1
|
New genomic and fossil data illuminate the origin of enamel. Nature 2015; 526:108-11. [PMID: 26416752 DOI: 10.1038/nature15259] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/28/2015] [Indexed: 12/20/2022]
Abstract
Enamel, the hardest vertebrate tissue, covers the teeth of almost all sarcopterygians (lobe-finned bony fishes and tetrapods) as well as the scales and dermal bones of many fossil lobe-fins. Enamel deposition requires an organic matrix containing the unique enamel matrix proteins (EMPs) amelogenin (AMEL), enamelin (ENAM) and ameloblastin (AMBN). Chondrichthyans (cartilaginous fishes) lack both enamel and EMP genes. Many fossil and a few living non-teleost actinopterygians (ray-finned bony fishes) such as the gar, Lepisosteus, have scales and dermal bones covered with a proposed enamel homologue called ganoine. However, no gene or transcript data for EMPs have been described from actinopterygians. Here we show that Psarolepis romeri, a bony fish from the the Early Devonian period, combines enamel-covered dermal odontodes on scales and skull bones with teeth of naked dentine, and that Lepisosteus oculatus (the spotted gar) has enam and ambn genes that are expressed in the skin, probably associated with ganoine formation. The genetic evidence strengthens the hypothesis that ganoine is homologous with enamel. The fossil evidence, further supported by the Silurian bony fish Andreolepis, which has enamel-covered scales but teeth and odontodes on its dermal bones made of naked dentine, indicates that this tissue originated on the dermal skeleton, probably on the scales. It subsequently underwent heterotopic expansion across two highly conserved patterning boundaries (scales/head-shoulder and dermal/oral) within the odontode skeleton.
Collapse
|
2
|
Kawasaki K, Amemiya CT. SCPP genes in the coelacanth: tissue mineralization genes shared by sarcopterygians. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 322:390-402. [PMID: 25243252 DOI: 10.1002/jez.b.22546] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The coelacanth is the basal-most extant sarcopterygian that has teeth and tooth-like structures, comprising bone, dentin, and enamel or enameloid. Formation of these tissues involves many members of the secretory calcium-binding protein (SCPP) family. In tetrapods, acidic-residue-rich SCPPs are used in mineralization of bone and dentin, whereas Pro/Gln-rich SCPPs participate in enamel formation. Teleosts also employ many SCPPs for tissue mineralization. Nevertheless, the repertoire of SCPPs is largely different in teleosts and tetrapods; hence, filling this gap would be critical to elucidate early evolution of mineralized tissues in osteichthyans. In the present study, we searched for SCPP genes in the coelacanth genome and identified 11, of which two have clear orthologs in both tetrapods and teleosts, seven only in tetrapods, and two in neither of them. Given the divergence times of these vertebrate lineages, our discovery of this many SCPP genes shared between the coelacanth and tetrapods, but not with teleosts, suggests a complicated evolutionary scheme of SCPP genes in early osteichthyans. Our investigation also revealed both conserved and derived characteristics of SCPPs in the coelacanth and other vertebrates. Notably, acidic SCPPs independently evolved various acidic repeats in different lineages, while maintaining high acidity, presumably important for interactions with calcium. Furthermore, the three Pro/Gln-rich SCPP genes, required for mineralizing enamel matrix and confirmed only in tetrapods, were all identified in the coelacanth, strongly suggesting that enamel is equivalent in the coelacanth and tetrapods. This finding corroborates the previous proposition that true enamel evolved much earlier than the origin of tetrapods.
Collapse
|
3
|
Teeth and ganoid scales in Polypterus and Lepisosteus, the basic actinopterygian fish: An approach to understand the origin of the tooth enamel. J Oral Biosci 2013. [DOI: 10.1016/j.job.2013.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
4
|
Fine structural and immunohistochemical detection of collar enamel in the teeth of Polypterus senegalus, an actinopterygian fish. Cell Tissue Res 2012; 347:369-81. [DOI: 10.1007/s00441-011-1305-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 12/12/2011] [Indexed: 11/27/2022]
|
5
|
Meinke DK. A light and scanning electron microscope study of microstructure, growth and development of the dermal skeleton ofPolypterus(Pisces: Actinopterygii). J Zool (1987) 2009. [DOI: 10.1111/jzo.1982.197.3.355] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Sasagawa I, Ishiyama M, Yokosuka H, Mikami M, Uchida T. Tooth enamel and enameloid in actinopterygian fish. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11706-009-0030-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Fine structure and development of the collar enamel in gars, Lepisosteus oculatus, Actinopterygii. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s11706-008-0023-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Miyake T, Amemiya CT. BAC libraries and comparative genomics of aquatic chordate species. Comp Biochem Physiol C Toxicol Pharmacol 2004; 138:233-44. [PMID: 15533781 DOI: 10.1016/j.cca.2004.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Revised: 07/09/2004] [Accepted: 07/14/2004] [Indexed: 11/26/2022]
Abstract
The bacterial artificial chromosome (BAC) system is useful for creating a representation of the genomes of target species. The system is advantageous in that it can accommodate exogenous inserts that are very large (>100 kilobases, kb), thereby allowing entire eukaryotic genes (including flanking regulatory regions) to be encompassed in a single clone. The interest in BACs has recently been spawned by vast improvements in high throughput genomic sequencing such that comparisons of orthologous regions from different genomes (comparative genomics) are being routinely investigated, and comprise a significant component, of all major sequencing centers. In this review, we discuss the general principles of BAC cloning, the resources that are currently available, and some of the applications of the technology. It is not intended to be an exhaustive treatise; rather our goal is to provide a primer of the BAC technology in order to make readers aware of these resources and how they may utilize them in their own research programs.
Collapse
Affiliation(s)
- Tsutomu Miyake
- Molecular Genetics Department, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA.
| | | |
Collapse
|
9
|
Diekwisch TGH, Berman BJ, Anderton X, Gurinsky B, Ortega AJ, Satchell PG, Williams M, Arumugham C, Luan X, McIntosh JE, Yamane A, Carlson DS, Sire JY, Shuler CF. Membranes, minerals, and proteins of developing vertebrate enamel. Microsc Res Tech 2002; 59:373-95. [PMID: 12430167 DOI: 10.1002/jemt.10218] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Developing tooth enamel is formed as organized mineral in a specialized protein matrix. In order to analyze patterns of enamel mineralization and enamel protein expression in species representative of the main extant vertebrate lineages, we investigated developing teeth in a chondrichthyan, the horn shark, a teleost, the guppy, a urodele amphibian, the Mexican axolotl, an anuran amphibian, the leopard frog, two lepidosauria, a gecko and an iguana, and two mammals, a marsupial, the South American short-tailed gray opossum, and the house mouse. Electron microscopic analysis documented the presence of a distinct basal lamina in all species investigated. Subsequent stages of enamel biomineralization featured highly organized long and parallel enamel crystals in mammals, lepidosaurians, the frog, and the shark, while amorphous mineral deposits and/or randomly oriented crystals were observed in the guppy and the axolotl. In situ hybridization using a full-length mouse probe for amelogenin mRNA resulted in amelogenin specific signals in mouse, opossum, gecko, frog, axolotl, and shark. Using immunohistochemistry, amelogenin and tuftelin enamel proteins were detected in the enamel organ of many species investigated, but tuftelin epitopes were also found in other tissues. The anti-M179 antibody, however, did not react with the guppy and axolotl enameloid matrix. We conclude that basic features of vertebrate enamel/enameloid formation such as the presence of enamel proteins or the mineral deposition along the dentin-enamel junction were highly conserved in vertebrates. There were also differences in terms of enamel protein distribution and mineral organization between the vertebrates lineages. Our findings indicated a correlation between the presence of amelogenins and the presence of long and parallel hydroxyapatite crystals in tetrapods and shark.
Collapse
Affiliation(s)
- Thomas G H Diekwisch
- Allan G. Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sire JY, Davit-Beal T, Delgado S, Van Der Heyden C, Huysseune A. First-generation teeth in nonmammalian lineages: evidence for a conserved ancestral character? Microsc Res Tech 2002; 59:408-34. [PMID: 12430169 DOI: 10.1002/jemt.10220] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The present study focuses on the main characteristics of first-generation teeth (i.e., the first teeth of the dentition to develop in a given position and to become functional) in representatives of the major lineages of nonmammalian vertebrates (chondrichthyans, actinopterygians, and sarcopterygians: dipnoans, urodeles, squamates, and crocodiles). Comparative investigations on the LM and TEM level reveal the existence of two major types of first-generation teeth. One type (generalized Type 1) is characterized by its small size, conical shape, atubular dentine, and small pulp cavity without capillaries and blood vessels. This type is found in actinopterygians, dipnoans, and urodeles and coincides with the occurrence of short embryonic periods in these species. The other type assembles a variety of first-generation teeth, which have in common that they represent miniature versions of adult teeth. They are generally larger than the first type, have more complex shapes, tubular dentine, and a large pulp cavity containing blood vessels. These teeth are found in chondrichtyans, squamates, and crocodiles, taxa which all share an extended embryonic period. The presence in certain taxa of a particular type of first-generation teeth is neither linked to their phylogenetic relationships nor to adult body size or tooth structure, but relates to the duration of embryonic development. Given that the plesiomorphic state in vertebrates is a short embryonic development, we consider the generalized Type 1 first-generation tooth to represent an ancestral character for gnathostomes. We hypothesize that an extended embryonic development leads to the suppression of tooth generations in the development of dentition. These may still be present in the form of rudimentary germs in the embryonic period. In our view, this generalized Type 1 first-generation teeth has been conserved through evolution because it represents a very economic and efficient way of building small and simple teeth adapted to larval life. The highly adapted adult dentition characteristic for each lineage has been possible only through polyphyodonty.
Collapse
|
11
|
Ishiyama M, Inage T, Shimokawa H. Abortive secretion of an enamel matrix in the inner enamel epithelial cells during an enameloid formation in the gar-pike, Lepisosteus oculatus (Holostei, Actinopterygii). ARCHIVES OF HISTOLOGY AND CYTOLOGY 2001; 64:99-107. [PMID: 11310510 DOI: 10.1679/aohc.64.99] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The tooth in the gar-pike, Lepisosteus oculatus, an actinopterygian fish, is characterized by the occurrence of both enamel and enameloid, the former covering the tooth shaft and the latter, the tooth cap. Our previous research demonstrated that the enamel in this species was, as in the lungfish, immunoreactive for amelogenin, indicating its homologous nature with the mammalian tooth enamel, whereas the enameloid was completely immunonegative. The present study demonstrates that, during the early maturation stage of the enameloid formation, the inner enamel epithelial cells (IEECs) synthesize through a well-developed Golgi apparatus a fine-granular substance which is intensely immunoreactive for amelogenin. This substance was accumulated in a large saccule extended in a suprabasal zone of the cell; we were unable to find any morphological sign indicating a connection of the substance with the enameloid matrix. The abortive secretion of the enamel matrix-like substance in the IEEC during an enameloid formation was considered to be an instance of rudimental enamel formation. In the gar-pike, the synthesis of amelogenin in the IEEC has been demonstrated to occur independently from that of the enameloid matrix. The present findings demonstrate a prominent difference between the tooth enamel and enameloid.
Collapse
Affiliation(s)
- M Ishiyama
- Department of Histology, The Nippon Dental University School of Dentistry at Niigata, Japan.
| | | | | |
Collapse
|
12
|
Miyake T, Vaglia JL, Taylor LH, Hall BK. Development of dermal denticles in skates (Chondrichthyes, Batoidea): patterning and cellular differentiation. J Morphol 1999; 241:61-81. [PMID: 10398324 DOI: 10.1002/(sici)1097-4687(199907)241:1<61::aid-jmor4>3.0.co;2-s] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Patterning, cellular differentiation, and developmental sequences of dermal denticles (denticles) are described for the skate Leucoraja erinacea. Development of denticles proceeds caudo-rostrally in the tail and trunk. Once three rows of denticles form in the tail and trunk, denticles begin to appear in the region of the pelvic girdle, medio-caudal to the eyes and on the pectoral fins. Although timing of cellular differentiation of denticles differs among different locations of the body, cellular development of a denticle is identical in all locations. Thickening of the epidermis as a denticle lamina marks initiation of development. A single lamina for each denticle forms, and a small group of mesenchymal cells aggregates underneath it. The lamina then invaginates caudo-rostrally to form the inner- and outer-denticle epithelia (IDE and ODE, respectively). Before nuclei of IDE cells are polarized, enameloid matrix appears between the basement membrane of the IDE and the apical surface of the pre-odontoblasts. Pre-dentin is then laid down along with collagenous materials. Von Kossa stain visualizes initial mineralization of dentin, but not enameloid. During the growth of a denticle, dense fibrous connective tissue of the dermis forms the deep dermal tissue over the dorsal musculature. Attachment fibers and tendons anchor denticles and dorsal musculature, respectively, on deep dermal tissue. Basal tissue of the denticles develops as the denticle crown grows. If the basal tissue is bone of attachment, then the cells along the basal tissue would be osteoblasts. However, these cells could not be distinguished from odontoblasts using immunolocalization of type I pro-collagen (Col I), alkaline phosphatase (APase), and neural cell adhesion molecule (N-CAM). Well-developed dentin, (not pre-dentin), the enameloid matrix (probably when it begins to mineralize), and deep dermal tissue are Verhoeff stain-positive, suggesting that these tissues contain elastin and/or elastin-like molecules. Our study demonstrates that the cellular development of denticles resembles tooth development in elasmobranchs, but that dermal denticles differ from teeth in forming from a single denticle lamina. Whether the basal tissue of denticles is bone of attachment remains undetermined. Confirmation and function of Verhoeff-positive proteins in enameloid, dentin, and deep dermal tissue remain to be determined. We discuss these issues along with an analysis of recent findings of enamel and enameloid matrices.
Collapse
Affiliation(s)
- T Miyake
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | | | |
Collapse
|
13
|
Ishiyama M, Inage T, Shimokawa H. An immunocytochemical study of amelogenin proteins in the developing tooth enamel of the gar-pike, Lepisosteus oculatus (Holostei, Actinopterygii). ARCHIVES OF HISTOLOGY AND CYTOLOGY 1999; 62:191-7. [PMID: 10399543 DOI: 10.1679/aohc.62.191] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous studies have demonstrated the morphological similarity of the enamel-like layer found in the teeth of the coelacanth, lungfish and gar-pike to the enamel of tetrapods. In order to clarify the phylogenetic continuity between both structures, tooth germs of the gar-pike were immunocytochemically studied using an anti-bovine amelogenin polyclonal antibody. Intense immunoreaction was shown over the enamel-like matrix layer. Certain cell organelles associated with the secretory pathway of the ameloblasts were recognized as immunoreactive. These results indicate that the enamel-like layer of the gar-pike is a tissue homologous with the mammalian enamel because both possess a common, amelogenin-like substance.
Collapse
Affiliation(s)
- M Ishiyama
- Department of Histology, Nippon Dental University School of Dentistry, Niigata, Japan.
| | | | | |
Collapse
|
14
|
Huysseune A, Sire JY. Structure and development of first-generation teeth in the cichlid Hemichromis bimaculatus (Teleostei, Cichlidae). Tissue Cell 1997; 29:679-97. [DOI: 10.1016/s0040-8166(97)80044-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/1997] [Accepted: 07/29/1997] [Indexed: 11/16/2022]
|
15
|
|
16
|
|
17
|
Sire JY, Géraudie J, Meunier FJ, Zylberberg L. On the origin of ganoine: histological and ultrastructural data on the experimental regeneration of the scales of Calamoichthys calabaricus (Osteichthyes, Brachyopterygii, Polypteridae). THE AMERICAN JOURNAL OF ANATOMY 1987; 180:391-402. [PMID: 3425566 DOI: 10.1002/aja.1001800409] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In order to understand the process of ganoine formation on the ganoid scales, scale regeneration has been studied to overcome the lack of a growth series of scale ontogeny. Seven stages of ganoid scale regeneration have been defined over a period of five months in the polypterid fish Calamoichthys calabaricus. The study has been carried out using transmission electron microscopic techniques. After wound healing and differentiation of the osseous basal plate, a layer of vascular dentin is deposited at the upper surface of the basal plate owing to the presence there of odontoblasts closely applied to the dentin. When these cells move away, a close contact is then established between the stratified epidermis and the regenerating scale. Numerous alterations of the epidermal-dermal boundary occur until its disappearance and a thick layer of pre-ganoine is formed. This layer is progressively mineralized; and finally an organic intermediate layer differentiates between the ganoine, which is a hyper-mineralized tissue, and the overlying epidermis. This ultrastructural study demonstrates rather unequivocally the involvement of the inner epidermal layer (IEL) in the appearance and growth of the ganoine. It is suggested that these epidermal cells can be compared functionally to the inner dental epithelium (IDE) described during mammal tooth morphogenesis. Consequently, our results allow us to propose that ganoine can be identified as true enamel, although additional data are necessary to analyze the proteinaceous component or its organic matrix.
Collapse
Affiliation(s)
- J Y Sire
- Equipe Formations Squelettiques, UA 041137 CNRS, Laboratoire d'Anatomie Comparée, Université Paris 7, France
| | | | | | | |
Collapse
|
18
|
Abstract
Tooth primordia at early stages of mineralization in the sharks Negaprion brevirostris and Triaenodon obesus were examined electron microscopically for evidence of ameloblastic secretion and its relation to calcification of the enamel (enameloid) layer. Ameloblasts are polarized with most of the mitochondria and all of the Golgi dictyosomes localized in the infranuclear end of the cell toward the squamous outer cells of the enamel organ. Endoplasmic reticular membranes and ribosomes are also abundant in this region. Ameloblastic vesicles bud from the Golgi membranes and evidently move through perinuclear and supranuclear zones to accumulate at the apical end of the cell. The vesicles secrete their contents through the apical cell membrane in merocrine fashion and appear to contribute precursor material both for the basal lamina and the enameline matrix. The enamel layer consists of four zones: a juxta-laminar zone containing newly polymerized mineralizing fibrils (tubules); a pre-enamel zone of assembly of matrix constituents; palisadal zones of mineralizing fibrils (tubules); and interpalisadal zones containing granular amorphous matrix, fine unit fibrils, and giant cross-banded fibers with a periodicity of 17.9 nm. It seems probable that amorphous, non-mineralizing fibrillar and mineralizing fibrillar constituents of the matrix are all products of ameloblastic secretion. Odontoblastic processes are tightly embedded in the matrix of the palisadal zones and do not appear to be secretory at the stages investigated. The shark tooth enamel layer is considered homologous with that of other vertebrates with respect to origin of its mineralizing fibrils from the innerental epithelium. The term enameloid is appropriate to connote the histological distinction that the enamel layer contains odontoblastic processes but should not signify that shark tooth enamel is a modified type of dentine. How amelogenins and/or enamelins secreted by amelo- blasts in the shark and other vertebrates are related to nucleation and growth of enamel crystallites is still not known.
Collapse
|
19
|
|
20
|
Meinke DK. A histological and histochemical study of developing teeth in Polypterus (Pisces, Actinopterygii). Arch Oral Biol 1982; 27:197-206. [PMID: 6953936 DOI: 10.1016/0003-9969(82)90053-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The tooth cap matrix contained proteins of ectodermal and mesodermal origin which extended the data already available on teleost teeth and showed that a combined origin for the tooth cap should be regarded as a primitive feature of actinopterygian fish. Furthermore, the dual nature of the Polypterus tooth cap matrix suggested that evolution of tetrapod enamel did not occur within the actinopterygians. The collar tissue was an unmodified dentine, in contrast to its enameloid nature in many other actinopterygian teeth. The presence of a range of developmental states from unmodified dentine to hypermineralized enameloid within Polypterus teeth themselves and also in other parts of the dermal skeleton, as well as the combined origin of the tooth cap, demonstrates that the enamel/enameloid/dentine system forms a continuum of tissues that have diverged from one another by changes in the relative timing of developmental events and matrix production.
Collapse
|
21
|
MEUNIER FRANCOISJ. Les relations isopedine - tissu osseux dans le post-temporal et les ecailJes de la ligne laterale de Latimeria chalumnae (Smith). ZOOL SCR 1980. [DOI: 10.1111/j.1463-6409.1980.tb00669.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
|
23
|
Smith MM. Structure and histogenesis of tooth plates in Sagenodus inaequalis Owen considered in relation to the phylogeny of post-Devonian dipnoans. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON. SERIES B, BIOLOGICAL SCIENCES 1979; 204:15-39. [PMID: 37511 DOI: 10.1098/rspb.1979.0010] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The histology of tooth plates of Sagenodus inaequalis has been investigated to obtain information on the histogenesis of the tissue. The histological mechanisms of growth and replacement of the tooth plate are described in terms of an increase in area of the tooth plate by addition of denticles to the lateral margins of the ridges, replacement of worn dentine at the tritoral surface by basal growth of dentine and invasive growth of dentine into the surrounding bone at the anterior and medial margins. The histogenesis of a specialized character for dipnoans is described, namely hypermineralized dentine, or petrodentine, within the tooth plates. This has placed an advanced character further back in the phylogenetic organization of dipnoans than was previously recognized. The implications of these observations are discussed in relation to proposed phylogenies and previous observations on tooth plates of other dipnoans. It is concluded that Sagenodus inaequalis shared a common ancestor with both the ceratondontids and the lepidosirenids. A sequence is proposed for the phyletic relationship of tooth plate-bearing dipnoans. From a consideration of the features of histogenesis of this specialized dentine, the alternative terminologies are reviewed and petrodentine (Lison 1941) chosen for the hypermineralized dentine and syndentine (Thomasset 1928) as the collective term for the entire mass of dentine in the tooth plate.
Collapse
|
24
|
Shellis RP, Poole DF. The structure of the dental hard tissues of the coelacanthid fish Latimeria chalumnae Smith. Arch Oral Biol 1978; 23:1105-13. [PMID: 287427 DOI: 10.1016/0003-9969(78)90116-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|