1
|
Ranner JL, Stabl G, Piller A, Paries M, Sharma S, Zeng T, Spaccasassi A, Stark TD, Gutjahr C, Dawid C. Untargeted metabolomics reveals novel metabolites in Lotus japonicus roots during arbuscular mycorrhiza symbiosis. THE NEW PHYTOLOGIST 2025; 246:1256-1275. [PMID: 40095637 PMCID: PMC11982791 DOI: 10.1111/nph.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025]
Abstract
Arbuscular mycorrhiza (AM) improves mineral nutrient supply, stress tolerance, and growth of host plants through re-programing of plant physiology. We investigated the effect of AM on the root secondary metabolome of the model legume Lotus japonicus using untargeted metabolomics. Acetonitrile extracts of AM and control roots were analysed using ultra-high-performance liquid chromatography-electrospray ionization-ion mobility-time-of-flight-mass spectrometry (UPLC-ESI-IM-ToF-MS). We characterized AM-regulated metabolites using co-chromatography with authentic standards or isolation and structure identification from L. japonicus roots using preparative high-performance liquid chromatography and nuclear magnetic resonance spectroscopy. Arbuscular mycorrhiza triggered major changes in the root metabolome, with most features representing unknown compounds. We identified three novel polyphenols: 5,7-dihydroxy-4'-methoxycoumaronochromone (lotuschromone), 4-hydroxy-2-(2'-hydroxy-4'-methoxyphenyl)-6-methoxybenzofuran-3-carbaldehyde (lotusaldehyde), and 7-hydroxy-3,9-dimethoxypterocarp-6a-ene (lotuscarpene). Further AM-enhanced secondary metabolites included the previously known lupinalbin A and B, ayamenin D, biochanin A, vestitol, acacetin, coumestrol, and betulinic acid. Lupinalbin A, biochanin A, ayamenin D, liquiritigenin, isoliquiritigenin, lotuscarpene, medicarpin, daidzein, genistein, and 2'-hydroxygenistein inhibited Rhizophagus irregularis spore germination upon direct application. Our results show that AM enhances the production of polyphenols in L. japonicus roots and highlights a treasure trove of numerous unknown plant secondary metabolites awaiting structural identification and functional characterization.
Collapse
Affiliation(s)
- Josef L. Ranner
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life SciencesTechnical University of Munich (TUM)Lise‐Meitner‐Str. 3485354FreisingGermany
| | - Georg Stabl
- Plant Genetics, TUM School of Life SciencesTechnical University of Munich (TUM)Emil‐Ramann‐Str. 485354FreisingGermany
- Max Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 114476Potsdam‐GolmGermany
| | - Andrea Piller
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life SciencesTechnical University of Munich (TUM)Lise‐Meitner‐Str. 3485354FreisingGermany
| | - Michael Paries
- Plant Genetics, TUM School of Life SciencesTechnical University of Munich (TUM)Emil‐Ramann‐Str. 485354FreisingGermany
| | - Sapna Sharma
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life SciencesTechnical University of Munich (TUM)Lise‐Meitner‐Str. 3485354FreisingGermany
| | - Tian Zeng
- Plant Genetics, TUM School of Life SciencesTechnical University of Munich (TUM)Emil‐Ramann‐Str. 485354FreisingGermany
- Max Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 114476Potsdam‐GolmGermany
| | - Andrea Spaccasassi
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life SciencesTechnical University of Munich (TUM)Lise‐Meitner‐Str. 3485354FreisingGermany
- TUM CREATE1 CREATE Way, #10‐02 CREATE TowerSingapore138602Singapore
| | - Timo D. Stark
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life SciencesTechnical University of Munich (TUM)Lise‐Meitner‐Str. 3485354FreisingGermany
| | - Caroline Gutjahr
- Plant Genetics, TUM School of Life SciencesTechnical University of Munich (TUM)Emil‐Ramann‐Str. 485354FreisingGermany
- Max Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 114476Potsdam‐GolmGermany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life SciencesTechnical University of Munich (TUM)Lise‐Meitner‐Str. 3485354FreisingGermany
- TUM CREATE1 CREATE Way, #10‐02 CREATE TowerSingapore138602Singapore
- Functional Phytometabolomics, TUM School of Life SciencesTechnical University of Munich (TUM)Lise‐Meitner‐Str. 3485354FreisingGermany
| |
Collapse
|
2
|
Das D, Varshney K, Ogawa S, Torabi S, Hüttl R, Nelson DC, Gutjahr C. Ethylene promotes SMAX1 accumulation to inhibit arbuscular mycorrhiza symbiosis. Nat Commun 2025; 16:2025. [PMID: 40016206 PMCID: PMC11868565 DOI: 10.1038/s41467-025-57222-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 02/13/2025] [Indexed: 03/01/2025] Open
Abstract
Most land plants engage in arbuscular mycorrhiza (AM) symbiosis with Glomeromycotina fungi for better access to mineral nutrients. The plant hormone ethylene suppresses AM development, but a molecular explanation for this phenomenon is lacking. Here we show that ethylene inhibits the expression of many genes required for AM formation in Lotus japonicus. These genes include strigolactone biosynthesis genes, which are needed for fungal activation, and Common Symbiosis genes, which are required for fungal entry into the root. Application of strigolactone analogs and ectopic expression of the Common Symbiosis gene Calcium Calmodulin-dependent Kinase (CCaMK) counteracts the effect of ethylene. Therefore, ethylene likely inhibits AM development by suppressing expression of these genes rather than by inducing defense responses. These same genes are regulated by SUPPRESSOR OF MAX2 1 (SMAX1), a transcriptional repressor that is proteolyzed during karrikin signaling. SMAX1 is required for suppression of AM by ethylene, and SMAX1 abundance in nuclei increases after ethylene application. We conclude that ethylene suppresses AM by promoting accumulation of SMAX1. SMAX1 emerges as a signaling hub that integrates karrikin and ethylene signaling, thereby orchestrating development of a major plant symbiosis with a plant's physiological state.
Collapse
Affiliation(s)
- Debatosh Das
- Faculty of Biology, Genetics, LMU Munich, Grosshaderner Str. 2-4, Martinsried, Germany
- Redox Bio-Nutrients, 130 S 100 W, Burley, Idaho, USA
| | - Kartikye Varshney
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil Ramann Str. 4, Freising, Germany
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, Germany
| | - Satoshi Ogawa
- Department of Botany & Plant Sciences, University of California, 900 University Avenue, Riverside, CA, USA
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Salar Torabi
- Faculty of Biology, Genetics, LMU Munich, Grosshaderner Str. 2-4, Martinsried, Germany
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil Ramann Str. 4, Freising, Germany
| | - Regine Hüttl
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil Ramann Str. 4, Freising, Germany
| | - David C Nelson
- Department of Botany & Plant Sciences, University of California, 900 University Avenue, Riverside, CA, USA
| | - Caroline Gutjahr
- Faculty of Biology, Genetics, LMU Munich, Grosshaderner Str. 2-4, Martinsried, Germany.
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil Ramann Str. 4, Freising, Germany.
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, Germany.
| |
Collapse
|
3
|
Fukuda H, Mamiya R, Akamatsu A, Takeda N. Two LysM receptor-like kinases regulate arbuscular mycorrhiza through distinct signaling pathways in Lotus japonicus. THE NEW PHYTOLOGIST 2024; 243:519-525. [PMID: 38796729 DOI: 10.1111/nph.19863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/08/2024] [Indexed: 05/28/2024]
Affiliation(s)
- Hayato Fukuda
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Rin Mamiya
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Akira Akamatsu
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Naoya Takeda
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo, 669-1330, Japan
| |
Collapse
|
4
|
Aparicio Chacón MV, Hernández Luelmo S, Devlieghere V, Robichez L, Leroy T, Stuer N, De Keyser A, Ceulemans E, Goossens A, Goormachtig S, Van Dingenen J. Exploring the potential role of four Rhizophagus irregularis nuclear effectors: opportunities and technical limitations. FRONTIERS IN PLANT SCIENCE 2024; 15:1384496. [PMID: 38736443 PMCID: PMC11085264 DOI: 10.3389/fpls.2024.1384496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/02/2024] [Indexed: 05/14/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) are obligate symbionts that interact with the roots of most land plants. The genome of the AMF model species Rhizophagus irregularis contains hundreds of predicted small effector proteins that are secreted extracellularly but also into the plant cells to suppress plant immunity and modify plant physiology to establish a niche for growth. Here, we investigated the role of four nuclear-localized putative effectors, i.e., GLOIN707, GLOIN781, GLOIN261, and RiSP749, in mycorrhization and plant growth. We initially intended to execute the functional studies in Solanum lycopersicum, a host plant of economic interest not previously used for AMF effector biology, but extended our studies to the model host Medicago truncatula as well as the non-host Arabidopsis thaliana because of the technical advantages of working with these models. Furthermore, for three effectors, the implementation of reverse genetic tools, yeast two-hybrid screening and whole-genome transcriptome analysis revealed potential host plant nuclear targets and the downstream triggered transcriptional responses. We identified and validated a host protein interactors participating in mycorrhization in the host.S. lycopersicum and demonstrated by transcriptomics the effectors possible involvement in different molecular processes, i.e., the regulation of DNA replication, methylglyoxal detoxification, and RNA splicing. We conclude that R. irregularis nuclear-localized effector proteins may act on different pathways to modulate symbiosis and plant physiology and discuss the pros and cons of the tools used.
Collapse
Affiliation(s)
- María Victoria Aparicio Chacón
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Sofía Hernández Luelmo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Viktor Devlieghere
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Louis Robichez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Toon Leroy
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Naomi Stuer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Annick De Keyser
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Evi Ceulemans
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Judith Van Dingenen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| |
Collapse
|
5
|
Hornstein ED, Charles M, Franklin M, Edwards B, Vintila S, Kleiner M, Sederoff H. IPD3, a master regulator of arbuscular mycorrhizal symbiosis, affects genes for immunity and metabolism of non-host Arabidopsis when restored long after its evolutionary loss. PLANT MOLECULAR BIOLOGY 2024; 114:21. [PMID: 38368585 PMCID: PMC10874911 DOI: 10.1007/s11103-024-01422-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/20/2024] [Indexed: 02/19/2024]
Abstract
Arbuscular mycorrhizal symbiosis (AM) is a beneficial trait originating with the first land plants, which has subsequently been lost by species scattered throughout the radiation of plant diversity to the present day, including the model Arabidopsis thaliana. To explore if elements of this apparently beneficial trait are still present and could be reactivated we generated Arabidopsis plants expressing a constitutively active form of Interacting Protein of DMI3, a key transcription factor that enables AM within the Common Symbiosis Pathway, which was lost from Arabidopsis along with the AM host trait. We characterize the transcriptomic effect of expressing IPD3 in Arabidopsis with and without exposure to the AM fungus (AMF) Rhizophagus irregularis, and compare these results to the AM model Lotus japonicus and its ipd3 knockout mutant cyclops-4. Despite its long history as a non-AM species, restoring IPD3 in the form of its constitutively active DNA-binding domain to Arabidopsis altered expression of specific gene networks. Surprisingly, the effect of expressing IPD3 in Arabidopsis and knocking it out in Lotus was strongest in plants not exposed to AMF, which is revealed to be due to changes in IPD3 genotype causing a transcriptional state, which partially mimics AMF exposure in non-inoculated plants. Our results indicate that molecular connections to symbiosis machinery remain in place in this nonAM species, with implications for both basic science and the prospect of engineering this trait for agriculture.
Collapse
Affiliation(s)
- Eli D Hornstein
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Melodi Charles
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Megan Franklin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Brianne Edwards
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Simina Vintila
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Heike Sederoff
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
6
|
Ivanov S, Harrison MJ. Receptor-associated kinases control the lipid provisioning program in plant-fungal symbiosis. Science 2024; 383:443-448. [PMID: 38271524 DOI: 10.1126/science.ade1124] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/19/2023] [Indexed: 01/27/2024]
Abstract
The mutualistic association between plants and arbuscular mycorrhizal (AM) fungi requires intracellular accommodation of the fungal symbiont and maintenance by means of lipid provisioning. Symbiosis signaling through lysin motif (LysM) receptor-like kinases and a leucine-rich repeat receptor-like kinase DOES NOT MAKE INFECTIONS 2 (DMI2) activates transcriptional programs that underlie fungal passage through the epidermis and accommodation in cortical cells. We show that two Medicago truncatula cortical cell-specific, membrane-bound proteins of a CYCLIN-DEPENDENT KINASE-LIKE (CKL) family associate with, and are phosphorylation substrates of, DMI2 and a subset of the LysM receptor kinases. CKL1 and CKL2 are required for AM symbiosis and control expression of transcription factors that regulate part of the lipid provisioning program. Onset of lipid provisioning is coupled with arbuscule branching and with the REDUCED ARBUSCULAR MYCORRHIZA 1 (RAM1) regulon for complete endosymbiont accommodation.
Collapse
|
7
|
Alhusayni S, Roswanjaya YP, Rutten L, Huisman R, Bertram S, Sharma T, Schon M, Kohlen W, Klein J, Geurts R. A rare non-canonical splice site in Trema orientalis SYMRK does not affect its dual symbiotic functioning in endomycorrhiza and rhizobium nodulation. BMC PLANT BIOLOGY 2023; 23:587. [PMID: 37996841 PMCID: PMC10668435 DOI: 10.1186/s12870-023-04594-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Nitrogen-fixing nodules occur in ten related taxonomic lineages interspersed with lineages of non-nodulating plant species. Nodules result from an endosymbiosis between plants and diazotrophic bacteria; rhizobia in the case of legumes and Parasponia and Frankia in the case of actinorhizal species. Nodulating plants share a conserved set of symbiosis genes, whereas related non-nodulating sister species show pseudogenization of several key nodulation-specific genes. Signalling and cellular mechanisms critical for nodulation have been co-opted from the more ancient plant-fungal arbuscular endomycorrhizal symbiosis. Studies in legumes and actinorhizal plants uncovered a key component in symbiotic signalling, the LRR-type SYMBIOSIS RECEPTOR KINASE (SYMRK). SYMRK is essential for nodulation and arbuscular endomycorrhizal symbiosis. To our surprise, however, despite its arbuscular endomycorrhizal symbiosis capacities, we observed a seemingly critical mutation in a donor splice site in the SYMRK gene of Trema orientalis, the non-nodulating sister species of Parasponia. This led us to investigate the symbiotic functioning of SYMRK in the Trema-Parasponia lineage and to address the question of to what extent a single nucleotide polymorphism in a donor splice site affects the symbiotic functioning of SYMRK. RESULTS We show that SYMRK is essential for nodulation and endomycorrhization in Parasponia andersonii. Subsequently, it is revealed that the 5'-intron donor splice site of SYMRK intron 12 is variable and, in most dicotyledon species, doesn't contain the canonical dinucleotide 'GT' signature but the much less common motif 'GC'. Strikingly, in T. orientalis, this motif is converted into a rare non-canonical 5'-intron donor splice site 'GA'. This SYMRK allele, however, is fully functional and spreads in the T. orientalis population of Malaysian Borneo. A further investigation into the occurrence of the non-canonical GA-AG splice sites confirmed that these are extremely rare. CONCLUSION SYMRK functioning is highly conserved in legumes, actinorhizal plants, and Parasponia. The gene possesses a non-common 5'-intron GC donor splice site in intron 12, which is converted into a GA in T. orientalis accessions of Malaysian Borneo. The discovery of this functional GA-AG splice site in SYMRK highlights a gap in our understanding of splice donor sites.
Collapse
Affiliation(s)
- Sultan Alhusayni
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Biological Sciences Department, College of Science, King Faisal University, 31982, Al-Ahsa, Saudi Arabia
| | - Yuda Purwana Roswanjaya
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Research Centre for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| | - Luuk Rutten
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Rik Huisman
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Simon Bertram
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Trupti Sharma
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Michael Schon
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Wouter Kohlen
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Joël Klein
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Rene Geurts
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
8
|
Hornstein ED, Charles M, Franklin M, Edwards B, Vintila S, Kleiner M, Sederoff H. Re-engineering a lost trait: IPD3, a master regulator of arbuscular mycorrhizal symbiosis, affects genes for immunity and metabolism of non-host Arabidopsis when restored long after its evolutionary loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531368. [PMID: 36945518 PMCID: PMC10028889 DOI: 10.1101/2023.03.06.531368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Arbuscular mycorrhizal symbiosis (AM) is a beneficial trait originating with the first land plants, which has subsequently been lost by species scattered throughout the radiation of plant diversity to the present day, including the model Arabidopsis thaliana. To explore why an apparently beneficial trait would be repeatedly lost, we generated Arabidopsis plants expressing a constitutively active form of Interacting Protein of DMI3, a key transcription factor that enables AM within the Common Symbiosis Pathway, which was lost from Arabidopsis along with the AM host trait. We characterize the transcriptomic effect of expressing IPD3 in Arabidopsis with and without exposure to the AM fungus (AMF) Rhizophagus irregularis, and compare these results to the AM model Lotus japonicus and its ipd3 knockout mutant cyclops-4. Despite its long history as a non-AM species, restoring IPD3 in the form of its constitutively active DNA-binding domain to Arabidopsis altered expression of specific gene networks. Surprisingly, the effect of expressing IPD3 in Arabidopsis and knocking it out in Lotus was strongest in plants not exposed to AMF, which is revealed to be due to changes in IPD3 genotype causing a transcriptional state which partially mimics AMF exposure in non-inoculated plants. Our results indicate that despite the long interval since loss of AM and IPD3 in Arabidopsis, molecular connections to symbiosis machinery remain in place in this nonAM species, with implications for both basic science and the prospect of engineering this trait for agriculture.
Collapse
Affiliation(s)
- Eli D Hornstein
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Melodi Charles
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Megan Franklin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Brianne Edwards
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Simina Vintila
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Heike Sederoff
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
9
|
Zhang Y, Cheng Q, Liao C, Li L, Gou C, Chen Z, Wang Y, Liu B, Kong F, Chen L. GmTOC1b inhibits nodulation by repressing GmNIN2a and GmENOD40-1 in soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:1052017. [PMID: 36438085 PMCID: PMC9691777 DOI: 10.3389/fpls.2022.1052017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Symbiotic nitrogen fixation is an important factor affecting the yield and quality of leguminous crops. Nodulation is regulated by a complex network comprising several transcription factors. Here, we functionally characterized the role of a TOC1 family member, GmTOC1b, in soybean (Glycine max) nodulation. RT-qPCR assays showed that GmTOC1b is constitutively expressed in soybean. However, GmTOC1b was also highly expressed in nodules, and GmTOC1 localized to the cell nucleus, based on transient transformation in Nicotiana benthamiana leaves. Homozygous Gmtoc1b mutant plants exhibited increased root hair curling and produced more infection threads, resulting in more nodules and greater nodule fresh weight. By contrast, GmTOC1b overexpression inhibited nodulation. Furthermore, we also showed that GmTOC1b represses the expression of nodulation-related genes including GmNIN2a and GmENOD40-1 by binding to their promoters. We conclude that GmTOC1b functions as a transcriptional repressor to inhibit nodulation by repressing the expression of key nodulation-related genes including GmNIN2a, GmNIN2b, and GmENOD40-1 in soybean.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Liyu Chen
- *Correspondence: Liyu Chen, ; Fanjiang Kong,
| |
Collapse
|
10
|
Evangelisti E, Turner C, McDowell A, Shenhav L, Yunusov T, Gavrin A, Servante EK, Quan C, Schornack S. Deep learning-based quantification of arbuscular mycorrhizal fungi in plant roots. THE NEW PHYTOLOGIST 2021; 232:2207-2219. [PMID: 34449891 DOI: 10.1111/nph.17697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Soil fungi establish mutualistic interactions with the roots of most vascular land plants. Arbuscular mycorrhizal (AM) fungi are among the most extensively characterised mycobionts to date. Current approaches to quantifying the extent of root colonisation and the abundance of hyphal structures in mutant roots rely on staining and human scoring involving simple yet repetitive tasks which are prone to variation between experimenters. We developed Automatic Mycorrhiza Finder (AMFinder) which allows for automatic computer vision-based identification and quantification of AM fungal colonisation and intraradical hyphal structures on ink-stained root images using convolutional neural networks. AMFinder delivered high-confidence predictions on image datasets of roots of multiple plant hosts (Nicotiana benthamiana, Medicago truncatula, Lotus japonicus, Oryza sativa) and captured the altered colonisation in ram1-1, str, and smax1 mutants. A streamlined protocol for sample preparation and imaging allowed us to quantify mycobionts from the genera Rhizophagus, Claroideoglomus, Rhizoglomus and Funneliformis via flatbed scanning or digital microscopy, including dynamic increases in colonisation in whole root systems over time. AMFinder adapts to a wide array of experimental conditions. It enables accurate, reproducible analyses of plant root systems and will support better documentation of AM fungal colonisation analyses. AMFinder can be accessed at https://github.com/SchornacklabSLCU/amfinder.
Collapse
Affiliation(s)
| | - Carl Turner
- Department of Applied Mathematics and Theoretical Physics (DAMTP), University of Cambridge, Cambridge, CB3 0WA, UK
| | - Alice McDowell
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Liron Shenhav
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Temur Yunusov
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Aleksandr Gavrin
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Emily K Servante
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Clément Quan
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | | |
Collapse
|
11
|
Artur MAS, Kajala K. Convergent evolution of gene regulatory networks underlying plant adaptations to dry environments. PLANT, CELL & ENVIRONMENT 2021; 44:3211-3222. [PMID: 34196969 PMCID: PMC8518057 DOI: 10.1111/pce.14143] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 06/25/2021] [Indexed: 05/21/2023]
Abstract
Plants transitioned from an aquatic to a terrestrial lifestyle during their evolution. On land, fluctuations on water availability in the environment became one of the major problems they encountered. The appearance of morpho-physiological adaptations to cope with and tolerate water loss from the cells was undeniably useful to survive on dry land. Some of these adaptations, such as carbon concentrating mechanisms (CCMs), desiccation tolerance (DT) and root impermeabilization, appeared in multiple plant lineages. Despite being crucial for evolution on land, it has been unclear how these adaptations convergently evolved in the various plant lineages. Recent advances on whole genome and transcriptome sequencing are revealing that co-option of genes and gene regulatory networks (GRNs) is a common feature underlying the convergent evolution of these adaptations. In this review, we address how the study of CCMs and DT has provided insight into convergent evolution of GRNs underlying plant adaptation to dry environments, and how these insights could be applied to currently emerging understanding of evolution of root impermeabilization through different barrier cell types. We discuss examples of co-option, conservation and innovation of genes and GRNs at the cell, tissue and organ levels revealed by recent phylogenomic (comparative genomic) and comparative transcriptomic studies.
Collapse
Affiliation(s)
- Mariana A. S. Artur
- Laboratory of Plant PhysiologyWageningen UniversityWageningenThe Netherlands
- Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Kaisa Kajala
- Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
12
|
Afonin AM, Leppyanen IV, Kulaeva OA, Shtark OY, Tikhonovich IA, Dolgikh EA, Zhukov VA. A high coverage reference transcriptome assembly of pea (Pisum sativum L.) mycorrhizal roots. Vavilovskii Zhurnal Genet Selektsii 2021; 24:331-339. [PMID: 33659815 PMCID: PMC7716550 DOI: 10.18699/vj20.625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Arbuscular mycorrhiza (AM) is an ancient mutualistic symbiosis formed by 80–90 % of land plant species with
the obligatorily biotrophic fungi that belong to the phylum Glomeromycota. This symbiosis is mutually beneficial, as
AM fungi feed on plant photosynthesis products, in turn improving the efficiency of nutrient uptake from the environment. The garden pea (Pisum sativum L.), a widely cultivated crop and an important model for genetics, is capable of
forming triple symbiotic systems consisting of the plant, AM fungi and nodule bacteria. As transcriptomic and proteomic approaches are being implemented for studying the mutualistic symbioses of pea, a need for a reference transcriptome of genes expressed under these specific conditions for increasing the resolution and the accuracy of other
methods arose. Numerous transcriptome assemblies constructed for pea did not include mycorrhizal roots, hence the
aim of the study to construct a reference transcriptome assembly of pea mycorrhizal roots. The combined transcriptome of mycorrhizal roots of Pisum sativum cv. Frisson inoculated with Rhizophagus irregularis BEG144 was investigated,
and for both the organisms independent transcriptomes were assembled (coverage 177x for pea and 45x for fungus).
Genes specific to mycorrhizal roots were found in the assembly, their expression patterns were examined with qPCR on
two pea cultivars, Frisson and Finale. The gene expression depended on the inoculation stage and on the pea cultivar.
The investigated genes may serve as markers for early stages of inoculation in genetically diverse pea cultivars.
Collapse
Affiliation(s)
- A M Afonin
- All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| | - I V Leppyanen
- All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| | - O A Kulaeva
- All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| | - O Y Shtark
- All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| | - I A Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| | - E A Dolgikh
- All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| | - V A Zhukov
- All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| |
Collapse
|
13
|
Chen M, Bruisson S, Bapaume L, Darbon G, Glauser G, Schorderet M, Reinhardt D. VAPYRIN attenuates defence by repressing PR gene induction and localized lignin accumulation during arbuscular mycorrhizal symbiosis of Petunia hybrida. THE NEW PHYTOLOGIST 2021; 229:3481-3496. [PMID: 33231304 PMCID: PMC7986166 DOI: 10.1111/nph.17109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/16/2020] [Indexed: 05/08/2023]
Abstract
The intimate association of host and fungus in arbuscular mycorrhizal (AM) symbiosis can potentially trigger induction of host defence mechanisms against the fungus, implying that successful symbiosis requires suppression of defence. We addressed this phenomenon by using AM-defective vapyrin (vpy) mutants in Petunia hybrida, including a new allele (vpy-3) with a transposon insertion close to the ATG start codon. We explore whether abortion of fungal infection in vpy mutants is associated with the induction of defence markers, such as cell wall alterations, accumulation of reactive oxygen species (ROS), defence hormones and induction of pathogenesis-related (PR) genes. We show that vpy mutants exhibit a strong resistance against intracellular colonization, which is associated with the generation of cell wall appositions (papillae) with lignin impregnation at fungal entry sites, while no accumulation of defence hormones, ROS or callose was observed. Systematic analysis of PR gene expression revealed that several PR genes are induced in mycorrhizal roots of the wild-type, and even more in vpy plants. Some PR genes are induced exclusively in vpy mutants. Our results suggest that VPY is involved in avoiding or suppressing the induction of a cellular defence syndrome that involves localized lignin deposition and PR gene induction.
Collapse
Affiliation(s)
- Min Chen
- Department of BiologyUniversity of FribourgFribourgCH‐1700Switzerland
| | | | - Laure Bapaume
- Department of BiologyUniversity of FribourgFribourgCH‐1700Switzerland
| | - Geoffrey Darbon
- Department of BiologyUniversity of FribourgFribourgCH‐1700Switzerland
| | - Gaëtan Glauser
- Neuchâtel Platform of Analytical ChemistryUniversity of NeuchâtelNeuchâtel2000Switzerland
| | | | - Didier Reinhardt
- Department of BiologyUniversity of FribourgFribourgCH‐1700Switzerland
| |
Collapse
|
14
|
Skiada V, Avramidou M, Bonfante P, Genre A, Papadopoulou KK. An endophytic Fusarium-legume association is partially dependent on the common symbiotic signalling pathway. THE NEW PHYTOLOGIST 2020; 226:1429-1444. [PMID: 31997356 DOI: 10.1111/nph.16457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Legumes interact with a wide range of microbes in their root systems, ranging from beneficial symbionts to pathogens. Symbiotic rhizobia and arbuscular mycorrhizal glomeromycetes trigger a so-called common symbiotic signalling pathway (CSSP), including the induction of nuclear calcium spiking in the root epidermis. By combining gene expression analysis, mutant phenotypic screening and analysis of nuclear calcium elevations, we demonstrate that recognition of an endophytic Fusarium solani strain K (FsK) in model legumes is initiated via perception of chitooligosaccharidic molecules and is, at least partially, CSSP-dependent. FsK induced the expression of Lysin-motif receptors for chitin-based molecules, CSSP members and CSSP-dependent genes in Lotus japonicus. In LysM and CSSP mutant/RNAi lines, root penetration and fungal intraradical progression was either stimulated or limited, whereas FsK exudates triggered CSSP-dependent nuclear calcium spiking, in epidermal cells of Medicago truncatula root organ cultures. Our results corroborate CSSP being involved in the perception of signals from other microbes beyond the restricted group of symbiotic interactions sensu stricto.
Collapse
Affiliation(s)
- Vasiliki Skiada
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Larissa, 41500, Greece
| | - Marianna Avramidou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Larissa, 41500, Greece
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, Torino, 10125, Italy
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Torino, Torino, 10125, Italy
| | - Kalliope K Papadopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Larissa, 41500, Greece
| |
Collapse
|
15
|
Ilina EL, Kiryushkin AS, Semenova VA, Demchenko NP, Pawlowski K, Demchenko KN. Lateral root initiation and formation within the parental root meristem of Cucurbita pepo: is auxin a key player? ANNALS OF BOTANY 2018; 122:873-888. [PMID: 29684107 PMCID: PMC6215038 DOI: 10.1093/aob/mcy052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/20/2018] [Indexed: 05/24/2023]
Abstract
Background and Aims In some plant families, including Cucurbitaceae, initiation and development of lateral roots (LRs) occur in the parental root apical meristem. The objective of this study was to identify the general mechanisms underlying LR initiation (LRI). Therefore, the first cellular events leading to LRI as well as the role of auxin in this process were studied in the Cucurbita pepo root apical meristem. Methods Transgenic hairy roots harbouring the auxin-responsive promoter DR5 fused to different reporter genes were used for visualizing of cellular auxin response maxima (ARMs) via confocal laser scanning microscopy and 3-D imaging. The effects of exogenous auxin and auxin transport inhibitors on root branching were analysed. Key Results The earliest LRI event involved a group of symmetric anticlinal divisions in pericycle cell files at a distance of 250-350 µm from the initial cells. The visualization of the ARMs enabled the precise detection of cells involved in determining the site of LR primordium formation. A local ARM appeared in sister cells of the pericycle and endodermis files before the first division. Cortical cells contributed to LR development after the anticlinal divisions in the pericycle via the formation of an ARM. Exogenous auxins did not increase the total number of LRs and did not affect the LRI index. Although exogenous auxin transport inhibitors acted in different ways, they all reduced the number of LRs formed. Conclusions Literature data, as well as results obtained in this study, suggest that the formation of a local ARM before the first anticlinal formative divisions is the common mechanism underlying LRI in flowering plants. We propose that the mechanisms of the regulation of root branching are independent of the position of the LRI site relative to the parental root tip.
Collapse
Affiliation(s)
- Elena L Ilina
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Alexey S Kiryushkin
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Victoria A Semenova
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Nikolay P Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Kirill N Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, Saint-Petersburg, Russia
- Laboratory of Molecular and Cellular Biology, All-Russia Research Institute for Agricultural Microbiology, Podbelsky chaussee, Saint-Petersburg, Russia
| |
Collapse
|
16
|
Ossler JN, Heath KD. Shared Genes but Not Shared Genetic Variation: Legume Colonization by Two Belowground Symbionts. Am Nat 2018. [DOI: 10.1086/695829] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Carvalho TLG, Ballesteros HGF, Thiebaut F, Ferreira PCG, Hemerly AS. Nice to meet you: genetic, epigenetic and metabolic controls of plant perception of beneficial associative and endophytic diazotrophic bacteria in non-leguminous plants. PLANT MOLECULAR BIOLOGY 2016; 90:561-74. [PMID: 26821805 DOI: 10.1007/s11103-016-0435-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 01/07/2016] [Indexed: 05/02/2023]
Abstract
A wide range of rhizosphere diazotrophic bacteria are able to establish beneficial associations with plants, being able to associate to root surfaces or even endophytically colonize plant tissues. In common, both associative and endophytic types of colonization can result in beneficial outcomes to the plant leading to plant growth promotion, as well as increase in tolerance against biotic and abiotic stresses. An intriguing question in such associations is how plant cell surface perceives signals from other living organisms, thus sorting pathogens from beneficial ones, to transduce this information and activate proper responses that will finally culminate in plant adaptations to optimize their growth rates. This review focuses on the recent advances in the understanding of genetic and epigenetic controls of plant-bacteria signaling and recognition during beneficial associations with associative and endophytic diazotrophic bacteria. Finally, we propose that "soil-rhizosphere-rhizoplane-endophytes-plant" could be considered as a single coordinated unit with dynamic components that integrate the plant with the environment to generate adaptive responses in plants to improve growth. The homeostasis of the whole system should recruit different levels of regulation, and recognition between the parties in a given environment might be one of the crucial factors coordinating these adaptive plant responses.
Collapse
Affiliation(s)
- T L G Carvalho
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bl. L-29ss, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-599, Brazil
| | - H G F Ballesteros
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bl. L-29ss, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-599, Brazil
| | - F Thiebaut
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bl. L-29ss, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-599, Brazil
| | - P C G Ferreira
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bl. L-29ss, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-599, Brazil
| | - A S Hemerly
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bl. L-29ss, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-599, Brazil.
| |
Collapse
|
18
|
Arbuscular mycorrhiza development in pea (Pisum sativum L.) mutants impaired in five early nodulation genes including putative orthologs of NSP1 and NSP2. Symbiosis 2016. [DOI: 10.1007/s13199-016-0382-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Holt DB, Gupta V, Meyer D, Abel NB, Andersen SU, Stougaard J, Markmann K. micro RNA 172 (miR172) signals epidermal infection and is expressed in cells primed for bacterial invasion in Lotus japonicus roots and nodules. THE NEW PHYTOLOGIST 2015; 208:241-56. [PMID: 25967282 DOI: 10.1111/nph.13445] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/26/2015] [Indexed: 05/13/2023]
Abstract
Legumes interact with rhizobial bacteria to form nitrogen-fixing root nodules. Host signalling following mutual recognition ensures a specific response, but is only partially understood. Focusing on the stage of epidermal infection with Mesorhizobium loti, we analysed endogenous small RNAs (sRNAs) of the model legume Lotus japonicus to investigate their involvement in host response regulation. We used Illumina sequencing to annotate the L. japonicus sRNA-ome and isolate infection-responsive sRNAs, followed by candidate-based functional characterization. Sequences from four libraries revealed 219 novel L. japonicus micro RNAs (miRNAs) from 114 newly assigned families, and 76 infection-responsive sRNAs. Unlike infection-associated coding genes such as NODULE INCEPTION (NIN), a micro RNA 172 (miR172) isoform showed strong accumulation in dependency of both Nodulation (Nod) factor and compatible rhizobia. The genetics of miR172 induction support the existence of distinct epidermal and cortical signalling events. MIR172a promoter activity followed a previously unseen pattern preceding infection thread progression in epidermal and cortical cells. Nodule-associated miR172a expression was infection-independent, representing the second of two genetically separable activity waves. The combined data provide a valuable resource for further study, and identify miR172 as an sRNA marking successful epidermal infection. We show that miR172 acts upstream of several APETALA2-type (AP2) transcription factors, and suggest that it has a role in fine-tuning AP2 levels during bacterial symbiosis.
Collapse
Affiliation(s)
- Dennis B Holt
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Vikas Gupta
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Dörte Meyer
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Nikolaj B Abel
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Katharina Markmann
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| |
Collapse
|
20
|
Handa Y, Nishide H, Takeda N, Suzuki Y, Kawaguchi M, Saito K. RNA-seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in Lotus japonicus and Rhizophagus irregularis. PLANT & CELL PHYSIOLOGY 2015; 56:1490-511. [PMID: 26009592 DOI: 10.1093/pcp/pcv071] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/13/2015] [Indexed: 05/03/2023]
Abstract
Gene expression during arbuscular mycorrhizal development is highly orchestrated in both plants and arbuscular mycorrhizal fungi. To elucidate the gene expression profiles of the symbiotic association, we performed a digital gene expression analysis of Lotus japonicus and Rhizophagus irregularis using a HiSeq 2000 next-generation sequencer with a Cufflinks assembly and de novo transcriptome assembly. There were 3,641 genes differentially expressed during arbuscular mycorrhizal development in L. japonicus, approximately 80% of which were up-regulated. The up-regulated genes included secreted proteins, transporters, proteins involved in lipid and amino acid metabolism, ribosomes and histones. We also detected many genes that were differentially expressed in small-secreted peptides and transcription factors, which may be involved in signal transduction or transcription regulation during symbiosis. Co-regulated genes between arbuscular mycorrhizal and root nodule symbiosis were not particularly abundant, but transcripts encoding for membrane traffic-related proteins, transporters and iron transport-related proteins were found to be highly co-up-regulated. In transcripts of arbuscular mycorrhizal fungi, expansion of cytochrome P450 was observed, which may contribute to various metabolic pathways required to accommodate roots and soil. The comprehensive gene expression data of both plants and arbuscular mycorrhizal fungi provide a powerful platform for investigating the functional and molecular mechanisms underlying arbuscular mycorrhizal symbiosis.
Collapse
Affiliation(s)
- Yoshihiro Handa
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Hiroyo Nishide
- Data Integration and Analysis Facility, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Naoya Takeda
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Katsuharu Saito
- Faculty of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| |
Collapse
|
21
|
Indrasumunar A, Wilde J, Hayashi S, Li D, Gresshoff PM. Functional analysis of duplicated Symbiosis Receptor Kinase (SymRK) genes during nodulation and mycorrhizal infection in soybean (Glycine max). JOURNAL OF PLANT PHYSIOLOGY 2015; 176:157-68. [PMID: 25617765 DOI: 10.1016/j.jplph.2015.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/23/2014] [Accepted: 01/02/2015] [Indexed: 06/04/2023]
Abstract
Association between legumes and rhizobia results in the formation of root nodules, where symbiotic nitrogen fixation occurs. The early stages of this association involve a complex of signalling events between the host and microsymbiont. Several genes dealing with early signal transduction have been cloned, and one of them encodes the leucine-rich repeat (LRR) receptor kinase (SymRK; also termed NORK). The Symbiosis Receptor Kinase gene is required by legumes to establish a root endosymbiosis with Rhizobium bacteria as well as mycorrhizal fungi. Using degenerate primer and BAC sequencing, we cloned duplicated SymRK homeologues in soybean called GmSymRKα and GmSymRKβ. These duplicated genes have high similarity of nucleotide (96%) and amino acid sequence (95%). Sequence analysis predicted a malectin-like domain within the extracellular domain of both genes. Several putative cis-acting elements were found in promoter regions of GmSymRKα and GmSymRKβ, suggesting a participation in lateral root development, cell division and peribacteroid membrane formation. The mutant of SymRK genes is not available in soybean; therefore, to know the functions of these genes, RNA interference (RNAi) of these duplicated genes was performed. For this purpose, RNAi construct of each gene was generated and introduced into the soybean genome by Agrobacterium rhizogenes-mediated hairy root transformation. RNAi of GmSymRKβ gene resulted in an increased reduction of nodulation and mycorrhizal infection than RNAi of GmSymRKα, suggesting it has the major activity of the duplicated gene pair. The results from the important crop legume soybean confirm the joint phenotypic action of GmSymRK genes in both mycorrhizal and rhizobial infection seen in model legumes.
Collapse
Affiliation(s)
- Arief Indrasumunar
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane 4072, QLD, Australia
| | - Julia Wilde
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane 4072, QLD, Australia
| | - Satomi Hayashi
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane 4072, QLD, Australia
| | - Dongxue Li
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane 4072, QLD, Australia
| | - Peter M Gresshoff
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane 4072, QLD, Australia.
| |
Collapse
|
22
|
Takeda N, Handa Y, Tsuzuki S, Kojima M, Sakakibara H, Kawaguchi M. Gibberellins interfere with symbiosis signaling and gene expression and alter colonization by arbuscular mycorrhizal fungi in Lotus japonicus. PLANT PHYSIOLOGY 2015; 167:545-57. [PMID: 25527715 PMCID: PMC4326748 DOI: 10.1104/pp.114.247700] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 12/17/2014] [Indexed: 05/06/2023]
Abstract
Arbuscular mycorrhiza is a mutualistic plant-fungus interaction that confers great advantages for plant growth. Arbuscular mycorrhizal (AM) fungi enter the host root and form symbiotic structures that facilitate nutrient supplies between the symbionts. The gibberellins (GAs) are phytohormones known to inhibit AM fungal infection. However, our transcriptome analysis and phytohormone quantification revealed GA accumulation in the roots of Lotus japonicus infected with AM fungi, suggesting that de novo GA synthesis plays a role in arbuscular mycorrhiza development. We found pleiotropic effects of GAs on the AM fungal infection. In particular, the morphology of AM fungal colonization was drastically altered by the status of GA signaling in the host root. Exogenous GA treatment inhibited AM hyphal entry into the host root and suppressed the expression of Reduced Arbuscular Mycorrhization1 (RAM1) and RAM2 homologs that function in hyphal entry and arbuscule formation. On the other hand, inhibition of GA biosynthesis or suppression of GA signaling also affected arbuscular mycorrhiza development in the host root. Low-GA conditions suppressed arbuscular mycorrhiza-induced subtilisin-like serine protease1 (SbtM1) expression that is required for AM fungal colonization and reduced hyphal branching in the host root. The reduced hyphal branching and SbtM1 expression caused by the inhibition of GA biosynthesis were recovered by GA treatment, supporting the theory that insufficient GA signaling causes the inhibitory effects on arbuscular mycorrhiza development. Most studies have focused on the negative role of GA signaling, whereas our study demonstrates that GA signaling also positively interacts with symbiotic responses and promotes AM colonization of the host root.
Collapse
Affiliation(s)
- Naoya Takeda
- Division of Symbiotic Systems, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan (N.T., Y.H., M.Ka.);Department of Basic Biology, Graduate University for Advanced Studies, Myodaiji, Okazaki, Aichi 444-8585, Japan (N.T., S.T., M.Ka.); andPlant Productivity Systems Research Group, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan (M.Ko., H.S.)
| | - Yoshihiro Handa
- Division of Symbiotic Systems, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan (N.T., Y.H., M.Ka.);Department of Basic Biology, Graduate University for Advanced Studies, Myodaiji, Okazaki, Aichi 444-8585, Japan (N.T., S.T., M.Ka.); andPlant Productivity Systems Research Group, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan (M.Ko., H.S.)
| | - Syusaku Tsuzuki
- Division of Symbiotic Systems, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan (N.T., Y.H., M.Ka.);Department of Basic Biology, Graduate University for Advanced Studies, Myodaiji, Okazaki, Aichi 444-8585, Japan (N.T., S.T., M.Ka.); andPlant Productivity Systems Research Group, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan (M.Ko., H.S.)
| | - Mikiko Kojima
- Division of Symbiotic Systems, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan (N.T., Y.H., M.Ka.);Department of Basic Biology, Graduate University for Advanced Studies, Myodaiji, Okazaki, Aichi 444-8585, Japan (N.T., S.T., M.Ka.); andPlant Productivity Systems Research Group, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan (M.Ko., H.S.)
| | - Hitoshi Sakakibara
- Division of Symbiotic Systems, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan (N.T., Y.H., M.Ka.);Department of Basic Biology, Graduate University for Advanced Studies, Myodaiji, Okazaki, Aichi 444-8585, Japan (N.T., S.T., M.Ka.); andPlant Productivity Systems Research Group, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan (M.Ko., H.S.)
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan (N.T., Y.H., M.Ka.);Department of Basic Biology, Graduate University for Advanced Studies, Myodaiji, Okazaki, Aichi 444-8585, Japan (N.T., S.T., M.Ka.); andPlant Productivity Systems Research Group, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan (M.Ko., H.S.)
| |
Collapse
|
23
|
Rich MK, Schorderet M, Reinhardt D. The role of the cell wall compartment in mutualistic symbioses of plants. FRONTIERS IN PLANT SCIENCE 2014; 5:238. [PMID: 24917869 PMCID: PMC4041022 DOI: 10.3389/fpls.2014.00238] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 05/12/2014] [Indexed: 05/18/2023]
Abstract
Plants engage in mutualistic interactions with microbes that improve their mineral nutrient supply. The most wide-spread symbiotic association is arbuscular mycorrhiza (AM), in which fungi of the order Glomeromycota invade roots and colonize the cellular lumen of cortical cells. The establishment of this interaction requires a dedicated molecular-genetic program and a cellular machinery of the plant host. This program is partially shared with the root nodule symbiosis (RNS), which involves prokaryotic partners collectively referred to as rhizobia. Both, AM and RNS are endosymbioses that involve intracellular accommodation of the microbial partner in the cells of the plant host. Since plant cells are surrounded by sturdy cell walls, root penetration and cell invasion requires mechanisms to overcome this barrier while maintaining the cytoplasm of the two partners separate during development of the symbiotic association. Here, we discuss the diverse functions of the cell wall compartment in establishment and functioning of plant symbioses with the emphasis on AM and RNS, and we describe the stages of the AM association between the model organisms Petunia hybrida and Rhizophagus irregularis.
Collapse
Affiliation(s)
| | | | - Didier Reinhardt
- Department of Biology, University of FribourgFribourg, Switzerland
| |
Collapse
|
24
|
Kojima T, Saito K, Oba H, Yoshida Y, Terasawa J, Umehara Y, Suganuma N, Kawaguchi M, Ohtomo R. Isolation and Phenotypic Characterization of Lotus japonicus Mutants Specifically Defective in Arbuscular Mycorrhizal Formation. ACTA ACUST UNITED AC 2014; 55:928-41. [DOI: 10.1093/pcp/pcu024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
25
|
Abstract
The default mineral nutrient acquisition strategy of land plants is the symbiosis with arbuscular mycorrhiza (AM) fungi. Research into the cell and developmental biology of AM revealed fascinating insights into the plasticity of plant cell development and of interorganismic communication. It is driven by the prospect of increased exploitation of AM benefits for sustainable agriculture. The plant cell developmental program for intracellular accommodation of AM fungi is activated by a genetically defined signaling pathway involving calcium spiking in the nucleus as second messenger. Calcium spiking is triggered by chitooligosaccharides released by AM fungi that are probably perceived via LysM domain receptor kinases. Fungal infection and calcium spiking are spatiotemporally coordinated, and only cells committed to accommodating the fungus undergo high-frequency spiking. Delivery of mineral nutrients by AM fungi occurs at tree-shaped hyphal structures, the arbuscules, in plant cortical cells. Nutrients are taken up at a plant-derived periarbuscular membrane, which surrounds fungal hyphae and carries a specific transporter composition that is of direct importance for symbiotic efficiency. An elegant study has unveiled a new and unexpected mechanism for specific protein localization to the periarbuscular membrane, which relies on the timing of gene expression to synchronize protein biosynthesis with a redirection of secretion. The control of AM development by phytohormones is currently subject to active investigation and has led to the rediscovery of strigolactones. Nearly all tested phytohormones regulate AM development, and major insights into the mechanisms of this regulation are expected in the near future.
Collapse
Affiliation(s)
- Caroline Gutjahr
- Institute of Genetics, Faculty of Biology, University of Munich, 82152 Martinsried, Germany; ,
| | | |
Collapse
|
26
|
Takeda N, Tsuzuki S, Suzaki T, Parniske M, Kawaguchi M. CERBERUS and NSP1 of Lotus japonicus are common symbiosis genes that modulate arbuscular mycorrhiza development. PLANT & CELL PHYSIOLOGY 2013; 54:1711-23. [PMID: 23926062 DOI: 10.1093/pcp/pct114] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Arbuscular mycorrhizal symbiosis (AMS) and root nodule symbiosis (RNS) are mutualistic plant-microbe interactions that confer nutritional benefits to both partners. Leguminous plants possess a common genetic system for intracellular symbiosis with AM fungi and with rhizobia. Here we show that CERBERUS and NSP1, which respectively encode an E3 ubiquitin ligase and a GRAS transcriptional regulator and which have previously only been implicated in RNS, are involved in AM fungal infection in Lotus japonicus. Hyphal elongation along the longitudinal axis of the root was reduced in the cerberus mutant, giving rise to a lower colonization level. Knockout of NSP1 decreased the frequency of plants colonized by AM fungi or rhizobia. CERBERUS and NSP1 showed different patterns of expression in response to infection with symbiotic microbes. A low constitutive level of CERBERUS expression was observed in the root and an increased level of NSP1 expression was detected in arbuscule-containing cells. Induction of AM marker gene was triggered in both cerberus and nsp1 mutants by infection with symbiotic microbes; however, the mutants showed a weaker induction of marker gene expression than the wild type, mirroring their lower level of colonization. The common symbiosis genes are believed to act in an early signaling pathway for recognition of symbionts and for triggering early symbiotic responses. Our quantitative analysis of symbiotic phenotypes revealed developmental defects of the novel common symbiosis mutants in both symbioses, which demonstrates that common symbiosis mechanisms also contribute to a range of functions at later or different stages of symbiont infection.
Collapse
Affiliation(s)
- Naoya Takeda
- Division of Symbiotic Systems, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| | | | | | | | | |
Collapse
|
27
|
Chen X, Shi J, Hao X, Liu H, Shi J, Wu Y, Wu Z, Chen M, Wu P, Mao C. OsORC3 is required for lateral root development in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:339-350. [PMID: 23346890 DOI: 10.1111/tpj.12126] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 05/28/2023]
Abstract
The origin recognition complex (ORC) is a pivotal element in DNA replication, heterochromatin assembly, checkpoint regulation and chromosome assembly. Although the functions of the ORC have been determined in yeast and model animals, they remain largely unknown in the plant kingdom. In this study, Oryza sativa Origin Recognition Complex subunit 3 (OsORC3) was cloned using map-based cloning procedures, and functionally characterized using a rice (Oryza sativa) orc3 mutant. The mutant showed a temperature-dependent defect in lateral root (LR) development. Map-based cloning showed that a G→A mutation in the 9th exon of OsORC3 was responsible for the mutant phenotype. OsORC3 was strongly expressed in regions of active cell proliferation, including the primary root tip, stem base, lateral root primordium, emerged lateral root primordium, lateral root tip, young shoot, anther and ovary. OsORC3 knockdown plants lacked lateral roots and had a dwarf phenotype. The root meristematic zone of ORC3 knockdown plants exhibited increased cell death and reduced vital activity compared to the wild-type. CYCB1;1::GUS activity and methylene blue staining showed that lateral root primordia initiated normally in the orc3 mutant, but stopped growing before formation of the stele and ground tissue. Our results indicate that OsORC3 plays a crucial role in the emergence of lateral root primordia.
Collapse
Affiliation(s)
- Xinai Chen
- The State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Roberts NJ, Morieri G, Kalsi G, Rose A, Stiller J, Edwards A, Xie F, Gresshoff PM, Oldroyd GE, Downie JA, Etzler ME. Rhizobial and mycorrhizal symbioses in Lotus japonicus require lectin nucleotide phosphohydrolase, which acts upstream of calcium signaling. PLANT PHYSIOLOGY 2013; 161:556-67. [PMID: 23136382 PMCID: PMC3532285 DOI: 10.1104/pp.112.206110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 11/01/2012] [Indexed: 05/06/2023]
Abstract
Nodulation in legumes requires the recognition of rhizobially made Nod factors. Genetic studies have revealed that the perception of Nod factors involves LysM domain receptor-like kinases, while biochemical approaches have identified LECTIN NUCLEOTIDE PHOSPHOHYDROLASE (LNP) as a Nod factor-binding protein. Here, we show that antisense inhibition of LNP blocks nodulation in Lotus japonicus. This absence of nodulation was due to a defect in Nod factor signaling based on the observations that the early nodulation gene NODULE INCEPTION was not induced and that both Nod factor-induced perinuclear calcium spiking and calcium influx at the root hair tip were blocked. However, Nod factor did induce root hair deformation in the LNP antisense lines. LNP is also required for infection by the mycorrhizal fungus Glomus intraradices, suggesting that LNP plays a role in the common signaling pathway shared by the rhizobial and mycorrhizal symbioses. Taken together, these observations indicate that LNP acts at a novel position in the early stages of symbiosis signaling. We propose that LNP functions at the earliest stage of the common nodulation and mycorrhization symbiosis signaling pathway downstream of the Nod factor receptors; it may act either by influencing signaling via changes in external nucleotides or in conjunction with the LysM receptor-like kinases for recognition of Nod factor.
Collapse
Affiliation(s)
| | | | - Gurpreet Kalsi
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (N.J.R., G.K., A.R., M.E.E.)
- John Innes Centre, Norwich NR4 7UH, United Kingdom (G.M., A.E., F.X., G.E.D.O., J.A.D.)
- Australian Research Council Centre of Excellence for Integrative Legume Research, University of Queensland, Brisbane, Queensland 4072, Australia (J.S., P.M.G.)
| | - Alan Rose
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (N.J.R., G.K., A.R., M.E.E.)
- John Innes Centre, Norwich NR4 7UH, United Kingdom (G.M., A.E., F.X., G.E.D.O., J.A.D.)
- Australian Research Council Centre of Excellence for Integrative Legume Research, University of Queensland, Brisbane, Queensland 4072, Australia (J.S., P.M.G.)
| | - Jiri Stiller
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (N.J.R., G.K., A.R., M.E.E.)
- John Innes Centre, Norwich NR4 7UH, United Kingdom (G.M., A.E., F.X., G.E.D.O., J.A.D.)
- Australian Research Council Centre of Excellence for Integrative Legume Research, University of Queensland, Brisbane, Queensland 4072, Australia (J.S., P.M.G.)
| | - Anne Edwards
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (N.J.R., G.K., A.R., M.E.E.)
- John Innes Centre, Norwich NR4 7UH, United Kingdom (G.M., A.E., F.X., G.E.D.O., J.A.D.)
- Australian Research Council Centre of Excellence for Integrative Legume Research, University of Queensland, Brisbane, Queensland 4072, Australia (J.S., P.M.G.)
| | - Fang Xie
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (N.J.R., G.K., A.R., M.E.E.)
- John Innes Centre, Norwich NR4 7UH, United Kingdom (G.M., A.E., F.X., G.E.D.O., J.A.D.)
- Australian Research Council Centre of Excellence for Integrative Legume Research, University of Queensland, Brisbane, Queensland 4072, Australia (J.S., P.M.G.)
| | - Peter M. Gresshoff
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (N.J.R., G.K., A.R., M.E.E.)
- John Innes Centre, Norwich NR4 7UH, United Kingdom (G.M., A.E., F.X., G.E.D.O., J.A.D.)
- Australian Research Council Centre of Excellence for Integrative Legume Research, University of Queensland, Brisbane, Queensland 4072, Australia (J.S., P.M.G.)
| | - Giles E.D. Oldroyd
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (N.J.R., G.K., A.R., M.E.E.)
- John Innes Centre, Norwich NR4 7UH, United Kingdom (G.M., A.E., F.X., G.E.D.O., J.A.D.)
- Australian Research Council Centre of Excellence for Integrative Legume Research, University of Queensland, Brisbane, Queensland 4072, Australia (J.S., P.M.G.)
| | - J. Allan Downie
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (N.J.R., G.K., A.R., M.E.E.)
- John Innes Centre, Norwich NR4 7UH, United Kingdom (G.M., A.E., F.X., G.E.D.O., J.A.D.)
- Australian Research Council Centre of Excellence for Integrative Legume Research, University of Queensland, Brisbane, Queensland 4072, Australia (J.S., P.M.G.)
| | | |
Collapse
|
29
|
Ovchinnikova E, Journet EP, Chabaud M, Cosson V, Ratet P, Duc G, Fedorova E, Liu W, den Camp RO, Zhukov V, Tikhonovich I, Borisov A, Bisseling T, Limpens E. IPD3 controls the formation of nitrogen-fixing symbiosomes in pea and Medicago Spp. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1333-44. [PMID: 21787150 DOI: 10.1094/mpmi-01-11-0013] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A successful nitrogen-fixing symbiosis requires the accommodation of rhizobial bacteria as new organelle-like structures, called symbiosomes, inside the cells of their legume hosts. Two legume mutants that are most strongly impaired in their ability to form symbiosomes are sym1/TE7 in Medicago truncatula and sym33 in Pisum sativum. We have cloned both MtSYM1 and PsSYM33 and show that both encode the recently identified interacting protein of DMI3 (IPD3), an ortholog of Lotus japonicus (Lotus) CYCLOPS. IPD3 and CYCLOPS were shown to interact with DMI3/CCaMK, which encodes a calcium- and calmodulin-dependent kinase that is an essential component of the common symbiotic signaling pathway for both rhizobial and mycorrhizal symbioses. Our data reveal a novel, key role for IPD3 in symbiosome formation and development. We show that MtIPD3 participates in but is not essential for infection thread formation and that MtIPD3 also affects DMI3-induced spontaneous nodule formation upstream of cytokinin signaling. Further, MtIPD3 appears to be required for the expression of a nodule-specific remorin, which controls proper infection thread growth and is essential for symbiosome formation.
Collapse
Affiliation(s)
- Evgenia Ovchinnikova
- Department of Molecular Biology, Wageningen University, Wageningen, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kosuta S, Held M, Hossain MS, Morieri G, Macgillivary A, Johansen C, Antolín-Llovera M, Parniske M, Oldroyd GED, Downie AJ, Karas B, Szczyglowski K. Lotus japonicus symRK-14 uncouples the cortical and epidermal symbiotic program. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:929-940. [PMID: 21595760 DOI: 10.1111/j.1365-313x.2011.04645.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
SYMRK is a leucine-rich-repeat (LRR)-receptor kinase that mediates intracellular symbioses of legumes with rhizobia and arbuscular mycorrhizal fungi. It participates in signalling events that lead to epidermal calcium spiking, an early cellular response that is typically considered as central for intracellular accommodation and nodule organogenesis. Here, we describe the Lotus japonicus symRK-14 mutation that alters a conserved GDPC amino-acid sequence in the SYMRK extracellular domain. Normal infection of the epidermis by fungal or bacterial symbionts was aborted in symRK-14. Likewise, epidermal responses of symRK-14 to bacterial signalling, including calcium spiking, NIN gene expression and infection thread formation, were significantly reduced. In contrast, no major negative effects on the formation of nodule primordia and cortical infection were detected. Cumulatively, our data show that the symRK-14 mutation uncouples the epidermal and cortical symbiotic program, while indicating that the SYMRK extracellular domain participates in transduction of non-equivalent signalling events. The GDPC sequence was found to be highly conserved in LRR-receptor kinases in legumes and non-legumes, including the evolutionarily distant bryophytes. Conservation of the GDPC sequence in nearly one-fourth of LRR-receptor-like kinases in the genome of Arabidopsis thaliana suggests, however, that this sequence might also play an important non-symbiotic function in this plant.
Collapse
Affiliation(s)
- Sonja Kosuta
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ON N5V4T3 Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ercolin F, Reinhardt D. Successful joint ventures of plants: arbuscular mycorrhiza and beyond. TRENDS IN PLANT SCIENCE 2011; 16:356-62. [PMID: 21459657 DOI: 10.1016/j.tplants.2011.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/01/2011] [Accepted: 03/08/2011] [Indexed: 05/04/2023]
Abstract
Among the oldest symbiotic associations of plants are arbuscular mycorrhiza (AM) with fungi of the phylum Glomeromycota. Although many of the symbiotic signaling components have been identified on the side of the plant, AM fungi have long evaded genetic analysis owing to their strict biotrophy and their exceptional genetics. Recently, the identification of the fungal symbiosis signal (Myc factor) and of a corresponding Myc factor receptor, and new insights into AM fungal genetics, have opened new avenues to address early communication and functional aspects of AM symbiosis. These advances will pave the way for breeding programs towards adapted AM fungi for crop production, and will shed light on the ecology and evolution of this remarkably successful symbiosis.
Collapse
Affiliation(s)
- Flavia Ercolin
- Department of Biology, University of Fribourg, Switzerland
| | | |
Collapse
|
32
|
Takeda N, Haage K, Sato S, Tabata S, Parniske M. Activation of a Lotus japonicus subtilase gene during arbuscular mycorrhiza is dependent on the common symbiosis genes and two cis-active promoter regions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:662-70. [PMID: 21261463 DOI: 10.1094/mpmi-09-10-0220] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The subtilisin-like serine protease SbtM1 is strongly and specifically induced during arbuscular mycorrhiza (AM) symbiosis in Lotus japonicus. Another subtilase gene, SbtS, is induced during early stages of nodulation and AM. Transcript profiling in plant symbiosis mutants revealed that the AM-induced expression of SbtM1 and the gene family members SbtM3 and SbtM4 is dependent on the common symbiosis pathway, whereas an independent pathway contributes to the activation of SbtS. We used the specific spatial expression patterns of SbtM1 promoter β-d-glucuronidase (GUS) fusions to isolate cis elements that confer AM responsiveness. A promoter deletion and substitution analysis defined two cis regions (region I and II) in the SbtM1 promoter necessary for AM-induced GUS activity. 35S minimal promoter fusions revealed that either of the two regions is sufficient for AM responsiveness when tested in tandem repeat arrangement. Sequence-related regions were found in the promoters of AM-induced subtilase genes in Medicago truncatula and rice, consistent with an ancient origin of these elements predating the divergence of the angiosperms.
Collapse
|
33
|
Groth M, Takeda N, Perry J, Uchida H, Dräxl S, Brachmann A, Sato S, Tabata S, Kawaguchi M, Wang TL, Parniske M. NENA, a Lotus japonicus homolog of Sec13, is required for rhizodermal infection by arbuscular mycorrhiza fungi and rhizobia but dispensable for cortical endosymbiotic development. THE PLANT CELL 2010; 22:2509-26. [PMID: 20675572 PMCID: PMC2929109 DOI: 10.1105/tpc.109.069807] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 06/25/2010] [Accepted: 07/05/2010] [Indexed: 05/07/2023]
Abstract
Legumes form symbioses with arbuscular mycorrhiza (AM) fungi and nitrogen fixing root nodule bacteria. Intracellular root infection by either endosymbiont is controlled by the activation of the calcium and calmodulin-dependent kinase (CCaMK), a central regulatory component of the plant's common symbiosis signaling network. We performed a microscopy screen for Lotus japonicus mutants defective in AM development and isolated a mutant, nena, that aborted fungal infection in the rhizodermis. NENA encodes a WD40 repeat protein related to the nucleoporins Sec13 and Seh1. Localization of NENA to the nuclear rim and yeast two-hybrid experiments indicated a role for NENA in a conserved subcomplex of the nuclear pore scaffold. Although nena mutants were able to form pink nodules in symbiosis with Mesorhizobium loti, root hair infection was not observed. Moreover, Nod factor induction of the symbiotic genes NIN, SbtM4, and SbtS, as well as perinuclear calcium spiking, were impaired. Detailed phenotypic analyses of nena mutants revealed a rhizobial infection mode that overcame the lack of rhizodermal responsiveness and carried the hallmarks of crack entry, including a requirement for ethylene. CCaMK-dependent processes were only abolished in the rhizodermis but not in the cortex of nena mutants. These data support the concept of tissue-specific components for the activation of CCaMK.
Collapse
Affiliation(s)
- Martin Groth
- Biocenter University of Munich (LMU), Genetics, 82152 Martinsried, Germany
| | - Naoya Takeda
- Biocenter University of Munich (LMU), Genetics, 82152 Martinsried, Germany
| | - Jillian Perry
- Department of Metabolic Biology, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom
| | - Hisaki Uchida
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Stephan Dräxl
- Biocenter University of Munich (LMU), Genetics, 82152 Martinsried, Germany
| | - Andreas Brachmann
- Biocenter University of Munich (LMU), Genetics, 82152 Martinsried, Germany
| | - Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Satoshi Tabata
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Masayoshi Kawaguchi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Trevor L. Wang
- Department of Metabolic Biology, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom
| | - Martin Parniske
- Biocenter University of Munich (LMU), Genetics, 82152 Martinsried, Germany
| |
Collapse
|
34
|
Pumplin N, Mondo SJ, Topp S, Starker CG, Gantt JS, Harrison MJ. Medicago truncatula Vapyrin is a novel protein required for arbuscular mycorrhizal symbiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:482-94. [PMID: 19912567 DOI: 10.1111/j.1365-313x.2009.04072.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Arbuscular mycorrhizal (AM) symbiosis is a widespread mutualism formed between vascular plants and fungi of the Glomeromycota. In this endosymbiosis, fungal hyphae enter the roots, growing through epidermal cells to the cortex where they establish differentiated hyphae called arbuscules in the cortical cells. Reprogramming of the plant epidermal and cortical cells occurs to enable intracellular growth of the fungal symbiont; however, the plant genes underlying this process are largely unknown. Here, through the use of RNAi, we demonstrate that the expression of a Medicago truncatula gene named Vapyrin is essential for arbuscule formation, and also for efficient epidermal penetration by AM fungi. Vapyrin is induced transiently in the epidermis coincident with hyphal penetration, and then in the cortex during arbuscule formation. The Vapyrin protein is cytoplasmic, and in cells containing AM fungal hyphae, the protein accumulates in small puncta that move through the cytoplasm. Vapyrin is a novel protein composed of two domains that mediate protein-protein interactions: an N-terminal VAMP-associated protein (VAP)/major sperm protein (MSP) domain and a C-terminal ankyrin-repeat domain. Putative Vapyrin orthologs exist widely in the plant kingdom, but not in Arabidopsis, or in non-plant species. The data suggest a role for Vapyrin in cellular remodeling to support the intracellular development of fungal hyphae during AM symbiosis.
Collapse
Affiliation(s)
- Nathan Pumplin
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
35
|
Dermatsev V, Weingarten-Baror C, Resnick N, Gadkar V, Wininger S, Kolotilin I, Mayzlish-Gati E, Zilberstein A, Koltai H, Kapulnik Y. Microarray analysis and functional tests suggest the involvement of expansins in the early stages of symbiosis of the arbuscular mycorrhizal fungus Glomus intraradices on tomato (Solanum lycopersicum). MOLECULAR PLANT PATHOLOGY 2010; 11:121-35. [PMID: 20078781 PMCID: PMC6640415 DOI: 10.1111/j.1364-3703.2009.00581.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Arbuscular mycorrhizal (AM) symbiosis occurs between fungi of the phylum Glomeromycota and most terrestrial plants. However, little is known about the molecular symbiotic signalling between AM fungi (AMFs) and non-leguminous plant species. We sought to further elucidate the molecular events occurring in tomato, a non-leguminous host plant, during the early, pre-symbiotic stage of AM symbiosis, i.e. immediately before and after contact between the AMF (Glomus intraradices) and the host. We adopted a semi-synchronized AMF root infection protocol, followed by genomic-scale, microarray-based, gene expression profiling at several defined time points during pre-symbiotic AM stages. The microarray results suggested differences in the number of differentially expressed genes and in the differential regulation of several functional groups of genes at the different time points examined. The microarray results were validated and one of the genes induced during contact between AMF and tomato, the expansin-like EXLB1, was functionally analysed. Expansins, encoded by a large multigene family, facilitate plant cell expansion. However, no biological or biochemical function has yet been established for plant-originated expansin-like proteins. EXLB1 transcripts were localized early during the association to cells that may perceive the fungal signal, and later during the association in close proximity to sites of AMF hypha-root colonization. Moreover, in transgenic roots, we demonstrated that a reduction in the steady-state level of EXLB1 transcript was correlated with a reduced rate of infection, reduced arbuscule expansion and reduced AMF spore formation.
Collapse
Affiliation(s)
- Vladimir Dermatsev
- Department of Agronomy and Natural Resources, Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, PO Box 6, Bet Dagan 50250, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Takeda N, Sato S, Asamizu E, Tabata S, Parniske M. Apoplastic plant subtilases support arbuscular mycorrhiza development in Lotus japonicus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:766-77. [PMID: 19220794 DOI: 10.1111/j.1365-313x.2009.03824.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In the arbuscular mycorrhiza (AM) symbiosis, plant roots accommodate Glomeromycota fungi within an intracellular compartment, the arbuscule. At this symbiotic interface, fungal hyphae are surrounded by a plant membrane, which creates an apoplastic compartment, the periarbuscular space (PAS) between fungal and plant cell. Despite the importance of the PAS for symbiotic signal and metabolite exchange, only few of its components have been identified. Here we show that two apoplastic plant proteases of the subtilase family are required for AM development. SbtM1 is the founder member of a family of arbuscular mycorrhiza-induced subtilase genes that occur in at least two clusters in the genome of the legume Lotus japonicus. A detailed expression analysis by RT-PCR revealed that SbtM1, SbtM3, SbtM4 and the more distantly related SbtS are all rapidly induced during development of arbuscular mycorrhiza, but only SbtS and SbtM4 are also up-regulated during root nodule symbiosis. Promoter-reporter fusions indicated specific activation in cells that are adjacent to intra-radical fungal hyphae or in cells that harbour them. Venus fluorescent protein was observed in the apoplast and the PAS when expressed from a fusion construct with the SbtM1 signal peptide or the full-length subtilase. Suppression of SbtM1 or SbtM3 by RNAi caused a decrease in intra-radical hyphae and arbuscule colonization, but had no effect on nodule formation. Our data indicate a role for these subtilases during the fungal infection process in particular arbuscule development.
Collapse
Affiliation(s)
- Naoya Takeda
- Faculty of Biology, Genetics, University of Munich, Grosshaderner Strasse 2, Martinsried, Germany
| | | | | | | | | |
Collapse
|
37
|
Voroshilova VA, Demchenko KN, Brewin NJ, Borisov AY, Tikhonovich IA. Initiation of a legume nodule with an indeterminate meristem involves proliferating host cells that harbour infection threads. THE NEW PHYTOLOGIST 2009; 181:913-923. [PMID: 19140932 DOI: 10.1111/j.1469-8137.2008.02723.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A comparative analysis of nodule morphogenesis was carried out for three symbiotically defective pea (Pisum sativum) mutants that show abnormalities in nodule development.In the wild-type lines, resumption of cell proliferation in the pericycle and inner cortex results in the development of a nodule primordium, within which are found proliferating cells that harbour infection threads. However, this class of cell is not observed in the mutants RisFixA (sym41) and SGEFix–-2 (sym33) where nodule development is arrested at the point of formation of the apical nodule meristem. Itis proposed that the presence of proliferating cells harbouring infection threads is a prerequisite for normal formation of the nodule meristem.In mutant SGEFix–-1 (sym40), nodule development does not differ from that of wild-type plants in the early stages but is blocked at the stage after nodule meristem persistence. A scheme is proposed for the sequential functioning of pea symbiotic genes Sym33, Sym40 and Sym41 in the programme of nodule development.
Collapse
Affiliation(s)
- Vera A Voroshilova
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Genetics of Plant-Microbe Interactions, Podbelsky chaussee 3, 196608, Pushkin 8, St Petersburg, Russia
| | - Kirill N Demchenko
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Genetics of Plant-Microbe Interactions, Podbelsky chaussee 3, 196608, Pushkin 8, St Petersburg, Russia
- Laboratory of Anatomy and Morphology, Komarov Botanical Institute, Russian Academy of Sciences, Prof. Popov Str. 2, 197376, St Petersburg, Russia
| | | | - Alexey Y Borisov
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Genetics of Plant-Microbe Interactions, Podbelsky chaussee 3, 196608, Pushkin 8, St Petersburg, Russia
| | - Igor A Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Genetics of Plant-Microbe Interactions, Podbelsky chaussee 3, 196608, Pushkin 8, St Petersburg, Russia
| |
Collapse
|
38
|
Manjarrez M, Wallwork M, Smith SE, Smith FA, Dickson S. Different arbuscular mycorrhizal fungi induce differences in cellular responses and fungal activity in a mycorrhiza-defective mutant of tomato (rmc). FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:86-96. [PMID: 32688630 DOI: 10.1071/fp08032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 10/23/2008] [Indexed: 06/11/2023]
Abstract
The reduced mycorrhizal colonisation (rmc) mutant of tomato forms different phenotypes with different arbuscular mycorrhizal (AM) fungi. Our aim was to characterise microscopically the cellular responses in plant and fungus in order to reveal how these varied when colonisation was blocked at different stages. Synchronised colonisation coupled with vital staining, autofluorescence and laser scanning confocal microscopy (LSCM) were used to determine how long the AM fungi stay alive during the interactions with rmc, whether nuclear repositioning occurred in the same way as in wild-type interactions and whether there was evidence for deployment of defence responses. The results showed that (1) all the AM fungi tested were attracted to roots of rmc, on which they developed active external mycelium and appressoria, the latter sometimes in higher numbers than on the wild type; (2) plant cellular responses, such as nuclear movement, occurred only when the AM fungus was able to penetrate the epidermal cells of rmc; and (3) plant defence responses such as autofluorescence were observed only transiently and callose deposition was not involved in blocking AM fungi in rmc. The results demonstrate that multi-step AM colonisation is not only an outcome of cellular processes influenced by both plant and fungus, but is also modified by the capacity of different AM fungi to respond to the plant phenotype induced by the rmc mutation.
Collapse
Affiliation(s)
- Maria Manjarrez
- Soil and Land Systems, School of Earth and Environmental Sciences, Waite Campus, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Meredith Wallwork
- Adelaide Microscopy, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Sally E Smith
- Soil and Land Systems, School of Earth and Environmental Sciences, Waite Campus, The University of Adelaide, Adelaide, SA 5005, Australia
| | - F Andrew Smith
- Soil and Land Systems, School of Earth and Environmental Sciences, Waite Campus, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Sandy Dickson
- Soil and Land Systems, School of Earth and Environmental Sciences, Waite Campus, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
39
|
|
40
|
Genre A, Chabaud M, Faccio A, Barker DG, Bonfante P. Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula and Daucus carota. THE PLANT CELL 2008; 20:1407-20. [PMID: 18515499 PMCID: PMC2438458 DOI: 10.1105/tpc.108.059014] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 04/15/2008] [Accepted: 05/07/2008] [Indexed: 05/17/2023]
Abstract
Arbuscular mycorrhizas (AM) are widespread, ancient endosymbiotic associations that contribute significantly to soil nutrient uptake in plants. We have previously shown that initial fungal penetration of the host root is mediated via a specialized cytoplasmic assembly called the prepenetration apparatus (PPA), which directs AM hyphae through the epidermis (Genre et al., 2005). In vivo confocal microscopy studies performed on Medicago truncatula and Daucus carota, host plants with different patterns of AM colonization, now reveal that subsequent intracellular growth across the root outer cortex is also PPA dependent. On the other hand, inner root cortical colonization leading to arbuscule development involves more varied and complex PPA-related mechanisms. In particular, a striking alignment of polarized PPAs can be observed in adjacent inner cortical cells of D. carota, correlating with the intracellular root colonization strategy of this plant. Ultrastructural analysis of these PPA-containing cells reveals intense membrane trafficking coupled with nuclear enlargement and remodeling, typical features of arbusculated cells. Taken together, these findings imply that prepenetration responses are both conserved and modulated throughout the AM symbiosis as a function of the different stages of fungal accommodation and the host-specific pattern of root colonization. We propose a model for intracellular AM fungal accommodation integrating peri-arbuscular interface formation and the regulation of functional arbuscule development.
Collapse
Affiliation(s)
- Andrea Genre
- Department of Plant Biology, University of Turin, Istituto Protezione Piante-Consiglio Nazionale delle Ricerche, 10125 Turin, Italy
| | | | | | | | | |
Collapse
|
41
|
Gherbi H, Markmann K, Svistoonoff S, Estevan J, Autran D, Giczey G, Auguy F, Péret B, Laplaze L, Franche C, Parniske M, Bogusz D. SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankiabacteria. Proc Natl Acad Sci U S A 2008; 105:4928-32. [PMID: 18316735 PMCID: PMC2290763 DOI: 10.1073/pnas.0710618105] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Indexed: 11/18/2022] Open
Abstract
Root endosymbioses vitally contribute to plant nutrition and fitness worldwide. Nitrogen-fixing root nodulation, confined to four plant orders, encompasses two distinct types of associations, the interaction of legumes (Fabales) with rhizobia bacteria and actinorhizal symbioses, where the bacterial symbionts are actinomycetes of the genus Frankia. Although several genetic components of the host-symbiont interaction have been identified in legumes, the genetic basis of actinorhiza formation is unknown. Here, we show that the receptor-like kinase gene SymRK, which is required for nodulation in legumes, is also necessary for actinorhiza formation in the tree Casuarina glauca. This indicates that both types of nodulation symbiosis share genetic components. Like several other legume genes involved in the interaction with rhizobia, SymRK is also required for the interaction with arbuscular mycorrhiza (AM) fungi. We show that SymRK is involved in AM formation in C. glauca as well and can restore both nodulation and AM symbioses in a Lotus japonicus symrk mutant. Taken together, our results demonstrate that SymRK functions as a vital component of the genetic basis for both plant-fungal and plant-bacterial endosymbioses and is conserved between legumes and actinorhiza-forming Fagales.
Collapse
Affiliation(s)
- Hassen Gherbi
- *Equipe Rhizogenèse, Unité Mixte de Recherche Diversité et Adaptation des Plantes Cultivées (DIAPC), Institut de Recherche pour le Développement (IRD), 911 Avenue Agropolis, 34394 Montpellier Cedex 5, France; and
| | - Katharina Markmann
- Department of Biology, Genetics, Ludwig-Maximilians-Universität, Maria-Ward-Strasse 1a, 80638 Munich, Germany
| | - Sergio Svistoonoff
- *Equipe Rhizogenèse, Unité Mixte de Recherche Diversité et Adaptation des Plantes Cultivées (DIAPC), Institut de Recherche pour le Développement (IRD), 911 Avenue Agropolis, 34394 Montpellier Cedex 5, France; and
| | - Joan Estevan
- *Equipe Rhizogenèse, Unité Mixte de Recherche Diversité et Adaptation des Plantes Cultivées (DIAPC), Institut de Recherche pour le Développement (IRD), 911 Avenue Agropolis, 34394 Montpellier Cedex 5, France; and
| | - Daphné Autran
- *Equipe Rhizogenèse, Unité Mixte de Recherche Diversité et Adaptation des Plantes Cultivées (DIAPC), Institut de Recherche pour le Développement (IRD), 911 Avenue Agropolis, 34394 Montpellier Cedex 5, France; and
| | - Gabor Giczey
- Department of Biology, Genetics, Ludwig-Maximilians-Universität, Maria-Ward-Strasse 1a, 80638 Munich, Germany
| | - Florence Auguy
- *Equipe Rhizogenèse, Unité Mixte de Recherche Diversité et Adaptation des Plantes Cultivées (DIAPC), Institut de Recherche pour le Développement (IRD), 911 Avenue Agropolis, 34394 Montpellier Cedex 5, France; and
| | - Benjamin Péret
- *Equipe Rhizogenèse, Unité Mixte de Recherche Diversité et Adaptation des Plantes Cultivées (DIAPC), Institut de Recherche pour le Développement (IRD), 911 Avenue Agropolis, 34394 Montpellier Cedex 5, France; and
| | - Laurent Laplaze
- *Equipe Rhizogenèse, Unité Mixte de Recherche Diversité et Adaptation des Plantes Cultivées (DIAPC), Institut de Recherche pour le Développement (IRD), 911 Avenue Agropolis, 34394 Montpellier Cedex 5, France; and
| | - Claudine Franche
- *Equipe Rhizogenèse, Unité Mixte de Recherche Diversité et Adaptation des Plantes Cultivées (DIAPC), Institut de Recherche pour le Développement (IRD), 911 Avenue Agropolis, 34394 Montpellier Cedex 5, France; and
| | - Martin Parniske
- Department of Biology, Genetics, Ludwig-Maximilians-Universität, Maria-Ward-Strasse 1a, 80638 Munich, Germany
| | - Didier Bogusz
- *Equipe Rhizogenèse, Unité Mixte de Recherche Diversité et Adaptation des Plantes Cultivées (DIAPC), Institut de Recherche pour le Développement (IRD), 911 Avenue Agropolis, 34394 Montpellier Cedex 5, France; and
| |
Collapse
|
42
|
Reddy D M R S, Schorderet M, Feller U, Reinhardt D. A petunia mutant affected in intracellular accommodation and morphogenesis of arbuscular mycorrhizal fungi. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:739-50. [PMID: 17573800 DOI: 10.1111/j.1365-313x.2007.03175.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The regulation of the arbuscular mycorrhizal (AM) symbiosis is largely under the control of a genetic programme of the plant host. This programme includes a common symbiosis signalling pathway that is shared with the root nodule symbiosis. Whereas this common pathway has been investigated in detail, little is known about the mycorrhiza-specific regulatory steps upstream and downstream of the common pathway. To get further insight in the regulation of the AM symbiosis, a transposon-mutagenized population of Petunia hybrida was screened for mutants with defects in AM development. Here, we describe a petunia mutant, penetration and arbuscule morphogenesis1 (pam1), which is characterized by a strong decrease in colonization by three different AM fungi. Penetrating hyphae are frequently aborted in epidermal cells. Occasionally the fungus can progress to the cortex, but fails to develop arbuscules. The resulting hyphal colonization of the cortex in mutant plants does not support symbiotic acquisition of phosphate and copper by the plant. Expression analysis of three petunia orthologues of the common SYM genes LjPOLLUX, LjSYMRK and MtDMI3 indicates that pam1 is not mutated in these genes. We conclude that the PAM1 gene may play a specific role in intracellular accommodation and morphogenesis of the fungal endosymbiont.
Collapse
Affiliation(s)
- Sekhara Reddy D M R
- Plant Biology, Department of Biology, University of Fribourg, Rte Albert Gockel 3, CH-1700, Fribourg, Switzerland
| | | | | | | |
Collapse
|
43
|
Lee A, Lum MR, Hirsch AM. ENOD40 Gene Expression and Cytokinin Responses in the Nonnodulating, Nonmycorrhizal (NodMyc) Mutant, Masym3, of Melilotus alba Desr. PLANT SIGNALING & BEHAVIOR 2007; 2:33-42. [PMID: 19516966 PMCID: PMC2633896 DOI: 10.4161/psb.2.1.3734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 12/20/2006] [Indexed: 05/16/2023]
Abstract
Several nonnodulating, nonmycorrhizal (Nod(-)Myc(-)) mutants of Melilotus alba Desr. (white sweetclover) have been described. However, the details of their responses to Sinorhizobium meliloti have not been fully elucidated. We investigated rhizobial entry and colonization using Confocal Scanning Laser Microscopy on the Masym1-5 mutants and isolated an early nodulin (ENOD40) gene from wild-type M. alba. We focused on Masym3, the least responsive of the mutants to S. meliloti and VA-fungi, to determine its response to cytokinin. Cytokinin appears to be a downstream signal in the nodule developmental pathway based not only on our previous observations whereby Nod(-)Myc(-) alfalfa roots treated with cytokinin accumulated several ENOD gene transcripts, but also on recent reports showing the importance of cytokinin receptors for nodulation. Here we show that applying 10(-6) M 6-benzylaminopurine to uninoculated Masym3 roots elicited ENOD40 transcript accumulation. In addition, Masym3 root hairs inoculated with either wild-type S. meliloti or Nod(-)S. meliloti expressing the trans-zeatin synthase gene of Agrobacterium tumefaciens exhibited tip swelling, suggesting that cytokinin mediated this response. However, Masym3 root hair tips swelled following inoculation with Nod(-)S. meliloti or after mock-inoculation, a response resembling the phenotype of root hairs, after handling, of the Medicago truncatula mutant, dmi2. Mtdmi2 is Nod(-)Myc(-) due to a defect in a gene encoding a Nodule Receptor Kinase (NORK). Like Mtdmi2, the root hair swelling response appears in part to be mediated by touch because Masym3 root hairs not contacted by either bacteria or drops of water or buffer remain elongated and do not exhibit tip swelling.
Collapse
Affiliation(s)
- Angie Lee
- Department of Molecular, Cellular and Developmental Biology; University of California, Los Angeles; Los Angeles, California USA
| | | | | |
Collapse
|
44
|
Murray J, Geil R, Wagg C, Karas B, Szczyglowski K, Peterson RL. Genetic supressors of Lotus japonicus har1-1 hypernodulation show altered interactions with Glomus intraradices. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:749-755. [PMID: 32689285 DOI: 10.1071/fp06083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 05/19/2006] [Indexed: 06/11/2023]
Abstract
Mutant lines of Lotus japonicus (Regel) Larsen that show defects in nodulation as well as in mycorrhiza formation are valuable resources for studying the events required for the establishment of functional symbioses. In this study, 11 mutant lines derived from a screen for genetic suppressors of har1-1 hypernodulation were assessed quantitatively for their ability to form arbuscular mycorrhizal (AM) symbiosis. The presence of extraradical mycelia, appressoria, intraradical hyphae, arbuscules and vesicles were scored. Roots of the har1-1 parental line were heavily colonised by six weeks after inoculation with the AM fungus Glomus intraradices showing the typical Arum-type colonisation pattern. Five mutants lacked internal root colonisation with blocks either at the surface of epidermal cells or at the outer tangential wall of cortical cells. These AM- lines showed some differences in relation to the amount of extraradical hyphae, the number of appressoria, and the degree of abnormal appressorium morphology. Four mutants had internal root colonisation but at a lower level than the parental line. Two mutants showed no difference from the parental line. Results of this study provide additional genetic resources for studying the mechanism of root colonisation by AM fungi.
Collapse
Affiliation(s)
- Jeremy Murray
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| | - Ryan Geil
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Cameron Wagg
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Bogumil Karas
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| | - Krzysztof Szczyglowski
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| | - R Larry Peterson
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
45
|
Paszkowski U, Jakovleva L, Boller T. Maize mutants affected at distinct stages of the arbuscular mycorrhizal symbiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:165-73. [PMID: 16762030 DOI: 10.1111/j.1365-313x.2006.02785.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Maize mutants affected in the symbiotic interaction with the arbuscular mycorrhizal fungus Glomus mosseae have been found by a visual, macroscopic screen in a Mutator-tagged population of maize. Seven mutants have been identified, falling into three phenotypic classes. For each class one mutant has been characterized in more detail. The nope1 (no perception 1) mutant does not support appressoria formation of G. mosseae, suggesting the absence of a plant-encoded function necessary for early recognition prior to contact. The phenotype segregated as a monogenic recessive trait, indicating that a mutation in a single locus abolished compatibility of maize to G. mosseae. On a second mutant termed taci1 (taciturn 1), appressoria form at reduced frequency but their morphology is normal and leads to penetration of the rhizodermis. However, intraradically, the majority of hyphae are septate, resulting in terminated fungal spreading. This phenotype suggests that the mutation of taci1 has an effect on recognition and on cortex invasion. Segregation analysis indicates taci1 to carry a recessive mutation. In contrast, wild-type fungal morphology has been recorded in the Pram1 (Precocious arbuscular mycorrhiza 1) mutant, which displays enhanced and earlier fungal invasion. This trait segregates in a dominant fashion indicative of a gain-of-function mutation affecting the plant's control over restricting fungal colonization.
Collapse
Affiliation(s)
- Uta Paszkowski
- Botanical Institute, University of Basel, 4056 Basel, Switzerland.
| | | | | |
Collapse
|
46
|
Maeda D, Ashida K, Iguchi K, Chechetka SA, Hijikata A, Okusako Y, Deguchi Y, Izui K, Hata S. Knockdown of an Arbuscular Mycorrhiza-inducible Phosphate Transporter Gene of Lotus japonicus Suppresses Mutualistic Symbiosis. ACTA ACUST UNITED AC 2006; 47:807-17. [PMID: 16774930 DOI: 10.1093/pcp/pcj069] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
cDNA for a major arbuscular mycorrhiza (AM)-inducible phosphate (Pi) transporter of Lotus japonicus, LjPT3, was isolated from Glomus mosseae-colonized roots. The LjPT3 transcript was expressed in arbuscule-containing cells of the inner cortex. The transport activity of the gene product was confirmed by the complementation of a yeast mutant that lacks high-affinity Pi transporters. In contrast to most AM-inducible Pi transporters thus far reported, LjPT3 has an amino acid sequence that has much in common with those of other members of the Pht1 family of plant Pi transporters, such as StPT3 of potato. To understand better the physiological role of this AM-inducible Pi transporter, knockdown transformants of the gene were prepared through hairy root transformation and RNA interference. Under Pi-limiting conditions, the transformants showed a reduction of Pi uptake via AM and growth retardation. The transformants also exhibited a decrease in G. mosseae arbuscules. Additionally, when Mesorhizobium loti was inoculated into the knockdown transformants in combination with G. mosseae, necrotic root nodules were observed. Based on these findings, we consider that the genetically engineered host plants had monitored insufficient Pi uptake via AM or low expression of LjPT3, excluding the existing fungi and rhizobia and/or preventing further development of the fungal and nodule structures.
Collapse
Affiliation(s)
- Daisuke Maeda
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wang B, Qiu YL. Phylogenetic distribution and evolution of mycorrhizas in land plants. MYCORRHIZA 2006; 16:299-363. [PMID: 16845554 DOI: 10.1007/s00572-005-0033-6] [Citation(s) in RCA: 769] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 12/15/2005] [Indexed: 05/10/2023]
Abstract
A survey of 659 papers mostly published since 1987 was conducted to compile a checklist of mycorrhizal occurrence among 3,617 species (263 families) of land plants. A plant phylogeny was then used to map the mycorrhizal information to examine evolutionary patterns. Several findings from this survey enhance our understanding of the roles of mycorrhizas in the origin and subsequent diversification of land plants. First, 80 and 92% of surveyed land plant species and families are mycorrhizal. Second, arbuscular mycorrhiza (AM) is the predominant and ancestral type of mycorrhiza in land plants. Its occurrence in a vast majority of land plants and early-diverging lineages of liverworts suggests that the origin of AM probably coincided with the origin of land plants. Third, ectomycorrhiza (ECM) and its derived types independently evolved from AM many times through parallel evolution. Coevolution between plant and fungal partners in ECM and its derived types has probably contributed to diversification of both plant hosts and fungal symbionts. Fourth, mycoheterotrophy and loss of the mycorrhizal condition also evolved many times independently in land plants through parallel evolution.
Collapse
Affiliation(s)
- B Wang
- Department of Ecology and Evolutionary Biology, The University Herbarium, University of Michigan, 830 N. University Avenue, Ann Arbor, MI, 48109-1048, USA.
| | | |
Collapse
|
48
|
Abstract
Many microorganisms form symbioses with plants that range, on a continuous scale, from parasitic to mutualistic. Among these, the most widespread mutualistic symbiosis is the arbuscular mycorrhiza, formed between arbuscular mycorrhizal (AM) fungi and vascular flowering plants. These associations occur in terrestrial ecosystems throughout the world and have a global impact on plant phosphorus nutrition. The arbuscular mycorrhiza is an endosymbiosis in which the fungus inhabits the root cortical cells and obtains carbon provided by the plant while it transfers mineral nutrients from the soil to the cortical cells. Development of the symbiosis involves the differentiation of both symbionts to create novel symbiotic interfaces within the root cells. The aim of this review is to explore the current understanding of the signals and signaling pathways used by the symbionts for the development of the AM symbiosis. Although the signal molecules used for initial communication are not yet known, recent studies point to their existence. Within the plant, there is evidence of arbuscular mycorrhiza-specific signals and of systemic signaling that influences phosphate-starvation responses and root development. The landmark cloning of three plant signaling proteins required for the development of the symbiosis has provided the first insights into a signaling pathway that is used by AM fungi and by rhizobia for their symbiotic associations with legumes.
Collapse
Affiliation(s)
- Maria J Harrison
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA.
| |
Collapse
|
49
|
Paszkowski U. A journey through signaling in arbuscular mycorrhizal symbioses 2006. THE NEW PHYTOLOGIST 2006; 172:35-46. [PMID: 16945087 DOI: 10.1111/j.1469-8137.2006.01840.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Recent years have seen fascinating contributions to our understanding of the molecular dialogue between fungi and plants entering into arbuscular mycorrhizal (AM) symbioses. Attention has shifted from descriptions of physiological and cellular events to molecular genetics and modern chemical diagnostics. Genes, signal transduction pathways and the chemical structures of components relevant to the symbiosis have been defined. This review examines our current knowledge of signals and mechanisms involved in the establishment of AM symbioses.
Collapse
Affiliation(s)
- Uta Paszkowski
- University of Geneva, Department of Plant Biology, 1211 Geneva, Switzerland.
| |
Collapse
|
50
|
Mellersh D, Parniske M. Common symbiosis genes of Lotus japonicus are not required for intracellular accommodation of the rust fungus Uromyces loti. THE NEW PHYTOLOGIST 2006; 170:641-4. [PMID: 16684226 DOI: 10.1111/j.1469-8137.2006.01747.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
|