal dialysis and kidney transplant patients exercise interventions improve cardiorespiratory fitness, walking capacity and quality of life. Combined training shows the best performance to increase peak oxygen uptake in haemodialysis patients. In kidney transplant recipients, exercise improves walking performance, quality of life and potentially arterial stiffness. However, exercise does not affect glucose metabolism, serum cholesterol and inflammation biomarkers. Long-term, adequately powered trials are needed to determine the long-term feasibility, and effects on quality of life and major clinical outcomes, including mortality and cardiovascular risk, in all CKD stages and particularly in kidney transplant patients, a scarcely investigated population. CONCLUSION Physical exercise plays a crucial role in ameliorating inflammation, oxidative stress, vascular function, immune response and macromolecular metabolism, and contributes significantly to the quality of life for patients with CKD, irrespective of the treatment and stage. Its direct impact on kidney function remains uncertain. Further extensive, long-term trials to conclusively determine the effect of exercise on major clinical outcomes such as mortality and cardiovascular risk remain a research priority.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Abdullah B Yildiz
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Cem Tanriover
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Francesca Mallamaci
- Nephrology, Dialysis and Transplantation Unit Azienda Ospedaliera "Bianchi-Melacrino-Morelli" & CNR-IFC, Institute of Clinical Physiology, Research Unit of Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension of Reggio Calabria, Reggio Calabria, Italy
| | - Carmine Zoccali
- Renal Research Institute, New York, New York, USA
- Institute of Molecular Biology and Genetics (Biogem), Ariano Irpino, Italy
- Associazione Ipertensione Nefrologia Trapianto Renal (IPNET), c/o Nefrologia, Grande Ospedale Metropolitano, Reggio Calabria, Italy
| |
Collapse
|
16
|
Nakahama-Matsushima M, Kamijyo YI, Umemoto Y, Hashizaki T, Nishimura Y, Furusawa K, Furotani Y, Tajima F, Kouda K. Increase in Serum Interleukin-1 Receptor Antagonist (IL-1ra) Levels after Wheelchair Half Marathon Race in Male Athletes with Spinal Cord Injury. J Clin Med 2023; 12:7098. [PMID: 38002710 PMCID: PMC10672277 DOI: 10.3390/jcm12227098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Exercise increases the serum level of interleukin-6 (IL-6), which in turn stimulates the production of various inflammatory cytokine antagonists, such as interleukin-1 receptor antagonist (IL-1ra). Individuals with cervical spinal cord injury (CSCI) are at high risk of inflammatory conditions. This study compared the effects of wheelchair half marathon on the immune system of male athletes with CSCI and those with thoracic/lumber spinal cord injury (SCI). Neutrophil count, IL-1ra, IL-6, and various endocrine parameters were measured before, immediately and 1 h after the race in five CSCI and six SCI who completed the wheelchair marathon race. The percentage of neutrophils was significantly higher in CSCI immediately and 1 h after the race, compared with the baseline, and significantly higher in SCI at 1 h after the race. IL-6 was significantly higher immediately and 1 h after the race in SCI, whereas no such changes were noted in IL-6 in CSCI. IL-1ra was significantly higher at 1 h after the race in both SCI and CSCI. The race was associated with an increase in IL-1ra in both CSCI and SCI. These findings suggest wheelchair half marathon race increases IL-1ra even under stable IL-6 status in male CSCI individuals, and that such post-race increase in IL-1ra is probably mediated through circulatory neutrophils.
Collapse
Affiliation(s)
- Masumi Nakahama-Matsushima
- Department of Rehabilitation Medicine, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.N.-M.)
| | - Yoshi-ichiro Kamijyo
- Department of Rehabilitation Medicine, School of Medicine, Dokkyo Medical University, Mibu 321-0293, Japan
| | - Yasunori Umemoto
- Department of Rehabilitation Medicine, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.N.-M.)
| | - Takamasa Hashizaki
- Department of Rehabilitation Medicine, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.N.-M.)
| | - Yukihide Nishimura
- Department of Rehabilitation Medicine, School of Medicine, Iwate Medical University, Yahaba 028-3695, Japan
| | - Kazunari Furusawa
- Department of Rehabilitation Medicine, Kibikogen Rehabilitation Center for Employment Injuries, Okayama 716-1241, Japan
| | - Yohei Furotani
- Department of Rehabilitation Medicine, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.N.-M.)
| | - Fumihiro Tajima
- Department of Rehabilitation Medicine, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.N.-M.)
| | - Ken Kouda
- Department of Rehabilitation Medicine, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.N.-M.)
| |
Collapse
|
17
|
Mielnik M, Szudy-Szczyrek A, Homa-Mlak I, Mlak R, Podgajna-Mielnik M, Gorący A, Małecka-Massalska T, Hus M. The Clinical Relevance of Selected Cytokines in Newly Diagnosed Multiple Myeloma Patients. Biomedicines 2023; 11:3012. [PMID: 38002012 PMCID: PMC10669681 DOI: 10.3390/biomedicines11113012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/29/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple myeloma (MM) is the second most common hematological neoplasm. Cytokines, chemokines, and their receptors, induced by the microenvironment of MM, participate in tumor growth, the attraction of leukocytes, cell homing, and bone destruction. This study aimed to assess the correlation between the pretreatment serum concentrations of interleukin-6 (IL-6), interleukin-8 (IL-8), angiogenic chemokine monocyte chemoattractant protein-1 (MCP-1), and vascular endothelial growth factor (VEGF) and the clinical outcomes and survival of patients newly diagnosed with MM. The study group consisted of 82 individuals. The IL-8 concentration was significantly positively correlated with the age of onset (p = 0.007), the International Staging System (ISS) stage (p = 0.03), the Eastern Cooperative Oncology Group (ECOG) performance status (p < 0.001), the degree of anemia before treatment (p < 0.0001), the degree of kidney disease (p < 0.001), and VEGF (p = 0.0364). Chemotherapy responders had significantly lower concentrations of IL-8 (p < 0.001), IL-6 (p < 0.001), and VEGF (p = 0.04) compared with non-responders. Patients with treatment-induced polyneuropathy had significantly higher levels of IL-8 (p = 0.033). Patients with a high level of IL-6 had a 2-fold higher risk of progression-free survival (PFS) reduction (17 vs. 35 months; HR = 1.89; p = 0.0078), and a more than 2.5-fold higher risk of overall survival (OS) reduction (28 vs. 78 months; HR = 2.62; p < 0.001). High levels of IL-6, IL-8, and VEGF demonstrated significant predictive values for some clinical conditions or outcomes of newly diagnosed MM patients. Patients with an early response to chemotherapy had a significantly lower concentration of these cytokines. A high pretreatment IL-6 concentration was an independent negative prognostic marker for newly diagnosed MM patients.
Collapse
Affiliation(s)
- Michał Mielnik
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-081 Lublin, Poland
| | - Aneta Szudy-Szczyrek
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-081 Lublin, Poland
| | - Iwona Homa-Mlak
- Department of Human Physiology, Medical University of Lublin, 20-080 Lublin, Poland; (I.H.-M.)
| | - Radosław Mlak
- Department of Laboratory Diagnostics, Medical University of Lublin, Doktora Witolda Chodźki 1 Str., 20-093 Lublin, Poland;
| | - Martyna Podgajna-Mielnik
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-081 Lublin, Poland
| | - Aneta Gorący
- Department of Hematology and Bone Marrow Transplantation, Saint Jan of Dukla Oncology Centre of the Lublin Region, Doktora Kazimierza Jaczewskiego 7 Str., 20-090 Lublin, Poland
| | | | - Marek Hus
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-081 Lublin, Poland
| |
Collapse
|
18
|
Dorand VAM, Soares NL, da Silva Andrade ADA, Ribeiro MD, de Almeida Filho EJB, Neto MM, Batista KS, de Oliveira GC, Alves AF, de Paiva Sousa MC, Silva AS, Aquino JDS. Intermittent fasting associated with aerobic exercise improves oxidative parameters and causes muscle damage without compromising the performance of Wistar rats. Nutrition 2023; 115:112159. [PMID: 37549455 DOI: 10.1016/j.nut.2023.112159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 08/09/2023]
Abstract
OBJECTIVES The aim of this study was to` investigate the effects of intermittent fasting (IF) and the possible association with aerobic exercise on performance, oxidative, biochemical, and somatic parameters of Wistar rats. METHODS Forty rats were randomized into the following groups: sedentary (SC) and trained (TC) controls, sedentary intermittent fasting (SIF), and trained intermittent fasting (TIF). The rats were subjected to IF for 15 h every day and aerobic exercise lasting 30 min, five times a week, at a speed of 15 m/min for 4 wk. Performance tests were performed at the beginning and end of the protocol. Glucose and insulin tolerance, somatic parameters, lipidogram, leptin, insulin, malondialdehyde, antioxidant capacity, C-reactive protein, alpha acid glycoprotein, creatine kinase, lactate dehydrogenase, and muscle histology were analyzed. RESULTS The trained groups had similar performance and significantly improved performance at the end of the experiment. TIF showed lower body weight (-16 g), lean mass (22.49%), homeostatic model assessment for insulin resistance (29%), and lactate dehydrogenase (48%), and higher malondialdehyde (53%) and antioxidant capacity (75%) than the TC group. The SIF and TIF groups showed a fiber area reduction and positivity marking for tumor necrosis factor-α in the muscles. CONCLUSION Although IF associated with aerobic exercise improved antioxidant capacity caused damage to muscle fibers and lean mass loss, it did not change the performance of the rats.
Collapse
Affiliation(s)
- Victor Augusto Mathias Dorand
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba, UFPB, João Pessoa-PB, Brazil; Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Naís Lira Soares
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba, UFPB, João Pessoa-PB, Brazil; Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | | | - Mateus Duarte Ribeiro
- Laboratory of Applied Studies in Physical Training to Performance and Health - LETFADS, Department of Physical Education, Federal University of Paraíba, João Pessoa, Brazil; Associate Graduate Program in Physical Education - UPE/UFPB, Department of Physical Education, Federal University of Paraíba, João Pessoa, Brazil
| | - Eder Jackson Bezerra de Almeida Filho
- Laboratory of Applied Studies in Physical Training to Performance and Health - LETFADS, Department of Physical Education, Federal University of Paraíba, João Pessoa, Brazil
| | - Manoel Miranda Neto
- Laboratory of Applied Studies in Physical Training to Performance and Health - LETFADS, Department of Physical Education, Federal University of Paraíba, João Pessoa, Brazil
| | - Kamila Sabino Batista
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba, UFPB, João Pessoa-PB, Brazil; Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | | | - Adriano Francisco Alves
- Laboratory of General pathology, Department of Physiology and Pathology, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Maria Carolina de Paiva Sousa
- Laboratory of General pathology, Department of Physiology and Pathology, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Alexandre Sergio Silva
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil; Laboratory of Applied Studies in Physical Training to Performance and Health - LETFADS, Department of Physical Education, Federal University of Paraíba, João Pessoa, Brazil; Associate Graduate Program in Physical Education - UPE/UFPB, Department of Physical Education, Federal University of Paraíba, João Pessoa, Brazil
| | - Jailane de Souza Aquino
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba, UFPB, João Pessoa-PB, Brazil; Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil; Department of Nutrition at the Federal University of Paraíba, João Pessoa, Brazil.
| |
Collapse
|
19
|
Ferreira RP, Duarte JA. Protein Turnover in Skeletal Muscle: Looking at Molecular Regulation towards an Active Lifestyle. Int J Sports Med 2023; 44:763-777. [PMID: 36854391 DOI: 10.1055/a-2044-8277] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Skeletal muscle is a highly plastic tissue, able to change its mass and functional properties in response to several stimuli. Skeletal muscle mass is influenced by the balance between protein synthesis and breakdown, which is regulated by several signaling pathways. The relative contribution of Akt/mTOR signaling, ubiquitin-proteasome pathway, autophagy among other signaling pathways to protein turnover and, therefore, to skeletal muscle mass, differs depending on the wasting or loading condition and muscle type. By modulating mitochondria biogenesis, PGC-1α has a major role in the cell's bioenergetic status and, thus, on protein turnover. In fact, rates of protein turnover regulate differently the levels of distinct protein classes in response to atrophic or hypertrophic stimuli. Mitochondrial protein turnover rates may be enhanced in wasting conditions, whereas the increased turnover of myofibrillar proteins triggers muscle mass gain. The present review aims to update the knowledge on the molecular pathways implicated in the regulation of protein turnover in skeletal muscle, focusing on how distinct muscle proteins may be modulated by lifestyle interventions with emphasis on exercise training. The comprehensive analysis of the anabolic effects of exercise programs will pave the way to the tailored management of muscle wasting conditions.
Collapse
Affiliation(s)
- Rita Pinho Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Jose Alberto Duarte
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
- CIAFEL, Faculty of Sports, University of Porto and Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| |
Collapse
|
20
|
Dalle Carbonare L, Minoia A, Zouari S, Piritore FC, Vareschi A, Romanelli MG, Valenti MT. Crosstalk between Bone and Muscles during Physical Activity. Cells 2023; 12:2088. [PMID: 37626898 PMCID: PMC10453939 DOI: 10.3390/cells12162088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/08/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Bone-muscle crosstalk is enabled thanks to the integration of different molecular signals, and it is essential for maintaining the homeostasis of skeletal and muscle tissue. Both the skeletal system and the muscular system perform endocrine activity by producing osteokines and myokines, respectively. These cytokines play a pivotal role in facilitating bone-muscle crosstalk. Moreover, recent studies have highlighted the role of non-coding RNAs in promoting crosstalk between bone and muscle in physiological or pathological conditions. Therefore, positive stimuli or pathologies that target one of the two systems can affect the other system as well, emphasizing the reciprocal influence of bone and muscle. Lifestyle and in particular physical activity influence both the bone and the muscular apparatus by acting on the single system but also by enhancing its crosstalk. Several studies have in fact demonstrated the modulation of circulating molecular factors during physical activity. These molecules are often produced by bone or muscle and are capable of activating signaling pathways involved in bone-muscle crosstalk but also of modulating the response of other cell types. Therefore, in this review we will discuss the effects of physical activity on bone and muscle cells, with particular reference to the biomolecular mechanisms that regulate their cellular interactions.
Collapse
Affiliation(s)
- Luca Dalle Carbonare
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (S.Z.); (A.V.)
| | - Arianna Minoia
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (S.Z.); (A.V.)
| | - Sharazed Zouari
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (S.Z.); (A.V.)
| | - Francesca Cristiana Piritore
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (F.C.P.); (M.G.R.)
| | - Anna Vareschi
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (S.Z.); (A.V.)
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (F.C.P.); (M.G.R.)
| | - Maria Teresa Valenti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (F.C.P.); (M.G.R.)
| |
Collapse
|
21
|
King MA, Brown SD, Barnes KA, De Chavez PJD, Baker LB. Regional and time course differences in sweat cortisol, glucose, and select cytokine concentrations during exercise. Eur J Appl Physiol 2023; 123:1727-1738. [PMID: 37005963 PMCID: PMC10363073 DOI: 10.1007/s00421-023-05187-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023]
Abstract
INTRODUCTION The use of sweat as a biofluid for non-invasive sampling and diagnostics is a popular area of research. However, concentrations of cortisol, glucose, and cytokines have not been described across anatomical regions or as time progresses throughout exercise. PURPOSE To determine regional and time course differences in sweat cortisol, glucose, and select cytokines (EGF, IFN-γ, IL-1β, IL-1α, IL-1ra, TNF-α, IL-6, IL-8, and IL-10). METHODS Sweat was collected with absorbent patches from eight subjects (24-44 y; 80.2 ± 10.2 kg) on the forehead (FH), right dorsal forearm (RDF), right scapula (RS), and right triceps (RT) at 0-25 min, 30-55 min, and 60-85 min during 90 min of cycling (~ 82% HRmax) in a heated chamber (32 °C, 50% rh). ANOVA was used to determine the effect of site and time on outcomes. Data are reported as LS means ± SE. RESULTS There was a significant effect of location on sweat analyte concentrations with FH having higher values than most other regions for cortisol (FH: 1.15 ± 0.08 ng/mL > RDF: 0.62 ± 0.09 ng/mL and RT: 0.65 ± 0.12 ng/mL, P = 0.02), IL-1ra (P < 0.0001), and IL-8 (P < 0.0001), but lower concentrations for glucose (P = 0.01), IL-1α (P < 0.0001), and IL-10 (P = 0.02). Sweat IL-1β concentration was higher on the RS than RT (P < 0.0001). Sweat cortisol concentration increased (25 min: 0.34 ± 0.10 ng/mL < 55 min: 0.89 ± 0.07 ng/mL < 85 min: 1.27 ± 0.07 ng/mL; P < 0.0001), while EGF (P < 0.0001), IL-1ra (P < 0.0001), and IL-6 (P = 0.02) concentrations decreased over time. CONCLUSION Sweat analyte concentrations varied with time of sampling and anatomical region, which is essential information to consider when conducting future work in this area. CLINICAL TRIAL IDENTIFIER NCT04240951 registered January 27, 2020.
Collapse
Affiliation(s)
- Michelle A King
- Gatorade Sports Science Institute, PepsiCo R&D Life Sciences, Barrington, IL, USA
| | - Shyretha D Brown
- Gatorade Sports Science Institute, PepsiCo R&D Life Sciences, Barrington, IL, USA
| | - Kelly A Barnes
- Gatorade Sports Science Institute, PepsiCo R&D Life Sciences, Barrington, IL, USA
| | | | - Lindsay B Baker
- Gatorade Sports Science Institute, PepsiCo R&D Life Sciences, Barrington, IL, USA.
- Gatorade Sports Science Institute, PepsiCo R&D Life Sciences, Valhalla, NY, USA.
| |
Collapse
|
22
|
Runhaar J, Holden MA, Hattle M, Quicke J, Healey EL, van der Windt D, Dziedzic KS, Middelkoop MV, Bierma-Zeinstra S, Foster NE. Mechanisms of action of therapeutic exercise for knee and hip OA remain a black box phenomenon: an individual patient data mediation study with the OA Trial Bank. RMD Open 2023; 9:e003220. [PMID: 37640513 PMCID: PMC10462947 DOI: 10.1136/rmdopen-2023-003220] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVES To evaluate mediating factors for the effect of therapeutic exercise on pain and physical function in people with knee/hip osteoarthritis (OA). METHODS For Subgrouping and TargetEd Exercise pRogrammes for knee and hip OsteoArthritis (STEER OA), individual participant data (IPD) were sought from all published randomised controlled trials (RCTs) comparing therapeutic exercise to non-exercise controls in people with knee/hip OA. Using the Counterfactual framework, the effect of the exercise intervention and the percentage mediated through each potential mediator (muscle strength, proprioception and range of motion (ROM)) for knee OA and muscle strength for hip OA were determined. RESULTS Data from 12 of 31 RCTs of STEER OA (1407 participants) were available. Within the IPD data sets, there were generally statistically significant effects from therapeutic exercise for pain and physical function in comparison to non-exercise controls. Of all potential mediators, only the change in knee extension strength was statistically and significantly associated with the change in pain in knee OA (β -0.03 (95% CI -0.05 to -0.01), 2.3% mediated) and with physical function in knee OA (β -0.02 (95% CI -0.04 to -0.00), 2.0% mediated) and hip OA (β -0.03 (95% CI -0.07 to -0.00), no mediation). CONCLUSIONS This first IPD mediation analysis of this scale revealed that in people with knee OA, knee extension strength only mediated ±2% of the effect of therapeutic exercise on pain and physical function. ROM and proprioception did not mediate changes in outcomes, nor did knee extension strength in people with hip OA. As 98% of the effectiveness of therapeutic exercise compared with non-exercise controls remains unexplained, more needs to be done to understand the underlying mechanisms of actions.
Collapse
Affiliation(s)
- Jos Runhaar
- General Practice, Erasmus MC, Rotterdam, The Netherlands
| | - Melanie A Holden
- Primary Care Centre Versus Arthritis, School of Medicine, Keele University, Keele, UK
| | - Miriam Hattle
- Primary Care Centre Versus Arthritis, School of Medicine, Keele University, Keele, UK
| | - Jonathan Quicke
- Primary Care Centre Versus Arthritis, School of Medicine, Keele University, Keele, UK
- Chartered Society of Physiotherapy, London, UK
| | - Emma Louise Healey
- Primary Care Centre Versus Arthritis, School of Medicine, Keele University, Keele, UK
| | | | - Krysia S Dziedzic
- Primary Care Centre Versus Arthritis, School of Medicine, Keele University, Keele, UK
| | | | - Sita Bierma-Zeinstra
- General Practice, Erasmus MC, Rotterdam, The Netherlands
- Orthopedics & Sports Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Nadine E Foster
- Primary Care Centre Versus Arthritis, School of Medicine, Keele University, Keele, UK
- Surgical Treatment and Rehabilitation Service (STARS) Education and Research Alliance, The University of Queensland and Metro North Health, Brisbane, Queensland, Australia
| |
Collapse
|
23
|
Małkowska P, Sawczuk M. Cytokines as Biomarkers for Evaluating Physical Exercise in Trained and Non-Trained Individuals: A Narrative Review. Int J Mol Sci 2023; 24:11156. [PMID: 37446334 DOI: 10.3390/ijms241311156] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Physical activity and exercise training have numerous health benefits, including the prevention and management of chronic diseases, improvement of cardiovascular health, and enhancement of mental well-being. However, the effectiveness of training programs can vary widely among individuals due to various factors, such as genetics, lifestyle, and environment. Thus, identifying reliable biomarkers to evaluate physical training effectiveness and personalize training programs is crucial. Cytokines are signaling molecules produced by immune cells that play a vital role in inflammation and tissue repair. In recent years, there has been increasing interest in the potential use of cytokines as biomarkers for evaluating training effectiveness. This review article aims to provide an overview of cytokines, their potential as biomarkers, methods for measuring cytokine levels, and factors that can affect cytokine levels. The article also discusses the potential benefits of using cytokines as biomarkers, such as monitoring muscle damage and inflammation, and the potential for personalized training programs based on cytokine responses. We believe that the use of cytokines as biomarkers holds great promise for optimizing training programs and improving overall health outcomes.
Collapse
Affiliation(s)
- Paulina Małkowska
- Institute of Physical Culture Sciences, University of Szczecin, 71-065 Szczecin, Poland
- Doctoral School, University of Szczecin, 70-384 Szczecin, Poland
| | - Marek Sawczuk
- Institute of Physical Culture Sciences, University of Szczecin, 71-065 Szczecin, Poland
| |
Collapse
|
24
|
Immanuel J, Yun S. Vascular Inflammatory Diseases and Endothelial Phenotypes. Cells 2023; 12:1640. [PMID: 37371110 PMCID: PMC10297687 DOI: 10.3390/cells12121640] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The physiological functions of endothelial cells control vascular tone, permeability, inflammation, and angiogenesis, which significantly help to maintain a healthy vascular system. Several cardiovascular diseases are characterized by endothelial cell activation or dysfunction triggered by external stimuli such as disturbed flow, hypoxia, growth factors, and cytokines in response to high levels of low-density lipoprotein and cholesterol, hypertension, diabetes, aging, drugs, and smoking. Increasing evidence suggests that uncontrolled proinflammatory signaling and further alteration in endothelial cell phenotypes such as barrier disruption, increased permeability, endothelial to mesenchymal transition (EndMT), and metabolic reprogramming further induce vascular diseases, and multiple studies are focusing on finding the pathways and mechanisms involved in it. This review highlights the main proinflammatory stimuli and their effects on endothelial cell function. In order to provide a rational direction for future research, we also compiled the most recent data regarding the impact of endothelial cell dysfunction on vascular diseases and potential targets that impede the pathogenic process.
Collapse
Affiliation(s)
| | - Sanguk Yun
- Department of Biotechnology, Inje University, Gimhae-si 50834, Republic of Korea;
| |
Collapse
|
25
|
Hayashi N, Nagastuka H, Sato M, Goto K. Effect of long-term carnosine/anserine supplementation on iron regulation after a prolonged running session. Phys Act Nutr 2023; 27:70-77. [PMID: 37583074 PMCID: PMC10440176 DOI: 10.20463/pan.2023.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 08/17/2023] Open
Abstract
PURPOSE Exercise-induced hemolysis, which is caused by metabolic and/or mechanical stress during exercise, is considered a potential factor for upregulating hepcidin. Intramuscular carnosine has multiple effects including antioxidant activity. Therefore, this study aimed to determine whether long-term carnosine/anserine supplementation modulates exercise-induced hemolysis and subsequent hepcidin elevation. METHODS Seventeen healthy male participants were allocated to two different groups: participants consuming 1,500 mg/day of carnosine/anserine supplements (n = 9, C+A group) and participants consuming placebo powder supplements (n = 8, PLA group). The participants consumed carnosine/anserine or placebo supplements daily for 30.7 ± 0.4 days. They performed an 80-running session at 70% VO2peak pre-and post-supplementation. Iron regulation and inflammation in response to exercise were evaluated. RESULTS Serum iron concentrations significantly increased after exercise (p < 0.01) and serum haptoglobin concentrations decreased after exercise in both groups (p < 0.01). No significant differences in these variables were observed between pre-and post-supplementation. Serum hepcidin concentration significantly increased 180 min after exercise in both groups (p < 0.01). The integrated area under the curve of hepcidin significantly decreased after supplementation (p = 0.011) but did not vary between the C+A and PLA groups. CONCLUSION Long-term carnosine/anserine supplementation does not affect iron metabolism after a single endurance exercise session.
Collapse
Affiliation(s)
- Nanako Hayashi
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Haruna Nagastuka
- Faculty of Sports and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Mikako Sato
- NH Foods Ltd. R&D Center, Midorigahara, Tsukuba, Ibaraki, Japan
| | - Kazushige Goto
- Faculty of Sports and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
26
|
Scriven M, McSweeney A, O'Carroll T, Morkl S, Butler MI. The Muscle-Gut-Brain Axis and Psychiatric Illness. Adv Biol (Weinh) 2023; 7:e2200214. [PMID: 37080945 DOI: 10.1002/adbi.202200214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/07/2023] [Indexed: 04/22/2023]
Abstract
The microbiota-gut-brain axis (MGBA) has been the subject of much research over the past decade, offering an exciting new paradigm for the treatment of psychiatric disorders. In this review, the MGBA is extended to include skeletal muscle and the potential role of an expanded "muscle-gut-brain axis" (MuGBA) in conditions such as anxiety and depression is discussed. There is evidence, from both preclinical and human studies, of bidirectional links between the gut microbiome and skeletal muscle function and structure. The therapeutic role of exercise in reducing depressive and anxiety symptoms is widely recognised, and the potential role of the gut microbiota-skeletal muscle link is discussed within this context. Potential pathways of communication involved in the MuGBA including the tryptophan-kynurenine pathway, intestinal permeability, immune modulation, and bacterial metabolites such as short-chain-fatty-acids are explored.
Collapse
Affiliation(s)
- Mary Scriven
- St Loman's Psychiatric Hospital, Delvin Road, Mullingar, County Westmeath, N91T3PR, Ireland
| | - Angela McSweeney
- Department of Psychiatry, Cork University Hospital, Wilton Road, Cork, T12DC4A, Ireland
| | | | - Sabrina Morkl
- Medical University of Graz, Department of Psychiatry and Psychotherapeutic Medicine, Graz, 8010, Austria
| | - Mary I Butler
- Department of Psychiatry, Cork University Hospital, Wilton Road, Cork, T12DC4A, Ireland
| |
Collapse
|
27
|
King MA, Grosche A, Ward SM, Ward JA, Sasidharan A, Mayer TA, Plamper ML, Xu X, Ward MD, Clanton TL, Vidyasagar S. Amino acid solution mitigates hypothermia response and intestinal damage following exertional heat stroke in male mice. Physiol Rep 2023; 11:e15681. [PMID: 37217446 PMCID: PMC10202825 DOI: 10.14814/phy2.15681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Increased gut permeability is implicated in the initiation and extent of the cytokine inflammatory response associated with exertional heat stroke (EHS). The primary objective of this study was to determine if a five amino acid oral rehydration solution (5AAS), specifically designed for the protection of the gastrointestinal lining, would prolong time to EHS, maintain gut function and dampen the systemic inflammatory response (SIR) measured during EHS recovery. Male C57/BL6J mice instrumented with radiotelemetry were gavaged with 150 μL of 5AAS or H2 O, and ≈12 h later were either exposed to an EHS protocol where mice exercised in a 37.5°C environmental chamber to a self-limiting maximum core temperature (Tc,max) or performed the exercise control (EXC) protocol (25°C). 5AAS pretreatment attenuated hypothermia depth and length (p < 0.005), which are indicators of EHS severity during recovery, without any effect on physical performance or thermoregulatory responses in the heat as determined by percent body weight lost (≈9%), max speed (≈6 m/min), distance (≈700 m), time to Tc,max (≈160 min), thermal area (≈550°C∙min), and Tc,max (42.2°C). EHS groups treated with 5AAS showed a significant decrease in gut transepithelial conductance, decreased paracellular permeability, increased villus height, increased electrolyte absorption and changes in tight junction protein expression pattern suggestive of improved barrier integrity (p < 0.05). No differences were witnessed between EHS groups in acute phase response markers of liver, circulating SIR markers, or indicators of organ damage during recovery. These results suggest that a 5AAS improves Tc regulation during EHS recovery through maintaining mucosal function and integrity.
Collapse
Affiliation(s)
- Michelle A. King
- Thermal and Mountain Medicine DivisionUnited States Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - Astrid Grosche
- Radiation OncologyUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Shauna M. Ward
- Thermal and Mountain Medicine DivisionUnited States Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - Jermaine A. Ward
- Thermal and Mountain Medicine DivisionUnited States Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - Anusree Sasidharan
- Radiation OncologyUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Thomas A. Mayer
- Thermal and Mountain Medicine DivisionUnited States Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - Mark L. Plamper
- Thermal and Mountain Medicine DivisionUnited States Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - Xiaodong Xu
- Radiation OncologyUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Matthew D. Ward
- Thermal and Mountain Medicine DivisionUnited States Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - Thomas L. Clanton
- Health and Human PerformanceUniversity of FloridaGainesvilleFloridaUSA
| | - Sadasivan Vidyasagar
- Radiation OncologyUniversity of Florida College of MedicineGainesvilleFloridaUSA
| |
Collapse
|
28
|
Reddy I, Yadav Y, Dey CS. Cellular and Molecular Regulation of Exercise-A Neuronal Perspective. Cell Mol Neurobiol 2023; 43:1551-1571. [PMID: 35986789 PMCID: PMC11412429 DOI: 10.1007/s10571-022-01272-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022]
Abstract
The beneficial effects of exercise on the proper functioning of the body have been firmly established. Multi-systemic metabolic regulation of exercise is the consequence of multitudinous changes that occur at the cellular level. The exercise responsome comprises all molecular entities including exerkines, miRNA species, growth factors, signaling proteins that are elevated and activated by physical exercise. Exerkines are secretory molecules released by organs such as skeletal muscle, adipose tissue, liver, and gut as a function of acute/chronic exercise. Exerkines such as FNDC5/irisin, Cathepsin B, Adiponectin, and IL-6 circulate through the bloodstream, cross the blood-brain barrier, and modulate the expression of important signaling molecules such as AMPK, SIRT1, PGC1α, BDNF, IGF-1, and VEGF which further contribute to improved energy metabolism, glucose homeostasis, insulin sensitivity, neurogenesis, synaptic plasticity, and overall well-being of the body and brain. These molecules are also responsible for neuroprotective adaptations that exercise confers on the brain and potentially ameliorate neurodegeneration. This review aims to detail important cellular and molecular species that directly or indirectly mediate exercise-induced benefits in the body, with an emphasis on the central nervous system.
Collapse
Affiliation(s)
- Ishitha Reddy
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Yamini Yadav
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India.
| |
Collapse
|
29
|
Adila F, Rejeki PS, Herawati L. Acute Moderate-Intensity Strength Exercise Increases Anti-Inflammatory Cytokines in Obese Females. PHYSICAL EDUCATION THEORY AND METHODOLOGY 2023; 23:35-41. [DOI: 10.17309/tmfv.2023.1.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The study purpose was to prove the effect of acute moderate-intensity endurance and strength exercise on increasing IL-6 levels in obese females.
Materials and methods. A total of 21 obese women aged 20-25 years were recruited from among university students and given two modes of acute exercise intervention, namely moderate-intensity endurance and strength exercise carried out for 35 minutes/session. Subjects were divided randomly into three groups, namely K1 (control group without intervention; n = 7), K2 (Acute moderate-intensity endurance exercise; n = 7), K3 (Acute moderate-intensity strength exercise; n = 7). ELISA was used to analyze serum IL-6 levels before and after exercise. The data analysis technique used the One-way ANOVA test and continued with the Tukey HSD post-hoc test with a significance level of 5%.
Results. The results of the One-way ANOVA test showed that there was a significant difference between serum IL-6 levels after exercise and delta (Δ) in the three groups (p ≤ 0.01). The results of the Tukey HSD post-hoc test showed that there was a significant difference between serum IL-6 levels after exercise and delta (Δ) at K3 with K1 (p ≤ 0.01), K3with K2 (p ≤ 0.01), while there was no significant difference in serum IL-6 levels (p ≥ 0.05) at K2 with K1.
Conclusions. Overall, our study concluded that 35 min/session of acute moderate-intensity strength exercise was effective in increasing anti-inflammatory cytokines, such as IL-6, in obese females.
Collapse
|
30
|
Brizzolari A, Bosco G, Vezzoli A, Dellanoce C, Barassi A, Paganini M, Cialoni D, Mrakic-Sposta S. Seasonal Oxy-Inflammation and Hydration Status in Non-Elite Freeskiing Racer: A Pilot Study by Non-Invasive Analytic Method. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3157. [PMID: 36833850 PMCID: PMC9960265 DOI: 10.3390/ijerph20043157] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Freeskiing is performed in an extreme environment, with significant physical effort that can induce reactive oxygen species (ROS) generation and dehydration. This study aimed to investigate the evolution of the oxy-inflammation and hydration status during a freeskiing training season with non-invasive methods. Eight trained freeskiers were investigated during a season training: T0 (beginning), T1-T3 (training sessions), and T4 (after the end). Urine and saliva were collected at T0, before (A) and after (B) T1-T3, and at T4. ROS, total antioxidant capacity (TAC), interleukin-6 (IL-6), nitric oxide (NO) derivatives, neopterin, and electrolyte balance changes were investigated. We found significant increases in ROS generation (T1A-B +71%; T2A-B +65%; T3A-B +49%; p < 0.05-0.01) and IL-6 (T2A-B +112%; T3A-B +133%; p < 0.01). We did not observe significant variation of TAC and NOx after training sessions. Furthermore, ROS and IL-6 showed statistically significant differences between T0 and T4 (ROS +48%, IL-6 +86%; p < 0.05). Freeskiing induced an increase in ROS production, which can be contained by antioxidant defense activation, and in IL-6, as a consequence of physical activity and skeletal muscular contraction. We did not find deep changes in electrolytes balance, likely because all freeskiers were well-trained and very experienced.
Collapse
Affiliation(s)
- Andrea Brizzolari
- Environmental Physiology and Medicine Laboratory, Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- DAN Europe Research Division, 64026 Roseto degli Abruzzi, Italy
| | - Gerardo Bosco
- Environmental Physiology and Medicine Laboratory, Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza dell’Ospedale Maggiore, 3, 20162 Milan, Italy
| | - Cinzia Dellanoce
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza dell’Ospedale Maggiore, 3, 20162 Milan, Italy
| | - Alessandra Barassi
- Department of Health Sciences, Università degli Studi of Milan, 20142 Milan, Italy
| | - Matteo Paganini
- Environmental Physiology and Medicine Laboratory, Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Danilo Cialoni
- Environmental Physiology and Medicine Laboratory, Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- DAN Europe Research Division, 64026 Roseto degli Abruzzi, Italy
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza dell’Ospedale Maggiore, 3, 20162 Milan, Italy
| |
Collapse
|
31
|
Disruption of mitochondrial dynamics triggers muscle inflammation through interorganellar contacts and mitochondrial DNA mislocation. Nat Commun 2023; 14:108. [PMID: 36609505 PMCID: PMC9822926 DOI: 10.1038/s41467-022-35732-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/14/2022] [Indexed: 01/07/2023] Open
Abstract
Some forms of mitochondrial dysfunction induce sterile inflammation through mitochondrial DNA recognition by intracellular DNA sensors. However, the involvement of mitochondrial dynamics in mitigating such processes and their impact on muscle fitness remain unaddressed. Here we report that opposite mitochondrial morphologies induce distinct inflammatory signatures, caused by differential activation of DNA sensors TLR9 or cGAS. In the context of mitochondrial fragmentation, we demonstrate that mitochondria-endosome contacts mediated by the endosomal protein Rab5C are required in TLR9 activation in cells. Skeletal muscle mitochondrial fragmentation promotes TLR9-dependent inflammation, muscle atrophy, reduced physical performance and enhanced IL6 response to exercise, which improved upon chronic anti-inflammatory treatment. Taken together, our data demonstrate that mitochondrial dynamics is key in preventing sterile inflammatory responses, which precede the development of muscle atrophy and impaired physical performance. Thus, we propose the targeting of mitochondrial dynamics as an approach to treating disorders characterized by chronic inflammation and mitochondrial dysfunction.
Collapse
|
32
|
Jengelley DHA, Wang M, Narasimhan A, Rupert JE, Young AR, Zhong X, Horan DJ, Robling AG, Koniaris LG, Zimmers TA. Exogenous Oncostatin M induces Cardiac Dysfunction, Musculoskeletal Atrophy, and Fibrosis. Cytokine 2022; 159:155972. [PMID: 36054964 PMCID: PMC10468097 DOI: 10.1016/j.cyto.2022.155972] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 01/21/2023]
Abstract
Musculoskeletal diseases such as muscular dystrophy, cachexia, osteoarthritis, and rheumatoid arthritis impair overall physical health and reduce survival. Patients suffer from pain, dysfunction, and dysmobility due to inflammation and fibrosis in bones, muscles, and joints, both locally and systemically. The Interleukin-6 (IL-6) family of cytokines, most notably IL-6, is implicated in musculoskeletal disorders and cachexia. Here we show elevated circulating levels of OSM in murine pancreatic cancer cachexia and evaluate the effects of the IL-6 family member, Oncostatin M (OSM), on muscle and bone using adeno-associated virus (AAV) mediated over-expression of murine OSM in wildtype and IL-6 deficient mice. Initial studies with high titer AAV-OSM injection yielded high circulating OSM and IL-6, thrombocytosis, inflammation, and 60% mortality without muscle loss within 4 days. Subsequently, to mimic OSM levels in cachexia, a lower titer of AAV-OSM was used in wildtype and Il6 null mice, observing effects out to 4 weeks and 12 weeks. AAV-OSM caused muscle atrophy and fibrosis in the gastrocnemius, tibialis anterior, and quadriceps of the injected limb, but these effects were not observed on the non-injected side. In contrast, OSM induced both local and distant trabecular bone loss as shown by reduced bone volume, trabecular number, and thickness, and increased trabecular separation. OSM caused cardiac dysfunction including reduced ejection fraction and reduced fractional shortening. RNA-sequencing of cardiac muscle revealed upregulation of genes related to inflammation and fibrosis. None of these effects were different in IL-6 knockout mice. Thus, OSM induces local muscle atrophy, systemic bone loss, tissue fibrosis, and cardiac dysfunction independently of IL-6, suggesting a role for OSM in musculoskeletal conditions with these characteristics, including cancer cachexia.
Collapse
Affiliation(s)
- Daenique H A Jengelley
- Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA
| | - Meijing Wang
- Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA
| | - Ashok Narasimhan
- Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA
| | - Joseph E Rupert
- Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA
| | - Andrew R Young
- Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiaoling Zhong
- Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA; Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA
| | - Daniel J Horan
- Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA
| | - Alexander G Robling
- Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA
| | - Leonidas G Koniaris
- Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA; Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA
| | - Teresa A Zimmers
- Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Otolaryngology, Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA; Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
33
|
Branched-Chain Amino Acids Supplementation Does Not Accelerate Recovery after a Change of Direction Sprinting Exercise Protocol. Nutrients 2022; 14:nu14204331. [PMID: 36297014 PMCID: PMC9609908 DOI: 10.3390/nu14204331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022] Open
Abstract
BCAAs supplementation has been widely used for post-exercise recovery. However, no evidence is currently available to answer the question of whether BCAAs supplementation can attenuate muscle damage and ameliorate recovery after a bout of change of direction (COD) sprinting, which is an exercise motion frequently used during team sport actions. This study aimed to assess the effect of BCAAs supplementation on muscle damage markers, subjective muscle soreness, neuromuscular performance, and the vascular health of collegiate basketball players during a 72 h recovery period after a standardized COD protocol. Participants orally received either BCAAs (0.17 g/kg BCAAs + 0.17 g/kg glucose) or placebo (0.34 g/kg glucose) supplementation before and immediately after a COD exercise protocol in a randomized, crossover, double-blind, and placebo-controlled manner. Creatine kinase increased immediately after exercise and peaked at 24 h, muscle soreness remained elevated until 72 h, whilst arterial stiffness decreased after exercise for both supplemented conditions. A negligibly lower level of interleukin-6 was found in the BCAAs supplemented condition. In conclusion, the results of this study do not support the benefits of BCAAs supplementation on mitigating muscle damage and soreness, neuromuscular performance, and arterial stiffness after COD for basketball players.
Collapse
|
34
|
Wang Y, Xu T, Zhao H, Gu C, Li Z. Effect of taurine in muscle damage markers and inflammatory cytokines in running exercise. Front Physiol 2022; 13:1008060. [PMID: 36176774 PMCID: PMC9513359 DOI: 10.3389/fphys.2022.1008060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to investigate the effect of taurine on muscle damage markers and inflammatory markers in the running. For that, ten healthy volunteers participated in this study (mean ± SEM; age 24 ± 1 year, body mass 72.2 ± 4.89 kg, height 174.03 ± 2.85 cm, and BMI 23.83 ± 1.27). The running exercise was performed for 5 km, and blood was taken pre-exercise and pre-exercise + tau and post-exercise and post-exercise + tau for biochemical assessment. We assessed serum creatine kinase (CK), CK isoenzyme, Lactate dehydrogenase (LDH), aspartate transaminase (AST), tumor necrosis factor-alpha (TNF-alpha), and interleukin-6 (IL-6). CK level was not significantly different in the control and taurine (tau) administrated groups. However, creatine kinase isoenzyme was decreased in the pre-exercise + tau group when compared to the post-exercise + tau group. AST level was increased significantly in the post-exercise compared to the post-exercise + tau group. There was no significant difference observed in the LDH level in both post-exercise and post-exercise + tau. TNF-alpha level was not also significantly different in both post-exercise and post-exercise + tau. However, IL-6 was decreased in the post-exercise + tau when compared to the post-exercise group. In conclusion, we observed that taurine decreases the inflammatory response by decreasing IL-6 and AST, suggesting the role of taurine in regulating inflammatory response could help to increase running performance.
Collapse
Affiliation(s)
- Yucong Wang
- Department of Joint Surgery, Ningbo NO9 Hospital, Ningbo, China
| | - Tao Xu
- Department of Joint Surgery, Ningbo NO9 Hospital, Ningbo, China
| | - Hui Zhao
- Department of Joint Surgery, Ningbo NO9 Hospital, Ningbo, China
| | - Chunxiao Gu
- Department of Joint Surgery, Ningbo NO9 Hospital, Ningbo, China
| | - Zhongzheng Li
- Department of Joint Surgery, Ningbo NO9 Hospital, Ningbo, China
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW The purpose of this narrative review is to give an overview about the effects of multimodal prehabilitation and current existing and prospectively planned studies. The potential efficacy of exercise in the context of prehabilitation ranges from preoperatively improving patients' functional capacity to inducing cellular mechanisms that affect organ perfusion via endothelial regeneration, anti-inflammatory processes and tumour defense. RECENT FINDINGS Current studies show that prehabilitation is capable of reducing certain postoperative complications and length of hospital stay in certain patient populations. These findings are based on small to mid-size trials with large heterogeneity, lacking generalizability and evidence that prehabilitation has positive effects on long term survival. SUMMARY The concept of prehabilitation contains the features, namely preoperative exercise, nutritional intervention and psychological support. Preoperative exercise holds potential molecular effects that can be utilized in the perioperative period in order to improve patients' postoperative outcome. Future multimodal prehabilitation trials must specifically clarify the clinical impact of this concept on patients' quality of life after major cancer surgery and cancer-specific survival.
Collapse
Affiliation(s)
- Tobias Esser
- Institute of Sports and Sports Medicine, TU Dortmund University, Dortmund
| | - Philipp Zimmer
- Institute of Sports and Sports Medicine, TU Dortmund University, Dortmund
| | - Robert Schier
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department for Anaesthesiology and Intensive Care Medicine, Cologne, Germany
| |
Collapse
|
36
|
Ferrer-Pérez C, Reguilón MD, Miñarro J, Rodríguez-Arias M. Effect of Voluntary Wheel-Running Exercise on the Endocrine and Inflammatory Response to Social Stress: Conditioned Rewarding Effects of Cocaine. Biomedicines 2022; 10:biomedicines10102373. [PMID: 36289635 PMCID: PMC9598819 DOI: 10.3390/biomedicines10102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/08/2022] [Accepted: 09/17/2022] [Indexed: 11/21/2022] Open
Abstract
The present paper evaluates the effect of physical activity on the increase of the conditioned rewarding effects of cocaine induced by intermittent social stress and on the neuroinflammatory response that contributes to the enhancement of drug response. For that purpose, three studies were designed in which social stress was induced in different samples of mice through a social-defeat protocol; the mice underwent an increase of physical activity by different modalities of voluntary wheel running (continuous and intermittent access). The results showed that continuous access to running wheels prior to stress enhanced the establishment of cocaine place preference, whereas an intermittent access exerted a protective effect. Wheel running contingent to cocaine administration prevented the development of conditioned preference, and if applied during the extinction of drug memories, it exerted a dual effect depending on the stress background of the animal. Our biological analysis revealed that increased sensitivity to cocaine may be related to the fact that wheel running promotes inflammation though the increase of IL-6 and BDNF levels. Together, these results highlight that physical exercise deeply impacts the organism’s response to stress and cocaine, and these effects should be taken into consideration in the design of a physical intervention.
Collapse
Affiliation(s)
- Carmen Ferrer-Pérez
- Department of Psychology and Sociology, Faculty of Humanities and Social Sciences, University of Zaragoza, 44003 Teruel, Spain
| | - Marina D. Reguilón
- Department of Psychobiology, Faculty of Psychology, Universitat de València, 46010 Valencia, Spain
| | - José Miñarro
- Department of Psychobiology, Faculty of Psychology, Universitat de València, 46010 Valencia, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Faculty of Psychology, Universitat de València, 46010 Valencia, Spain
- Correspondence:
| |
Collapse
|
37
|
Rosidi A, Ayuningtyas A, Nurrahman, Dewi L. The potential of Curcuma extract to alleviate muscle damage in amateur soccer players. POTRAVINARSTVO 2022. [DOI: 10.5219/1787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Compounds with high bioactive are commonly used as a nutritional approach for accelerating muscle damage recovery after strenuous exercise. There are still inconsistent results of post-exercise antioxidant supplementation on the circulating muscle damage biomarker. This study aimed to examine the effect of post-exercise Curcuma extract supplementation in ice cream on muscle damage and inflammatory markers in amateur soccer players. Male amateur soccer athletes (aged 14 – 18 years) participated in a randomized double-blind placebo-controlled study under two conditions: control group (n = 10) and treatment group (n = 10). The treatment group was treated with Curcuma extract ice cream (250 mg/100 g) for 21 days. Blood samples were drawn before training, considered baseline, and 3 h after training on day 21. The level of creatine kinase, IL-6, haemoglobin (Hb), and lactic acid were quantified. There was a significant decrease in creatine kinase change in the treatment group compared to the control group (p <0.05). No change in IL-6 and Hb levels in the treatment group. Lactic acid decreased by 16.3% from baseline in the treatment group (p <0.05). Curcuma extract ice cream potentiates to ameliorate exercise-induced muscle damage.
Collapse
|
38
|
Barney DE, Ippolito JR, Berryman CE, Hennigar SR. A Prolonged Bout of Running Increases Hepcidin and Decreases Dietary Iron Absorption in Trained Female and Male Runners. J Nutr 2022; 152:2039-2047. [PMID: 35661896 DOI: 10.1093/jn/nxac129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/22/2022] [Accepted: 05/31/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Declines in iron status are frequently reported in those who regularly engage in strenuous physical activity. A possible reason is increases in the iron regulatory hormone hepcidin, which functions to inhibit dietary iron absorption and can be induced by the inflammatory cytokine interleukin-6 (IL-6). OBJECTIVES The current study aimed to determine the impact of a prolonged bout of running on hepcidin and dietary iron absorption in trained female and male runners. METHODS Trained female and male collegiate cross country runners (n = 28, age: 19.7 ± 1.2 y, maximal oxygen uptake: 66.1 ± 6.1 mL $\cdot$ kg -1$\cdot$ min-2, serum ferritin: 21.9 ± 13.3 ng/mL) performed a prolonged run (98.8 ± 14.7 min, 21.2 ± 3.8 km, 4.7 ± 0.3 min/km) during a team practice. Participants consumed a stable iron isotope with a standardized meal 2 h postrun and blood was collected 1 h later. The protocol was repeated 2 wk later except participants abstained from exercise (rest). RBCs were collected 15 d after exercise and rest to determine isotope enrichment. Differences between exercise and rest were assessed by paired t tests and Wilcoxon matched-pairs signed rank tests. Data are means ± SDs. RESULTS Plasma hepcidin increased 51% after exercise (45.8 ± 34.4 ng/mL) compared with rest (30.3 ± 27.2 ng/mL, P = 0.0010). Fractional iron absorption was reduced by 36% after exercise (11.8 ± 14.6 %) compared with rest (18.5 ± 14.4 %, P = 0.025). Plasma IL-6 was greater after exercise (0.660 ± 0.354 pg/mL) than after rest (0.457 ± 0.212 pg/mL, P < 0.0001). Exploratory analyses revealed that the increase in hepcidin with exercise may be driven by a response in males but not females. CONCLUSIONS A prolonged bout of running increases hepcidin and decreases dietary iron absorption compared with rest in trained runners with low iron stores. The current study supports that IL-6 contributes to the increase in hepcidin with prolonged physical activity, although future studies should explore potential sex differences in the hepcidin response.This trial was registered at Clinicaltrials.gov as NCT04079322.
Collapse
Affiliation(s)
- David E Barney
- Department of Nutrition & Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - James R Ippolito
- Department of Nutrition & Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - Claire E Berryman
- Department of Nutrition & Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - Stephen R Hennigar
- Department of Nutrition & Integrative Physiology, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
39
|
Ghosh AC, Hu Y, Tattikota SG, Liu Y, Comjean A, Perrimon N. Modeling exercise using optogenetically contractible Drosophila larvae. BMC Genomics 2022; 23:623. [PMID: 36042416 PMCID: PMC9425970 DOI: 10.1186/s12864-022-08845-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
The pathophysiological effects of a number of metabolic and age-related disorders can be prevented to some extent by exercise and increased physical activity. However, the molecular mechanisms that contribute to the beneficial effects of muscle activity remain poorly explored. Availability of a fast, inexpensive, and genetically tractable model system for muscle activity and exercise will allow the rapid identification and characterization of molecular mechanisms that mediate the beneficial effects of exercise. Here, we report the development and characterization of an optogenetically-inducible muscle contraction (OMC) model in Drosophila larvae that we used to study acute exercise-like physiological responses. To characterize muscle-specific transcriptional responses to acute exercise, we performed bulk mRNA-sequencing, revealing striking similarities between acute exercise-induced genes in flies and those previously identified in humans. Our larval muscle contraction model opens a path for rapid identification and characterization of exercise-induced factors.
Collapse
Affiliation(s)
- Arpan C Ghosh
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | | | - Yifang Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Aram Comjean
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
40
|
Balchin C, Tan AL, Golding J, Bissell LA, Wilson OJ, McKenna J, Stavropoulos-Kalinoglou A. Acute effects of exercise on pain symptoms, clinical inflammatory markers and inflammatory cytokines in people with rheumatoid arthritis: a systematic literature review. Ther Adv Musculoskelet Dis 2022; 14:1759720X221114104. [PMID: 35991522 PMCID: PMC9386862 DOI: 10.1177/1759720x221114104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background Exercise is advocated in the treatment of rheumatoid arthritis (RA). However, uncertainty around the acute effects of exercise on pain and inflammation may be stopping people with RA from exercising more regularly. Objectives To determine the acute effects of exercise on pain symptoms, clinical inflammatory markers, and inflammatory cytokines in RA. Design A systematic review of the literature. Data sources and methods Five databases were searched (PubMed, Cochrane Library, CINAHL, Scopus and SPORTDiscus); inclusion criteria were studies with acute exercise, a definite diagnosis of RA and disease characteristics assessed by clinical function (i.e., disease activity score, health assessment questionnaire and self-reported pain), clinical markers associated with inflammation (i.e., c-reactive protein (CRP) and erythrocyte sedimentation rate (ESR)), and inflammatory cytokines (i.e., interleukin 6 (IL-6) and tumour necrosis factor alpha (TNF-α)). Results From a total of 1544 articles, initial screening and full text assessment left 11 studies meeting the inclusion criteria. A total of 274 people were included in the studies (RA = 186; control = 88). Acute bouts of aerobic, resistance, and combined aerobic and resistance exercise did not appear to exacerbate pain symptoms in people with RA. Conclusion Post-exercise responses for pain, clinical inflammatory markers and inflammatory cytokines were not different between people with or without RA. Exercise prescription was variable between studies, which limited between-study comparisons. Therefore, future investigations in people with RA are warranted, which combine different exercise modes and intensities to examine acute effects on pain symptoms and inflammatory markers. Registration The PROSPERO international prospective register of systematic reviews - CRD42018091155.
Collapse
Affiliation(s)
| | - Ai Lyn Tan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Chapel Allerton Hospital, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Joshua Golding is now affiliated to School of Medicine, St George’s University of London, London, UK
| | - Joshua Golding
- Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | - Lesley-Anne Bissell
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Chapel Allerton Hospital, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Joshua Golding is now affiliated to School of Medicine, St George’s University of London, London, UK
| | | | - Jim McKenna
- Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | | |
Collapse
|
41
|
Forcina L, Franceschi C, Musarò A. The hormetic and hermetic role of IL-6. Ageing Res Rev 2022; 80:101697. [PMID: 35850167 DOI: 10.1016/j.arr.2022.101697] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/24/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
Abstract
Interleukin-6 is a pleiotropic cytokine regulating different tissues and organs in diverse and sometimes discrepant ways. The dual and sometime hermetic nature of IL-6 action has been highlighted in several contexts and can be explained by the concept of hormesis, in which beneficial or toxic effects can be induced by the same molecule depending on the intensity, persistence, and nature of the stimulation. According with hormesis, a low and/or controlled IL-6 release is associated with anti-inflammatory, antioxidant, and pro-myogenic actions, whereas increased systemic levels of IL-6 can induce pro-inflammatory, pro-oxidant and pro-fibrotic responses. However, many aspects regarding the multifaceted action of IL-6 and the complex nature of its signal transduction remains to be fully elucidated. In this review we collect mechanistic insight into the molecular networks contributing to normal or pathologic changes during advancing age and in chronic diseases. We point out the involvement of IL-6 deregulation in aging-related diseases, dissecting the hormetic action of this key mediator in different tissues, with a special focus on skeletal muscle. Since IL-6 can act as an enhancer of detrimental factor associated with both aging and pathologic conditions, such as chronic inflammation and oxidative stress, this cytokine could represent a "Gerokine", a determinant of the switch from physiologic aging to age-related diseases.
Collapse
Affiliation(s)
- Laura Forcina
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14, Rome 00161, Italy.
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Scuola Superiore di Studi Avanzati Sapienza (SSAS), Via A. Scarpa, 14, Rome 00161, Italy.
| |
Collapse
|
42
|
Kirk EA, Castellani CA, Doherty TJ, Rice CL, Singh SM. Local and systemic transcriptomic responses from acute exercise induced muscle damage of the human knee extensors. Physiol Genomics 2022; 54:305-315. [PMID: 35723223 DOI: 10.1152/physiolgenomics.00146.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle is adaptable to a direct stimulus of exercise-induced muscle damage (EIMD). Local muscle gene networks and systemic circulatory factors respond to EIMD within days, mediating anti-inflammation and cellular proliferation. Here we show in humans that local EIMD of one muscle group is associated with a systemic response of gene networks that regulate muscle structure and cellular development in non-local homologous muscle not directly altered by EIMD. In the non-dominant knee-extensors of seven males, EIMD was induced through voluntary contractions against an electric motor that lengthened muscles. Neuromuscular assessments, vastus lateralis muscle biopsies and blood draws occurred at two days prior, and one and two days post the EIMD intervention. From the muscle and blood plasma samples, RNA-seq measured transcriptome changes of differential expression using bioinformatic analyses.Relative to the time of the EIMD intervention, local muscle that was mechanically damaged had 475 genes differentially expressed, as compared to 33 genes in the non-local homologous muscle. Gene and network analysis showed that activity of the local muscle was related to structural maintenance, repair, and energetic processes, whereas gene and network activity of the non-local muscle (that was not directly modified by the EIMD) were related to muscle cell development, stress response, and structural maintenance. Altered expression of two novel miRNAs related to the EIMD response supported that systemic factors were active. Together, these results indicate that the expression of genes and gene networks that control muscle contractile structure can be modified in response to non-local EIMD in humans.
Collapse
Affiliation(s)
- Eric A Kirk
- School of Kinesiology, Faculty of Health Sciences, Western University, London, Ontario, Canada.,Molecular Genetics Unit, Department of Biology, Western University, London, Ontario, Canada
| | - Christina A Castellani
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Timothy J Doherty
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Charles L Rice
- School of Kinesiology, Faculty of Health Sciences, Western University, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Shiva M Singh
- Molecular Genetics Unit, Department of Biology, Western University, London, Ontario, Canada
| |
Collapse
|
43
|
Crossland BW, Rigby BR, Duplanty AA, King GA, Juma S, Levine NA, Clark CE, Ramirez KP, Varone NL. Acute Supplementation with Cannabidiol Does Not Attenuate Inflammation or Improve Measures of Performance following Strenuous Exercise. Healthcare (Basel) 2022; 10:healthcare10061133. [PMID: 35742183 PMCID: PMC9222918 DOI: 10.3390/healthcare10061133] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Supplementation with cannabidiol (CBD) may expedite recovery when consumed after exercise. The purpose of this study was to determine if supplementation with CBD reduces inflammation and enhances performance following strenuous eccentric exercise in collegiate athletes. Twenty-four well-trained females (age = 21.2 ± 1.8 years, height = 166.4 ± 8 cm, weight = 64.9 ± 9.1 kg) completed 100 repetitions of unilateral eccentric leg extension to induce muscle damage. In this crossover design, participants were randomized to receive 5 mg/kg of CBD in pill form or a placebo 2 h prior to, immediately following, and 10 h following muscle damage. Blood was collected, and performance and fatigue were measured prior to, and 4 h, 24 h, and 48 h following the muscle damage. Approximately 28 days separated treatment administration to control for the menstrual cycle. No significant differences were observed between the treatments for inflammation, muscle damage, or subjective fatigue. Peak torque at 60°/s (p = 0.001) and peak isometric torque (p = 0.02) were significantly lower 24 h following muscle damage, but no difference in performance was observed between treatments at any timepoint. Cannabidiol supplementation was unable to reduce fatigue, limit inflammation, or restore performance in well-trained female athletes.
Collapse
|
44
|
Sumi D, Nagatsuka H, Matsuo K, Okazaki K, Goto K. Heat acclimation does not attenuate hepcidin elevation after a single session of endurance exercise under hot condition. Eur J Appl Physiol 2022; 122:1965-1974. [PMID: 35674827 PMCID: PMC9174628 DOI: 10.1007/s00421-022-04974-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/17/2022] [Indexed: 12/05/2022]
Abstract
Purpose We sought to determine the effects of heat acclimation on endurance exercise-induced hepcidin elevation under hot conditions. Methods Fifteen healthy men were divided into two groups: endurance training under hot conditions (HOT, 35 °C, n = 8) and endurance training under cool conditions (CON, 18 °C, n = 7). All subjects completed 10 days of endurance training (8 sessions in total), consisting of 60 min of continuous exercise at 50% of maximal oxygen uptake (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}{\text{O}}_{2\max }$$\end{document}V˙O2max) under their assigned environment condition. Subjects completed a heat stress exercise test (HST, 60 min exercise at 60% \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}{\text{O}}_{2\max }$$\end{document}V˙O2max) to evaluate the exercise-induced thermoregulatory and hepcidin responses under hot conditions (35 °C) before (pre-HST) and after (post-HST) the training period. Results Core temperature during exercise in the post-HST decreased significantly in the HOT group compared to pre-HST (P = 0.004), but not in the CON group. The HOT and CON groups showed augmented exercise-induced plasma interleukin-6 (IL-6) elevation in the pre-HST (P = 0.002). Both groups had significantly attenuated increases in exercise-induced IL-6 in the post-HST; however, the reduction of exercise-induced IL-6 elevation was not different significantly between both groups. Serum hepcidin concentrations increased significantly in the pre-HST and post-HST in both groups (P = 0.001), no significant difference was observed between both groups during each test or over the study period. Conclusion 10 days of endurance training period under hot conditions improved thermoregulation, whereas exercise-induced hepcidin elevation under hot conditions was not attenuated following the training.
Collapse
Affiliation(s)
- Daichi Sumi
- Research Center for Urban Health and Sports, Osaka City University, Osaka, Osaka, Japan
- Research Fellow of Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Haruna Nagatsuka
- Graduate School of Sports and Health Science, Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Kaori Matsuo
- Department of Rehabilitation, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| | - Kazunobu Okazaki
- Research Center for Urban Health and Sports, Osaka City University, Osaka, Osaka, Japan
| | - Kazushige Goto
- Graduate School of Sports and Health Science, Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
45
|
Therapeutic Benefit in Rheumatoid Cachexia Illustrated Using a Novel Primary Human Triple Cell Coculture Model. Int J Inflam 2022; 2022:1524913. [PMID: 35693848 PMCID: PMC9184217 DOI: 10.1155/2022/1524913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
Background The loss of muscle mass in rheumatoid arthritis (RA), termed rheumatoid cachexia, is predicted to result from the complex interactions between different cell types involved in the maintenance of skeletal muscle mass, namely, myoblasts, fibroblasts, and macrophages. The complexity within the muscle is further highlighted by the incidence of nonresponsiveness to current RA treatment strategies. Method This study aimed at determining differences in the cellular responses in a novel human primary cell triple coculture model exposed to serum collected from nonarthritic controls (NC), RA treatment naïve (RATN), and RA treatment-nonresponding (RATNR) patients. Bone morphogenetic protein-7 (BMP-7) was investigated as a treatment option. Results Plasma analysis indicated that samples were indeed representative of healthy and RA patients—notably, the RATNR patients additionally exhibited dysregulated IL-6/IL-10 correlations. Coculture exposure to serum from RATNR patients demonstrated increased cellular growth (p < 0.001), while both hepatocyte growth factor (p < 0.01) and follistatin (p < 0.001) were reduced when compared to NC. Furthermore, decreased concentration of markers of extracellular matrix formation, transforming growth factor-β (TGF-β; p < 0.05) and fibronectin (p < 0.001), but increased collagen IV (p < 0.01) was observed following RATNR serum exposure. Under healthy conditions, BMP-7 exhibited potentially beneficial results in reducing fibrosis-generating TGF-β (p < 0.05) and fibronectin (p < 0.05). BMP-7 further exhibited protective potential in the RA groups through reversing the aberrant tendencies observed especially in the RATNR serum-exposed group. Conclusion Exposure of the triple coculture to RATN and RATNR serum resulted in dysregulated myoblast proliferation and growth, and ECM impairment, which was reversed by BMP-7 treatment.
Collapse
|
46
|
High-intensity intermittent exercise induces a potential anti-inflammatory response in healthy women across the menstrual cycle. Cytokine 2022; 154:155872. [DOI: 10.1016/j.cyto.2022.155872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/17/2022] [Accepted: 03/25/2022] [Indexed: 11/18/2022]
|
47
|
Marko DM, MacPherson REK. APP Processing: A Biochemical Competition Influenced by Exercise-Induced Signaling Mediators? Am J Physiol Regul Integr Comp Physiol 2022; 323:R169-R180. [PMID: 35608263 DOI: 10.1152/ajpregu.00297.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), are becoming more common in aging our society. One specific neuropathological hallmark of this disease is excessive accumulation of amyloid-β (Aβ) peptides, which can aggregate to form the plaques commonly associated with this disease. These plaques are often observed well before clinical diagnosis of AD. At the cellular level, both production and aggregation of Aβ peptides in the brain is detrimental to neuronal cell production, survival, and function, as well as often resulting in neuronal dysfunction and death. Exercise and physical activity have been shown to improve overall health, including brain health, and in the last several years there has been evidence to support that exercise may be able to regulate Aβ peptide production in the brain. Exercise promotes the release of a wide array of signaling mediators from various metabolically active tissues and organs in the body. These exercise-induced signaling mediators could be the driving force behind some of the beneficial effects observed in brain with exercise. This review will aim to discuss potential exercise-induced signaling mediators with the capacity to influence various proteins involved in the formation of Aβ peptide production in the brain.
Collapse
Affiliation(s)
- Daniel M Marko
- Department of Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences, Brock University, St. Catharines, Ontario, Canada.,Centre for Neuroscience, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
48
|
Stevanović-Silva J, Beleza J, Coxito P, Costa RC, Ascensão A, Magalhães J. Fit mothers for a healthy future: Breaking the intergenerational cycle of non-alcoholic fatty liver disease with maternal exercise. Eur J Clin Invest 2022; 52:e13596. [PMID: 34120338 DOI: 10.1111/eci.13596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022]
Abstract
UNLABELLED SPECIAL ISSUE: 'FOIEGRAS-Bioenergetic Remodelling in the Pathophysiology and Treatment of Non-Alcoholic Fatty Liver Disease'. BACKGROUND Non-alcoholic fatty liver disease (NAFLD) emerges as significant health burden worldwide. Lifestyle changes, unhealthy dietary habits and physical inactivity, can trigger NAFLD development. Persisting on these habits during pregnancy affects in utero environment and prompts a specific metabolic response in foetus resulting in offspring metabolic maladjustments potentially critical for developing NAFLD later in life. The increasing prevalence of NAFLD, particularly in children, has shifted the research focus towards preventive and therapeutic strategies. Yet, designing effective approaches that can break the NAFLD intergenerational cycle becomes even more complicated. Regular physical exercise (PE) is a powerful non-pharmacological strategy known to counteract deleterious metabolic outcomes. In this narrative review, we aimed to briefly describe NAFLD pathogenesis focusing on maternal nutritional challenge and foetal programming, and to provide potential mechanisms behind the putative intergenerational effect of PE against metabolic diseases, including liver diseases. METHODS Following detailed electronic database search, recent existing evidence about NAFLD development, intergenerational programming and gestational exercise effects was critically analysed and discussed. RESULTS PE during pregnancy could have a great potential to counteract intergenerational transmission of metabolic burden. The interplay between different PE roles-metabolic, endocrine and epigenetic-could offer a more stable in utero environment to the foetus, thus rescuing offspring vulnerability to metabolic disturbances. CONCLUSIONS The better understanding of maternal PE beneficial consequences on offspring metabolism could reinforce the importance of PE during pregnancy as an indispensable strategy in improving offspring health.
Collapse
Affiliation(s)
- Jelena Stevanović-Silva
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| | - Jorge Beleza
- Department of Cell Biology, Physiology & Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Pedro Coxito
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| | - Rui Carlos Costa
- Department of Communication and Art, Research Institute for Design, Media and Culture (ID+), Aveiro University, Aveiro, Portugal
| | - António Ascensão
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| | - José Magalhães
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
49
|
Sanni AA, Blanks AM, Derella CC, Horsager C, Crandall RH, Looney J, Sanchez S, Norland K, Ye B, Thomas J, Wang X, Harris RA. The effects of whole-body vibration amplitude on glucose metabolism, inflammation, and skeletal muscle oxygenation. Physiol Rep 2022; 10:e15208. [PMID: 35238491 PMCID: PMC8892598 DOI: 10.14814/phy2.15208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 11/24/2022] Open
Abstract
Whole-body vibration (WBV) is an exercise mimetic that elicits beneficial metabolic effects. This study aims to investigate the effects of WBV amplitude on metabolic, inflammatory, and muscle oxygenation responses. Forty women and men were assigned to a high (HI; n = 20, Age: 31 ± 6 y) or a low-amplitude group (LO; n = 20, Age: 33 ± 6 y). Participants engaged in 10 cycles of WBV [1 cycle =1 min of vibration followed by 30 s of rest], while gastrocnemius muscle oxygen consumption (mVO2 ) was assessed using near-infrared spectroscopy (NIRS). Blood samples were collected PRE, POST, 1H, 3Hs, and 24H post-WBV and analyzed for insulin, glucose, and IL-6. In the LO group, Homeostatic Model Assessment for Insulin Resistant (HOMA-IR) at 3 h (0.7 ± 0.2) was significantly lower compared to PRE (1.1 ± 0.2; p = 0.018), POST (1.3 ± 0.3; p = 0.045), 1H (1.3 ± 0.3; p = 0.010), and 24H (1.4 ± 0.2; p < 0.001). In addition, at 24H, HOMA-IR was significantly lower in the LO when compared to the HI group (LO: 1.4 ± 0.2 vs. HI: 2.2 ± 0.4; p = 0.030). mVO2 was higher (p = 0.003) in the LO (0.93 ± 0.29 ml/min/100 ml) when compared to the HI group (0.63 ± 0.28 ml/min/100 ml). IL-6 at 3H (LO: 13.2 ± 2.7 vs. HI: 19.6 ± 4.0 pg·ml-1 ; p = 0.045) and 24H (LO: 4.2 ± 1.1 vs. HI: 12.5 ± 3.1 pg·ml-1 ; p = 0.016) was greater in the HI compared to the LO group. These findings indicate that low-amplitude WBV provides greater metabolic benefits compared to high-amplitude WBV.
Collapse
Affiliation(s)
- Adeola A. Sanni
- Department of MedicineGeorgia Prevention InstituteAugusta UniversityAugustaGeorgiaUSA
| | - Anson M. Blanks
- Department of MedicineGeorgia Prevention InstituteAugusta UniversityAugustaGeorgiaUSA
| | - Cassandra C. Derella
- Department of MedicineGeorgia Prevention InstituteAugusta UniversityAugustaGeorgiaUSA
| | - Chase Horsager
- Department of MedicineGeorgia Prevention InstituteAugusta UniversityAugustaGeorgiaUSA
| | - Reva H. Crandall
- Department of MedicineGeorgia Prevention InstituteAugusta UniversityAugustaGeorgiaUSA
| | - Jacob Looney
- Department of MedicineGeorgia Prevention InstituteAugusta UniversityAugustaGeorgiaUSA
| | - Savanna Sanchez
- Department of MedicineGeorgia Prevention InstituteAugusta UniversityAugustaGeorgiaUSA
| | - Kimberly Norland
- Department of MedicineGeorgia Prevention InstituteAugusta UniversityAugustaGeorgiaUSA
| | - Bingwei Ye
- Department of MedicineGeorgia Prevention InstituteAugusta UniversityAugustaGeorgiaUSA
| | - Jeffrey Thomas
- Department of MedicineGeorgia Prevention InstituteAugusta UniversityAugustaGeorgiaUSA
| | - Xiaoling Wang
- Department of MedicineGeorgia Prevention InstituteAugusta UniversityAugustaGeorgiaUSA
| | - Ryan A. Harris
- Department of MedicineGeorgia Prevention InstituteAugusta UniversityAugustaGeorgiaUSA
- Sport and Exercise Science Research InstituteUlster UniversityJordanstownNorthern IrelandUnited Kingdom
| |
Collapse
|
50
|
Padilha CS, Figueiredo C, Deminice R, Krüger K, Seelaender M, Rosa‐Neto JC, Lira FS. Costly immunometabolic remodelling in disused muscle buildup through physical exercise. Acta Physiol (Oxf) 2022; 234:e13782. [PMID: 34990078 DOI: 10.1111/apha.13782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/12/2021] [Accepted: 01/01/2022] [Indexed: 11/28/2022]
Abstract
The mechanisms underlying the immunometabolic disturbances during skeletal muscle atrophy caused by a plethora of circumstances ranging from hospitalization to spaceflight missions remain unknown. Here, we outline the possible pathways that might be dysregulated in such conditions and assess the potential of physical exercise to mitigate and promote the recovery of muscle morphology, metabolism and function after intervals of disuse. Studies applying exercise to attenuate disuse-induced muscle atrophy have shown a pivotal role of circulating myokines in the activation of anabolic signalling pathways. These muscle-derived factors induce accretion of contractile proteins in the myofibers, and at the same time decrease protein breakdown and loss. Regular exercise plays a crucial role in re-establishing adequate immunometabolism and increasing the migration and presence in the muscle of macrophages with an anti-inflammatory phenotype (M2) and T regulatory cells (Tregs) after disease-induced muscle loss. Additionally, the switch in metabolic pathways (glycolysis to oxidative phosphorylation [OXPHOS]) is important for achieving rapid metabolic homeostasis during muscle regeneration. In this review, we discuss the molecular aspects of the immunometabolic response elicited by exercise during skeletal muscle regeneration. There is not, nevertheless, consensus on a single optimal intensity of exercise required to improve muscle strength, mass and functional capacity owing to the wide range of exercise protocols studied so far. Despite the absence of agreement on the specific strategy, physical exercise appears as a powerful complementary strategy to attenuate the harmful effects of muscle disuse in different scenarios.
Collapse
Affiliation(s)
- Camila S. Padilha
- Exercise and Immunometabolism Research Group Post‐graduation Program in Movement Sciences Department of Physical Education Universidade Estadual Paulista (UNESP) Presidente Prudente Brazil
| | - Caique Figueiredo
- Exercise and Immunometabolism Research Group Post‐graduation Program in Movement Sciences Department of Physical Education Universidade Estadual Paulista (UNESP) Presidente Prudente Brazil
| | - Rafael Deminice
- Laboratory of Biochemistry Exercise Department of Physical Education Faculty of Physical Education and Sport State University of Londrina Londrina Brazil
| | - Karsten Krüger
- Institute of Sports Science Department of Exercise Physiology and Sports Therapy University of Giessen Giessen Germany
| | - Marília Seelaender
- Cancer Metabolism Research Group Department of Surgery LIM26‐HC Medical School University of São Paulo São Paulo Brazil
| | - José Cesar Rosa‐Neto
- Department of Cell and Developmental Biology University of São Paulo São Paulo Brazil
| | - Fabio S. Lira
- Exercise and Immunometabolism Research Group Post‐graduation Program in Movement Sciences Department of Physical Education Universidade Estadual Paulista (UNESP) Presidente Prudente Brazil
| |
Collapse
|