1
|
Seregin IV, Kozhevnikova AD. Low-molecular-weight ligands in plants: role in metal homeostasis and hyperaccumulation. PHOTOSYNTHESIS RESEARCH 2021; 150:51-96. [PMID: 32653983 DOI: 10.1007/s11120-020-00768-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Mineral nutrition is one of the key factors determining plant productivity. In plants, metal homeostasis is achieved through the functioning of a complex system governing metal uptake, translocation, distribution, and sequestration, leading to the maintenance of a regulated delivery of micronutrients to metal-requiring processes as well as detoxification of excess or non-essential metals. Low-molecular-weight ligands, such as nicotianamine, histidine, phytochelatins, phytosiderophores, and organic acids, play an important role in metal transport and detoxification in plants. Nicotianamine and histidine are also involved in metal hyperaccumulation, which determines the ability of some plant species to accumulate a large amount of metals in their shoots. In this review we extensively summarize and discuss the current knowledge of the main pathways for the biosynthesis of these ligands, their involvement in metal uptake, radial and long-distance transport, as well as metal influx, isolation and sequestration in plant tissues and cell compartments. It is analyzed how diverse endogenous ligand levels in plants can determine their different tolerance to metal toxic effects. This review focuses on recent advances in understanding the physiological role of these compounds in metal homeostasis, which is an essential task of modern ionomics and plant physiology. It is of key importance in studying the influence of metal deficiency or excess on various physiological processes, which is a prerequisite to the improvement of micronutrient uptake efficiency and crop productivity and to the development of a variety of applications in phytoremediation, phytomining, biofortification, and nutritional crop safety.
Collapse
Affiliation(s)
- I V Seregin
- K.A. Timiryazev Institute of Plant Physiology RAS, IPPRAS, Botanicheskaya st., 35, Moscow, Russian Federation, 127276.
| | - A D Kozhevnikova
- K.A. Timiryazev Institute of Plant Physiology RAS, IPPRAS, Botanicheskaya st., 35, Moscow, Russian Federation, 127276
| |
Collapse
|
2
|
Andráš P, Midula P, Milovská S, Matos JX, Kupka J, Buccheri G, Turisová I. Study of Potentially Toxic Elements Uptake into Organs of Quercus spp. from Copper Deposits in Slovakia, Italy and Portugal. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:312-319. [PMID: 34232327 DOI: 10.1007/s00128-021-03323-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
The article is focused on the application of Energy dispersive micro X-ray fluorescence spectroscopy as a specific method to determine the contents of potentially toxic elements and its spread in plant tissues. As a model species, Quercus spp. were selected. In order to compare the obtained results with previous research, four well-described abandoned Cu-deposits were selected for sampling: Ľubietová (Slovakia), Libiola and Caporciano (Italy), and São Domingos (Portugal). The results of micro X-ray fluorescence spectrometry confirm the irregular contamination of Quercus spp. by potentially toxic elements. The level of contamination is the highest predominantly in the root cortex, where is also the highest Ca contents (with exception of São Domingos). At Ľubietová and Caporciano, high Ni content was described in branches cortex, in branches mesoderm also Fe, Cu and Zn. At the same time, the inhibition influence of Ca was also confirmed regarding the input of these elements into plants.
Collapse
Affiliation(s)
- Peter Andráš
- Faculty of Natural Sciences, Matej Bel University in Banska Bystrica, Tajovského 40, 974 01, Banská Bystrica, Slovakia
| | - Pavol Midula
- Faculty of Natural Sciences, Matej Bel University in Banska Bystrica, Tajovského 40, 974 01, Banská Bystrica, Slovakia.
| | - Stanislava Milovská
- The Earth Science Institute of the Slovak Academy of Sciences, Ďumbierska 1, 974 01, Banská Bystrica, Slovakia
| | - João Xavier Matos
- Laboratório Nacional de Energia e Geologia (Portuguese Geological Survey), Ap. 14, 7601-909, Aljustrel, Portugal
| | - Jiří Kupka
- Faculty of Mining and Geology, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 33, Ostrava-Poruba, Czech Republic
| | - Giuseppe Buccheri
- Faculty of Natural Sciences, Matej Bel University in Banska Bystrica, Tajovského 40, 974 01, Banská Bystrica, Slovakia
| | - Ingrid Turisová
- Faculty of Natural Sciences, Matej Bel University in Banska Bystrica, Tajovského 40, 974 01, Banská Bystrica, Slovakia
| |
Collapse
|
3
|
Lu H, Li Z, Wu J, Shen Y, Li Y, Zou B, Tang Y, Zhuang P. Influences of calcium silicate on chemical forms and subcellular distribution of cadmium in Amaranthus hypochondriacus L. Sci Rep 2017; 7:40583. [PMID: 28074912 PMCID: PMC5225445 DOI: 10.1038/srep40583] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 12/08/2016] [Indexed: 11/30/2022] Open
Abstract
A pot experiment was conducted to investigate the effects of calcium silicate (CS) on the subcellular distribution and chemical forms of cadmium (Cd) in grain amaranths (Amaranthus hypochondriacus L. Cv. 'K112') grown in a Cd contaminated soil. Results showed that the dry weight and the photosynthetic pigments contents in grain amaranths increased significantly with the increasing doses of CS treatments, with the highest value found for the treatment of CS3 (1.65 g/kg). Compared with the control, application of CS4 (3.31 g/kg) significantly reduced Cd concentrations in the roots, stems and leaves of grain amaranths by 68%, 87% and 89%, respectively. At subcellular level, CS treatment resulted in redistribution of Cd, higher percentages of Cd in the chloroplast and soluble fractions in leaves of grain amaranths were found, while lower proportions of Cd were located at the cell wall of the leaves. The application of CS enhanced the proportions of pectate and protein integrated forms of Cd and decreased the percentages of water soluble Cd potentially associated with toxicity in grain amaranths. Changes of free Cd ions into inactive forms sequestered in subcellular compartments may indicate an important mechanism of CS for alleviating Cd toxicity and accumulation in plants.
Collapse
Affiliation(s)
- Huanping Lu
- Guangdong Ecological Meteorology Center, Guangzhou 510080, PR China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Zhian Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Jingtao Wu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Yong Shen
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yingwen Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Bi Zou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Yetao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Ping Zhuang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| |
Collapse
|
4
|
Poot-Poot W, Rodas-Junco BA, Muñoz-Sánchez JA, Hernández-Sotomayor SMT. Protoplasts: a friendly tool to study aluminum toxicity and coffee cell viability. SPRINGERPLUS 2016; 5:1452. [PMID: 27652028 PMCID: PMC5005246 DOI: 10.1186/s40064-016-3140-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/23/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Aluminum toxicity is a major limiting factor with regard to crop production and quality in most acidic soils around the world. We propose the use of C. arabica L. protoplasts to evaluate the toxic effects of aluminum, the nuclear localization of aluminum and propensity of aluminum to cause DNA damage. RESULTS After protoplasts were exposed to aluminum (Al) for varying periods of time (0, 5, 10, 20 and 30 min), we detected a reduction in protoplast viability. Additionally, we observed a rapid decline in the ability of protoplasts to synthesize DNA following exposure to Al for 30 min. Furthermore, DNA damage was observed after 10 min of treatment with Al. CONCLUSIONS Protoplasts can be used to evaluate the effects of Al upon entry into the cell, which affects the structure of the nucleus. These results indicate that protoplasts provide a useful model for the study Al toxicity at the cellular level.
Collapse
Affiliation(s)
- Wilberth Poot-Poot
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán (CICY), Calle 43 No. 130, Col. Chuburná de Hidalgo, 97205 Mérida, YUC Mexico
| | - Beatriz A. Rodas-Junco
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán (CICY), Calle 43 No. 130, Col. Chuburná de Hidalgo, 97205 Mérida, YUC Mexico
- CONACYT, Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingeniería, Universidad Autónoma de Yucatán, Periférico Norte, Km 33.5, Tablaje catastral 13615 Col Chuburná de Hidalgo, 97203 Mérida, YUC Mexico
| | - J. Armando Muñoz-Sánchez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán (CICY), Calle 43 No. 130, Col. Chuburná de Hidalgo, 97205 Mérida, YUC Mexico
| | - S. M. Teresa Hernández-Sotomayor
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán (CICY), Calle 43 No. 130, Col. Chuburná de Hidalgo, 97205 Mérida, YUC Mexico
| |
Collapse
|
5
|
Halimaa P, Blande D, Aarts MGM, Tuomainen M, Tervahauta A, Kärenlampi S. Comparative transcriptome analysis of the metal hyperaccumulator Noccaea caerulescens. FRONTIERS IN PLANT SCIENCE 2014; 5:213. [PMID: 24904610 PMCID: PMC4033236 DOI: 10.3389/fpls.2014.00213] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 04/30/2014] [Indexed: 05/20/2023]
Abstract
The metal hyperaccumulator Noccaea caerulescens is an established model to study the adaptation of plants to metalliferous soils. Various comparators have been used in these studies. The choice of suitable comparators is important and depends on the hypothesis to be tested and methods to be used. In high-throughput analyses such as microarray, N. caerulescens has been compared to non-tolerant, non-accumulator plants like Arabidopsis thaliana or Thlaspi arvense rather than to the related hypertolerant or hyperaccumulator plants. An underutilized source is N. caerulescens populations with considerable variation in their capacity to accumulate and tolerate metals. Whole transcriptome sequencing (RNA-Seq) is revealing interesting variation in their gene expression profiles. Combining physiological characteristics of N. caerulescens accessions with their RNA-Seq has a great potential to provide detailed insight into the underlying molecular mechanisms, including entirely new gene products. In this review we will critically consider comparative transcriptome analyses carried out to explore metal hyperaccumulation and hypertolerance of N. caerulescens, and demonstrate the potential of RNA-Seq analysis as a tool in evolutionary genomics.
Collapse
Affiliation(s)
- Pauliina Halimaa
- Department of Biology, University of Eastern FinlandKuopio, Finland
| | - Daniel Blande
- Department of Biology, University of Eastern FinlandKuopio, Finland
| | - Mark G. M. Aarts
- Laboratory of Genetics, Wageningen UniversityWageningen, Netherlands
| | - Marjo Tuomainen
- Department of Biology, University of Eastern FinlandKuopio, Finland
| | - Arja Tervahauta
- Department of Biology, University of Eastern FinlandKuopio, Finland
| | - Sirpa Kärenlampi
- Department of Biology, University of Eastern FinlandKuopio, Finland
| |
Collapse
|
6
|
Veatch-Blohm ME, Roche BM, Campbell M. Evidence for cross-tolerance to nutrient deficiency in three disjunct populations of Arabidopsis lyrata ssp. lyrata in response to substrate calcium to magnesium ratio. PLoS One 2013; 8:e63117. [PMID: 23650547 PMCID: PMC3641107 DOI: 10.1371/journal.pone.0063117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 03/28/2013] [Indexed: 12/03/2022] Open
Abstract
Species with widespread distributions that grow in varied habitats may consist of ecotypes adapted to a particular habitat, or may exhibit cross-tolerance that enables them to exploit a variety of habitats. Populations of Arabidopsis lyrata ssp. lyrata (L.) O'Kane & Al-Shehbaz grow in a wide variety of edaphic settings including serpentine soil, limestone sand, and alluvial flood plains. While all three of these environments share some stressors, a crucial difference among these environments is soil calcium to magnesium ratio, which ranges from 25:1 in the limestone sand to 0.2:1 in serpentine soil. The three populations found on these substrates were subjected to three different Ca to Mg ratios under controlled environmental conditions during germination and rosette growth. Response to Ca to Mg ratio was evaluated through germination success and radicle growth rate, rosette growth rate, and the content of Ca and Mg in the rosette. All three populations were particularly efficient in fueling growth under nutrient deficiency, with the highest nutrient efficiency ratio for Ca under Ca deficiency and for Mg under Mg deficiency. Although the serpentine population had significantly higher leaf Ca to Mg ratio than the limestone or flood plain populations under all three Ca to Mg ratios, this increase did not result in any advantage in growth or appearance of the serpentine plants, during early life stages before the onset of flowering, even in the high Mg substrate. The three populations showed no population by substrate interaction for any of the parameters measured indicating that these populations may have cross-tolerance to substrate Ca to Mg ratio.
Collapse
Affiliation(s)
- Maren E Veatch-Blohm
- Biology Department, Loyola University Maryland, Baltimore, Maryland, United States of America.
| | | | | |
Collapse
|
7
|
Natural Vegetation, Metal Accumulation and Tolerance in Plants Growing on Heavy Metal Rich Soils. SOIL BIOLOGY 2012. [DOI: 10.1007/978-3-642-23327-2_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
8
|
|
9
|
Leitenmaier B, Küpper H. Cadmium uptake and sequestration kinetics in individual leaf cell protoplasts of the Cd/Zn hyperaccumulator Thlaspi caerulescens. PLANT, CELL & ENVIRONMENT 2011; 34:208-19. [PMID: 20880204 DOI: 10.1111/j.1365-3040.2010.02236.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Hyperaccumulators store accumulated metals in the vacuoles of large leaf epidermal cells (storage cells). For investigating cadmium uptake, we incubated protoplasts obtained from leaves of Thlaspi caerulescens (Ganges ecotype) with a Cd-specific fluorescent dye. A fluorescence kinetic microscope was used for selectively measuring Cd-uptake and photosynthesis in different cell types, so that physical separation of cell types was not necessary. Few minutes after its addition, cadmium accumulated in the cytoplasm before its transport into the vacuole. This demonstrated that vacuolar sequestration is the rate-limiting step in cadmium uptake into protoplasts of all leaf cell types. During accumulation in the cytoplasm, Cd-rich vesicle-like structures were observed. Cd uptake rates into epidermal storage cells were higher than into standard-sized epidermal cells and mesophyll cells. This shows that the preferential heavy metal accumulation in epidermal storage cells, previously observed for several metals in intact leaves of various hyperaccumulator species, is due to differences in active metal transport and not differences in passive mechanisms like transpiration stream transport or cell wall adhesion. Combining this with previous studies, it seems likely that the transport steps over the plasma and tonoplast membranes of leaf epidermal storage cells are driving forces behind the hyperaccumulation phenotype.
Collapse
|
10
|
Marquès L, Oomen RJFJ. On the way to unravel zinc hyperaccumulation in plants: a mini review. Metallomics 2011; 3:1265-70. [DOI: 10.1039/c1mt00117e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Lefèvre I, Correal E, Lutts S. Impact of cadmium and zinc on growth and water status of Zygophyllum fabago in two contrasting metallicolous populations from SE Spain: comparison at whole plant and tissue level. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:883-894. [PMID: 21040303 DOI: 10.1111/j.1438-8677.2009.00296.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Cadmium and zinc accumulation and toxicity were assessed in whole plants and callus culture of two Zygophyllum fabago populations originating from two metallicolous sites in Murcia (southeast Spain), La Peña and Mazarrón, the first containing 2.8-times more Cd and five-times more Zn than the second. Seedlings from both ecotypes were exposed for 3 weeks to 1 or 10 μm Cd, and to 10 or 100 μm Zn in nutrient solution in a controlled environment. Calli from both ecotypes were exposed to 0.01, 0.1 or 1 mm Cd, and to 0.1, 1 or 5 mm Zn. Plants from both populations exhibited similar tolerance to Zn, while tolerance to Cd appeared more important in plants from La Peña than those from Mazarrón. Only minor differences were recorded in final Cd accumulation, with higher Cd retention in roots and stems of plants from La Peña. In both populations, transient decreases in the rate of Zn intake and translocation from root to shoot were recorded. This reduction in ion uptake was not more efficient for the population from the most contaminated area compared to the less contaminated area. Similar concentrations of Cd were found in cotyledon-derived calli from the two populations, but absorbed Cd induced conspicuous water stress in calli issues from Mazarrón but not in those from La Peña. It is concluded that, beside comparable levels of heavy metal concentration in tissues, the physiological strategy of tolerance may differ according to the metal and according to the considered population.
Collapse
Affiliation(s)
- I Lefèvre
- Groupe de Recherche en Physiologie végétale, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
12
|
Ebbs SD, Zambrano MC, Spiller SM, Newville M. Cadmium sorption, influx, and efflux at the mesophyll layer of leaves from ecotypes of the Zn/Cd hyperaccumulator Thlaspi caerulescens. THE NEW PHYTOLOGIST 2009; 181:626-36. [PMID: 19054336 DOI: 10.1111/j.1469-8137.2008.02693.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Differential sorption and transport characteristics of the leaf mesophyll layer of the Prayon and Ganges ecotypes of the hyperaccumulator Thlaspi caerulescens were examined. (109)Cd influx and efflux experiments were conducted with leaf sections, and X-ray absorption near edge structure (XANES) data were collected from leaves as a general comparison of in vivo cadmium (Cd) coordination. There were modest differences in cell wall sorption of Cd between ecotypes. There were obvious differences in time- and concentration-dependent Cd influx, including a greater V(MAX) for Prayon but a lower K(M) for Ganges for concentration-dependent Cd uptake and a notably greater Cd uptake by Ganges leaf sections at 1000 microm Cd. Leaf sections of Prayon had a greater Cd efflux than Ganges. The XANES spectra from the two ecotypes suggested differences in Cd coordination. The fundamental differences observed between the two ecotypes may reflect differential activity and/or expression of plasma membrane and tonoplast transporters. More detailed study of these transporters and the in vivo coordination of Cd are needed to determine the contribution of these processes to metal homeostasis and tolerance.
Collapse
Affiliation(s)
- Stephen D Ebbs
- Department of Plant Biology, Southern Illinois University Carbondale, Carbondale, IL 62901-6509, USA.
| | | | | | | |
Collapse
|
13
|
Ingle RA, Fricker MD, Smith JAC. Evidence for nickel/proton antiport activity at the tonoplast of the hyperaccumulator plant Alyssum lesbiacum. PLANT BIOLOGY (STUTTGART, GERMANY) 2008; 10:746-753. [PMID: 18950432 DOI: 10.1111/j.1438-8677.2008.00080.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The mechanism of nickel uptake into vacuoles isolated from leaf tissue of Alyssum lesbiacum was investigated to help understand the ability of this species to hyperaccumulate Ni. An imaging system was designed to monitor Ni uptake by single vacuoles using the metal-sensitive fluorescent dye, Newport Green. Nickel uptake into isolated vacuoles from leaf tissue of A. lesbiacum was enhanced by the presence of Mg/ATP, presumably via energisation of the vacuolar H(+)-ATPase (V-ATPase). This ATP-stimulated Ni uptake was abolished by bafilomycin (a diagnostic inhibitor of the V-ATPase) and by dissipation of the transmembrane pH difference with an uncoupler. These observations are consistent with Ni(2+)/nH(+) antiport activity at the tonoplast driven by a proton electrochemical gradient established by the V-ATPase, which would provide a mechanism for secondary active transport of Ni(2+) into the vacuole. This study provides insights into the molecular basis of Ni tolerance in Alyssum, and may aid in the identification of genes involved in Ni hyperaccumulation.
Collapse
Affiliation(s)
- R A Ingle
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa.
| | | | | |
Collapse
|
14
|
Abstract
Zinc (Zn) is an essential component of thousands of proteins in plants, although it is toxic in excess. In this review, the dominant fluxes of Zn in the soil-root-shoot continuum are described, including Zn inputs to soils, the plant availability of soluble Zn(2+) at the root surface, and plant uptake and accumulation of Zn. Knowledge of these fluxes can inform agronomic and genetic strategies to address the widespread problem of Zn-limited crop growth. Substantial within-species genetic variation in Zn composition is being used to alleviate human dietary Zn deficiencies through biofortification. Intriguingly, a meta-analysis of data from an extensive literature survey indicates that a small proportion of the genetic variation in shoot Zn concentration can be attributed to evolutionary processes whose effects manifest above the family level. Remarkable insights into the evolutionary potential of plants to respond to elevated soil Zn have recently been made through detailed anatomical, physiological, chemical, genetic and molecular characterizations of the brassicaceous Zn hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri.
Collapse
Affiliation(s)
- Martin R Broadley
- Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Philip J White
- The Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | - John P Hammond
- Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
| | - Ivan Zelko
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK 84538 Bratislava, Slovakia
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University, Mlynská dolina B2, SK 84215 Bratislava, Slovakia
| | - Alexander Lux
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK 84538 Bratislava, Slovakia
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University, Mlynská dolina B2, SK 84215 Bratislava, Slovakia
| |
Collapse
|
15
|
Gendre D, Czernic P, Conéjéro G, Pianelli K, Briat JF, Lebrun M, Mari S. TcYSL3, a member of the YSL gene family from the hyper-accumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:1-15. [PMID: 17144893 DOI: 10.1111/j.1365-313x.2006.02937.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The two main features of plant hyper-accumulator species are the massive translocation of heavy metal ions to the aerial parts and their tolerance to such high metal concentrations. Recently, several lines of evidence have indicated a role for nicotianamine (NA) in metal homeostasis, through the chelation and transport of NA-metal complexes. The function of transport of NA-metal chelates, required for the loading and unloading of vessels, has been assigned to the Yellow Stripe 1 (YSL)-Like family of proteins. We have characterized three YSL genes in Thlaspi caerulescens in the context of hyper-accumulation. The three YSL genes are expressed at high rates compared with their Arabidopsis thaliana homologs but with distinct patterns. While TcYSL7 was highly expressed in the flowers, TcYSL5 was more highly expressed in the shoots, and the expression of TcYSL3 was equivalent in all the organs tested. In situ hybridizations have shown that TcYSL7 and TcYSL5 are expressed around the vasculature of the shoots and in the central cylinder in the roots. The exposure to heavy metals (Zn, Cd, Ni) does not affect the high and constitutive expression of the TcYSL genes. Finally, we have demonstrated by mutant yeast complementation and uptake measurements that TcYSL3 is an Fe/Ni-NA influx transporter. This work provides therefore molecular, histological and biochemical evidence supporting a role for YSL transporters in the overall scheme of NA and NA-metal, particularly NA-Ni, circulation in a metal hyper-accumulator plant.
Collapse
Affiliation(s)
- Delphine Gendre
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier 2, Ecole Nationale Supérieure d'Agronomie, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Mirouze M, Sels J, Richard O, Czernic P, Loubet S, Jacquier A, François IEJA, Cammue BPA, Lebrun M, Berthomieu P, Marquès L. A putative novel role for plant defensins: a defensin from the zinc hyper-accumulating plant, Arabidopsis halleri, confers zinc tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:329-42. [PMID: 16792695 DOI: 10.1111/j.1365-313x.2006.02788.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The metal tolerance of metal hyper-accumulating plants is a poorly understood mechanism. In order to unravel the molecular basis of zinc (Zn) tolerance in the Zn hyper-accumulating plant Arabidopsis halleri ssp. halleri, we carried out a functional screening of an A. halleri cDNA library in the yeast Saccharomyces cerevisiae to search for genes conferring Zn tolerance to yeast cells. The screening revealed four A. halleri defensin genes (AhPDFs), which induced Zn but not cadmium (Cd) tolerance in yeast. The expression of AhPDF1.1 under the control of the 35S promoter in A. thaliana made the transgenic plants more tolerant to Zn than wild-type plants, but did not change the tolerance to Cd, copper (Cu), cobalt (Co), iron (Fe) or sodium (Na). Thus, AhPDF1.1 is able to confer Zn tolerance both to yeast and plants. In A. halleri, defensins are constitutively accumulated at a higher level in shoots than in A. thaliana. A. halleri defensin pools are Zn-responsive, both at the mRNA and protein levels. In A. thaliana, some but not all defensin genes are induced by ZnCl2 treatment, and these genes are not induced by NaCl treatment. Defensins, found in a very large number of organisms, are known to be involved in the innate immune system but have never been found to play any role in metal physiology. Our results support the proposition that defensins could be involved in Zn tolerance in A. halleri, and that a role for plant defensins in metal physiology should be considered.
Collapse
Affiliation(s)
- Marie Mirouze
- UMR de Biochimie et Physiologie Moléculaire des Plantes (B & PMP), Centre National de la Recherche Scientifique, Université Montpellier 2, Institut National de la Recherche Agronomique, Ecole Nationale Supérieure Agronomique, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Pianelli K, Mari S, Marquès L, Lebrun M, Czernic P. Nicotianamine Over-accumulation Confers Resistance to Nickel in Arabidopsis thaliana. Transgenic Res 2005; 14:739-48. [PMID: 16245165 DOI: 10.1007/s11248-005-7159-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2005] [Indexed: 10/25/2022]
Abstract
Nicotianamine is a methionine derivative involved in iron homeostasis, able to bind various other metals in vitro. To investigate its role in vivo, we expressed a nicotianamine synthase cDNA (TcNAS1) isolated from the polymetallic hyperaccumulator Thlaspi caerulescens in Arabidopsis thaliana. Transgenic plants expressing TcNAS1 over-accumulated NA, up to 100-fold more than wild type plants. Furthermore, increased NA levels in different transgenic lines were quantitatively correlated with increased nickel tolerance. The tolerance to nickel is expressed at the cellular level in protoplast experiments and is associated with an increased NA content. We have also shown that the most NA-over accumulating line showed a high tolerance to nickel and a significant Ni accumulation in the leaves when grown on nickel-contaminated soil. Our results highlight a new potential role for nicotianamine in heavy metal tolerance at the cellular but also at the whole plant level, easily transposable to a non-tolerant non-hyperaccumulator species. These results open new perspectives for the modulation of nicotianamine content in plants for phytoremediation.
Collapse
Affiliation(s)
- Katia Pianelli
- UMR5004, Centre National de la Recherche Scientifique, Institut National pour la Recherche Agronomique, Ecole Nationale Supérieure d'Agronomie et Université Montpellier 2, cedex 5, F-34095, cc002 Montpellier, France
| | | | | | | | | |
Collapse
|