1
|
Garg S, Kim M, Romero-Suarez D. Current advancements in fungal engineering technologies for Sustainable Development Goals. Trends Microbiol 2025; 33:285-301. [PMID: 39645481 DOI: 10.1016/j.tim.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/18/2024] [Accepted: 11/06/2024] [Indexed: 12/09/2024]
Abstract
Fungi are emerging as key organisms in tackling global challenges related to agricultural and food productivity, environmental sustainability, and climate change. This review delves into the transformative potential of fungal genomics and metabolic engineering, two forefront fields in modern biotechnology. Fungal genomics entails the thorough analysis and manipulation of fungal genetic material to enhance desirable traits, such as pest resistance, nutrient absorption, and stress tolerance. Metabolic engineering focuses on altering the biochemical pathways within fungi to optimize the production of valuable compounds, including biofuels, pharmaceuticals, and industrial enzymes. By artificial intelligence (AI)-driven integration of genetic and metabolic engineering techniques, we can harness the unique capabilities of both filamentous and mycorrhizal fungi to develop sustainable agricultural practices, enhance soil health, and promote ecosystem restoration. This review explores the current state of research, technological advancements, and practical applications, offering insights into scalability challenges on how integrative fungal genomics and metabolic engineering can deliver innovative solutions for a sustainable future.
Collapse
Affiliation(s)
- Shilpa Garg
- Technical University of Denmark, 2800 Kongens Lyngby, Denmark; University of Manchester, Manchester M13 9PT, United Kingdom.
| | - Minji Kim
- Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - David Romero-Suarez
- ARC Center of Excellence in Synthetic Biology, Australian Genome Foundry, and School of Natural Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
2
|
Aparicio Chacón MV, Hernández Luelmo S, Devlieghere V, Robichez L, Leroy T, Stuer N, De Keyser A, Ceulemans E, Goossens A, Goormachtig S, Van Dingenen J. Exploring the potential role of four Rhizophagus irregularis nuclear effectors: opportunities and technical limitations. FRONTIERS IN PLANT SCIENCE 2024; 15:1384496. [PMID: 38736443 PMCID: PMC11085264 DOI: 10.3389/fpls.2024.1384496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/02/2024] [Indexed: 05/14/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) are obligate symbionts that interact with the roots of most land plants. The genome of the AMF model species Rhizophagus irregularis contains hundreds of predicted small effector proteins that are secreted extracellularly but also into the plant cells to suppress plant immunity and modify plant physiology to establish a niche for growth. Here, we investigated the role of four nuclear-localized putative effectors, i.e., GLOIN707, GLOIN781, GLOIN261, and RiSP749, in mycorrhization and plant growth. We initially intended to execute the functional studies in Solanum lycopersicum, a host plant of economic interest not previously used for AMF effector biology, but extended our studies to the model host Medicago truncatula as well as the non-host Arabidopsis thaliana because of the technical advantages of working with these models. Furthermore, for three effectors, the implementation of reverse genetic tools, yeast two-hybrid screening and whole-genome transcriptome analysis revealed potential host plant nuclear targets and the downstream triggered transcriptional responses. We identified and validated a host protein interactors participating in mycorrhization in the host.S. lycopersicum and demonstrated by transcriptomics the effectors possible involvement in different molecular processes, i.e., the regulation of DNA replication, methylglyoxal detoxification, and RNA splicing. We conclude that R. irregularis nuclear-localized effector proteins may act on different pathways to modulate symbiosis and plant physiology and discuss the pros and cons of the tools used.
Collapse
Affiliation(s)
- María Victoria Aparicio Chacón
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Sofía Hernández Luelmo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Viktor Devlieghere
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Louis Robichez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Toon Leroy
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Naomi Stuer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Annick De Keyser
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Evi Ceulemans
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Judith Van Dingenen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| |
Collapse
|
3
|
Ragland CJ, Shih KY, Dinneny JR. Choreographing root architecture and rhizosphere interactions through synthetic biology. Nat Commun 2024; 15:1370. [PMID: 38355570 PMCID: PMC10866969 DOI: 10.1038/s41467-024-45272-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
Climate change is driving extreme changes to the environment, posing substantial threats to global food security and bioenergy. Given the direct role of plant roots in mediating plant-environment interactions, engineering the form and function of root systems and their associated microbiota may mitigate these effects. Synthetic genetic circuits have enabled sophisticated control of gene expression in microbial systems for years and a surge of advances has heralded the extension of this approach to multicellular plant species. Targeting these tools to affect root structure, exudation, and microbe activity on root surfaces provide multiple strategies for the advancement of climate-ready crops.
Collapse
Affiliation(s)
- Carin J Ragland
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Kevin Y Shih
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
4
|
Aparicio Chacón MV, Van Dingenen J, Goormachtig S. Characterization of Arbuscular Mycorrhizal Effector Proteins. Int J Mol Sci 2023; 24:9125. [PMID: 37298075 PMCID: PMC10252856 DOI: 10.3390/ijms24119125] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Plants are colonized by various fungi with both pathogenic and beneficial lifestyles. One type of colonization strategy is through the secretion of effector proteins that alter the plant's physiology to accommodate the fungus. The oldest plant symbionts, the arbuscular mycorrhizal fungi (AMF), may exploit effectors to their benefit. Genome analysis coupled with transcriptomic studies in different AMFs has intensified research on the effector function, evolution, and diversification of AMF. However, of the current 338 predicted effector proteins from the AM fungus Rhizophagus irregularis, only five have been characterized, of which merely two have been studied in detail to understand which plant proteins they associate with to affect the host physiology. Here, we review the most recent findings in AMF effector research and discuss the techniques used for the functional characterization of effector proteins, from their in silico prediction to their mode of action, with an emphasis on high-throughput approaches for the identification of plant targets of the effectors through which they manipulate their hosts.
Collapse
Affiliation(s)
- María V. Aparicio Chacón
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Judith Van Dingenen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
5
|
Mateus ID, Auxier B, Ndiaye MMS, Cruz J, Lee SJ, Sanders IR. Reciprocal recombination genomic signatures in the symbiotic arbuscular mycorrhizal fungi Rhizophagus irregularis. PLoS One 2022; 17:e0270481. [PMID: 35776745 PMCID: PMC9249182 DOI: 10.1371/journal.pone.0270481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 06/12/2022] [Indexed: 11/24/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are part of the most widespread fungal-plant symbiosis. They colonize at least 80% of plant species, promote plant growth and plant diversity. These fungi are multinucleated and contain either one or two haploid nuclear genotypes (monokaryon and dikaryon) identified by the alleles at a putative mating-type locus. This taxon has been considered as an ancient asexual scandal because of the lack of observable sexual structures. Despite identification of a putative mating-type locus and functional activation of genes related to mating when two isolates co-exist, it remains unknown if the AMF life cycle involves a sexual or parasexual stage. We used publicly available genome sequences to test if Rhizophagus irregularis dikaryon genomes display signatures of sexual reproduction in the form of reciprocal recombination patterns, or if they display exclusively signatures of parasexual reproduction involving gene conversion. We used short-read and long-read sequence data to identify nucleus-specific alleles within dikaryons and then compared them to orthologous gene sequences from related monokaryon isolates displaying the same putative MAT-types as the dikaryon. We observed that the two nucleus-specific alleles of the dikaryon A5 are more related to the homolog sequences of monokaryon isolates displaying the same putative MAT-type than between each other. We also observed that these nucleus-specific alleles displayed reciprocal recombination signatures. These results confirm that dikaryon and monokaryon isolates displaying the same putative MAT-type are related in their life-cycle. These results suggest that a genetic exchange mechanism, involving reciprocal recombination in dikaryon genomes, allows AMF to generate genetic diversity.
Collapse
Affiliation(s)
- Ivan D. Mateus
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| | - Ben Auxier
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| | - Mam M. S. Ndiaye
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Joaquim Cruz
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Soon-Jae Lee
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Ian R. Sanders
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Evangelisti E, Turner C, McDowell A, Shenhav L, Yunusov T, Gavrin A, Servante EK, Quan C, Schornack S. Deep learning-based quantification of arbuscular mycorrhizal fungi in plant roots. THE NEW PHYTOLOGIST 2021; 232:2207-2219. [PMID: 34449891 DOI: 10.1111/nph.17697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Soil fungi establish mutualistic interactions with the roots of most vascular land plants. Arbuscular mycorrhizal (AM) fungi are among the most extensively characterised mycobionts to date. Current approaches to quantifying the extent of root colonisation and the abundance of hyphal structures in mutant roots rely on staining and human scoring involving simple yet repetitive tasks which are prone to variation between experimenters. We developed Automatic Mycorrhiza Finder (AMFinder) which allows for automatic computer vision-based identification and quantification of AM fungal colonisation and intraradical hyphal structures on ink-stained root images using convolutional neural networks. AMFinder delivered high-confidence predictions on image datasets of roots of multiple plant hosts (Nicotiana benthamiana, Medicago truncatula, Lotus japonicus, Oryza sativa) and captured the altered colonisation in ram1-1, str, and smax1 mutants. A streamlined protocol for sample preparation and imaging allowed us to quantify mycobionts from the genera Rhizophagus, Claroideoglomus, Rhizoglomus and Funneliformis via flatbed scanning or digital microscopy, including dynamic increases in colonisation in whole root systems over time. AMFinder adapts to a wide array of experimental conditions. It enables accurate, reproducible analyses of plant root systems and will support better documentation of AM fungal colonisation analyses. AMFinder can be accessed at https://github.com/SchornacklabSLCU/amfinder.
Collapse
Affiliation(s)
| | - Carl Turner
- Department of Applied Mathematics and Theoretical Physics (DAMTP), University of Cambridge, Cambridge, CB3 0WA, UK
| | - Alice McDowell
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Liron Shenhav
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Temur Yunusov
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Aleksandr Gavrin
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Emily K Servante
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Clément Quan
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | | |
Collapse
|
7
|
Kemppainen M, Pardo A. Nucleus-directed fluorescent reporter system for promoter studies in the ectomycorrhizal fungus Laccaria bicolor. J Microbiol Methods 2021; 190:106341. [PMID: 34610385 DOI: 10.1016/j.mimet.2021.106341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 11/19/2022]
Abstract
Currently ectomycorrhizal research suffers from a lack of molecular tools specifically adapted to study gene expression in fungal symbionts. Considering that, we designed pReNuK, a cloning vector for transcriptional promoter studies in the ectomycorrhizal basidiomycete Laccaria bicolor. The pReNuK vector offers the use of a nuclear localizing and chromatin incorporating histone H2B-mCherry fluorescent reporter protein and it is specifically optimized for efficient transgene expression in Laccaria. Moreover, pReNuK is designed to work in concert with Agrobacterium-mediated transformation under hygromycin B resistance selection. The functionality of the pReNuK reporter system was tested with the constitutive Laccaria glyceraldehyde 3-phosphate dehydrogenase gene promoter and further validated with the nitrogen source regulated nitrate reductase gene promoter. The expression of the nucleus-directed H2B-mCherry reporter is highly stable in time. Moreover, the transformation of Laccaria with pReNuK and the expression of the reporter do not have negative effects on the growth of the fungus. The pReNuK offers a novel tool for studying in vivo gene expression regulation in Laccaria, the leading fungal model for ectomycorrhizal research.
Collapse
Affiliation(s)
- Minna Kemppainen
- Laboratory of Molecular Mycology, Institute of Basic and Applied Microbiology, Department of Science and Technology, National University of Quilmes and CONICET, Bernal, Province of Buenos Aires, Argentina.
| | - Alejandro Pardo
- Laboratory of Molecular Mycology, Institute of Basic and Applied Microbiology, Department of Science and Technology, National University of Quilmes and CONICET, Bernal, Province of Buenos Aires, Argentina
| |
Collapse
|
8
|
Wang P, Jiang H, Boeren S, Dings H, Kulikova O, Bisseling T, Limpens E. A nuclear-targeted effector of Rhizophagus irregularis interferes with histone 2B mono-ubiquitination to promote arbuscular mycorrhisation. THE NEW PHYTOLOGIST 2021; 230:1142-1155. [PMID: 33507543 PMCID: PMC8048545 DOI: 10.1111/nph.17236] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/18/2021] [Indexed: 05/17/2023]
Abstract
Arguably, symbiotic arbuscular mycorrhizal (AM) fungi have the broadest host range of all fungi, being able to intracellularly colonise root cells in the vast majority of all land plants. This raises the question how AM fungi effectively deal with the immune systems of such a widely diverse range of plants. Here, we studied the role of a nuclear-localisation signal-containing effector from Rhizophagus irregularis, called Nuclear Localised Effector1 (RiNLE1), that is highly and specifically expressed in arbuscules. We showed that RiNLE1 is able to translocate to the host nucleus where it interacts with the plant core nucleosome protein histone 2B (H2B). RiNLE1 is able to impair the mono-ubiquitination of H2B, which results in the suppression of defence-related gene expression and enhanced colonisation levels. This study highlights a novel mechanism by which AM fungi can effectively control plant epigenetic modifications through direct interaction with a core nucleosome component. Homologues of RiNLE1 are found in a range of fungi that establish intimate interactions with plants, suggesting that this type of effector may be more widely recruited to manipulate host defence responses.
Collapse
Affiliation(s)
- Peng Wang
- Laboratory of Molecular BiologyWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Henan Jiang
- Laboratory of Molecular BiologyWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Sjef Boeren
- Laboratory of BiochemistryWageningen University & ResearchWageningen6708 WEthe Netherlands
| | - Harm Dings
- Laboratory of Molecular BiologyWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Olga Kulikova
- Laboratory of Molecular BiologyWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Ton Bisseling
- Laboratory of Molecular BiologyWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Erik Limpens
- Laboratory of Molecular BiologyWageningen University & ResearchWageningen6708 PBthe Netherlands
| |
Collapse
|
9
|
Hartmann M, Voß S, Requena N. Host-Induced Gene Silencing of Arbuscular Mycorrhizal Fungal Genes via Agrobacterium rhizogenes-Mediated Root Transformation in Medicago truncatula. Methods Mol Biol 2020; 2146:239-248. [PMID: 32415608 DOI: 10.1007/978-1-0716-0603-2_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Host-induced gene silencing (HIGS) is a methodology that allows the downregulation of genes in organisms living in close association with a host and that are not amenable or recalcitrant to genetic modifications. This method has been particularly used for oomycetes and for filamentous fungi interacting with plants, including the fungi of the arbuscular mycorrhizal symbiosis. Here, we present a protocol developed in our laboratory to downregulate genes from the obligate symbiont Rhizophagus irregularis in symbiosis with Medicago truncatula plants.
Collapse
Affiliation(s)
- Meike Hartmann
- Molecular Phytopathology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Stefanie Voß
- Molecular Phytopathology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Natalia Requena
- Molecular Phytopathology, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
10
|
Agrobacterium tumefaciens-mediated transformation and expression of GFP in Ascochyta lentis to characterize ascochyta blight disease progression in lentil. PLoS One 2019; 14:e0223419. [PMID: 31647840 PMCID: PMC6812748 DOI: 10.1371/journal.pone.0223419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/20/2019] [Indexed: 11/25/2022] Open
Abstract
The plant immune system is made up of a complex response network that involves several lines of defense to fight invading pathogens. Fungal plant pathogens on the other hand, have evolved a range of ways to infect their host. The interaction between Ascochyta lentis and two lentil genotypes was explored to investigate the progression of ascochyta blight (AB) in lentils. In this study, we developed an Agrobacterium tumefaciens-mediated transformation system for A. lentis by constructing a new binary vector, pATMT-GpdGFP, for the constitutive expression of green fluorescent protein (EGFP). Green fluorescence was used as a highly efficient vital marker to study the developmental changes in A. lentis during AB disease progression on the susceptible and resistant lentil accessions, ILL6002 and ILL7537, respectively. The initial infection stages were similar in both the resistant and susceptible accessions where A. lentis uses infection structures such as germ tubes and appressoria to gain entry into the host while the host uses defense mechanisms to prevent pathogen entry. Penetration was observed at the junctions between neighbouring epidermal cells and occasionally, through the stomata. The pathogen attempted to penetrate and colonize ILL7537, but further fungal advancement appeared to be halted, and A. lentis did not enter the mesophyll. Successful entry and colonization of ILL6002 coincided with structural changes in A. lentis and the onset of necrotic lesions 5–7 days post inoculation. Once inside the leaf, A. lentis continued to grow, colonizing all parts of the leaf followed by plant cell collapse. Pycnidia-bearing spores appeared 14 days post inoculation, which marks the completion of the infection cycle. The use of fluorescent proteins in plant pathogenic fungi together with confocal laser scanning microscopy, provide a valuable tool to study the intracellular dynamics, colonization strategy and infection mechanisms during plant-pathogen interaction.
Collapse
|
11
|
Abstract
Phosphorous is important for life but often limiting for plants. The symbiotic pathway of phosphate uptake via arbuscular mycorrhizal fungi (AMF) is evolutionarily ancient and today occurs in natural and agricultural ecosystems alike. Plants capable of this symbiosis can obtain up to all of the phosphate from symbiotic fungi, and this offers potential means to develop crops less dependent on unsustainable P fertilizers. Here, we review the mechanisms and insights gleaned from the fine-tuned signal exchanges that orchestrate the intimate mutualistic symbiosis between plants and AMF. As the currency of trade, nutrients have signaling functions beyond being the nutritional goal of mutualism. We propose that such signaling roles and metabolic reprogramming may represent commitments for a mutualistic symbiosis that act across the stages of symbiosis development.
Collapse
Affiliation(s)
- Chai Hao Chiu
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Uta Paszkowski
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
12
|
Chapuis AF, Ballou ER, MacCallum DM. A Bright Future for Fluorescence Imaging of Fungi in Living Hosts. J Fungi (Basel) 2019; 5:jof5020029. [PMID: 30987114 PMCID: PMC6616859 DOI: 10.3390/jof5020029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 12/24/2022] Open
Abstract
Traditional in vivo investigation of fungal infection and new antifungal therapies in mouse models is usually carried out using post mortem methodologies. However, biomedical imaging techniques focusing on non-invasive techniques using bioluminescent and fluorescent proteins have become valuable tools. These new techniques address ethical concerns as they allow reduction in the number of animals required to evaluate new antifungal therapies. They also allow better understanding of the growth and spread of the pathogen during infection. In this review, we concentrate on imaging technologies using different fungal reporter proteins. We discuss the advantages and limitations of these different reporters and compare the efficacy of bioluminescent and fluorescent proteins for fungal research.
Collapse
Affiliation(s)
- Ambre F Chapuis
- MRC Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Elizabeth R Ballou
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Donna M MacCallum
- MRC Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
13
|
Sun Z, Song J, Xin X, Xie X, Zhao B. Arbuscular Mycorrhizal Fungal 14-3-3 Proteins Are Involved in Arbuscule Formation and Responses to Abiotic Stresses During AM Symbiosis. Front Microbiol 2018; 9:91. [PMID: 29556216 PMCID: PMC5844941 DOI: 10.3389/fmicb.2018.00091] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/16/2018] [Indexed: 12/19/2022] Open
Abstract
Arbuscular mycorrhizal (AM) fungi are soil-borne fungi belonging to the ancient phylum Glomeromycota and are important symbionts of the arbuscular mycorrhiza, enhancing plant nutrient acquisition and resistance to various abiotic stresses. In contrast to their significant physiological implications, the molecular basis involved is poorly understood, largely due to their obligate biotrophism and complicated genetics. Here, we identify and characterize three genes termed Fm201, Ri14-3-3 and RiBMH2 that encode 14-3-3-like proteins in the AM fungi Funneliformis mosseae and Rhizophagus irregularis, respectively. The transcriptional levels of Fm201, Ri14-3-3 and RiBMH2 are strongly induced in the pre-symbiotic and symbiotic phases, including germinating spores, intraradical hyphae- and arbuscules-enriched roots. To functionally characterize the Fm201, Ri14-3-3 and RiBMH2 genes, we took advantage of a yeast heterologous system owing to the lack of AM fungal transformation systems. Our data suggest that all three genes can restore the lethal Saccharomyces cerevisiae bmh1 bmh2 double mutant on galactose-containing media. Importantly, yeast one-hybrid analysis suggests that the transcription factor RiMsn2 is able to recognize the STRE (CCCCT/AGGGG) element present in the promoter region of Fm201 gene. More importantly, Host-Induced Gene Silencing of both Ri14-3-3 and RiBMH2 in Rhizophagus irregularis impairs the arbuscule formation in AM symbiosis and inhibits the expression of symbiotic PT4 and MST2 genes from plant and fungal partners, respectively. We further subjected the AM fungus-Medicago truncatula association system to drought or salinity stress. Accordingly, the expression profiles in both mycorrhizal roots and extraradical hyphae reveal that these three 14-3-3-like genes are involved in response to drought or salinity stress. Collectively, our results provide new insights into molecular functions of the AM fungal 14-3-3 proteins in abiotic stress responses and arbuscule formation during AM symbiosis.
Collapse
Affiliation(s)
- Zhongfeng Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiabin Song
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xi'an Xin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xianan Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Bin Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
14
|
Florencio CS, Brandão FAS, Teixeira MDM, Bocca AL, Felipe MSS, Vicente VA, Fernandes L. Genetic manipulation of Fonsecaea pedrosoi using particles bombardment and Agrobacterium mediated transformation. Microbiol Res 2018; 207:269-279. [PMID: 29458863 DOI: 10.1016/j.micres.2018.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/04/2017] [Accepted: 01/01/2018] [Indexed: 11/24/2022]
Abstract
Fonsecaea pedrosoi, a melanized fungal pathogen that causes Chromoblastomycosis, a human disease with a worldwide distribution. Biolistic is a widely used technique for direct delivery of genetic material into intact cells by particles bombardment. Another well-established transformation method is Agrobacterium-mediated transformation (ATMT), which involves the transfer of a T-DNA from the bacterium to the target cells. In F. pedrosoi there are no reports of established protocols for genetic transformation, which require optimization of physical and biological parameters. In this work, intact conidia of F. pedrosoi were particle bombarded and subjected to ATMT. In addition, we proposed hygromycin B, nourseothricin and neomycin as dominant selective markers for F. pedrosoi and vectors were constructed. We tested two parameters for biolistic: the distance of the particles to the target cells and time of cells recovery in nonselective medium. The biolistic efficiency was 37 transformants/μg of pFpHYG, and 45 transformants/μg of pAN7.1. Transformants expressing GFP were successfully obtained by biolistic. A co-culture ratio of 10: 1 (bacterium: conidia) and co-incubation time of 72 h yielded the largest number of transformants after ATMT. Southern blot analysis showed the number of foreign DNA insertion into the genome is dependent upon the plasmid used to generate the mutants. This work describes for the first time two efficient methods for genetic modification of Fonsecaea and these results open new avenues to better understand the biology and pathogenicity of the main causal agent of this neglected disease.
Collapse
Affiliation(s)
- Camille Silva Florencio
- Programa de Pós-graduação em Ciências e Tecnologias em Saúde, Faculdade de Ceilândia, Universidade de Brasília, Brasília, DF, Brazil; Laboratório de Imunologia Aplicada, Instituto de Biologia, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil.
| | - Fabiana Alves Silva Brandão
- Laboratório de Imunologia Aplicada, Instituto de Biologia, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil.
| | | | - Anamélia Lorenzetti Bocca
- Laboratório de Imunologia Aplicada, Instituto de Biologia, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil.
| | | | - Vânia Aparecida Vicente
- Programa de Pós-graduação em Engenharia de Bioprocessos e Biotecnologia, Setor de Ciências Biológicas, Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| | - Larissa Fernandes
- Programa de Pós-graduação em Ciências e Tecnologias em Saúde, Faculdade de Ceilândia, Universidade de Brasília, Brasília, DF, Brazil; Laboratório de Imunologia Aplicada, Instituto de Biologia, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil; Programa de Pós-graduação em Engenharia de Bioprocessos e Biotecnologia, Setor de Ciências Biológicas, Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
15
|
A highly efficient Agrobacterium tumefaciens-mediated transformation system for the postharvest pathogen Penicillium digitatum using DsRed and GFP to visualize citrus host colonization. J Microbiol Methods 2017; 144:134-144. [PMID: 29175534 DOI: 10.1016/j.mimet.2017.11.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 11/21/2022]
Abstract
Penicillium digitatum is a major postharvest pathogen of citrus crops. This fungus broadly spreads worldwide and causes green mold disease, which results in severe losses for citrus production. Understanding of the citrus infection by P. digitatum may help develop effective strategies for controlling this pathogen. In this study, we have characterized a virulent strain of P. digitatum isolated in Vietnam and established a highly efficient Agrobacterium tumefaciens-mediated transformation (ATMT) system for this fungal strain with two newly constructed binary vectors. These binary vectors harbor dominant selectable markers for hygromycin or nourseothricin resistance, and expression cassettes for the red fluorescent protein (DsRed) or the green fluorescent protein (GFP), respectively. Using the established ATMT system, the transformation efficiency of the Vietnamese strain could reach a very high yield of 1240±165 transformants per 106 spores. Interestingly, we found that GFP is much better than DsRed for in situ visualization of citrus fruit colonization by the fungus. Additionally, we showed that the transformation system can also be used to generate T-DNA insertion mutants for screening non-pathogenic or less virulent strains. Our work provides a new platform including a virulent tropical strain of P. digitatum, an optimized ATMT method and two newly constructed binary vectors for investigation of the postharvest pathogen. This platform will help develop strategies to dissect molecular mechanisms of host-pathogen interactions in more detail as well as to identify potential genes of pathogenicity by either insertional mutagenesis or gene disruption in this important pathogenic fungus.
Collapse
|
16
|
Idnurm A, Bailey AM, Cairns TC, Elliott CE, Foster GD, Ianiri G, Jeon J. A silver bullet in a golden age of functional genomics: the impact of Agrobacterium-mediated transformation of fungi. Fungal Biol Biotechnol 2017; 4:6. [PMID: 28955474 PMCID: PMC5615635 DOI: 10.1186/s40694-017-0035-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/18/2017] [Indexed: 11/10/2022] Open
Abstract
The implementation of Agrobacterium tumefaciens as a transformation tool revolutionized approaches to discover and understand gene functions in a large number of fungal species. A. tumefaciens mediated transformation (AtMT) is one of the most transformative technologies for research on fungi developed in the last 20 years, a development arguably only surpassed by the impact of genomics. AtMT has been widely applied in forward genetics, whereby generation of strain libraries using random T-DNA insertional mutagenesis, combined with phenotypic screening, has enabled the genetic basis of many processes to be elucidated. Alternatively, AtMT has been fundamental for reverse genetics, where mutant isolates are generated with targeted gene deletions or disruptions, enabling gene functional roles to be determined. When combined with concomitant advances in genomics, both forward and reverse approaches using AtMT have enabled complex fungal phenotypes to be dissected at the molecular and genetic level. Additionally, in several cases AtMT has paved the way for the development of new species to act as models for specific areas of fungal biology, particularly in plant pathogenic ascomycetes and in a number of basidiomycete species. Despite its impact, the implementation of AtMT has been uneven in the fungi. This review provides insight into the dynamics of expansion of new research tools into a large research community and across multiple organisms. As such, AtMT in the fungi, beyond the demonstrated and continuing power for gene discovery and as a facile transformation tool, provides a model to understand how other technologies that are just being pioneered, e.g. CRISPR/Cas, may play roles in fungi and other eukaryotic species.
Collapse
Affiliation(s)
- Alexander Idnurm
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Andy M. Bailey
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Timothy C. Cairns
- Department of Applied and Molecular Microbiology, Technische Universität Berlin, Berlin, Germany
| | - Candace E. Elliott
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Gary D. Foster
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Giuseppe Ianiri
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, USA
| | - Junhyun Jeon
- College of Life and Applied Sciences, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
17
|
Structural features of the aromatic/arginine constriction in the aquaglyceroporin GintAQPF2 are responsible for glycerol impermeability in arbuscular mycorrhizal symbiosis. Fungal Biol 2016; 121:95-102. [PMID: 28007220 DOI: 10.1016/j.funbio.2016.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 09/25/2016] [Accepted: 09/28/2016] [Indexed: 11/23/2022]
Abstract
Carbon transport in arbuscular mycorrhizal (AM) symbiosis is of fundamental importance. However, the role of glycerol transport in AM symbiosis has not yet been resolved. Glycerol transport across the cell membrane is mediated by aquaglyceroporins (AQGPs), whereas our previous study revealed that it was disfavoured by GintAQPF2, an AQGP from AM fungi (AMF). Here, we analysed the function of two amino acid residues in the aromatic/arginine (ar/R) constriction known as the major selectivity filter in AQGPs. Replacement of phenylalanine-94 (Phe-94) by alanine (Ala) enlarged the diameter of the ar/R constriction and resulted in an increased intracellular glycerol accumulation and thus survival rate of yeast cells at high glycerol levels, while individual or joint replacement of Phe-94 and Ala-234 by tryptophan and glycine induced a closed state of GintAQPF2, suggesting that the potential double gates (Phe94-Phe243 and arginine-249) of the ar/R constriction also likely determined solute permeability. To figure out whether GintAQPF2 functions were relevant to the establishment of AM symbiosis, genomic analyses of four representative fungi with different lifestyles were performed. We found that glycerol facilitators existed in the facultative fungi (the ectomycorrhizal fungus Laccaria bicolor and hemibiotrophic pathogen Magnaporthe oryzae), but not in the obligatory fungi (the AMF Rhizophagus irregularis and necrotrophic pathogen Fusarium verticillioides), revealing a conserved pattern of glycerol transport in symbionts and pathogens. Our results suggested that glycerol blocks due to the special structural features of the ar/R constriction in the only AMF AQGP could potentially play a role in the establishment of AM symbiosis.
Collapse
|
18
|
Bitterlich M, Franken P. Connecting polyphosphate translocation and hyphal water transport points to a key of mycorrhizal functioning. THE NEW PHYTOLOGIST 2016; 211:1147-1149. [PMID: 27485901 DOI: 10.1111/nph.14104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Michael Bitterlich
- Leibniz-Institute of Vegetable and Ornamental Crops, Kühnhäuser Straße 101, 99090, Erfurt-Kühnhausen, Germany
- Humboldt University of Berlin, Plant Physiology Department, Philippstr. 13, 10115, Berlin, Germany
| | - Philipp Franken
- Leibniz-Institute of Vegetable and Ornamental Crops, Kühnhäuser Straße 101, 99090, Erfurt-Kühnhausen, Germany
- Humboldt University of Berlin, Plant Physiology Department, Philippstr. 13, 10115, Berlin, Germany
| |
Collapse
|
19
|
Fiorilli V, Belmondo S, Khouja HR, Abbà S, Faccio A, Daghino S, Lanfranco L. RiPEIP1, a gene from the arbuscular mycorrhizal fungus Rhizophagus irregularis, is preferentially expressed in planta and may be involved in root colonization. MYCORRHIZA 2016; 26:609-621. [PMID: 27075897 DOI: 10.1007/s00572-016-0697-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
Transcriptomics and genomics data recently obtained from the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis have offered new opportunities to decipher the contribution of the fungal partner to the establishment of the symbiotic association. The large number of genes which do not show similarity to known proteins witnesses the uniqueness of this group of plant-associated fungi. In this work, we characterize a gene that was called RiPEIP1 (Preferentially Expressed In Planta). Its expression is strongly induced in the intraradical phase, including arbuscules, and follows the expression profile of the Medicago truncatula phosphate transporter MtPT4, a molecular marker of a functional symbiosis. Indeed, mtpt4 mutant plants, which exhibit low mycorrhizal colonization and an accelerated arbuscule turnover, also show a reduced RiPEIP1 mRNA abundance. To further characterize RiPEIP1, in the absence of genetic transformation protocols for AM fungi, we took advantage of two different fungal heterologous systems. When expressed as a GFP fusion in yeast cells, RiPEIP1 localizes in the endomembrane system, in particular to the endoplasmic reticulum, which is consistent with the in silico prediction of four transmembrane domains. We then generated RiPEIP1-expressing strains of the fungus Oidiodendron maius, ericoid endomycorrhizal fungus for which transformation protocols are available. Roots of Vaccinium myrtillus colonized by RiPEIP1-expressing transgenic strains showed a higher mycorrhization level compared to roots colonized by the O. maius wild-type strain, suggesting that RiPEIP1 may regulate the root colonization process.
Collapse
Affiliation(s)
- Valentina Fiorilli
- Department of Life Science and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy.
| | - Simone Belmondo
- Department of Life Science and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy
| | - Hassine Radhouane Khouja
- Department of Life Science and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy
| | - Simona Abbà
- Institute for Sustainable Plant Protection (IPSP), CNR, Strada delle Cacce 73, 10135, Torino, Italy
| | - Antonella Faccio
- Institute for Sustainable Plant Protection (IPSP), CNR, Strada delle Cacce 73, 10135, Torino, Italy
| | - Stefania Daghino
- Department of Life Science and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy
| | - Luisa Lanfranco
- Department of Life Science and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy
| |
Collapse
|
20
|
Daubois L, Beaudet D, Hijri M, de la Providencia I. Independent mitochondrial and nuclear exchanges arising in Rhizophagus irregularis crossed-isolates support the presence of a mitochondrial segregation mechanism. BMC Microbiol 2016; 16:11. [PMID: 26803293 PMCID: PMC4724407 DOI: 10.1186/s12866-016-0627-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Arbuscular mycorrhizal fungi (AMF) are members of the phylum Glomeromycota, an early divergent fungal lineage that forms symbiotic associations with the large majority of land plants. These organisms are asexual obligate biotrophs, meaning that they cannot complete their life cycle in the absence of a suitable host. These fungi can exchange genetic information through hyphal fusions (i.e. anastomosis) with genetically compatible isolates belonging to the same species. The occurrence of transient mitochondrial length-heteroplasmy through anastomosis between geographically distant Rhizophagus irregularis isolates was previously demonstrated in single spores resulting from crossing experiments. However, (1) the persistence of this phenomenon in monosporal culture lines from crossed parental isolates, (2) its correlation with nuclear exchanges and (3) the potential mechanisms responsible for mitochondrial inheritance are still unknown. Using the AMF model organism R. irregularis, we tested whether the presence of a heteroplasmic state in progeny spores was linked to the occurrence of nuclear exchanges and whether the previously observed heteroplasmic state persisted in monosporal in vitro crossed-culture lines. We also investigated the presence of a putative mitochondrial segregation apparatus in Glomeromycota by identifying proteins similar to those found in other fungal groups. RESULTS We observed the occurrence of biparental inheritance both for mitochondrial and nuclear markers tested in single spores obtained from crossed-isolates. However, only one parental mitochondrial DNA and nuclear genotype were recovered in each monosporal crossed-cultures, with an overrepresentation of certain mitochondrial haplotypes. These results strongly support the presence of a nuclear-independent mitochondrial segregation mechanism in R. irregularis. Furthermore, a nearly complete set of genes was identified with putative orthology to those found in other fungi and known to be associated with the mitochondrial segregation in Saccharomyces cerevisiae and filamentous fungi. CONCLUSIONS Our findings suggest that mitochondrial segregation might take place either during spore formation or colony development and that it might be independent of the nuclear segregation machinery. We present the basic building blocks for a better understanding of the mitochondrial inheritance process and segregation in these important symbiotic fungi. The comprehension of these processes is of great importance since it has been shown that different segregated lines of the same isolate can have variable effects on the host plant.
Collapse
Affiliation(s)
- Laurence Daubois
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, H1X 2B2, QC, Canada.
| | - Denis Beaudet
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, H1X 2B2, QC, Canada.
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, H1X 2B2, QC, Canada.
| | - Ivan de la Providencia
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, H1X 2B2, QC, Canada.
| |
Collapse
|
21
|
Suzuki K, Moriguchi K, Yamamoto S. Horizontal DNA transfer from bacteria to eukaryotes and a lesson from experimental transfers. Res Microbiol 2015; 166:753-63. [PMID: 26291765 DOI: 10.1016/j.resmic.2015.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 11/15/2022]
Abstract
Horizontal gene transfer (HGT) is widespread among bacteria and plays a key role in genome dynamics. HGT is much less common in eukaryotes, but is being reported with increasing frequency in eukaryotes. The mechanism as to how eukaryotes acquired genes from distantly related organisms remains obscure yet. This paper cites examples of bacteria-derived genes found in eukaryotic organisms, and then describes experimental DNA transports to eukaryotes by bacterial type 4 secretion systems in optimized conditions. The mechanisms of the latter are efficient, quite reproducible in vitro and predictable, and thereby would provide insight into natural HGT and to the development of new research tools.
Collapse
|
22
|
Zhang T, Ren P, Chaturvedi V, Chaturvedi S. Development of an Agrobacterium-mediated transformation system for the cold-adapted fungi Pseudogymnoascus destructans and P. pannorum. Fungal Genet Biol 2015; 81:73-81. [PMID: 26051491 DOI: 10.1016/j.fgb.2015.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 05/21/2015] [Accepted: 05/23/2015] [Indexed: 01/06/2023]
Abstract
The mechanisms of cold adaptation by fungi remain unknown. This topic is of high interest due to the emergence of white-nose syndrome (WNS), a skin infection of hibernating bats caused by Pseudogymnoascus destructans (Pd). Recent studies indicated that apart from Pd, there is an abundance of other Pseudogymnoascus species in the hibernacula soil. We developed an Agrobacterium tumefaciens-mediated transformation (ATMT) system for Pd and a related fungus Pseudogymnoascus pannorum (Pp) to advance experimental studies. URE1 gene encoding the enzyme urease was used as an easy to screen marker to facilitate molecular genetic analyses. A Uracil-Specific Excision Reagent (USER) Friendly pRF-HU2 vector containing Pd or Pp ure1::hygromycin (HYG) disruption cassette was introduced into A. tumefaciens AGL-1 cells by electroporation and the resulting strains were co-cultivated with conidia of Pd or Pp for various durations and temperatures to optimize the ATMT system. Overall, 680 Pd (0.006%) and 1800 Pp (0.018%) transformants were obtained from plating of 10(7) conidia; their recoveries were strongly correlated with the length of the incubation period (96h for Pd; 72h for Pp) and with temperature (15-18°C for Pd; 25°C for Pp). The homologous recombination in transformants was 3.1% for Pd and 16.7% for Pp. The availability of a standardized ATMT system would allow future molecular genetic analyses of Pd and related cold-adapted fungi.
Collapse
Affiliation(s)
- Tao Zhang
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Ping Ren
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Vishnu Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| | - Sudha Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA.
| |
Collapse
|
23
|
Kuo A, Kohler A, Martin FM, Grigoriev IV. Expanding genomics of mycorrhizal symbiosis. Front Microbiol 2014; 5:582. [PMID: 25408690 PMCID: PMC4219462 DOI: 10.3389/fmicb.2014.00582] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 10/15/2014] [Indexed: 12/11/2022] Open
Abstract
The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant nutrition, soil health, and carbon cycling. The symbiosis evolved repeatedly and independently as multiple morphotypes [e.g., arbuscular mycorrhizae (AM), ectomycorrhizal (ECM)] in multiple fungal clades (e.g., phyla Glomeromycota, Ascomycota, Basidiomycota). The accessibility and cultivability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first three mycorrhizal fungal genomes, representing two morphotypes and three phyla. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolve through loss of plant cell wall-degrading enzymes (PCWDEs) and expansion of lineage-specific gene families such as short secreted protein (SSP) effectors. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of families as in Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other two fungi, symbiosis can involve similar solutions as symbiosis-induced SSPs and loss of PCWDEs. The three genomes provide a solid base for addressing fundamental questions about the nature and role of a vital mutualism.
Collapse
Affiliation(s)
- Alan Kuo
- United States Department of Energy Joint Genome InstituteWalnut Creek, CA, USA
| | - Annegret Kohler
- UMR, Lab of Excellence for Advanced Research on the Biology of TRee and Forest Ecosystems, Tree-Microbe Interactions, Institut National de la Recherche Agronomique, Université de LorraineNancy, France
| | - Francis M. Martin
- UMR, Lab of Excellence for Advanced Research on the Biology of TRee and Forest Ecosystems, Tree-Microbe Interactions, Institut National de la Recherche Agronomique, Université de LorraineNancy, France
| | - Igor V. Grigoriev
- United States Department of Energy Joint Genome InstituteWalnut Creek, CA, USA
| |
Collapse
|
24
|
Moscatiello R, Sello S, Novero M, Negro A, Bonfante P, Navazio L. The intracellular delivery of TAT-aequorin reveals calcium-mediated sensing of environmental and symbiotic signals by the arbuscular mycorrhizal fungus Gigaspora margarita. THE NEW PHYTOLOGIST 2014; 203:1012-1020. [PMID: 24845011 DOI: 10.1111/nph.12849] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/10/2014] [Indexed: 06/03/2023]
Abstract
Arbuscular mycorrhiza (AM) is an ecologically relevant symbiosis between most land plants and Glomeromycota fungi. The peculiar traits of AM fungi have so far limited traditional approaches such as genetic transformation. The aim of this work was to investigate whether the protein transduction domain of the HIV-1 transactivator of transcription (TAT) protein, previously shown to act as a potent nanocarrier for macromolecule delivery in both animal and plant cells, may translocate protein cargoes into AM fungi. We evaluated the internalization into germinated spores of Gigaspora margarita of two recombinant TAT fusion proteins consisting of either a fluorescent (GFP) or a luminescent (aequorin) reporter linked to the TAT peptide. Both TAT-fused proteins were found to enter AM fungal mycelia after a short incubation period (5-10 min). Ca2+ measurements in G. margarita mycelia pre-incubated with TAT-aequorin demonstrated the occurrence of changes in the intracellular free Ca2+ concentration in response to relevant stimuli, such as touch, cold, salinity, and strigolactones, symbiosis-related plant signals. These data indicate that the cell-penetrating properties of the TAT peptide can be used as an effective strategy for intracellularly delivering proteins of interest and shed new light on Ca2+ homeostasis and signalling in AM fungi.
Collapse
Affiliation(s)
- Roberto Moscatiello
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Rich MK, Schorderet M, Reinhardt D. The role of the cell wall compartment in mutualistic symbioses of plants. FRONTIERS IN PLANT SCIENCE 2014; 5:238. [PMID: 24917869 PMCID: PMC4041022 DOI: 10.3389/fpls.2014.00238] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 05/12/2014] [Indexed: 05/18/2023]
Abstract
Plants engage in mutualistic interactions with microbes that improve their mineral nutrient supply. The most wide-spread symbiotic association is arbuscular mycorrhiza (AM), in which fungi of the order Glomeromycota invade roots and colonize the cellular lumen of cortical cells. The establishment of this interaction requires a dedicated molecular-genetic program and a cellular machinery of the plant host. This program is partially shared with the root nodule symbiosis (RNS), which involves prokaryotic partners collectively referred to as rhizobia. Both, AM and RNS are endosymbioses that involve intracellular accommodation of the microbial partner in the cells of the plant host. Since plant cells are surrounded by sturdy cell walls, root penetration and cell invasion requires mechanisms to overcome this barrier while maintaining the cytoplasm of the two partners separate during development of the symbiotic association. Here, we discuss the diverse functions of the cell wall compartment in establishment and functioning of plant symbioses with the emphasis on AM and RNS, and we describe the stages of the AM association between the model organisms Petunia hybrida and Rhizophagus irregularis.
Collapse
Affiliation(s)
| | | | - Didier Reinhardt
- Department of Biology, University of FribourgFribourg, Switzerland
| |
Collapse
|
26
|
Ellerbeck M, Schüßler A, Brucker D, Dafinger C, Loos F, Brachmann A. Characterization of three ammonium transporters of the glomeromycotan fungus Geosiphon pyriformis. EUKARYOTIC CELL 2013; 12:1554-62. [PMID: 24058172 PMCID: PMC3837933 DOI: 10.1128/ec.00139-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/15/2013] [Indexed: 11/20/2022]
Abstract
Members of the Glomeromycota form the arbuscular mycorrhiza (AM) symbiosis. They supply plants with inorganic nutrients, including nitrogen, from the soil. To gain insight into transporters potentially facilitating nitrogen transport processes, ammonium transporters (AMTs) of Geosiphon pyriformis, a glomeromycotan fungus forming a symbiosis with cyanobacteria, were studied. Three AMT genes were identified, and all three were expressed in the symbiotic stage. The localization and functional characterization of the proteins in a heterologous yeast system revealed distinct characteristics for each of them. AMT1 of G. pyriformis (GpAMT1) and GpAMT2 were both plasma membrane localized, but only GpAMT1 transported ammonium. Neither protein transported the ammonium analogue methylammonium. Unexpectedly, GpAMT3 was localized in the vacuolar membrane, and it has as-yet-unknown transport characteristics. An unusual cysteine residue in the AMT signature of GpAMT2 and GpAMT3 was identified, and the corresponding residue was demonstrated to play an important role in ammonium transport. Surprisingly, each of the three AMTs of G. pyriformis had very distinct features. The localization of an AMT in the yeast vacuolar membrane is novel, as is the described amino acid residue that clearly influences ammonium transport. The AMT characteristics might reflect adaptations to the lifestyle of glomeromycotan fungi.
Collapse
|
27
|
Volpe V, Dell'Aglio E, Giovannetti M, Ruberti C, Costa A, Genre A, Guether M, Bonfante P. An AM-induced, MYB-family gene of Lotus japonicus (LjMAMI) affects root growth in an AM-independent manner. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:442-55. [PMID: 23051146 DOI: 10.1111/tpj.12045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 10/01/2012] [Accepted: 10/04/2012] [Indexed: 05/06/2023]
Abstract
The interaction between legumes and arbuscular mycorrhizal (AM) fungi is vital to the development of sustainable plant production systems. Here, we focus on a putative MYB-like (LjMAMI) transcription factor (TF) previously reported to be highly upregulated in Lotus japonicus mycorrhizal roots. Phylogenetic analyses revealed that the protein is related to a group of TFs involved in phosphate (Pi) starvation responses, the expression of which is independent of the Pi level, such as PHR1. GUS transformed plants and quantitative reverse transcription PCR revealed strong gene induction in arbusculated cells, as well as the presence of LjMAMI transcripts in lateral root primordia and root meristems, even in the absence of the fungus, and independently of Pi concentration. In agreement with its putative identification as a TF, an eGFP-LjMAMI chimera was localized to the nuclei of plant protoplasts, whereas in transgenic Lotus roots expressing the eGFP-LjMAMI fusion protein under the control of the native promoter, the protein was located in the nuclei of the arbusculated cells. Further expression analyses revealed a correlation between LjMAMI and LjPT4, a marker gene for mycorrhizal function. To elucidate the role of the LjMAMI gene in the mycorrhizal process, RNAi and overexpressing root lines were generated. All the lines retained their symbiotic capacity; however, RNAi root lines and composite plants showed an important reduction in root elongation and branching in the absence of the symbiont. The results support the involvement of the AM-responsive LjMAMI in non-symbiotic functions: i.e. root growth.
Collapse
Affiliation(s)
- Veronica Volpe
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, I-10125, Torino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Li T, Hu YJ, Hao ZP, Li H, Wang YS, Chen BD. First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices. THE NEW PHYTOLOGIST 2013; 197:617-630. [PMID: 23157494 DOI: 10.1111/nph.12011] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 09/22/2012] [Indexed: 05/09/2023]
Abstract
Arbuscular mycorrhizal (AM) symbiosis is known to stimulate plant drought tolerance. However, the molecular basis for the direct involvement of AM fungi (AMF) in plant water relations has not been established. Two full-length aquaporin genes, namely GintAQPF1 and GintAQPF2, were cloned by rapid amplification of cDNA 5'- and 3'-ends from an AMF, Glomus intraradices. Aquaporin localization, activities and water permeability were examined by heterologous expression in yeast. Gene expression during symbiosis was also analyzed by quantitative real-time polymerase chain reaction. GintAQPF1 was localized to the plasma membrane of yeast, whereas GintAQPF2 was localized to both plasma and intracellular membranes. Transformed yeast cells exhibited a significant decrease in cell volume on hyperosmotic shock and faster protoplast bursting on hypo-osmotic shock. Polyethylene glycol (PEG) stimulated, but glycerol inhibited, the aquaporin activities. Furthermore, the expression of the two genes in arbuscule-enriched cortical cells and extraradical mycelia of maize roots was also enhanced significantly under drought stress. GintAQPF1 and GintAQPF2 are the first two functional aquaporin genes from AMF reported to date. Our data strongly support potential water transport via AMF to host plants, which leads to a better understanding of the important role of AMF in plant drought tolerance.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ya-Jun Hu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zhi-Peng Hao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Hong Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - You-Shan Wang
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Bao-Dong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
29
|
Lanfranco L, Young JPW. Genetic and genomic glimpses of the elusive arbuscular mycorrhizal fungi. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:454-61. [PMID: 22673109 DOI: 10.1016/j.pbi.2012.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/25/2012] [Indexed: 05/14/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF), which form an ancient and widespread mutualistic symbiosis with plants, are a crucial but still enigmatic component of the plant microbiome. Nowadays, their obligate biotrophy is no longer an obstacle to deciphering the role played by AMF in this fascinating symbiosis. The first genome-wide transcriptomic analysis of an AMF showed a metabolic complexity with no sign of massive gene loss, and the presence of genes for meiotic recombination suggests that AMF are not simple clonal organisms, as originally thought. New findings on suppression of host defenses and nutrient exchange processes have shed light on the mechanisms that contribute to such an intimate and long-lasting integration between living plant and fungal cells.
Collapse
Affiliation(s)
- Luisa Lanfranco
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, and IPP-CNR, Viale Mattioli 25, 10125 Torino, Italy.
| | | |
Collapse
|
30
|
Frandsen RJN. A guide to binary vectors and strategies for targeted genome modification in fungi using Agrobacterium tumefaciens-mediated transformation. J Microbiol Methods 2011; 87:247-62. [DOI: 10.1016/j.mimet.2011.09.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/09/2011] [Accepted: 09/09/2011] [Indexed: 01/31/2023]
|
31
|
Pérez-Tienda J, Testillano PS, Balestrini R, Fiorilli V, Azcón-Aguilar C, Ferrol N. GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices. Fungal Genet Biol 2011; 48:1044-55. [DOI: 10.1016/j.fgb.2011.08.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/27/2011] [Accepted: 08/15/2011] [Indexed: 11/16/2022]
|
32
|
Helber N, Wippel K, Sauer N, Schaarschmidt S, Hause B, Requena N. A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants. THE PLANT CELL 2011; 23:3812-23. [PMID: 21972259 PMCID: PMC3229151 DOI: 10.1105/tpc.111.089813] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/09/2011] [Accepted: 09/19/2011] [Indexed: 05/17/2023]
Abstract
For more than 400 million years, plants have maintained a mutualistic symbiosis with arbuscular mycorrhizal (AM) fungi. This evolutionary success can be traced to the role of these fungi in providing plants with mineral nutrients, particularly phosphate. In return, photosynthates are given to the fungus, which support its obligate biotrophic lifestyle. Although the mechanisms involved in phosphate transfer have been extensively studied, less is known about the reciprocal transfer of carbon. Here, we present the high-affinity Monosaccharide Transporter2 (MST2) from Glomus sp with a broad substrate spectrum that functions at several symbiotic root locations. Plant cell wall sugars can efficiently outcompete the Glc uptake capacity of MST2, suggesting they can serve as alternative carbon sources. MST2 expression closely correlates with that of the mycorrhiza-specific Phosphate Transporter4 (PT4). Furthermore, reduction of MST2 expression using host-induced gene silencing resulted in impaired mycorrhiza formation, malformed arbuscules, and reduced PT4 expression. These findings highlight the symbiotic role of MST2 and support the hypothesis that the exchange of carbon for phosphate is tightly linked. Unexpectedly, we found that the external mycelium of AM fungi is able to take up sugars in a proton-dependent manner. These results imply that the sugar uptake system operating in this symbiosis is more complex than previously anticipated.
Collapse
Affiliation(s)
- Nicole Helber
- Plant-Microbial Interactions Group, Karlsruhe Institute of Technology, Hertzstrasse 16, D-76187 Karlsruhe, Germany
| | - Kathrin Wippel
- Friedrich-Alexander University Erlangen-Nürnberg, Molecular Plant-Physiology, D-91054 Erlangen, Germany
| | - Norbert Sauer
- Friedrich-Alexander University Erlangen-Nürnberg, Molecular Plant-Physiology, D-91054 Erlangen, Germany
| | | | - Bettina Hause
- Leibniz Institute of Plant Biochemistry, D-06018 Halle, Germany
| | - Natalia Requena
- Plant-Microbial Interactions Group, Karlsruhe Institute of Technology, Hertzstrasse 16, D-76187 Karlsruhe, Germany
| |
Collapse
|
33
|
Ercolin F, Reinhardt D. Successful joint ventures of plants: arbuscular mycorrhiza and beyond. TRENDS IN PLANT SCIENCE 2011; 16:356-62. [PMID: 21459657 DOI: 10.1016/j.tplants.2011.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/01/2011] [Accepted: 03/08/2011] [Indexed: 05/04/2023]
Abstract
Among the oldest symbiotic associations of plants are arbuscular mycorrhiza (AM) with fungi of the phylum Glomeromycota. Although many of the symbiotic signaling components have been identified on the side of the plant, AM fungi have long evaded genetic analysis owing to their strict biotrophy and their exceptional genetics. Recently, the identification of the fungal symbiosis signal (Myc factor) and of a corresponding Myc factor receptor, and new insights into AM fungal genetics, have opened new avenues to address early communication and functional aspects of AM symbiosis. These advances will pave the way for breeding programs towards adapted AM fungi for crop production, and will shed light on the ecology and evolution of this remarkably successful symbiosis.
Collapse
Affiliation(s)
- Flavia Ercolin
- Department of Biology, University of Fribourg, Switzerland
| | | |
Collapse
|
34
|
Lee J. The Distribution of Cytoplasm and Nuclei within the Extra-radical Mycelia in Glomus intraradices, a Species of Arbuscular Mycorrhizal Fungi. MYCOBIOLOGY 2011; 39:79-84. [PMID: 22783081 PMCID: PMC3385095 DOI: 10.4489/myco.2011.39.2.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 04/04/2011] [Indexed: 05/14/2023]
Abstract
Nuclear distribution within the extra-radical fungal structures and during spore production in the arbuscular mycorrhizae fungus Glomus intraradices was examined using an in vitro monoxenic culture system. A di-compartmental monoxenic culture system was modified using a nitrocellulose membrane and a coverglass slip for detailed observations. Nuclear distribution was observed using the fluorescent DNA binding probes SYBR Green I and DAPI. Both septate and non-septate mycelial regions were observed, but cytoplasmic contents were only found within non-septate mycelia. Nuclear fluorescent staining revealed that the non-septate hyphal region contained nuclei only with cytoplasm, and that nuclear distribution was limited by septa. Swollen hyphal bodies were often associated with septate and empty-looking hyphae. Cytoplasmic contents filled the swollen hyphal body from the non-septate hyphal region following removal of the septa. As a consequence, the swollen body developed into a new spore. These observations provide understanding about the distribution of AM fungal nuclei within extra-radical mycelia and during spore formation. The results suggest a mechanism by which the development of a cytoplasm-containing mycelium is controlled by the formation or removal of septa to efficiently maintain and proliferate essential contents. This mechanism may provide a survival strategy to the fungus.
Collapse
Affiliation(s)
- Jaikoo Lee
- Gyeonggi Science High School for The Gifted, Suwon 440-800, Korea
| |
Collapse
|
35
|
Sanders IR, Croll D. Arbuscular Mycorrhiza: The Challenge to Understand the Genetics of the Fungal Partner. Annu Rev Genet 2010; 44:271-92. [DOI: 10.1146/annurev-genet-102108-134239] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ian R. Sanders
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland;
| | - Daniel Croll
- Department of Plant Pathology, Institute of Integrative Biology, ETH Zürich, 8092 Zurich, Switzerland;
| |
Collapse
|
36
|
Abstract
Mycorrhizal fungi are a heterogeneous group of diverse fungal taxa, associated with the roots of over 90% of all plant species. Recently, state-of-the-art molecular and genetic tools, coupled to high-throughput sequencing and advanced microscopy, have led to the genome and transcriptome analysis of several symbionts. Signalling pathways between plants and fungi have now been described and the identification of several novel nutrient transporters has revealed some of the cellular processes that underlie symbiosis. Thus, the contributions of each partner in a mycorrhizal association are starting to be unravelled. This new knowledge is now available for use in agricultural practices.
Collapse
|
37
|
Seddas-Dozolme PMA, Arnould C, Tollot M, Kuznetsova E, Gianinazzi-Pearson V. Expression profiling of fungal genes during arbuscular mycorrhiza symbiosis establishment using direct fluorescent in situ RT-PCR. Methods Mol Biol 2010; 638:137-52. [PMID: 20238266 DOI: 10.1007/978-1-60761-611-5_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Expression profiling of fungal genes in the arbuscular mycorrhiza (AM) symbiosis has been based on studies of RNA extracted from fungal tissue or mycorrhizal roots, giving only a general picture of overall transcript levels in the targeted tissues. Information about the spatial distribution of transcripts within AM fungal structures during different developmental stages is essential to a better understanding of fungal activity in symbiotic interactions with host roots and to determine molecular events involved in establishment and functioning of the AM symbiosis. The obligate biotrophic nature of AM fungi is a challenge for developing new molecular methods to identify and localize their activity in situ. The direct fluorescent in situ (DIFIS) RT-PCR procedure described here represents a novel tool for spatial mapping of AM fungal gene expression simultaneously prior to root penetration, within fungal tissues in the host root and in the extraradical stage of fungal development.In order to enhance detection sensitivity of the in situ RT-PCR technique and enable localization of low abundance mRNA, we have adopted direct fluorescent labeling of primers for the amplification step to overcome the problem of low detection associated with digoxigenin or biotin-labeled primers and to avoid the multiplicity of steps associated with immunological detection. Signal detection has also been greatly improved by eliminating autofluorescence of AM fungal and root tissues using confocal microscopy.
Collapse
|
38
|
Jany J, Pawlowska T. Multinucleate Spores Contribute to Evolutionary Longevity of Asexual Glomeromycota. Am Nat 2010; 175:424-35. [DOI: 10.1086/650725] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
39
|
BÖRSTLER BORIS, THIÉRY ODILE, SÝKOROVÁ ZUZANA, BERNER ALFRED, REDECKER DIRK. Diversity of mitochondrial large subunit rDNA haplotypes ofGlomus intraradicesin two agricultural field experiments and two semi-natural grasslands. Mol Ecol 2010; 19:1497-511. [DOI: 10.1111/j.1365-294x.2010.04590.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Kuhn H, Küster H, Requena N. Membrane steroid-binding protein 1 induced by a diffusible fungal signal is critical for mycorrhization in Medicago truncatula. THE NEW PHYTOLOGIST 2010; 185:716-33. [PMID: 20003073 DOI: 10.1111/j.1469-8137.2009.03116.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Arbuscular mycorrhiza (AM) is a mutualistic biotrophic association that requires a complex exchange of signals between plant and fungus to allow accommodation of the mycosymbiont in the root cortex. Signal exchange happens even before physical contact, activating the plant symbiotic program. We investigated very early transcriptional responses in Medicago truncatula to inoculation with Glomus intraradices and identified four genes induced by diffusible AM fungal signals before contact. Three of them were previously shown to be mycorrhiza induced at later stages of the symbiosis, while MtMSBP1, encoding a membrane-bound steroid-binding protein, is a novel mycorrhizal marker. Expression analyses in plants defective in the symbiotic receptor kinase DMI2 allowed discrimination of two different signaling cascades involved in the perception of the diffusible signals. Thus, while some of the genes are activated in a DMI2-dependent manner, the induction of one of them encoding a proteinase inhibitor is DMI2-independent. Downregulation of MtMSBP1 by RNAi led to an aberrant mycorrhizal phenotype with thick and septated appressoria, decrease number of arbuscules and distorted arbuscule morphology. This provides genetic evidence that MtMSBP1 is critical for mycorrhiza development. We hypothesize that MtMSBP1 plays a role in sterol homeostasis in the root.
Collapse
Affiliation(s)
- Hannah Kuhn
- Botanical Institute, University of Karlsruhe and Karlsruhe Institute of Technology, Plant-Microbe Interactions Group, Hertzstrasse 16, D-76187, Karlsruhe, Germany
| | | | | |
Collapse
|
41
|
Expression of a gfp gene in Penicillium nordicum under control of the promoter of the ochratoxin A polyketide synthase gene. Int J Food Microbiol 2009; 133:161-6. [DOI: 10.1016/j.ijfoodmicro.2009.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 05/11/2009] [Accepted: 05/17/2009] [Indexed: 11/15/2022]
|
42
|
Stockinger H, Walker C, Schüßler A. 'Glomus intraradices DAOM197198', a model fungus in arbuscular mycorrhiza research, is not Glomus intraradices. THE NEW PHYTOLOGIST 2009; 183:1176-1187. [PMID: 19496945 DOI: 10.1111/j.1469-8137.2009.02874.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Glomus intraradices-like fungi are the most intensely studied arbuscular mycorrhizal (AM) fungi. However, there are several AM fungi named as G. intraradices that may not be conspecific. Therefore, the hypothesis was tested that DAOM197198 and similar AM fungi, such as BEG195, correspond to the type of G. intraradices. The G. intraradices isotype material, a descendant (INVAM FL208) of the type culture, and a morphologically corresponding AM fungus (MUCL49410) isolated from the type locality were studied and compared with several cultures of DAOM197198 and BEG195. Phylogenetic analyses of the partial small subunit (SSU), complete internal transcribed spacer (ITS) and partial large subunit (LSU) nuclear rDNA regions revealed two clades, one including G. intraradices FL208 and MUCL49410, the other containing DAOM197198 and BEG195. The two clades were clearly separated by sequence analyses, despite the high intraspecific and intrasporal ITS region sequence divergence of up to > 23%. We conclude that the AM fungi with the identifiers DAOM197198 and BEG195 are not G. intraradices, but fall in a clade that contains the recently described species G. irregulare.
Collapse
Affiliation(s)
- Herbert Stockinger
- LMU Munich, Dept. Biology I, Genetics, Großhaderner Str. 4, D-82152 Planegg-Martinsried, Germany
| | - Christopher Walker
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK
| | - Arthur Schüßler
- LMU Munich, Dept. Biology I, Genetics, Großhaderner Str. 4, D-82152 Planegg-Martinsried, Germany
| |
Collapse
|
43
|
Tollot M, Wong Sak Hoi J, van Tuinen D, Arnould C, Chatagnier O, Dumas B, Gianinazzi-Pearson V, Seddas PMA. An STE12 gene identified in the mycorrhizal fungus Glomus intraradices restores infectivity of a hemibiotrophic plant pathogen. THE NEW PHYTOLOGIST 2008; 181:693-707. [PMID: 19140944 DOI: 10.1111/j.1469-8137.2008.02696.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Mechanisms of root penetration by arbuscular mycorrhizal (AM) fungi are unknown and investigations are hampered by the lack of transformation systems for these unculturable obligate biotrophs. Early steps of host infection by hemibiotrophic fungal phytopathogens, sharing common features with those of AM fungal colonization, depend on the transcription factor STE12. Using degenerated primers and rapid amplification of cDNA ends, we isolated the full-length cDNA of an STE12-like gene, GintSTE, from Glomus intraradices and profiled GintSTE expression by real-time and in situ RT-PCR. GintSTE activity and function were investigated by heterologous complementation of a yeast ste12Delta mutant and a Colletotrichum lindemuthianum clste12Delta mutant. * Sequence data indicate that GintSTE is similar to STE12 from hemibiotrophic plant pathogens, especially Colletotrichum spp. Introduction of GintSTE into a noninvasive mutant of C. lindemuthianum restored fungal infectivity of plant tissues. GintSTE expression was specifically localized in extraradicular fungal structures and was up-regulated when G. intraradices penetrated roots of wild-type Medicago truncatula as compared with an incompatible mutant. Results suggest a possible role for GintSTE in early steps of root penetration by AM fungi, and that pathogenic and symbiotic fungi may share common regulatory mechanisms for invasion of plant tissues.
Collapse
Affiliation(s)
- Marie Tollot
- UMR INRA 1088/CNRS 5184/Université de Bourgogne, Plante-Microbe-Environnement, 17 Rue Sully - BP 86510 - 21065 Dijon Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Ramos AC, Façanha AR, Lima PT, Feijó JA. pH signature for the responses of arbuscular mycorrhizal fungi to external stimuli. PLANT SIGNALING & BEHAVIOR 2008; 3:850-2. [PMID: 19704519 PMCID: PMC2634394 DOI: 10.4161/psb.3.10.5992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 03/31/2008] [Indexed: 05/28/2023]
Abstract
Environmental and developmental signals can elicit differential activation of membrane proton (H(+)) fluxes as one of the primary responses of plant and fungal cells. In recent work,1 we could determine that during the presymbiotic growth of arbuscular mycorrhizal (AM) fungi specific domains of H(+) flux are activated by clover root factors, namely host root exudates or whole root system. Consequently, activation on hyphal growth and branching were observed and the role of plasma membrane H(+)-ATPase was investigated. The specific inhibitors differentially abolished most of hyphal H(+) effluxes and fungal growth. As this enzyme can act in signal transduction pathways, we believe that spatial and temporal oscillations of the hyphal H(+) fluxes could represent a pH signature for both early events of the AM symbiosis and fungal ontogeny.
Collapse
Affiliation(s)
- Alessandro C Ramos
- Centro de Biologia do Desenvolvimento; Instituto Gulbenkian de Ciência; Oeiras Portugal
| | | | | | | |
Collapse
|
45
|
|
46
|
Seddas PMA, Arnould C, Tollot M, Arias CM, Gianinazzi-Pearson V. Spatial monitoring of gene activity in extraradical and intraradical developmental stages of arbuscular mycorrhizal fungi by direct fluorescent in situ RT-PCR. Fungal Genet Biol 2008; 45:1155-65. [PMID: 18585067 DOI: 10.1016/j.fgb.2008.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 04/18/2008] [Accepted: 04/28/2008] [Indexed: 10/22/2022]
Abstract
Gene expression profiling based on tissue extracts gives only limited information about genes associated with complex developmental processes such as those implicated in fungal interactions with plant roots during arbuscular mycorrhiza development and function. To overcome this drawback, a direct fluorescent in situ RT-PCR methodology was developed for spatial mapping of gene expression in different presymbiotic and symbiotic structures of an arbuscular mycorrhizal fungus. Transcript detection was optimized by targeting the LSU rRNA gene of Glomus intraradices and monitoring expression of a stearoyl-CoA-desaturase gene that is consistently expressed at high levels in spores, hyphae, arbuscules and vesicles. This method was further validated by localizing expression of fungal peptidylprolyl isomerase and superoxide dismutase genes, which are expressed to different extents in fungal structures. Direct fluorescent in situ RT-PCR offers new perspectives for the sensitive analysis of fungal developmental processes that occur during functional differentiation in symbiotic arbuscular mycorrhiza interactions.
Collapse
Affiliation(s)
- Pascale M A Seddas
- UMR 1088 INRA/5184 CNRS/Université de Bourgogne, Plante-Microbe-Environnement, INRA-CMSE, BP 86510, 21065 Dijon Cedex, France.
| | | | | | | | | |
Collapse
|
47
|
|