1
|
Wang K, Huang S, Fu D, Yang X, Ma L, Zhang T, Zhao W, Deng D, Ding Y, Zhang Y, Huang L, Chen X. The neurobiological mechanisms and therapeutic prospect of extracellular ATP in depression. CNS Neurosci Ther 2024; 30:e14536. [PMID: 38375982 PMCID: PMC10877668 DOI: 10.1111/cns.14536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 09/21/2023] [Accepted: 11/07/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Depression is a prevalent psychiatric disorder with high long-term morbidities, recurrences, and mortalities. Despite extensive research efforts spanning decades, the cellular and molecular mechanisms of depression remain largely unknown. What's more, about one third of patients do not have effective anti-depressant therapies, so there is an urgent need to uncover more mechanisms to guide the development of novel therapeutic strategies. Adenosine triphosphate (ATP) plays an important role in maintaining ion gradients essential for neuronal activities, as well as in the transport and release of neurotransmitters. Additionally, ATP could also participate in signaling pathways following the activation of postsynaptic receptors. By searching the website PubMed for articles about "ATP and depression" especially focusing on the role of extracellular ATP (eATP) in depression in the last 5 years, we found that numerous studies have implied that the insufficient ATP release from astrocytes could lead to depression and exogenous supply of eATP or endogenously stimulating the release of ATP from astrocytes could alleviate depression, highlighting the potential therapeutic role of eATP in alleviating depression. AIM Currently, there are few reviews discussing the relationship between eATP and depression. Therefore, the aim of our review is to conclude the role of eATP in depression, especially focusing on the evidence and mechanisms of eATP in alleviating depression. CONCLUSION We will provide insights into the prospects of leveraging eATP as a novel avenue for the treatment of depression.
Collapse
Affiliation(s)
- Kaixin Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Daan Fu
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Xinxin Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Lulin Ma
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Wenjing Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Yuanyuan Ding
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Yanyan Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Li Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| |
Collapse
|
2
|
Lalo U, Pankratov Y. ATP-mediated signalling in the central synapses. Neuropharmacology 2023; 229:109477. [PMID: 36841527 DOI: 10.1016/j.neuropharm.2023.109477] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
ATP released from the synaptic terminals and astrocytes can activate neuronal P2 receptors at a variety of locations across the CNS. Although the postsynaptic ATP-mediated signalling does not bring a major contribution into the excitatory transmission, it is instrumental for slow and diffuse modulation of synaptic dynamics and neuronal firing in many CNS areas. Neuronal P2X and P2Y receptors can be activated by ATP released from the synaptic terminals, astrocytes and microglia and thereby can participate in the regulation of synaptic homeostasis and plasticity. There is growing evidence of importance of purinergic regulation of synaptic transmission in different physiological and pathological contexts. Here, we review the main mechanisms underlying the complexity and diversity of purinergic signalling and purinergic modulation in central neurons.
Collapse
Affiliation(s)
- Ulyana Lalo
- School of Life Sciences, University of Warwick, United Kingdom
| | - Yuriy Pankratov
- School of Life Sciences, University of Warwick, United Kingdom.
| |
Collapse
|
3
|
Sanders KM, Mutafova-Yambolieva VN. Neurotransmitters responsible for purinergic motor neurotransmission and regulation of GI motility. Auton Neurosci 2021; 234:102829. [PMID: 34146957 DOI: 10.1016/j.autneu.2021.102829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022]
Abstract
Classical concepts of peripheral neurotransmission were insufficient to explain enteric inhibitory neurotransmission. Geoffrey Burnstock and colleagues developed the idea that ATP or a related purine satisfies the criteria for a neurotransmitter and serves as an enteric inhibitory neurotransmitter in GI muscles. Cloning of purinergic receptors and development of specific drugs and transgenic mice have shown that enteric inhibitory responses depend upon P2Y1 receptors in post-junctional cells. The post-junctional cells that transduce purinergic neurotransmitters in the GI tract are PDGFRα+ cells and not smooth muscle cells (SMCs). PDGFRα+ cells express P2Y1 receptors, are activated by enteric inhibitory nerve stimulation and generate Ca2+ oscillations, express small-conductance Ca2+-activated K+ channels (SK3), and generate outward currents when exposed to P2Y1 agonists. These properties are consistent with post-junctional purinergic responses, and similar responses and effectors are not functional in SMCs. Refinements in methodologies to measure purines in tissue superfusates, such as high-performance liquid chromatography (HPLC) coupled with etheno-derivatization of purines and fluorescence detection, revealed that multiple purines are released during stimulation of intrinsic nerves. β-NAD+ and other purines, better satisfy criteria for the purinergic neurotransmitter than ATP. HPLC has also allowed better detection of purine metabolites, and coupled with isolation of specific types of post-junctional cells, has provided new concepts about deactivation of purine neurotransmitters. In spite of steady progress, many unknowns about purinergic neurotransmission remain and require additional investigation to understand this important regulatory mechanism in GI motility.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, School of Medicine, 1664 North Virginia Street, Reno, NV 89557, USA.
| | - Violeta N Mutafova-Yambolieva
- Department of Physiology and Cell Biology, University of Nevada, School of Medicine, 1664 North Virginia Street, Reno, NV 89557, USA
| |
Collapse
|
4
|
Montilla A, Mata GP, Matute C, Domercq M. Contribution of P2X4 Receptors to CNS Function and Pathophysiology. Int J Mol Sci 2020; 21:E5562. [PMID: 32756482 PMCID: PMC7432758 DOI: 10.3390/ijms21155562] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
The release and extracellular action of ATP are a widespread mechanism for cell-to-cell communication in living organisms through activation of P2X and P2Y receptors expressed at the cell surface of most tissues, including the nervous system. Among ionototropic receptors, P2X4 receptors have emerged in the last decade as a potential target for CNS disorders such as epilepsy, ischemia, chronic pain, anxiety, multiple sclerosis and neurodegenerative diseases. However, the role of P2X4 receptor in each pathology ranges from beneficial to detrimental, although the mechanisms are still mostly unknown. P2X4 is expressed at low levels in CNS cells including neurons and glial cells. In normal conditions, P2X4 activation contributes to synaptic transmission and synaptic plasticity. Importantly, one of the genes present in the transcriptional program of myeloid cell activation is P2X4. Microglial P2X4 upregulation, the P2X4+ state of microglia, seems to be common in most acute and chronic neurodegenerative diseases associated with inflammation. In this review, we summarize knowledge about the role of P2X4 receptors in the CNS physiology and discuss potential pitfalls and open questions about the therapeutic potential of blocking or potentiation of P2X4 for different pathologies.
Collapse
Affiliation(s)
- Alejandro Montilla
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Achucarro Basque Center for Neuroscience and Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 48940 Leioa, Spain
| | - Gilda Paloma Mata
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Achucarro Basque Center for Neuroscience and Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 48940 Leioa, Spain
| | - Carlos Matute
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Achucarro Basque Center for Neuroscience and Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 48940 Leioa, Spain
| | - Maria Domercq
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Achucarro Basque Center for Neuroscience and Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 48940 Leioa, Spain
| |
Collapse
|
5
|
Gonçalves FQ, Lopes JP, Silva HB, Lemos C, Silva AC, Gonçalves N, Tomé ÂR, Ferreira SG, Canas PM, Rial D, Agostinho P, Cunha RA. Synaptic and memory dysfunction in a β-amyloid model of early Alzheimer's disease depends on increased formation of ATP-derived extracellular adenosine. Neurobiol Dis 2019; 132:104570. [PMID: 31394204 DOI: 10.1016/j.nbd.2019.104570] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/09/2019] [Accepted: 08/02/2019] [Indexed: 01/01/2023] Open
Abstract
Adenosine A2A receptors (A2AR) overfunction causes synaptic and memory dysfunction in early Alzheimer's disease (AD). In a β-amyloid (Aβ1-42)-based model of early AD, we now unraveled that this involves an increased synaptic release of ATP coupled to an increased density and activity of ecto-5'-nucleotidase (CD73)-mediated formation of adenosine selectively activating A2AR. Thus, CD73 inhibition with α,β-methylene-ADP impaired long-term potentiation (LTP) in mouse hippocampal slices, which is occluded upon previous superfusion with the A2AR antagonist SCH58261. Furthermore, α,β-methylene-ADP did not alter LTP amplitude in global A2AR knockout (KO) and in forebrain neuron-selective A2AR-KO mice, but inhibited LTP amplitude in astrocyte-selective A2AR-KO mice; this shows that CD73-derived adenosine solely acts on neuronal A2AR. In agreement with the concept that ATP is a danger signal in the brain, ATP release from nerve terminals is increased after intracerebroventricular Aβ1-42 administration, together with CD73 and A2AR upregulation in hippocampal synapses. Importantly, this increased CD73 activity is critically required for Aβ1-42 to impair synaptic plasticity and memory since Aβ1-42-induced synaptic and memory deficits were eliminated in CD73-KO mice. These observations establish a key regulatory role of CD73 activity over neuronal A2AR and imply CD73 as a novel target for modulation of early AD.
Collapse
Affiliation(s)
- Francisco Q Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - João P Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Henrique B Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Cristina Lemos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - António C Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Nélio Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Ângelo R Tomé
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Samira G Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Paula M Canas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Daniel Rial
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Paula Agostinho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; FMUC-Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; FMUC-Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal.
| |
Collapse
|
6
|
Cunha RA. How does adenosine control neuronal dysfunction and neurodegeneration? J Neurochem 2016; 139:1019-1055. [PMID: 27365148 DOI: 10.1111/jnc.13724] [Citation(s) in RCA: 335] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/23/2016] [Accepted: 06/23/2016] [Indexed: 12/11/2022]
Abstract
The adenosine modulation system mostly operates through inhibitory A1 (A1 R) and facilitatory A2A receptors (A2A R) in the brain. The activity-dependent release of adenosine acts as a brake of excitatory transmission through A1 R, which are enriched in glutamatergic terminals. Adenosine sharpens salience of information encoding in neuronal circuits: high-frequency stimulation triggers ATP release in the 'activated' synapse, which is locally converted by ecto-nucleotidases into adenosine to selectively activate A2A R; A2A R switch off A1 R and CB1 receptors, bolster glutamate release and NMDA receptors to assist increasing synaptic plasticity in the 'activated' synapse; the parallel engagement of the astrocytic syncytium releases adenosine further inhibiting neighboring synapses, thus sharpening the encoded plastic change. Brain insults trigger a large outflow of adenosine and ATP, as a danger signal. A1 R are a hurdle for damage initiation, but they desensitize upon prolonged activation. However, if the insult is near-threshold and/or of short-duration, A1 R trigger preconditioning, which may limit the spread of damage. Brain insults also up-regulate A2A R, probably to bolster adaptive changes, but this heightens brain damage since A2A R blockade affords neuroprotection in models of epilepsy, depression, Alzheimer's, or Parkinson's disease. This initially involves a control of synaptotoxicity by neuronal A2A R, whereas astrocytic and microglia A2A R might control the spread of damage. The A2A R signaling mechanisms are largely unknown since A2A R are pleiotropic, coupling to different G proteins and non-canonical pathways to control the viability of glutamatergic synapses, neuroinflammation, mitochondria function, and cytoskeleton dynamics. Thus, simultaneously bolstering A1 R preconditioning and preventing excessive A2A R function might afford maximal neuroprotection. The main physiological role of the adenosine modulation system is to sharp the salience of information encoding through a combined action of adenosine A2A receptors (A2A R) in the synapse undergoing an alteration of synaptic efficiency with an increased inhibitory action of A1 R in all surrounding synapses. Brain insults trigger an up-regulation of A2A R in an attempt to bolster adaptive plasticity together with adenosine release and A1 R desensitization; this favors synaptotocity (increased A2A R) and decreases the hurdle to undergo degeneration (decreased A1 R). Maximal neuroprotection is expected to result from a combined A2A R blockade and increased A1 R activation. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases".
Collapse
Affiliation(s)
- Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
7
|
Rassendren F, Audinat E. Purinergic signaling in epilepsy. J Neurosci Res 2016; 94:781-93. [PMID: 27302739 DOI: 10.1002/jnr.23770] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 12/24/2022]
Abstract
Until recently, analysis of the mechanisms underlying epilepsy was centered on neuron dysfunctions. Accordingly, most of the available pharmacological treatments aim at reducing neuronal excitation or at potentiating neuronal inhibition. These therapeutic options can lead to obvious secondary effects, and, moreover, seizures cannot be controlled by any known medication in one-third of the patients. A purely neurocentric view of brain functions and dysfunctions has been seriously questioned during the past 2 decades because of the accumulation of experimental data showing the functional importance of reciprocal interactions between glial cells and neurons. In the case of epilepsy, our current knowledge of the human disease and analysis of animal models clearly favor the involvement of astrocytes and microglial cells during the progression of the disease, including at very early stages, opening the way to the identification of new therapeutic targets. Purinergic signaling is a fundamental feature of neuron-glia interactions, and increasing evidence indicates that modifications of this pathway contribute to the functional remodeling of the epileptic brain. This Review discusses the recent experimental results indicating the roles of astrocytic and microglial P2X and P2Y receptors in epilepsy. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- François Rassendren
- CNRS, UMR 5203, Institut de Génomique Fonctionnelle, Montpellier, France.,INSERM, U1191, Montpellier, France.,Université de Montpellier, UMR5203, Montpellier, France.,Labex ICST, Montpellier, France
| | - Etienne Audinat
- INSERM, U1128, Paris, France.,Laboratory of Neurophysiology and New Microscopies, Paris Descartes University, Paris, France
| |
Collapse
|
8
|
Mutafova-Yambolieva VN, Durnin L. The purinergic neurotransmitter revisited: a single substance or multiple players? Pharmacol Ther 2014; 144:162-91. [PMID: 24887688 PMCID: PMC4185222 DOI: 10.1016/j.pharmthera.2014.05.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 12/20/2022]
Abstract
The past half century has witnessed tremendous advances in our understanding of extracellular purinergic signaling pathways. Purinergic neurotransmission, in particular, has emerged as a key contributor in the efficient control mechanisms in the nervous system. The identity of the purine neurotransmitter, however, remains controversial. Identifying it is difficult because purines are present in all cell types, have a large variety of cell sources, and are released via numerous pathways. Moreover, studies on purinergic neurotransmission have relied heavily on indirect measurements of integrated postjunctional responses that do not provide direct information for neurotransmitter identity. This paper discusses experimental support for adenosine 5'-triphosphate (ATP) as a neurotransmitter and recent evidence for possible contribution of other purines, in addition to or instead of ATP, in chemical neurotransmission in the peripheral, enteric and central nervous systems. Sites of release and action of purines in model systems such as vas deferens, blood vessels, urinary bladder and chromaffin cells are discussed. This is preceded by a brief discussion of studies demonstrating storage of purines in synaptic vesicles. We examine recent evidence for cell type targets (e.g., smooth muscle cells, interstitial cells, neurons and glia) for purine neurotransmitters in different systems. This is followed by brief discussion of mechanisms of terminating the action of purine neurotransmitters, including extracellular nucleotide hydrolysis and possible salvage and reuptake in the cell. The significance of direct neurotransmitter release measurements is highlighted. Possibilities for involvement of multiple purines (e.g., ATP, ADP, NAD(+), ADP-ribose, adenosine, and diadenosine polyphosphates) in neurotransmission are considered throughout.
Collapse
Affiliation(s)
| | - Leonie Durnin
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, United States
| |
Collapse
|
9
|
Larsson M, Sawada K, Morland C, Hiasa M, Ormel L, Moriyama Y, Gundersen V. Functional and anatomical identification of a vesicular transporter mediating neuronal ATP release. ACTA ACUST UNITED AC 2011; 22:1203-14. [PMID: 21810784 DOI: 10.1093/cercor/bhr203] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
ATP is known to be coreleased with glutamate at certain central synapses. However, the nature of its release is controversial. Here, we demonstrate that ATP release from cultured rat hippocampal neurons is sensitive to RNAi-mediated knockdown of the recently identified vesicular nucleotide transporter (VNUT or SLC17A9). In the intact brain, light microscopy showed particularly strong VNUT immunoreactivity in the cerebellar cortex, the olfactory bulb, and the hippocampus. Using immunoelectron microscopy, we found VNUT immunoreactivity colocalized with synaptic vesicles in excitatory and inhibitory terminals in the hippocampal formation. Moreover, VNUT immunolabeling, unlike that of the vesicular glutamate transporter VGLUT1, was enriched in preterminal axons and present in postsynaptic dendritic spines. Immunoisolation of synaptic vesicles indicated presence of VNUT in a subset of VGLUT1-containing vesicles. Thus, we conclude that VNUT mediates transport of ATP into synaptic vesicles of hippocampal neurons, thereby conferring a purinergic phenotype to these cells.
Collapse
Affiliation(s)
- Max Larsson
- Department of Anatomy and Centre for Molecular Biology and Neuroscience, University of Oslo, N-0317 Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
10
|
Fields RD. Nonsynaptic and nonvesicular ATP release from neurons and relevance to neuron-glia signaling. Semin Cell Dev Biol 2011; 22:214-9. [PMID: 21320624 PMCID: PMC3163842 DOI: 10.1016/j.semcdb.2011.02.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/11/2011] [Accepted: 02/07/2011] [Indexed: 12/22/2022]
Abstract
Studies on the release of ATP from neurons began with the earliest investigations of quantal neurotransmitter release in the 1950s, but in contrast to ATP release from other cells, studies of ATP release from neurons have been narrowly constrained to one mechanism, vesicular release. This is a consequence of the prominence of synaptic transmission in neuronal communication, but nonvesicular mechanisms for ATP release from neurons are likely to have a broader range of functions than synaptic release. Investigations of activity-dependent communication between axons and myelinating glia have stimulated a search for mechanisms that could release ATP from axons and other nonsynaptic regions in response to action potential firing. This has identified volume-activated anion channels as an important mechanism in activity-dependent ATP release from axons, and renewed interest in micromechanical changes in axons that accompany action potential firing.
Collapse
Affiliation(s)
- R Douglas Fields
- Nervous Systems Development and Plasticity Section, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
11
|
Tozaki-Saitoh H, Tsuda M, Inoue K. Role of purinergic receptors in CNS function and neuroprotection. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 61:495-528. [PMID: 21586368 DOI: 10.1016/b978-0-12-385526-8.00015-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The purinergic receptor family contains some of the most abundant receptors in living organisms. A growing body of evidence indicates that extracellular nucleotides play important roles in the regulation of neuronal and glial functions in the nervous system through purinergic receptors. Nucleotides are released from or leaked through nonexcitable cells and neurons during normal physiological and pathophysiological conditions. Ionotropic P2X and metabotropic P2Y purinergic receptors are expressed in the central nervous system (CNS), participate in the synaptic processes, and mediate intercellular communications between neuron and gila and between glia and other glia. Glial cells in the CNS are classified into astrocytes, oligodendrocytes, and microglia. Astrocytes express many types of purinergic receptors, which are integral to their activation. Astrocytes release adenosine triphosphate (ATP) as a "gliotransmitter" that allows communication with neurons, the vascular walls of capillaries, oligodendrocytes, and microglia. Oligodendrocytes are myelin-forming cells that construct insulating layers of myelin sheets around axons, and using purinergic receptor signaling for their development and for myelination. Microglia also express many types of purinergic receptors and are known to function as immunocompetent cells in the CNS. ATP and other nucleotides work as "warning molecules" especially by activating microglia in pathophysiological conditions. Studies on purinergic signaling could facilitate the development of novel therapeutic strategies for disorder of the CNS.
Collapse
Affiliation(s)
- Hidetoshi Tozaki-Saitoh
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi, Fukuoka, Japan
| | | | | |
Collapse
|
12
|
Burnstock G, Fredholm BB, North RA, Verkhratsky A. The birth and postnatal development of purinergic signalling. Acta Physiol (Oxf) 2010; 199:93-147. [PMID: 20345419 DOI: 10.1111/j.1748-1716.2010.02114.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The purinergic signalling system is one of the most ancient and arguably the most widespread intercellular signalling system in living tissues. In this review we present a detailed account of the early developments and current status of purinergic signalling. We summarize the current knowledge on purinoceptors, their distribution and role in signal transduction in various tissues in physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- G Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, London, UK.
| | | | | | | |
Collapse
|
13
|
Therapeutic potential of extracellular ATP and P2 receptors in nervous system diseases. Neurosci Bull 2009; 25:27-32. [PMID: 19190686 DOI: 10.1007/s12264-009-1020-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Extracellular adenosine 5 inch-triphosphate (ATP) is a key signaling molecule present in the central nervous system (CNS), and now is receiving greater attention due to its role as a messenger in the CNS during different physiological and pathological events. ATP is released into the extracellular space through vesicular exocytosis or from damaged and dying cells. Once in the extracellular environment, ATP binds to the specific receptors termed P2, which mediate ATP effects and are present broadly in both neurons and glial cells. There are P2X, the ligand-gated ionotropic receptors, possessing low affinity for ATP and responsible for fast excitatory neurotransmission, and P2Y, the metabotropic G-protein-coupled receptors, possessing high affinity for ATP. Since massive extracellular release of ATP often occurs after stress, brain ischemia and trauma, the extracellular ATP is considered relating to or involving in the pathological processes of many nervous system diseases. Conversely, the trophic functions have also been extensively described for the extracellular ATP. Therefore, extracellular ATP plays a very complex role in the CNS and its binding to P2 receptors can be related to toxic and/or beneficial effects. In this review, we described the extracellular ATP acting via P2 receptors as a potent therapeutic target for treatment of nervous system diseases.
Collapse
|
14
|
Pankratov Y, Lalo U, Krishtal OA, Verkhratsky A. P2X receptors and synaptic plasticity. Neuroscience 2008; 158:137-48. [PMID: 18495357 DOI: 10.1016/j.neuroscience.2008.03.076] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 03/09/2008] [Accepted: 03/17/2008] [Indexed: 01/15/2023]
Abstract
Adenosine triphosphate (ATP) is released in many synapses in the CNS either together with other neurotransmitters, such as glutamate and GABA, or on its own. Postsynaptic action of ATP is mediated through metabotropic P2Y and ionotropic P2X receptors abundantly expressed in neural cells. Activation of P2X receptors induces fast excitatory postsynaptic currents in synapses located in various brain regions, including medial habenula, hippocampus and cortex. P2X receptors display relatively high Ca2+ permeability and can mediate substantial Ca2+ influx at resting membrane potential. P2X receptors can dynamically interact with other neurotransmitter receptors, including N-methyl-D-aspartate (NMDA) receptors, GABA(A) receptors and nicotinic acetylcholine (ACh) receptors. Activation of P2X receptors has multiple modulatory effects on synaptic plasticity, either inhibiting or facilitating the long-term changes of synaptic strength depending on physiological context. At the same time precise mechanisms of P2X-dependent regulation of synaptic plasticity remain elusive. Further understanding of the role of P2X receptors in regulation of synaptic transmission in the CNS requires dissection of P2X-mediated effects on pre-synaptic terminals, postsynaptic membrane and glial cells.
Collapse
Affiliation(s)
- Y Pankratov
- The University of Warwick, Department of Biological Sciences, Gibbet Hill Road, Coventry CV4 7AL, UK
| | | | | | | |
Collapse
|
15
|
Yushchenko DA, Vadzyuk OB, Kosterin SO, Duportail G, Mély Y, Pivovarenko VG. Sensing of adenosine-5'-triphosphate anion in aqueous solutions and mitochondria by a fluorescent 3-hydroxyflavone dye. Anal Biochem 2007; 369:218-25. [PMID: 17568555 DOI: 10.1016/j.ab.2007.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 05/03/2007] [Accepted: 05/04/2007] [Indexed: 11/23/2022]
Abstract
The current work demonstrates the formation of complexes between the tetraanion adenosine-5'-triphosphate (ATP) and the flavone derivative 3-hydroxy-4'-(dimethylamino)flavone (FME). Two kinds of complexes are evidenced. The higher affinity ATP-FME complex corresponds to a stacking of the two aromatic molecules and leads to a strong hypochromicity of the absorption spectrum of the dye. The lower affinity (ATP)(2)-FME complex results in a strong increase of the fluorescence intensity ( approximately 20-fold), due mainly to the appearance of the anionic form of FME, as shown by the important red shift (60 nm) of both excitation and emission spectra. Molecular modeling indicates that this anionic form results from the deprotonation induced by the influence of the tetra-charged triphosphate group of the ATP molecules. Using its strong enhancement of fluorescence intensity in the presence of ATP, the dye was used successfully to monitor the succinate-induced production of endogenous ATP in mitochondria. As a consequence, FME can be considered as a starting point to design efficient ATP sensors.
Collapse
Affiliation(s)
- Dmytro A Yushchenko
- Department of Chemistry, Kyiv National Taras Shevchenko University, 01033 Kyiv, Ukraine
| | | | | | | | | | | |
Collapse
|
16
|
North RA, Verkhratsky A. Purinergic transmission in the central nervous system. Pflugers Arch 2006; 452:479-85. [PMID: 16688467 DOI: 10.1007/s00424-006-0060-y] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Accepted: 03/06/2006] [Indexed: 12/31/2022]
Abstract
The adenosine 5'-triphosphate (ATP), discovered in 1929 by Karl Lohman, Cyrus Hartwell Fiske, and Yellagaprada SubbaRow, acts as an important extracellular signaling molecule. In the CNS, ATP can be released from synaptic terminals, either on its own or together with other neurotransmitters. After the release from the presynaptic terminals, ATP binds to a plethora of ionotropic and metabotropic receptors, which mediate its action as an excitatory neurotransmitter. Furthermore, ATP also acts as an important mediator in neuronal-glial communications because glial cells are endowed with numerous ATP receptors, which trigger Ca(2+) signaling events and membrane currents in both macro and microglia. In addition, ATP can be released from astroglial cells, thereby acting as a mediator of glial-glial and glial-neuronal signaling.
Collapse
Affiliation(s)
- R Alan North
- Faculty of Life Sciences, The University of Manchester, 1.124 Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | | |
Collapse
|
17
|
Spehr J, Spehr M, Hatt H, Wetzel CH. Subunit-specific P2X-receptor expression defines chemosensory properties of trigeminal neurons. Eur J Neurosci 2004; 19:2497-510. [PMID: 15128403 DOI: 10.1111/j.0953-816x.2004.03329.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The facial innervation pattern of trigeminal nerve fibres comprises the innervation of the nasal epithelium, where free trigeminal nerve endings contribute to detection and discrimination of chemical stimuli including odourants. The signal transduction mechanisms in sensory nerve endings underlying perception of chemical stimuli remain widely uncovered. Here, we characterized trigeminal ATP-activated P2X receptors in cultured rat trigeminal neurons and investigated their role in chemoperception. We identified a new subpopulation of neurons lacking typical nociceptive characteristics and expressing homomeric P2X(2) receptors. Using a certain group of chemicals known as trigeminal stimuli we found no direct activation of trigeminal neurons, but a modulation of P2X(2) receptor mediated currents. In contrast, P2X(3) receptor mediated currents of nociceptive trigeminal neurons remained unaffected by the tested chemicals. Therefore, we assume a functional role for the newly identified subpopulation in chemodetection of certain trigeminal stimuli.
Collapse
MESH Headings
- Adenosine Triphosphate/analogs & derivatives
- Adenosine Triphosphate/pharmacology
- Animals
- Animals, Newborn
- Benzaldehydes/pharmacology
- Calcium/metabolism
- Cells, Cultured
- Colforsin/pharmacology
- DNA, Complementary/chemistry
- Diagnostic Imaging/methods
- Dinucleoside Phosphates/pharmacology
- Dose-Response Relationship, Drug
- Drug Interactions
- Embryo, Mammalian
- Enzyme Inhibitors/pharmacology
- Green Fluorescent Proteins
- Humans
- Immunohistochemistry/methods
- Kidney
- Luminescent Proteins/metabolism
- Membrane Potentials/drug effects
- Neurites/drug effects
- Neurons/classification
- Neurons/metabolism
- Olfactory Receptor Neurons/physiology
- Organic Chemicals/pharmacology
- Patch-Clamp Techniques/methods
- Potassium/pharmacology
- Protein Subunits/metabolism
- RNA, Messenger/biosynthesis
- Rats
- Rats, Wistar
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2X2
- Receptors, Purinergic P2X3
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Stimulation, Chemical
- Transfection/methods
- Triazines/pharmacology
- Trigeminal Ganglion/cytology
Collapse
Affiliation(s)
- Jennifer Spehr
- Lehrstuhl fuer Zellphysiologie, Ruhr-Universitaet Bochum, Universitaetsstr. 150, 44780 Bochum, Germany
| | | | | | | |
Collapse
|
18
|
Phillis JW, O'Regan MH. In vivo studies of the release of adenine 5?-nucleotides, adenosine, and its metabolites from the rat brain. Drug Dev Res 2003. [DOI: 10.1002/ddr.10173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
|
20
|
Forrester T. A Purine Signal for Functional Hyperemia in Skeletal and Cardiac Muscle. CURRENT TOPICS IN MEMBRANES 2003. [DOI: 10.1016/s1063-5823(03)01009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Villa RF, Gorini A, Hoyer S. ATPases of synaptic plasma membranes from hippocampus after ischemia and recovery during ageing. Neurochem Res 2002; 27:861-70. [PMID: 12396096 DOI: 10.1023/a:1020381829107] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Plasticity and relationships between individual ATPases linked to energy-utilizing systems of hippocampus, a very sensitive functional area to both age and ischemia, were studied during ageing on synaptic plasma membranes of 1-year-old "adult" and 2-year-old "aged" rats after 15 min of complete cerebral ischemia and different reperfusion times (01, 24, 48, 72, and 96 h). Activities of Na+, K+, Mg(2+)-ATPase, Mg(2+)-ATPase ouabain insensitive, Na+, K(+)-ATPase, "direct" or "basal" Mg(2+)-ATPase, and acetylcholinesterase (AChE) were evaluated in synaptic plasma membranes, where they play the major role in the regulation of presynaptic nerve ending homeostasis. This in vivo study of recovery time-course from 15 mins of cerebral ischemia indicated specific biochemical assessments of functional meaning: (a) Na+K(+)-ATPase of synaptic plasma membranes in adult and aged animals is stimulated by ischemia; (b) this "hyperactivity" is more markedly related to adult than to aged animals; (c) these abnormalities still persist after 72 and 96 h during the recirculation times, indicating the delayed postischemic suffering of the brain; (d) specific Mg(2+)-ATPase enzyme system possess a lower catalytic power in aged animals than in adult ones, but remained unaltered in adult animals by ischemia and reperfusion; (e) Mg(2+)-ATPase is stimulated in aged animals by ischemia, further increasing during reperfusion up to 72-96 h, indicating the delayed hyperactivity of hippocampus; (f) the increased metabolic activity of hippocampus is indicated by the increased activity of cholinergic system; (g) integrity of synaptic plasma membranes seems not to be altered by 15 min ischemia to a critical extent to compromise their catalytic functionality during reperfusion; (h) AChE activity increases in both adult and aged at some survival times. There are logical reasons for the hypothesis that the modifications in ATPase's catalytic activities in synaptic plasma membranes, which have been modified by ischemia in presynaptic terminals, may play important functional role during recovery time in cerebral tissue in vivo, especially as regards its responsiveness to noxious stimuli, particularly during the recirculation period from acute (or chronic) brain injury.
Collapse
Affiliation(s)
- R F Villa
- Department of Physiological-Pharmacological Cellular-Molecular Sciences, University of Pavia, Italy.
| | | | | |
Collapse
|
22
|
Activation of presynaptic P2X7-like receptors depresses mossy fiber-CA3 synaptic transmission through p38 mitogen-activated protein kinase. J Neurosci 2002. [PMID: 12122056 DOI: 10.1523/jneurosci.22-14-05938.2002] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
P2X(7) receptor subunits form homomeric ATP-gated, calcium-permeable cation channels. In this study, we used Western blots and immunocytochemistry to demonstrate that P2X(7) receptors are abundant on presynaptic terminals of mossy fiber synapses in the rat hippocampus. P2X(7)-immunoreactive protein was detected using a specific P2X(7) antibody in Western blots of protein isolated from whole hippocampus and from a subcellular fraction containing mossy fiber synaptosomes. P2X(7) immunoreactivity was colocalized with syntaxin 1A/B-immunoreactivity in mossy fiber terminals in the dentate hilus and stratum lucidum of CA3. Extracellular and whole-cell voltage-clamp recordings in CA3 revealed that bath application of the potent P2X(7) agonist 2',3'-O-(4-benzoylbenzoyl)-ATP (Bz-ATP) caused a long-lasting inhibition of neurotransmission at mossy fiber-CA3 synapses. Consistent with a presynaptic action at mossy fiber synapses, Bz-ATP had no significant effect on neurotransmission at associational-commissural synapses in CA3 but increased paired-pulse facilitation during depression of mossy fiber evoked currents. In addition, Bz-ATP had no postsynaptic effect on holding current or conductance of CA3 neurons. Bz-ATP-induced mossy fiber synaptic depression was blocked by the P2X(7) antagonist oxidized ATP but not by the P2X(1-3,5,6) antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid or the P2Y antagonist reactive blue 2. Finally, an antagonist of p38 MAP kinase activation [4-(4-fluorophenyl)2-(4-methylsulfinylphenyl)5-(4-pyridyl)imidazole] but not extracellular signal-regulated kinase 1/2 MAP kinase (2'-amino-3'-methoxyflavone) blocked the synaptic depression mediated by Bz-ATP, suggesting that this presynaptic inhibition was mediated by activation of p38 MAP kinase. The results of the present study demonstrate that activation of presynaptic P2X(7) receptors depresses mossy fiber-CA3 synaptic transmission through activation of p38 MAP kinase.
Collapse
|
23
|
Fujii S, Kuroda Y, Li J, Ito K, Kaneko K, Sasaki H, Kato H. The temperature-dependent modulation of an inhibitory circuit in hippocampal slices as revealed by a population spike recording is mediated by extracellular adenosine. THE JAPANESE JOURNAL OF PHYSIOLOGY 2001; 51:545-54. [PMID: 11734074 DOI: 10.2170/jjphysiol.51.545] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We examined the effects of temperature on excitatory synaptic transmission and the recurrent inhibitory loop in CA1 neurons in guinea pig hippocampal slices. Increasing the temperature of the perfusing medium from 30 to 49 degrees C resulted in attenuation of both the amplitude of the synaptically evoked CA1 population spikes and the paired-pulse inhibition (PPI) of the spikes. A bath application of 2 microM picrotoxin, a gamma-aminobutyric acid receptor antagonist, did not affect the amplitude of the CA1 population spikes, but it significantly reduced PPI during the early heating phase (30-32 degrees C). In contrast, the application of 1 mM theophylline or 50 microM 8-phenyltheophylline, a selective adenosine A1 receptor antagonist, resulted in significant augmentation of the PPI during the early phase of hyperthermia (30-34 degrees C) and a significant increase in the amplitude of the CA1 population spikes at higher temperatures (34-43 degrees C). These results suggest that increased activation of adenosine A1 receptors in response to a temperature increase depresses not only excitatory synaptic responses, but also the strength of the inhibitory circuit in CA1 neurons. Furthermore, hyperexcitability of CA1 pyramidal neurons was seen in the middle of the heating range (34-38 degrees C), excitatory responses still being present, but the strength of the inhibitory circuit significantly reduced.
Collapse
Affiliation(s)
- S Fujii
- Department of Physiology, Yamagata University School of Medicine, Yamagata, 990-9585 Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Adenosine triphosphate (ATP) has a fundamental intracellular role as the universal source of energy for all living cells. The demonstration of its release into the extracellular space and the identification and localisation of specific receptors on target cells have been essential in establishing, after considerable resistance, its extracellular physiological roles. It is now generally accepted that ATP is a genuine neurotransmitter both in the central and peripheral nervous systems. As such, there are numerous arguments which prove that the release of ATP by nerve terminals is by exocytosis. In some non-neuronal cells, however, recent evidence suggests that ATP release could also be carrier-mediated and would involve ATP-binding cassette proteins (ABC), an ubiquitous family of transport ATPases.
Collapse
Affiliation(s)
- P Bodin
- Autonomic Neuroscience Institute, Royal Free and University College School of Medicine, University College London, UK
| | | |
Collapse
|
25
|
Fujii S, Kato H, Ito K, Itoh S, Yamazaki Y, Sasaki H, Kuroda Y. Effects of A1 and A2 adenosine receptor antagonists on the induction and reversal of long-term potentiation in guinea pig hippocampal slices of CA1 neurons. Cell Mol Neurobiol 2000; 20:331-50. [PMID: 10789832 PMCID: PMC11537541 DOI: 10.1023/a:1007014226224] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. Using simultaneous recordings of the field EPSP and the population spike in the CA1 neurons of guinea pig hippocampal slices, we confirmed that delivery of a high-frequency stimulation (tetanus: 100 pulses at 100 Hz) produced robust long-term potentiation of synaptic efficacy (LTP) in two independent components, a synaptic component that increases field excitatory postsynaptic potentials (EPSPs) and a component that results in a larger population spike amplitude for a given EPSP size (E-S potentiation). 2. In the same cells, reversal of LTP (depotentiation; DP) in the field EPSP and in the E-S component is achieved by delivering low-frequency afferent stimulation (LFS: 1 Hz, 1000 pulses) 20 min after the tetanus. 3. When the tetanus or LFS was applied to CA1 inputs in the presence of an adenosine A1 receptor antagonist, 8-cyclopentyltheophylline (1 microM), the field EPSP was enhances in LTP and attenuated in DP, while the E-S relationship was not significantly affected in either LTP or DP. 4. When similar experiments were performed using an A2 receptor antagonist, CP-66713 (10 microM), the field EPSP was blocked in LTP but facilitated in DP, while E-S potentiation was enhanced during both LTP and DP. 5. The results show that endogenous adenosine, acting via A1 or A2 receptors, modulates both the synaptic and the E-S components of the induction and reversal of LTP. Based on the results, we discuss the key issue of the contribution of these receptors to the dynamics of neuronal plasticity modification in hippocampal CA1 neurons.
Collapse
Affiliation(s)
- S Fujii
- Department of Physiology, Yamagata University School of Medicine, Japan.
| | | | | | | | | | | | | |
Collapse
|
26
|
Fujii S, Kuroda Y, Ito KI, Kaneko K, Kato H. Effects of adenosine receptors on the synaptic and EPSP-spike components of long-term potentiation and depotentiation in the guinea-pig hippocampus. J Physiol 1999; 521 Pt 2:451-66. [PMID: 10581315 PMCID: PMC2269672 DOI: 10.1111/j.1469-7793.1999.00451.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. Long-term potentiation (LTP) of synaptic efficacy comprises two components: a synaptic component consisting of increased field excitatory postsynaptic potentials (EPSPs), and a component consisting of a larger population spike amplitude for a given EPSP size (E-S potentiation). In hippocampal CA1 neurons, delivery of three weak bursts (5 pulses at 100 Hz, 20 min intervals) induced LTP in both the EPSP and E-S components. In the same cells, reversal of LTP (depotentiation, DP) in the field EPSP and the E-S component was achieved by delivering three trains of low-frequency stimuli (LFS; 200 pulses at 1 Hz, 20 min intervals). 2. The effects of adenosine A1 and A2 receptor antagonists on the synaptic and E-S components of LTP and DP in CA1 neurons were studied by perfusing guinea-pig hippocampal slices with either 8-cyclopentyltheophylline (8-CPT) or CP-66713. 3. When bursts or LFS were applied to CA1 inputs in the presence of the A1 receptor antagonist 8-CPT, the field EPSP was enhanced in LTP and attenuated in DP, while the E-S relationship was not significantly affected in either LTP or DP. 4. When similar experiments were performed using the A2 receptor antagonist CP-66713, the field EPSP was blocked in LTP, but facilitated in DP, while E-S potentiation was enhanced during both LTP and DP. 5. The results show that A1 and A2 adenosine receptors modulate both the synaptic and E-S components of the induction and reversal of LTP. Based on these results, we discuss the key issue of the contribution of these receptors to the dynamics of neuronal plasticity modification in hippocampal CA1 neurons.
Collapse
Affiliation(s)
- S Fujii
- Department of Physiology, Yamagata University School of Medicine, Yamagata 990-23, Japan.
| | | | | | | | | |
Collapse
|
27
|
Rathbone MP, Middlemiss PJ, Gysbers JW, Andrew C, Herman MA, Reed JK, Ciccarelli R, Di Iorio P, Caciagli F. Trophic effects of purines in neurons and glial cells. Prog Neurobiol 1999; 59:663-90. [PMID: 10845757 DOI: 10.1016/s0301-0082(99)00017-9] [Citation(s) in RCA: 306] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In addition to their well known roles within cells, purine nucleotides such as adenosine 5' triphosphate (ATP) and guanosine 5' triphosphate (GTP), nucleosides such as adenosine and guanosine and bases, such as adenine and guanine and their metabolic products xanthine and hypoxanthine are released into the extracellular space where they act as intercellular signaling molecules. In the nervous system they mediate both immediate effects, such as neurotransmission, and trophic effects which induce changes in cell metabolism, structure and function and therefore have a longer time course. Some trophic effects of purines are mediated via purinergic cell surface receptors, whereas others require uptake of purines by the target cells. Purine nucleosides and nucleotides, especially guanosine, ATP and GTP stimulate incorporation of [3H]thymidine into DNA of astrocytes and microglia and concomitant mitosis in vitro. High concentrations of adenosine also induce apoptosis, through both activation of cell-surface A3 receptors and through a mechanism requiring uptake into the cells. Extracellular purines also stimulate the synthesis and release of protein trophic factors by astrocytes, including bFGF (basic fibroblast growth factor), nerve growth factor (NGF), neurotrophin-3, ciliary neurotrophic factor and S-100beta protein. In vivo infusion into brain of adenosine analogs stimulates reactive gliosis. Purine nucleosides and nucleotides also stimulate the differentiation and process outgrowth from various neurons including primary cultures of hippocampal neurons and pheochromocytoma cells. A tonic release of ATP from neurons, its hydrolysis by ecto-nucleotidases and subsequent re-uptake by axons appears crucial for normal axonal growth. Guanosine and GTP, through apparently different mechanisms, are also potent stimulators of axonal growth in vitro. In vivo the extracellular concentration of purines depends on a balance between the release of purines from cells and their re-uptake and extracellular metabolism. Purine nucleosides and nucleotides are released from neurons by exocytosis and from both neurons and glia by non-exocytotic mechanisms. Nucleosides are principally released through the equilibratory nucleoside transmembrane transporters whereas nucleotides may be transported through the ATP binding cassette family of proteins, including the multidrug resistance protein. The extracellular purine nucleotides are rapidly metabolized by ectonucleotidases. Adenosine is deaminated by adenosine deaminase (ADA) and guanosine is converted to guanine and deaminated by guanase. Nucleosides are also removed from the extracellular space into neurons and glia by transporter systems. Large quantities of purines, particularly guanosine and, to a lesser extent adenosine, are released extracellularly following ischemia or trauma. Thus purines are likely to exert trophic effects in vivo following trauma. The extracellular purine nucleotide GTP enhances the tonic release of adenine nucleotides, whereas the nucleoside guanosine stimulates tonic release of adenosine and its metabolic products. The trophic effects of guanosine and GTP may depend on this process. Guanosine is likely to be an important trophic effector in vivo because high concentrations remain extracellularly for up to a week after focal brain injury. Purine derivatives are now in clinical trials in humans as memory-enhancing agents in Alzheimer's disease. Two of these, propentofylline and AIT-082, are trophic effectors in animals, increasing production of neurotrophic factors in brain and spinal cord. Likely more clinical uses for purine derivatives will be found; purines interact at the level of signal-transduction pathways with other transmitters, for example, glutamate. They can beneficially modify the actions of these other transmitters.
Collapse
Affiliation(s)
- M P Rathbone
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Di Virgilio F, Sanz JM, Chiozzi P, Falzoni S. The P2Z/P2X7 receptor of microglial cells: a novel immunomodulatory receptor. PROGRESS IN BRAIN RESEARCH 1999; 120:355-68. [PMID: 10551011 DOI: 10.1016/s0079-6123(08)63569-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Affiliation(s)
- F Di Virgilio
- Department of Experimental and Diagnostic Medicine, University of Ferrara, Italy.
| | | | | | | |
Collapse
|
29
|
Inoue K, Koizumi S, Ueno S, Kita A, Tsuda M. The functions of ATP receptors in the synaptic transmission in the hippocampus. PROGRESS IN BRAIN RESEARCH 1999; 120:193-206. [PMID: 10550998 DOI: 10.1016/s0079-6123(08)63556-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Affiliation(s)
- K Inoue
- Division of Pharmacology, National Institute of Health Sciences, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
30
|
Fujii S, Sekino Y, Kuroda Y, Sasaki H, Ito K, Kato H. 8-cyclopentyltheophylline, an adenosine A1 receptor antagonist, inhibits the reversal of long-term potentiation in hippocampal CA1 neurons. Eur J Pharmacol 1997; 331:9-14. [PMID: 9274923 DOI: 10.1016/s0014-2999(97)01024-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of an adenosine A1 receptor antagonist, 8-cyclopentyltheophylline (8-CPT, 1 microM), on the reduction of long-term potentiation were studied in CA1 neurons of guinea pig hippocampal slices. Reduction of long-term potentiation (depotentiation) was achieved by delivering a train of low-frequency afferent stimuli (low-frequency stimulation, 1000 pulses, 1 Hz) 20 min after the tetanus (100 Hz, 100 pulses). In control experiments, low-frequency stimulation reduced the potentiated component of the slope of the field EPSP and the amplitude of the population spike by 68.5 +/- 14.4% and 80.1 +/- 8.8%, respectively (n = 6); these values were significantly reduced to 13.4 +/- 9.7% and 9.0 +/- 10.9% (n = 7) when the low-frequency stimulation was applied during the perfusion with 8-CPT (1 microM). These results indicate that activation of adenosine A1 receptors enhances the depotentiation of long-term potentiation.
Collapse
Affiliation(s)
- S Fujii
- Department of Physiology, Yamagata University School of Medicine, Japan.
| | | | | | | | | | | |
Collapse
|
31
|
Salgado AH, Prado MA, Moraes-Santos T, Romano-Silva MA, Gomez MV. Tityustoxin-induced release of ATP from rat brain cortical synaptosomes. Neurosci Lett 1997; 229:113-6. [PMID: 9223604 DOI: 10.1016/s0304-3940(97)00436-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tityustoxin, a scorpion toxin that alters the Na+ channel activity, induces release of ATP from rat brain cortical synaptosomes. The effect of tityustoxin is dependent on its concentration and incubation time. Continuously or cumulative release of ATP evoked by tityustoxin was calcium-dependent and interestingly only partially inhibited by tetrodotoxin. We suggest that tityustoxin mainly releases ATP from the vesicular pool but other pools may also be involved.
Collapse
Affiliation(s)
- A H Salgado
- Departamento de Fisiologia e Biofisica, Faculdade de Farmácia, -UFMG, Minas Gerais, Brazil
| | | | | | | | | |
Collapse
|
32
|
Nagy AK, Walton NY, Treiman DM. Reduced cortical ecto-ATPase activity in rat brains during prolonged status epilepticus induced by sequential administration of lithium and pilocarpine. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1997; 31:135-47. [PMID: 9376020 DOI: 10.1007/bf02815238] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Considerable evidence indicates that ATP, acting intracellularly of as a neurotransmitter, can influence nerve cell physiology in a variety of ways. Defects in the functioning of ATP-metabolizing enzymes could therefore lead to disturbances in neurotransmission and creation of sustained neuronal discharges characteristic of status epilepticus. In this study we investigated synaptosomal ATPase changes in rat brains during lithium/pilocarpine-induced status epilepticus. After 2 h of continuous electroencephalographic spiking, both Mg(2+)- and Ca(2+)-dependent ecto-ATPases were significantly decreased in freshly prepared synaptosomal preparations from the status rats. The intracellularly acting Ca2+Mg(2+)-ATPase (Ca-pump) was also decreased, but no changes occurred in synaptosomal Na+K(+)-ATPase activity. The difference between ecto-ATPase activities of the control and status rat brains was not affected by repeated freezing-thawing and lengthy storage. Possible involvement of reduced synaptosomal divalent cation-dependent ATPases in the pathophysiology of status epilepticus is discussed.
Collapse
Affiliation(s)
- A K Nagy
- Department of Neurology, UCLA School of Medicine 90095-1796, USA.
| | | | | |
Collapse
|
33
|
Abstract
The possible implication of P2-purinoceptors in brain functions is reviewed. Involvement of P2-purinoceptors in memory and learning (Section 2) is suggested by ATP release from hippocampal slices [Wieraszko, A., Goldsmith, G. and Seyfried, T. N. (1989) Brain Res. 485, 244-250], induction of fast synaptic currents in cultured hippocampal neurons [Inoue, K., Nakazawa, K., Fujimori, W. and Takanaka, A. (1992a) Neurosci. Lett. 134, 294-299] and long-lasting enhancement of the population spikes [Wieraszko, A. and Seyfried, T. N. (1989) Brain Res. 491, 356-359; Nishimura, S., Mohri, M., Okada, Y. and Mori, M. (1990) Brain Res. 525, 165-169; Fujii, S., Kato, H., Furuse, H., Ito, K., Osada, H., Hamaguchi, T. and Kuroda, Y. (1995) Neurosci, Lett. 187, 130-132], as well as ATP release on glutamate stimulation to evoke an increase in intracellular Ca2+ in hippocampal cells [Inoue, K., Koizum, S. and Nakazawa, K. (1995) NeuroReport 6, 437-440]. Moreover, mRNAs for certain types of P2x-purinoceptors are present in the hippocampus [Collo, G., North, R. A., Kawashima, E., Merlo-Pich, E., Neidhart, S., Surprenant, A. and Buell, G. (1996) J. Neurosci. 16, 2495-2507]. It is likely, therefore, that ATP may be involved in modulation of synaptic efficiency in the hippocampus. The implication of ATP in schizophrenia is suggested by the fact that antipsychotic drugs inhibit ATP-evoked responses in PC12 cells [Koizumi, S., Ikeda, M., Nakazawa, K., Inoue, K., Ito, K. and Inoue, K. (1995b) Biochem. Biophys. Res. Commun. 210, 624-630] without blocking the action of dopamine D2 receptors. Involvement of P2-purinoceptors in Sections 4 ("Pain and cognition") and 5 ("Central regulation of the autonomic system") are also discussed.
Collapse
Affiliation(s)
- K Inoue
- Division of Pharmacology, National Institute of Health Sciences, Tokyo, Japan.
| | | | | |
Collapse
|
34
|
Zimmermann H. Biochemistry, localization and functional roles of ecto-nucleotidases in the nervous system. Prog Neurobiol 1996; 49:589-618. [PMID: 8912394 DOI: 10.1016/0301-0082(96)00026-3] [Citation(s) in RCA: 345] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nucleotides such as ATP, ADP, UTP or the diadenosine polyphosphates and possibly even NAD+ are extracellular signaling substances in the brain and in other tissues. Enzymes located on the cell surface catalyze the hydrolysis of these compounds and thus limit their spatio-temporal activity. As a final hydrolysis product they generate the nucleoside and phosphate. The paper discusses the biochemical properties, cellular localization and functional properties of surface-located enzymes that hydrolyse nucleotides released from nervous tissue. This is preceded by a brief discussion of nucleotide receptors, cellular storage and mechanisms of nucleotide release. In nervous tissue nucleoside 5'-triphosphates are hydrolysed by ecto-ATP-diphosphohydrolase and possibly in addition also by ecto-nucleoside triphosphatase and ecto-nucleoside diphosphatase. The molecular identity of the ATP-diphosphohydrolase has now been revealed. The hydrolysis of nucleoside 5'-monophosphates is catalysed by 5'-nucleotidase whose biochemical properties and molecular structure have been studied in detail. Little is known about the molecular properties of the diadenosine polyphosphatases. Surface located enzymes for the extracellular hydrolysis of NAD+ and also ecto-protein kinases are discussed briefly. The cellular localization of the ecto-nucleotidases is only partly defined. Whereas in adult mammalian brain activity for hydrolysis of ATP and ADP may be associated with nerve cells or glial cells 5'-nucleotidase appears to have a preferential glial allocation in the adult mammal. The extracellular hydrolysis of the nucleotides is of functional importance not only during synaptic transmission where it functions in signal elimination. It plays a crucial role also for the survival and differentiation of neural cells in vitro and presumably during neuronal development in vivo.
Collapse
Affiliation(s)
- H Zimmermann
- Biozentrum der J.W Goethe-Universität, Frankfurt am Main, Germany
| |
Collapse
|
35
|
Salgado AH, Gomez MV, Romano-Silva MA, Prado MA. Effect of vesamicol on the release of ATP from cortical synaptosomes. Neurosci Lett 1996; 204:37-40. [PMID: 8929972 DOI: 10.1016/0304-3940(96)12310-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The aim of the present experiments was to test whether vesamicol alters the evoked release of ATP from nerve terminals. Continuous or cumulative release of ATP evoked by 33 mM KC1 from rat cerebrocortical synaptosomes was largely calcium-dependent. Vesamicol interfered with release of ATP from synaptosomes depolarized with KCl (33 mM) in a dose-dependent and stereoselective way. The (-)-vesamicol decreased the output of ATP in doses much lower than (+)-vesamicol. The release of the major excitatory neurotransmitter glutamate from depolarized nerve endings was not impaired by vesamicol. We suggest that vesamicol may alter the release of ATP specifically, probably by interacting with a protein similar to the vesamicol receptor found in cholinergic synaptic vesicles.
Collapse
Affiliation(s)
- A H Salgado
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | |
Collapse
|
36
|
|
37
|
Benzi G, Gorini A, Ghigini B, Moretti A, Dagani F, Villa RF. Is the Mg(2+)-ATP-dependent proton pumping activity of the synaptic vesicles a factor involved in the cerebral hypoxia? Neurochem Res 1996; 21:7-18. [PMID: 8833218 DOI: 10.1007/bf02527666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The changes in the Mg(2+)-dependent V-type ATPase activity and the Mg(2+)-ATP-dependent H+ pumping activity of the synaptic vesicles from the cerebral cortex of rats submitted to intermittent chronic (4 weeks) mild or severe hypoxia were evaluated. The adaptation to the chronic severe hypoxia increases both the ATPase and the H+ pumping activities which are inhibited by NEM with an exponential relationship between the IC(50) values and the in vivo O2 concentration. The Mg(2+)-dependent increase in H+ pumping activity of synaptic vesicles from the rats subjected to in vivo chronic hypoxia may be antagonized by nigericin (dissipating delta pH) and by FCCP (dissipating delta pH and delta psi SV). In contrast, valinomycin (dissipating the delta psi SV) and facilitating an enhancement in delta pH) increases in vitro the H+ pumping activity that is inhibited by the addition of high concentration of K gluconate (reducing the rate of K+ efflux). The preincubation of vesicles from hypoxic rats with FCCP, but not with nigericin, inhibits the valinomycin-increased H+ pumping activity. L-glutamate increases the H+ pumping activity in synaptic vesicles from the cerebral cortex of chronic hypoxic rats, whereas other amino acids (i.e., L-aspartate and L-homocysteate) and glutamate analogs (i.e., quisqualate and ibotenate) are ineffective. The adaptation to both chronic intermittent severe hypoxia and in vivo treatment with posatireline causes a decrease in the Mg(2+)-ATPase activity consistent with the decrease in the H+ pumping one of the synaptic vesicles. The addition of nigericin into incubation medium magnifies the decrease in the H+ pumping activity, while the addition of FCCP is ineffective, suggesting that the treatment with posatireline interferes with the delta psi SV component in the delta mu H+ of the synaptic vesicles from rats submitted to chronic hypoxia. The results of the in vivo and in vitro experiments suggest that in the synaptic vesicles from hypoxic rats the delta psi SV component in delta mu H+ may be most effective in increasing the Mg(2+)-ATP-dependent H+ pumping activity.
Collapse
Affiliation(s)
- G Benzi
- Istituto di Farmacologia, Università di Pavia, Pavia, Italy
| | | | | | | | | | | |
Collapse
|
38
|
Rosenberg PA, Li Y. Adenylyl cyclase activation underlies intracellular cyclic AMP accumulation, cyclic AMP transport, and extracellular adenosine accumulation evoked by beta-adrenergic receptor stimulation in mixed cultures of neurons and astrocytes derived from rat cerebral cortex. Brain Res 1995; 692:227-32. [PMID: 8548307 DOI: 10.1016/0006-8993(95)00668-g] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have previously shown that stimulation of cortical cultures containing both neurons and astrocytes with the beta-adrenergic agonist isoproterenol (ISO) results in transport of cAMP from astrocytes followed by extracellular hydrolysis to adenosine [Rosenberg et al. J. Neurosci. 14 (1994) 2953-2965]. In this study we found that the endogenous catecholamines epinephrine (EPI) and norepinephrine (NE), but not dopamine, serotonin, or histamine, all at 10 microM, significantly stimulated intracellular cAMP accumulation, cAMP transport, and extracellular adenosine accumulation in cortical cultures. Detailed dose-response experiments were performed for NE and EPI, as well as ISO. For each catecholamine, the potencies in evoking intracellular cAMP accumulation, cAMP transport, and extracellular adenosine accumulation were similar. These data provide additional evidence that a single common mechanism, namely beta-adrenergic mediated activation of adenylyl cyclase, underlies intracellular cAMP accumulation, cAMP transport, and extracellular adenosine accumulation. It appears that regulation of extracellular adenosine levels via cAMP transport and extracellular hydrolysis to adenosine may be a final common pathway of neuromodulation in cerebral cortex for catecholamines, and, indeed, any substance whose receptors are coupled to adenylyl cyclase.
Collapse
Affiliation(s)
- P A Rosenberg
- Department of Neurology, Children's Hospital, Boston, MA 02115, USA
| | | |
Collapse
|
39
|
Nitahara K, Kittel A, Liang SD, Vizi ES. A1-receptor-mediated effect of adenosine on the release of acetylcholine from the myenteric plexus: role and localization of ecto-ATPase and 5'-nucleotidase. Neuroscience 1995; 67:159-68. [PMID: 7477896 DOI: 10.1016/0306-4522(94)00585-s] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
No attempt has been made so far to classify the subtypes of presynaptic inhibitory adenosine receptors located in the myenteric plexus and to localize ecto-ATPase and 5'-nucleotidase in the intestine. The release of [3H]acetylcholine and smooth muscle responses to acetylcholine were measured and the effect of selective adenosine receptor ligands was studied using field-stimulated isolated longitudinal muscle strips of guinea-pig ileum. Release of ATP and its hydrolysis rate were also measured using the luciferin-luciferase technique. A histochemical method combined with electron microscopy was used for localization of ecto-ATPase and 5'-nucleotidase, enzymes responsible for destruction of extracellular ATP, ADP and AMP. Subtype-selective A1-receptor agonists and antagonists inhibited and enhanced, respectively, the release of acetylcholine associated with neuronal activity. A significant amount of ATP was released in response to electrical stimulation and administration of carbamylcholine. The release of ATP was inhibited by atropine and 4-diphenylacetoxy-N-methylpiperidine methiodide, an M3-receptor antagonist. Hydrolysis of ATP was rapid and resulted in an accumulation of extracellular adenosine involved in presynaptic A1-receptor-mediated inhibition of acetylcholine release. While the inhibitory effect of adenosine and ATP was significantly potentiated by dipyridamol, an adenosine uptake blocker, that of 2-ms ATP was not. The effect of ATP was not competitively antagonized by 8-cyclopentyl-1,3-dipropylxanthine, a selective A1-receptor antagonist. In conclusion, axon terminals of cholinergic interneurons are equipped with inhibitory A1- and P2 gamma-receptors. Therefore, both adenosine and ATP control the release of acetylcholine through these receptors. ATP is mainly released from the smooth muscle in response to stimulation of M3-muscarinic receptors by endogenous acetylcholine (cascade transmission [Vizi E. S. et al. (1992) Neuroscience 50, 455-465]) and is rapidly hydrolysed by ecto-ATPase localized on the surface of the smooth muscle and axon terminals producing ADP and AMP, and by 5'-nucleotidase present only on the surface of smooth muscle cells producing adenosine.
Collapse
Affiliation(s)
- K Nitahara
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467, USA
| | | | | | | |
Collapse
|
40
|
Chen ZP, Kratzmeier M, Levy A, McArdle CA, Poch A, Day A, Mukhopadhyay AK, Lightman SL. Evidence for a role of pituitary ATP receptors in the regulation of pituitary function. Proc Natl Acad Sci U S A 1995; 92:5219-23. [PMID: 7761477 PMCID: PMC41880 DOI: 10.1073/pnas.92.11.5219] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Despite a rapidly increasing acceptance for a role of ATP as an extracellular mediator in several biological systems, the present report shows that ATP may mediate physiological responses in pituitary cells. We have now been able to demonstrate a specific action of ATP receptors to mediate the release of luteinizing hormone from gonadotropes and have coupled them with further studies that clearly show that ATP can be exocytotically released from cultured rat pituitary cells. Both ATP and UTP (100 microM) caused a > 14-fold increase in the rate of luteinizing hormone release from superfused cells. Adenosine 5'-[alpha, beta-methylene]triphosphate and 5'-[beta,gamma-methylene triphosphate were ineffective, and 2-methylthio-ATP had only a modest stimulatory effect. Homologous and heterologous desensitization occurred with UTP and ATP, and these did not have additive effects. Thus, nucleotides can be effective stimulators of luteinizing hormone release through a single class of ATP receptor (P2U subtype). The calcium ionophore A23187 provoked release of a substantial amount of ATP from pituitary cells in a concentration- and Ca(2+)-dependent manner, which was desensitized by pretreatment with A23187. This implies a possible paracrine and/or autocrine mechanism by which nucleotides may exert their effects on pituitary cells. In conclusion, we have provided strong evidence for a novel role of extracellular nucleotides as mediators in pituitary--in particular, in gonadotrope--function.
Collapse
Affiliation(s)
- Z P Chen
- Department of Medicine, University of Bristol, Bristol Royal Infirmary, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
There is now wide acceptance that ATP and other nucleotides are ubiquitous extracellular chemical messengers. ATP and diadenosine polyphosphates can be released from synaptosomes. They act on a large and diverse family of P2 purinoceptors, four of which have been cloned. This receptor family can be divided into two distinct classes: ligand-gated ion channels for P2X receptors and G protein-coupled receptors for P2Y, P2U, P2T and P2D receptors. The P2Y, P2U and P2D receptors have a fairly wide tissue distribution, while the P2X receptor is mainly found in neurons and muscles and the P2T and P2Z receptors confined to platelets and immune cells, respectively. Inositol phosphate and calcium signalling appear to be the predominant mechanisms for transducing the G-protein linked P2 receptor signals. Multiple P2 receptors are expressed by neurons and glia in the CNS and also in neuroendocrine cells. ATP and other nucleotides may therefore have important roles not only as a neurotransmitter but also as a neuroendocrine regulatory messenger.
Collapse
Affiliation(s)
- Z P Chen
- Department of Medicine, University of Bristol, Bristol Royal Infirmary, UK
| | | | | |
Collapse
|
42
|
Benzi G, Gorini A, Arnaboldi R, Ghigini B, Villa RF. Age-related changes by hypoxia and TRH analogue on synaptic ATPase activities. Neurobiol Aging 1994; 15:409-17. [PMID: 7969717 DOI: 10.1016/0197-4580(94)90072-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Some synaptosomal energy-requiring ATPases were evaluated in the cerebral cortex from 3- and 24-month-old normoxic rats and rats submitted to either mild or severe chronic (4 weeks) intermittent normobaric hypoxia. Furthermore, 4-week treatment with saline or TRH analogue posatireline was performed. The activities of Na+,K(+)-ATPase, low- and high-affinity Ca(2+)-ATPase, and Ca2+,Mg(2+)-ATPase were assayed in synaptosomes and synaptosomal subfractions, namely synaptosomal plasma membranes and synaptic vesicles. With the exception of the high-affinity Ca(2+)-ATPase, aging induced a decrease in the ATPase activities from normoxic rats. The adaptation to chronic intermittent mild hypoxia was characterized by an increase in the activity of Mg(2+)-ATPase in 3-month-old rats, concomitant with a decrease in the activities of: a) Na+,K(+)-ATPase and high-affinity Ca(2+)-ATPase in both 3- and 24-month-old rats, and b) Ca2+,Mg(2+)-ATPase in 3-month-old ones. The TRH analogue posatireline increased the high-affinity Ca(2+)-ATPase in both 3- and 24-month-old hypoxic rats, concomitant with an increase in Mg(2+)-ATPase activity in 24-month-old ones. The adaptation to chronic intermittent severe hypoxia was characterized by a decrease in the activities of: a) Na+,K(+)-ATPase, Ca2+,Mg(2+)-ATPase and high-affinity Ca(2+)-ATPase in both 3- and 24-month-old rats, and b) low-affinity Ca(2+)-ATPase only in 24-month-old ones. The effect on Mg(2+)-ATPase activity was characterized by a decrease in the enzymatic form located in the synaptic plasma membranes, concomitant with an increase in the form located in the synaptic vesicles.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G Benzi
- Institute of Pharmacology, State University of Pavia, Italy
| | | | | | | | | |
Collapse
|
43
|
Benzi G, Gorini A, Arnaboldi R, Ghigini B, Villa RF. Synaptosomal non-mitochondrial ATPase activities: age-related alterations by chronic normobaric intermittent hypoxia. Neurochem Int 1994; 25:61-7. [PMID: 7950972 DOI: 10.1016/0197-0186(94)90054-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In synaptosomes and synaptosomal subfractions (namely, synaptosomal plasma membranes and synaptic vesicles) the age-related alteration in the plasticity of synaptic energy-requiring ATPases (Na+, K(+)-ATPase, low- and high-affinity Ca(2+)-ATPase, Mg(2+)-ATPase and Ca2+, Mg(2+)-ATPase) were assayed in the cerebral cortex from 3- and 24-month-old normoxic rats and rats subjected to either mild or severe chronic (4 weeks) intermittent normobaric hypoxia. With the exception of the high-affinity Ca(2+)-ATPase, aging induced a decrease in the ATPase activities from normoxic rats. The adaptation to mild hypoxia was characterized by an increase in the activity of Mg(2+)-ATPase in 3-month-old rats, concomitant with a decrease in the activities of: (i) Na+,K(+)-ATPase and high-affinity Ca(2+)-ATPase in both 3- and 24-month-old rats; and (ii) Ca2+,Mg(2+)-ATPase in 3-month-old ones. The adaptation to chronic intermittent severe hypoxia was characterized by a decrease in the activities of: (i) Na+,K(+)-ATPase, Ca2+,Mg(2+)-ATPase and high-affinity Ca(2+)-ATPase in both 3- and 24-month-old rats and (ii) low-affinity Ca(2+)-ATPase only in 24-month-old ones. The effect on Mg(2+)-ATPase activity was characterized by a decrease in the activity of the enzymatic form located in the synaptic plasma membranes (involved in ATP hydrolysis to adenosine production), concomitant with an increase in the activity of the form located in the synaptic vesicles (involved in the turnover of transmitters, e.g., glutamate).
Collapse
Affiliation(s)
- G Benzi
- Institute of Pharmacology, State University of Pavia, Italy
| | | | | | | | | |
Collapse
|
44
|
Higgins MJ, Hosseinzadeh H, MacGregor DG, Ogilvy H, Stone TW. Release and actions of adenosine in the central nervous system. PHARMACY WORLD & SCIENCE : PWS 1994; 16:62-8. [PMID: 8032343 DOI: 10.1007/bf01880657] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Adenosine is released from active neurons into the extracellular fluid at a concentration of about 1 mumol/l. Neither the precise cellular origin nor the biochemical form of release has been firmly established, though the nucleotide is probably released partly directly, as a result of raised intracellular levels, and partly as nucleotides, which are subsequently hydrolysed. Once in the extracellular medium, adenosine markedly inhibits the release of excitatory neurotransmitters and modulatory peptides and has direct inhibitory effects on postsynaptic excitability via A1 receptors. A population of A2 receptors may mediate depolarization and enhanced transmitter release. Adenosine also modulates neuronal sensitivity to acetylcholine and catecholamines, all these effects probably contributing to the behavioural changes observed in conscious animals. As a result of their many actions, adenosine analogues are being intensively investigated for use as anticonvulsant, anxiolytic, and neuroprotective agents.
Collapse
Affiliation(s)
- M J Higgins
- Department of Pharmacology, University of Glasgow, Scotland
| | | | | | | | | |
Collapse
|
45
|
Benzi G, Gorini A, Ghigini B, Arnaboldi R, Villa RF. Modifications by hypoxia and drug treatment of cerebral ATPase plasticity. Neurochem Res 1994; 19:517-24. [PMID: 8065506 DOI: 10.1007/bf00967332] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The plasticity of synaptosomal non-mitochondrial ATPases was evaluated in cerebral cortex from 3-month-old normoxic rats and rats subjected to either mild or severe intermittent normobaric hypoxia [12 hr daily exposure to N2:O2 (90:10 or 91.5:8.5) for four weeks]. The activities of Na+, K(+)-ATPase, low- and high-affinity Ca(2+)-ATPase, Mg(2+)-ATPase, and Ca2+,Mg(2+)-ATPase were assayed in synaptosomes and synaptosomal subfractions, namely synaptosomal plasma membranes and synaptic vesicles. The evaluations were performed after a 4-week treatment with saline (controls) or alpha-adrenergic agents (delta-yohimbine, clonidine), a vasodilator compound (papaverine), and an oxygen-partial pressure increasing agent (almitrine). These treatments differently changed the adaptation to chronic intermittent hypoxia characterized by a decrease in the activity of Na+,K(+)-ATPase, Ca2+,Mg(2+)-ATPase, and high-affinity Ca(2+)-ATPase, concomitant with a modification in the activity of Mg(2+)-ATPase supported in a different way by the enzymatic forms located into the synaptosomal plasma membranes and synaptic vesicles.
Collapse
Affiliation(s)
- G Benzi
- Institute of Pharmacology-State University of Pavia, Italy
| | | | | | | | | |
Collapse
|
46
|
Benzi G, Gorini A, Arnaboldi R, Ghigini B, Villa RF. Age-related alterations by chronic intermittent hypoxia on cerebral synaptosomal ATPase activities. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1994; 44:159-71. [PMID: 7897388 DOI: 10.1007/978-3-7091-9350-1_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The age-related alterations in the plasticity of synaptic energy-requiring ATPases [Na+,K(+)-ATPase, low- and high-affinity Ca(2+)-ATPase, Mg(2+)-ATPase, and Ca2+,Mg(2+)-ATPase] were assayed in synaptosomes and synaptosomal subfractions [namely, synaptosomal plasma membranes and synaptic vesicles] in the cerebral cortex from 3- and 24-month-old normoxic rats and rats subjected to either mild or severe chronic (four weeks) intermittent normobaric hypoxia. With the exception of the high-affinity Ca(2+)-ATPase, aging induced a decrease in the ATPase activities from normoxic rats. The adaptation to mild hypoxia was characterized by an increase in the activity of Mg(2+)-ATPase in 3-month-old rats, concomitant with a decrease in the activities of: (i) Na+,K(+)-ATPase and high-affinity Ca(2+)-ATPase in both 3- and 24-month-old rats, and (ii) Ca2+,Mg(2+)-ATPase in 3-month-old ones. The adaptation to chronic intermittent severe hypoxia was characterized by a decrease in the activities of: (i) Na+,K(+)-ATPase, Ca2+,Mg(2+)-ATPase and high-affinity Ca(2+)-ATPase in both 3- and 24-month-old rats, and (ii) low-affinity Ca(2+)-ATPase only in 24-month-old ones. The effect on Mg(2+)-ATPase activity was characterized by a decrease in the activity of the enzymatic form located in the synaptic plasma membranes [involved in ATP hydrolysis to adenosine production], concomitant with an increase in the activity of the form located in the synaptic vesicles [involved in the turnover of transmitters, e.g., glutamate].
Collapse
Affiliation(s)
- G Benzi
- Institute of Pharmacology, State University of Pavia, Italy
| | | | | | | | | |
Collapse
|
47
|
Abstract
ATP receptor-mediated responses in peripheral and central neurons have many characteristics which suggest that ATP may act as a fast neurotransmitter. While the receptors underlying these responses have properties which are similar to other ligand-gated ion channels which mediate fast neurotransmission, the nature of their calcium permeability and the rapid breakdown of ATP to adenosine may confer unique properties on ATP mediated synaptic transmission. The evidence that ATP acts as a fast neurotransmitter is reviewed and the properties of ATP and its receptor channels are discussed in terms of synaptic transmission.
Collapse
Affiliation(s)
- F A Edwards
- Department of Pharmacology, University of Sydney, NSW, Australia
| | | |
Collapse
|
48
|
Benzi G, Gorini A, Ghigini B, Arnaboldi R, Villa RF. Synaptosomal non-mitochondrial ATPase activities and drug treatment. Neurochem Res 1993; 18:719-26. [PMID: 8099718 DOI: 10.1007/bf00966787] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Energy-using non-mitochondrial ATPases were assayed in rat cerebral cortex synaptosomes and synaptosomal subfractions, namely synaptosomal plasma membranes and synaptic vesicles. The following enzyme activities were evaluated: Na+, K+ -ATPase; high- and low-affinity Ca2+ -ATPase; basal Mg(2+)-ATPase; Ca2+, Mg(2+)-ATPase. The evaluations were performed after four week-treatment with saline [controls] or alpha-adrenergic agents (delta-yohimbine, clonidine), energy-metabolism interfering compound (theniloxazine), and oxygen-partial pressure increasing agent (almitrine), in order to define the plasticity and the selective changes in individual ATPases. In rat cerebral cortex, the enzyme adaptation to four-week-treatment with delta-yohimbine or clonidine was characterized by increase in both high- and low-affinity Ca2+ -ATPase activities. The action involves the enzyme form located in the synaptic plasma membranes. The enzyme adaptation to the subchronic treatments with theniloxazine or almitrine was characterized by increase in Na+, K(+)-ATPase or Mg(2+)-ATPase activities, respectively. The action involves the enzymatic forms located in the synaptic plasma membranes. Thus, the pharmacodynamic effects of the agents tested should also be related to the changes induced in the activity of some specific synaptosomal non-mitochondrial ATPases.
Collapse
Affiliation(s)
- G Benzi
- Istituto di Farmacologia, Università di Pavia, Italia
| | | | | | | | | |
Collapse
|
49
|
Fariñas I, Egea G, Blasi J, Cases C, Marsal J. Calcium channel antagonist omega-conotoxin binds to intramembrane particles of isolated nerve terminals. Neuroscience 1993; 54:745-52. [PMID: 8392668 DOI: 10.1016/0306-4522(93)90244-a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Voltage-sensitive calcium channels play a key role in evoked neurotransmitter release and their distribution in presynaptic membranes can be critical for fast signalling at chemical synapses. Using a biotinylated derivative of the neuronal calcium channel antagonist, omega-conotoxin, and a combination of colloidal gold labeling and freeze-fracture techniques, we have labeled calcium channels present at the membrane of nerve terminals isolated from the electric organ of Torpedo marmorata. The biotinylated blocker exerts an inhibitory action on the high potassium-evoked release of adenosine triphosphate as the native toxin does and its interaction with biological membranes is specific as shown in displacement experiments. This study shows that an antagonist specific for voltage-activated calcium channels binds to intramembrane particles in presynaptic membranes, reinforcing the idea that these particles, concentrated at neurotransmitter release sites, effectively represent calcium channels.
Collapse
Affiliation(s)
- I Fariñas
- Departament de Biologia Cellular i Anatomia Patològica, Facultat de Medicina, Hospital de Bellvitge, Universitat de Barcelona, Spain
| | | | | | | | | |
Collapse
|
50
|
Sawynok J, Downie JW, Reid AR, Cahill CM, White TD. ATP release from dorsal spinal cord synaptosomes: characterization and neuronal origin. Brain Res 1993; 610:32-8. [PMID: 8518929 DOI: 10.1016/0006-8993(93)91213-c] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The present study determined the Ca(2+)-dependence of the release of adenosine 5'-triphosphate (ATP) from dorsal spinal cord synaptosomes evoked by depolarization with K+ and capsaicin, and the effect of intrathecal capsaicin pretreatment, dorsal rhizotomy and intrathecal pretreatment with 6-hydroxydopamine on such release. Release of ATP evoked by K+ was Ca(2+)-dependent, while that evoked by capsaicin was Ca(2+)-independent. Capsaicin pretreatment (60 micrograms, 7 days), which lesions small diameter afferents, did not alter release of ATP evoked by either K+ or capsaicin. Dorsal rhizotomy, which lesions all afferents, produced a significant reduction in the amount of ATP released from the rhizotomized side compared to the intact side. Pretreatment with 6-hydroxydopamine (100 micrograms, 7 days) to destroy adrenergic nerve terminals, markedly reduced spinal cord noradrenaline levels, but did not alter the K(+)-evoked release of ATP. These results suggest that some K(+)-evoked release of ATP could originate from large but not small diameter afferent nerve terminals in the spinal cord. ATP does not appear to originate from small diameter afferents as, although ATP is released by in vitro exposure to capsaicin, such release occurs only at high concentrations, release is Ca(2+)-independent and it is unaltered by pretreatment with capsaicin. The bulk of the ATP released from the spinal cord does not originate from descending noradrenergic nerve terminals.
Collapse
Affiliation(s)
- J Sawynok
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | | | | | | | | |
Collapse
|