1
|
Benitez A, Riquelme R, del Campo M, Araya C, Lara HE. Nerve Growth Factor: A Dual Activator of Noradrenergic and Cholinergic Systems of the Rat Ovary. Front Endocrinol (Lausanne) 2021; 12:636600. [PMID: 33716987 PMCID: PMC7947612 DOI: 10.3389/fendo.2021.636600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/18/2021] [Indexed: 11/29/2022] Open
Abstract
The functioning of the ovary is influenced by the autonomic system (sympathetic and cholinergic intraovarian system) which contributes to the regulation of steroid secretion, follicular development, and ovulation. There is no information on the primary signal that activates both systems. The nerve growth factor (NGF) was the first neurotrophic factor found to regulate ovarian noradrenergic neurons and the cholinergic neurons in the central nervous system. The aim of this study was to determine whether NGF is one of the participating neurotrophic factors in the activation of the sympathetic and cholinergic system of the ovary in vivo and its role in follicular development during normal or pathological states. The administration of estradiol valerate (a polycystic ovary [PCO] phenotype model) increased norepinephrine (NE) (through an NGF-dependent mechanism) and acetylcholine (ACh) levels. Intraovarian exposure of rats for 28 days to NGF (by means of an osmotic minipump) increased the expression of tyrosine hydroxylase and acetylcholinesterase (AChE, the enzyme that degrades ACh) without affecting enzyme activity but reduced ovarian ACh levels. In vitro exposure of the ovary to NGF (100 ng/ml for 3 h) increased both choline acetyl transferase and vesicular ACh transporter expression in the ovary, with no effect in ACh level. In vivo NGF led to an anovulatory condition with the appearance of follicular cysts and decreased number of corpora lutea (corresponding to noradrenergic activation). To determine whether the predominance of a NE-induced polycystic condition after NGF is responsible for the PCO phenotype, rats were exposed to an intraovarian administration of carbachol (100 μM), a muscarinic cholinergic agonist not degraded by AChE. Decreased the number of follicular cysts and increased the number of corpora lutea, reinforcing that cholinergic activity of the ovary participates in controlling its functions. Although NGF increased the biosynthetic capacity for ACh, it was not available to act in the ovary. Hence, NGF also regulates the ovarian cholinergic system, implying that NGF is the main regulator of the dual autonomic control. These findings highlight the need for research in the treatment of PCO syndrome by modification of locally produced ACh as an in vivo regulator of follicular development.
Collapse
|
2
|
Abstract
Proper vascular regulation is of paramount importance for the control of blood flow to tissues. In particular, the regulation of peripheral resistance arteries is essential for several physiological processes, including control of blood pressure, thermoregulation and increase of blood flow to central nervous system and heart under stress conditions such as hypoxia. Arterial tone is regulated by the periarterial autonomic nervous plexus, as well as by endothelium-dependent, myogenic and humoral mechanisms. Underscoring the importance of proper vascular regulation, defects in these processes can lead to diseases such as hypertension, orthostatic hypotension, Raynaud's phenomenon, defective thermoregulation, hand-foot syndrome, migraine and congestive heart failure. Here, we review the molecular mechanisms controlling the development of the periarterial nerve plexus, retrograde and localized signalling at neuro-effector junctions, the molecular and cellular mechanisms of vascular regulation and adult plasticity and maintenance of periarterial innervation. We particularly highlight a newly discovered role for vascular endothelial growth factor in the structural and functional maintenance of arterial neuro-effector junctions. Finally, we discuss how defects in neuronal vascular regulation can lead to disease.
Collapse
Affiliation(s)
- E Storkebaum
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany.
| | | |
Collapse
|
3
|
Luther JA, Birren SJ. Neurotrophins and target interactions in the development and regulation of sympathetic neuron electrical and synaptic properties. Auton Neurosci 2009; 151:46-60. [PMID: 19748836 DOI: 10.1016/j.autneu.2009.08.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The electrical and synaptic properties of neurons are essential for determining the function of the nervous system. Thus, understanding the mechanisms that control the appropriate developmental acquisition and maintenance of these properties is a critical problem in neuroscience. A great deal of our understanding of these developmental mechanisms comes from studies of soluble growth factor signaling between cells in the peripheral nervous system. The sympathetic nervous system has provided a model for studying the role of these factors both in early development and in the establishment of mature properties. In particular, neurotrophins produced by the targets of sympathetic innervation regulate the synaptic and electrophysiological properties of postnatal sympathetic neurons. In this review we examine the role of neurotrophin signaling in the regulation of synaptic strength, neurotransmitter phenotype, voltage-gated currents and repetitive firing properties of sympathetic neurons. Together, these properties determine the level of sympathetic drive to target organs such as the heart. Changes in this sympathetic drive, which may be linked to dysfunctions in neurotrophin signaling, are associated with devastating diseases such as high blood pressure, arrhythmias and heart attack. Neurotrophins appear to play similar roles in modulating the synaptic and electrical properties of other peripheral and central neuronal systems, suggesting that information provided from studies in the sympathetic nervous system will be widely applicable for understanding the neurotrophic regulation of neuronal function in other systems.
Collapse
Affiliation(s)
- Jason A Luther
- Department of Biology, National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA.
| | | |
Collapse
|
4
|
Ernsberger U. Role of neurotrophin signalling in the differentiation of neurons from dorsal root ganglia and sympathetic ganglia. Cell Tissue Res 2009; 336:349-84. [PMID: 19387688 DOI: 10.1007/s00441-009-0784-z] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 02/12/2009] [Indexed: 12/17/2022]
Abstract
Manipulation of neurotrophin (NT) signalling by administration or depletion of NTs, by transgenic overexpression or by deletion of genes coding for NTs and their receptors has demonstrated the importance of NT signalling for the survival and differentiation of neurons in sympathetic and dorsal root ganglia (DRG). Combination with mutation of the proapoptotic Bax gene allows the separation of survival and differentiation effects. These studies together with cell culture analysis suggest that NT signalling directly regulates the differentiation of neuron subpopulations and their integration into neural networks. The high-affinity NT receptors trkA, trkB and trkC are restricted to subpopulations of mature neurons, whereas their expression at early developmental stages largely overlaps. trkC is expressed throughout sympathetic ganglia and DRG early after ganglion formation but becomes restricted to small neuron subpopulations during embryogenesis when trkA is turned on. The temporal relationship between trkA and trkC expression is conserved between sympathetic ganglia and DRG. In DRG, NGF signalling is required not only for survival, but also for the differentiation of nociceptors. Expression of neuropeptides calcitonin gene-related peptide and substance P, which specify peptidergic nociceptors, depends on nerve growth factor (NGF) signalling. ret expression indicative of non-peptidergic nociceptors is also promoted by the NGF-signalling pathway. Regulation of TRP channels by NGF signalling might specify the temperature sensitivity of afferent neurons embryonically. The manipulation of NGF levels "tunes" heat sensitivity in nociceptors at postnatal and adult stages. Brain-derived neurotrophic factor signalling is required for subpopulations of DRG neurons that are not fully characterized; it affects mechanical sensitivity in slowly adapting, low-threshold mechanoreceptors and might involve the regulation of DEG/ENaC ion channels. NT3 signalling is required for the generation and survival of various DRG neuron classes, in particular proprioceptors. Its importance for peripheral projections and central connectivity of proprioceptors demonstrates the significance of NT signalling for integrating responsive neurons in neural networks. The molecular targets of NT3 signalling in proprioceptor differentiation remain to be characterized. In sympathetic ganglia, NGF signalling regulates dendritic development and axonal projections. Its role in the specification of other neuronal properties is less well analysed. In vitro analysis suggests the involvement of NT signalling in the choice between the noradrenergic and cholinergic transmitter phenotype, in the expression of various classes of ion channels and for target connectivity. In vivo analysis is required to show the degree to which NT signalling regulates these sympathetic neuron properties in developing embryos and postnatally.
Collapse
Affiliation(s)
- Uwe Ernsberger
- Interdisciplinary Center for Neurosciences (IZN), INF 307, University of Heidelberg, 69120, Heidelberg, Germany.
| |
Collapse
|
5
|
Rouzrokh A, Ebrahimi SA, Rahbr-Roshandel N, Mahmoudian M. Effects of mebudipine and dibudipine, two new calcium channel blockers on voltage-activated calcium currents of PC12 cells. ACTA ACUST UNITED AC 2007; 94:199-207. [PMID: 17853772 DOI: 10.1556/aphysiol.94.2007.3.5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mebudipine and dibudipine are two newly synthesized dihydropyridine (DHP) calcium channel blockers that have been shown to have considerable relaxant effects on vascular and atrial smooth muscle. The in vitro half-lives of mebudipine and dibudipine are reported to be significantly longer than that of nifedipine. In this study, we investigated the effects of mebudipine and dibudipine on voltage-activated Ca2+ channels on differentiated PC12 cells and compared their potencies to amlodipine. Our results point to absence of voltage-activated Ca2+ currents in undifferentiated PC12 cells. It is also concluded that mebudipine and dibudipine, like amlodipine are L-type calcium channel blockers. When tested in a range of 10-100 microM, mebudipine is at least as potent as amlodipine in inhibition of peak Ba2+ currents in differentiated PC12 cells while dibudipine is significantly less potent compared to amlodipine and mebudipine.
Collapse
Affiliation(s)
- A Rouzrokh
- Razi Institute for Drug Research, Iran University of Medical Sciences, P.O. Box 14155-6183, Tehran, Iran
| | | | | | | |
Collapse
|
6
|
Bierl MA, Isaacson LG. Increased NGF proforms in aged sympathetic neurons and their targets. Neurobiol Aging 2005; 28:122-34. [PMID: 16377033 DOI: 10.1016/j.neurobiolaging.2005.11.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 11/11/2005] [Accepted: 11/17/2005] [Indexed: 11/23/2022]
Abstract
Target-derived neurotrophins such as nerve growth factor (NGF) and neurotrophin-3 (NT-3) regulate sympathetic neuron survival. Here, NGF and NT-3 protein and transcript were examined in sympathetic neurons and targets in order to determine their role in age-related neuronal atrophy. One obvious alteration was a dramatic increase (up to 50-fold) in NGF protein forms, corresponding to proNGF-B, in the superior cervical ganglion (SCG) and targets where sympathetic innervation shows atrophy. In the iris, where sympathetic innervation is protected into old age, proNGF-B was decreased. Alterations in NGF transcript paralleled changes in NGF protein, albeit to a lesser degree. Though significantly increased in aged SCG, NT-3 protein, found primarily as the 'mature' form, showed only minor changes in most tissues, though NT-3 mRNA generally was decreased. In contrast, both NT-3 transcript and NT-3 precursors were increased in iris. The dramatic increases in proNGF, together with minimal changes in NT-3, suggest that alterations in NGF regulation may contribute to the loss of sympathetic innervation observed in many aged peripheral targets.
Collapse
Affiliation(s)
- Michael A Bierl
- Center for Neuroscience, Department of Zoology, Miami University, Oxford, OH 45056, USA
| | | |
Collapse
|
7
|
Hashimoto H, Hagihara N, Koga K, Yamamoto K, Shintani N, Tomimoto S, Mori W, Koyama Y, Matsuda T, Baba A. Synergistic induction of pituitary adenylate cyclase-activating polypeptide (PACAP) gene expression by nerve growth factor and PACAP in PC12 cells. J Neurochem 2000; 74:501-7. [PMID: 10646500 DOI: 10.1046/j.1471-4159.2000.740501.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) gene expression was analyzed in PC12 cells. PC12 cells transfected with a PACAP promoter-luciferase reporter construct were utilized to investigate the effects of PACAP, either alone or in combination with nerve growth factor (NGF), on PACAP transcriptional response. PACAP induced transcription from the PACAP promoter through PACAP type I receptor (PAC1 receptor). PACAP gene transcription was also induced by NGF. Simultaneous treatment with PACAP and NGF resulted in a synergistic transcriptional response that was more than three times the predicted response, based on a simple additive effect of both agents. This synergism in transcriptional response paralleled the PACAP mRNA levels, as determined by RT-PCR and northern blotting. The level of PACAP mRNA peaked 3 h after stimulation and gradually returned to basal levels by 48 h. PC12 cells are known to express predominantly the hop isoform of the PAC1 receptor, which positively couples to both adenylate cyclase and phospholipase C. To determine the role of the cyclic AMP and protein kinase C pathways in PACAP gene expression, the effects of forskolin and phorbol 12-myristate 13-acetate (PMA) were then examined. PMA did not alter PACAP mRNA levels but enhanced forskolin-induced PACAP mRNA expression. Down-regulation of protein kinase C blocked the ability of PACAP to stimulate PACAP mRNA expression. The mitogen-activated protein kinase extracellular signal-regulated kinase (ERK) kinase 1/2 (MEK1/2) inhibitor PD98059 also blocked the PACAP mRNA expression induced by either PACAP or NGF but not that induced by a combination of PACAP and NGF. These results suggest that PACAP stimulates the PACAP gene expression in PC12 cells at least in part through activation of adenylate cyclase and protein kinase C signaling pathways and that the ERK1/2 cascade is involved in PACAP and NGF-induced PACAP gene expression, although redundant signaling pathways may also be involved. The present finding showing that PACAP in combination with NGF causes a synergistic increase in PACAP gene expression in PC12 cells supports the idea that PACAP acts as an autocrine regulatory factor.
Collapse
Affiliation(s)
- H Hashimoto
- Molecular Neuropharmacology Laboratory, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Rhie DJ, Yi SY, Hahn SJ, Sim SS, Jo YH, Kim MS. Somatostatin potentiates voltage-dependent K+ and Ca2+ channel expression induced by nerve growth factor in PC12 cells. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 112:267-74. [PMID: 9878777 DOI: 10.1016/s0165-3806(98)00175-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
It has been proposed that neurotransmitters and neuromodulators may function as neurotrophic factors during the development of the nervous system. Somatostatin (SS) was known to increase neurite outgrowth in PC12 cells, rat pheochromocytoma cell line, and cerebellar granule cells as well as Helisoma neuron. To further investigate a neurotrophic role of SS, voltage-dependent K+ and Ca2+ channel expression was studied using whole-cell patch-clamp in PC12 cells and the effect of SS was compared to that of nerve growth factor (NGF). Cyclic AMP (cAMP) level and mitogen-activated protein (MAP) kinase phosphorylation were also studied following the treatment with SS and/or NGF. Whereas NGF (50 ng/ml) increased continually the current density of the voltage-dependent K+ channel throughout 8 days treatment, SS (1 microM) increased the K+ current density on day 2 to the peak. K+ current density was decreased thereafter and was not different on day 6 from that of undifferentiated cells. Although SS did not increase voltage-dependent Ca2+ current density, it potentiated NGF-induced increase of voltage-dependent Ca2+ channel current density as well as the K+ current density. cAMP level was decreased by NGF and/or SS treatment. An increased phosphorylation of MAP kinase induced by NGF was not changed by SS treatment. These results support functionally that SS may function as a neurotrophic factor in developing nervous system.
Collapse
Affiliation(s)
- D J Rhie
- Department of Physiology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, Seoul, 137-701, South Korea
| | | | | | | | | | | |
Collapse
|
9
|
Trophic Factors in Experimental Models of Adult Central Nervous System Injury. Cereb Cortex 1999. [DOI: 10.1007/978-1-4615-4885-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
10
|
Montine TJ, Underhill TM, Valentine WM, Graham DG. Dialkyldithiocarbamates inhibit tyrosine hydroxylase activity in PC12 cells and in fibroblasts that express tyrosine hydroxylase. NEURODEGENERATION : A JOURNAL FOR NEURODEGENERATIVE DISORDERS, NEUROPROTECTION, AND NEUROREGENERATION 1995; 4:283-90. [PMID: 8581560 DOI: 10.1016/1055-8330(95)90017-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dithiocarbamates and CS2 have been associated with neurobehavioural changes suggestive of central dopaminergic dysfunction. Diethyldithiocarbamate (DEDC), dimethyldithiocarbamate (DMDC), and methyldithiocarbamate (MDC) were examined for their ability to inhibit tyrosine hydroxylase (TH) activity in PC12 cells and transfected CHO fibroblasts that expressed TH (CHO/TH) activity when tetrahydrobiopterin (BH4) was added to medium. DEDC or DMDC did not significantly alter viability of PC12 cells or CHO/TH cells at < or = 100 microM for 18 h; the EC50 for each compound was approximately 5 mM in both cell lines. In contrast, the EC50 for MDC was 41 or 74 microM in PC12 or CHO/TH cultures, respectively. There was no change in immunodetectable levels of TH in PC12 or CHO/TH cells following exposure to subcytotoxic concentrations of dithiocarbamates. DEDC and DMDC (5 to 100 microM) produced concentration-dependent reductions in PC12 cell dopamine and dopac levels as well as in dopa levels in CHO/TH cultures. Reduction of PC12 catechols was not due to altered vesicular storage. In vitro PC12 TH activity was 80.2 +/- 3.4% or 82.4 +/- 2.9% of control following exposure to 100 microM DEDC or DMDC, respectively, and was not fully restored by incubation with Fe2+. These results show that DEDC and DMDC, but not MDC, are low potency cytotoxins that decrease TH activity in cultured cells through mechanisms other than inhibition of BH4 biosynthesis or iron chelation.
Collapse
Affiliation(s)
- T J Montine
- Department of Pathology and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
11
|
Abstract
The adult mammalian brain is a remarkably heterogeneous structure comprised of more than 50 biochemically distinct types of neurons. This phenotypic diversity is established during development, not only as the result of genetic but also epigenetic influences. It is believed that extracellular proteins, called differentiation factors, both instruct neurons in their original choice of neurotransmitter substance and, in certain situations, revise those biochemical decisions. The first candidate differentiation factor in the brain has only recently been proposed. This muscle-derived substance has the unique ability, in culture, to initiate expression of genes associated with catecholamine transmitter synthesis in non-catecholamine neurons of the brain. Because it also amplifies expression in cultured catecholamine-producing neurons in vitro and in vivo, it may prove to be an important therapeutic agent in diseases involving catecholamine shortages.
Collapse
Affiliation(s)
- L Iacovitti
- Institute of Neuroscience, Hahnemann University, Philadelphia, PA 19102
| |
Collapse
|
12
|
Affiliation(s)
- G Guroff
- Section on Growth Factors, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
13
|
Ichida S, Matsuda N, Nakazaki S, Kishino H, Wada T, Akimoto T. Characteristics of 45Ca uptake stimulated by high KCl of differentiated and undifferentiated NG108-15 and PC12h cells. Neurochem Res 1993; 18:625-32. [PMID: 8386338 DOI: 10.1007/bf00966941] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The characteristics of KCl-stimulated 45Ca uptake by neuroblastoma X glioma hybrid NG108-15 cells induced to differentiate with dibutyryl cAMP (Bt2cAMP) and of PC12h pheochromocytoma cells induced to differentiate with nerve growth factor (NGF) were studied. The extent and rate of KCl-stimulated 45Ca uptake by differentiated NG108-15 cells induced with Bt2cAMP were significantly higher than those of the undifferentiated cells. However, differentiation of PC12h cells induced with NGF did not enhance their extent or rate of KCl-stimulated 45Ca uptake. The effects of Ca agonist and antagonists indicated that the characteristics of KCl-stimulated 45Ca uptake by Bt2cAMP-treated NG108-15 cells and NGF-treated PC12h cells mainly reflected those of peripheral L-type voltage-sensitive calcium channels activated by high KCl. These results suggest that differentiated neural cells did not all show an enhanced capacity for KCl-stimulated 45Ca uptake, although the characteristic patterns of differentiation (extension of neurite-like processes, etc.) and that of effect by Ca agonist or antagonists on NG108-15 cells and PC12h cells were similar.
Collapse
Affiliation(s)
- S Ichida
- Department of Biological Chemistry, Faculty of Pharmacy, Kinki University, Higashi-Osaka, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Iacovitti L, Evinger MJ, Stull ND. Muscle-derived differentiation factor increases expression of the tyrosine hydroxylase gene and enzyme activity in cultured dopamine neurons from the rat midbrain. ACTA ACUST UNITED AC 1993; 16:215-22. [PMID: 1363326 DOI: 10.1016/0169-328x(92)90228-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Our earlier work demonstrated that certain populations of brain neurons which do not synthesize catecholamine (CA) neurotransmitters in vivo, will, when grown in culture with muscle-derived differentiation factor (MDF), unexpectedly express the gene for the CA biosynthetic enzyme tyrosine hydroxylase (TH). In this paper, we sought to determine whether MDF could also regulate TH expression in those neurons which normally synthesize CA neurotransmitters. Incubation of cultured dopamine neurons from the ventral midbrain with MDF elevated the levels of TH mRNA and TH enzyme activity 5- to 40-fold higher than that measured in control cultures. Sympathetic neurons were unaffected by a similar MDF treatment. Unlike the 2-day critical period for MDF-responsivity in non-CA neurons. CA neurons remained susceptible to MDF's influence over an extended developmental interval (E14-18), suggesting that MDF may be important for TH gene regulation in brain CA neurons even differentiation is complete. Because of these unique properties, MDF may provide a unique opportunity to explore ways in which the TH gene might be directly manipulated in these cell populations in order to correct the CA imbalances that occur in certain neurological diseases and disorders.
Collapse
Affiliation(s)
- L Iacovitti
- Institute of Neuroscience, Hahnemann University Medical School, Philadelphia, PA 19102
| | | | | |
Collapse
|
15
|
Haycock JW, Ahn NG, Cobb MH, Krebs EG. ERK1 and ERK2, two microtubule-associated protein 2 kinases, mediate the phosphorylation of tyrosine hydroxylase at serine-31 in situ. Proc Natl Acad Sci U S A 1992; 89:2365-9. [PMID: 1347949 PMCID: PMC48658 DOI: 10.1073/pnas.89.6.2365] [Citation(s) in RCA: 206] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tyrosine hydroxylase (TH) is phosphorylated at four sites in situ and in vivo, and the protein kinases that phosphorylate three of these sites (Ser8,Ser19,Ser40) have been identified. In intact cells, the phosphorylation of the fourth site (Ser31) is increased in response to phorbol esters or nerve growth factor (NGF). Here, we show that Ser31 is phosphorylated by ERK1 and ERK2, two myelin basic protein and microtubule-associated protein kinases. Extracts of NGF- or bradykinin-treated PC12 rat pheochromocytoma cells were fractionated on Mono Q columns. Protein kinase activity toward Ser31 in TH was present in two peaks corresponding to myelin basic protein kinase activities previously identified as ERK1 and ERK2. Phosphorylation of purified TH in vitro by both kinases was selective for Ser31 up to at least 0.6 mol of phosphate per mol of TH subunit. Treatment of intact PC12 cells with bradykinin or NGF increased both the phosphorylation of TH-Ser31 in situ and the catalytic activity of ERKs (measured subsequently in vitro with myelin basic protein as substrate). Pretreatment of the cells with genistein (a protein-tyrosine kinase inhibitor) decreased the bradykinin- but not the NGF-induced changes in both TH-Ser31 phosphorylation and ERK activity. Genistein also inhibited the increases in Ser31 phosphorylation produced by phorbol dibutyrate, muscarine, and Ba2+. The data indicate that ERK activity is responsible for phosphorylating TH at Ser31 in intact cells and suggest that TH-Ser31 phosphorylation may be regulated by multiple signaling pathways that converge at or prior to the activation of the ERKs.
Collapse
Affiliation(s)
- J W Haycock
- Department of Biochemistry, Louisiana State University Medical Center, New Orleans 70119
| | | | | | | |
Collapse
|
16
|
Badoyannis HC, Sharma SC, Sabban EL. The differential effects of cell density and NGF on the expression of tyrosine hydroxylase and dopamine beta-hydroxylase in PC12 cells. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1991; 11:79-87. [PMID: 1685006 DOI: 10.1016/0169-328x(91)90024-r] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Expression of neurotransmitter phenotype during development of the nervous system is determined by several micro-environmental factors including cell aggregation. In order to delineate the role of cell aggregation and nerve growth factor (NGF) in regulating catecholamine expression, tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH) mRNA levels were examined in PC12 cells at different cell densities with and without NGF treatment. Upon plating of PC12 cells from low density (0.3-1.0 x 10(5) cells/cm2) to high density (0.5-2.0 x 10(6) cells/cm2) TH mRNA levels increased 4-fold within 1 day and remained at this level for several days. In cells replated from high to low density, TH mRNA returned to original levels within 1 day. In addition to TH mRNA, TH protein and dopamine levels were also found to increase in high-density cultures. In contrast to the increase in TH mRNA, DBH mRNA decreased about 40% in cells plated from low to high density. Hence, cell density differentially regulated TH and DBH mRNA levels. Unlike cell density, NGF treatment led to a decrease in both TH and DBH mRNA levels. However, when NGF treated cells were replated from low to high density, TH and dopamine levels increased. Thus NGF did not alter the density dependent regulation of TH. Similarly, TH mRNA levels increased in F4 cells, a mutant PC12 cell line unresponsive to NGF, when plated from low to high density. DBH mRNA decreased to undetectable levels when NGF treated PC12 cells were plated to high density, demonstrating a synergetic effect of cell density and NGF treatment on DBH mRNA levels.
Collapse
Affiliation(s)
- H C Badoyannis
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla 10595
| | | | | |
Collapse
|
17
|
Mitchell JP, Hardie DG, Vulliet PR. Site-specific phosphorylation of tyrosine hydroxylase after KCl depolarization and nerve growth factor treatment of PC12 cells. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)45713-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
18
|
Fink DW, Guroff G. Nerve growth factor stimulation of arachidonic acid release from PC12 cells: independence from phosphoinositide turnover. J Neurochem 1990; 55:1716-26. [PMID: 2170582 DOI: 10.1111/j.1471-4159.1990.tb04961.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The effect of nerve growth factor on the metabolism of arachidonic acid and the hydrolysis of phosphatidylinositol in PC12 cells was examined. Addition of nerve growth factor to PC12 cells isotopically labeled with [3H]arachidonic acid caused an increased release of radioactivity. In a similar manner, treatment of PC12 cells prelabeled with [3H]inositol increased inositol monophosphate accumulation in the presence of LiCl. Stimulation of [3H]arachidonic acid release by nerve growth factor was concentration dependent, attaining a maximum at 0.5 nM. Concentrations of nerve growth factor above 0.5 nM caused less than maximal stimulation. In contrast, nerve growth factor-stimulated accumulation of [3H]inositol monophosphate exhibited a sigmoidal dose-response curve with an apparent maximum at 8 nM. Increased accumulation of [3H]inositol monophosphate could be detected as early as 60 s after nerve growth factor addition, whereas nerve growth factor-stimulated release of [3H]arachidonic acid was not observed until 5 min after nerve growth factor treatment. The nerve growth factor-stimulated release of [3H]arachidonic acid was independent of extracellular calcium concentration. Increased [3H]inositol monophosphate accumulation elicited by nerve growth factor was dependent on the presence of extracellular calcium. These results suggest that the increased metabolism of arachidonic acid and the enhanced hydrolysis of phosphatidylinositol are separately regulated by nerve growth factor.
Collapse
Affiliation(s)
- D W Fink
- Section on Growth Factors, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md 20892
| | | |
Collapse
|
19
|
|
20
|
Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D pheochromocytoma cells. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)34116-x] [Citation(s) in RCA: 1167] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
21
|
The Lack of a Role for Protein Kinase C in Neurite Extension and in the Induction of Ornithine Decarboxylase by Nerve Growth Factor in PC12 Cells. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)94099-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
22
|
Schwarz MA, Brown PJ, Eveleth DD, Bradshaw RA. Modulation of growth factor induced fiber outgrowth in rat pheochromocytoma (PC12) cells by a fibronectin receptor antibody. J Cell Physiol 1989; 138:121-8. [PMID: 2521340 DOI: 10.1002/jcp.1041380117] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rat pheochromocytoma PC12 cells respond to the binding of nerve growth factor (NGF) and basic fibroblast growth factor (bFGF) by extending neurites in a manner resembling sympathetic neurons. This response requires cell attachment to an appropriate substratum (Fujii et al., J. Neurosci., 2:1157, 1982); attachment factors which function in this capacity include the adhesive proteins fibronectin and laminin. Incubating PC12 cells with a polyclonal antiserum directed against a putative 140-kDa fibroblast cell surface fibronectin receptor (anti-gp140) perturbed spreading but not attachment of the cells to fibronectin and laminin substrates. However, in the presence of anti-gp 140 or its Fab fragments, NGF-stimulated neurite outgrowth was dramatically reduced. The antibody also caused a retraction of previously extended neurites. SDS-PAGE analysis of immunoprecipitates of PC12 cells surface labeled with 125I identified a prominent 120-140-kDa band, suggesting that the site of anti-gp140 action in PC12 cells is also through a fibronectin receptor.
Collapse
Affiliation(s)
- M A Schwarz
- Department of Biological Chemistry, College of Medicine, University of California, Irvine 92717
| | | | | | | |
Collapse
|
23
|
Bernd P. Catecholaminergic cells and support cell precursors in neural crest cultures differentially express nerve growth factor receptors. Int J Dev Neurosci 1989; 7:449-63. [PMID: 2573244 DOI: 10.1016/0736-5748(89)90005-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Long-term neural crest cultures grown in the continuous absence of exogenous nerve growth factor (NGF) contain a subpopulation of cells with NGF receptors exclusively of the low affinity subtype (Kd of approximately 3.2 nM). The current studies combined immunocytochemistry, using GIN1 (a support cell marker) or tyrosine hydroxylase antibodies, with radioautography following exposure to iodinated nerve growth factor (125I-NGF). The majority of cells specifically binding 125I-NGF were found to be immunoreactive for GIN1, indicating that the primary cell phenotype expressing receptors for NGF appear to be support cell precursors, at least under these conditions. These cells are likely to be responsive to and/or dependent upon NGF; the nature of this response or dependency remains to be determined. Some cells exhibiting silver grains were not immunoreactive for GIN1, suggesting that other cell phenotypes in neural crest cultures also have NGF receptors. In addition, some neural crest cells were found that stained with GIN1 and lacked 125I-NGF binding. Tyrosine hydroxylase-like immunoreactive cells apparently did not bind 125I-NGF under these culture conditions. Catecholaminergic sympathetic and sensory neurons from embryonic ganglia, derived from the neural crest, express both the high and low affinity forms of the NGF receptor. In order to determine whether the microenvironment played a role in the type of catecholaminergic cells appearing in culture, neural crest cells were grown in the continuous presence of exogenous NGF. Under these conditions, many tyrosine hydroxylase-like immunoreactive cells were found that specifically bound 125I-NGF. In addition, silver grains were still detected on these cells following a chase with nonradioactive NGF, designed to eliminate 125I-NGF bound to low affinity sites. Therefore, the catecholaminergic cells possess both the low and high affinity forms of the receptor. NGF's ability to modulate tyrosine hydroxylase activity, as it does in mature catecholaminergic neurons, was tested in this system. Surprisingly, there was no statistically significant difference in tyrosine hydroxylase activity in cultures grown in the absence or presence of exogenous NGF. This raises the possibility that embryonic catecholaminergic cells are unable to respond to NGF in this specific way, even though the receptors for the factor are present.
Collapse
Affiliation(s)
- P Bernd
- Department of Anatomy and Cell Biology, State University of New York, Brooklyn 11203
| |
Collapse
|
24
|
Bernd P, Martinez HJ, Dreyfus CF, Black IB. Localization of high-affinity and low-affinity nerve growth factor receptors in cultured rat basal forebrain. Neuroscience 1988; 26:121-9. [PMID: 2843789 DOI: 10.1016/0306-4522(88)90131-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Previous work has indicated that nerve growth factor specifically and selectively increases choline acetyltransferase and acetylcholinesterase in organotypic cultures of rat basal forebrain-medial septal area. To determine whether these actions are potentially receptor-mediated, organotypic and dissociated basal forebrain-medial septal area cultures were examined. Two independent methods, [125I]nerve growth factor binding and immunocytochemistry with a monoclonal nerve growth factor receptor antibody (192-IgG), detected specific receptors. The nerve growth factor receptors were localized to two different cellular populations: flat, large, non-neuron-like cells, and small, round, process-bearing, neuron-like cells. Dissociation studies with [125I]nerve growth factor suggested that high-affinity receptors were localized to the neuron-like population, while only low-affinity receptors were localized to the non-neuron-like cells. We tentatively conclude that nerve growth factor may elicit cholinergic effects by directly binding to high-affinity receptors on neurons. To begin examining receptor regulation, cultures were exposed to exogenous, unlabeled nerve growth factor continuously for 10 days before binding studies were performed. Prior exposure to nerve growth factor did not alter binding characteristics of the receptor, using the present methods.
Collapse
Affiliation(s)
- P Bernd
- Department of Anatomy, Mount Sinai School of Medicine, New York, NY 10029
| | | | | | | |
Collapse
|
25
|
Nerve growth factor treatment or cAMP elevation reduces Ca2+/calmodulin-dependent protein kinase III activity in PC12 cells. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47933-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
26
|
Rowland EA, Müller TH, Goldstein M, Greene LA. Cell-free detection and characterization of a novel nerve growth factor-activated protein kinase in PC12 cells. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47595-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
Acheson A, Thoenen H. Both short- and long-term effects of nerve growth factor on tyrosine hydroxylase in calf adrenal chromaffin cells are blocked by S-adenosylhomocysteine hydrolase inhibitors. J Neurochem 1987; 48:1416-24. [PMID: 2881981 DOI: 10.1111/j.1471-4159.1987.tb05680.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have previously shown that primary cultures of calf chromaffin cells respond to nerve growth factor (NGF) treatment with a selective induction of tyrosine hydroxylase (TH), which takes 48 h to be manifested. In the present study, we report that short exposure of calf chromaffin cells to NGF (5-60 min) results in TH activation, which involves a change in the Vmax of the enzyme with no change in the number of enzyme molecules, similar to an effect that has been previously reported in PC12 cells. This activation is markedly potentiated when the chromaffin cells are plated on a laminin substrate, such that after 5 min of NGF exposure, there is an approximately fourfold increase in the TH activity. Both short-term activation and long-term TH induction brought about by NGF treatment are blocked by 5'-deoxy-5'-methylthioadenosine and other drugs that act as S-adenosylhomocysteine (SAH) hydrolase inhibitors to block methylation by end-product inhibition. These drugs did not inhibit cyclic AMP-mediated TH activation or increases in the levels of TH. However, measurements of the degree of blockade of methylation in cells treated with these drugs, taken together with conceptual information regarding the nonregulatory nature of methylation in eukaryotic cells, were not consistent with inhibition of methylation as the crucial effect of the drugs to block the effects of NGF. Nonetheless, since SAH hydrolase inhibitors selectively inhibited NGF-mediated effects, and not comparable effects triggered by other stimuli, these compounds provide useful tools in future studies of the biochemical signalling mechanism of NGF.
Collapse
|
28
|
Katoh-Semba R, Kitajima S, Yamazaki Y, Sano M. Neuritic growth from a new subline of PC12 pheochromocytoma cells: cyclic AMP mimics the action of nerve growth factor. J Neurosci Res 1987; 17:36-44. [PMID: 3033256 DOI: 10.1002/jnr.490170106] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have identified a new subline of PC12 pheochromocytoma cells (PC12D cells) in which neurites are extended within 24 hr in response to cAMP-enhancing reagents as well as in response to nerve growth factor (NGF), but not in response to epidermal growth factor or phorbol diester. Anti-NGF antiserum did not affect forskolin (FRK)-induced neuritic recruitment. FRK-induced neurites exhibited growth cones and contained secretion granules and many parallel arrays of microtubules as was the case with NGF-induced neurites. FRK, but not NGF, increased the levels of intracellular cAMP and activated adenylate cyclase in the membrane fraction. Both NGF and FRK enhanced the activities of tyrosine hydroxylase (TH), acetylcholinesterase (AchE), and ornithine decarboxylase (ODC), but not the levels of neuron-specific enolase. Enhanced levels of intracellular cAMP mimicked the effects of NGF on neuritic growth, TH, AchE, and ODC activities in PC12D cells, even though NGF does not act through elevation of levels of cAMP.
Collapse
|
29
|
Tiercy JM, Shooter EM. Early changes in the synthesis of nuclear and cytoplasmic proteins are induced by nerve growth factor in differentiating rat PC12 cells. J Cell Biol 1986; 103:2367-78. [PMID: 3782300 PMCID: PMC2114624 DOI: 10.1083/jcb.103.6.2367] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Differentiation of rat pheochromocytoma PC12 cells into neuron-like cells was induced by nerve growth factor (NGF) and changes in the apparent rate of synthesis of cellular proteins were analyzed. Attention was particularly focused on the first few hours of exposure to NGF before significant neurite outgrowth was detectable. Cultures were pulse-labeled for 1-h periods with [35S]methionine and proteins were extracted from various subcellular fractions and analyzed by one-dimensional gradient and two-dimensional equilibrium and nonequilibrium gel electrophoresis. The results showed that although the general level of protein synthesis remained constant, by 8 h NGF increased the apparent rate of synthesis of approximately 11 cytoplasmic and 5 nuclear proteins. For several of these proteins, the effect was apparently NGF-specific, since no induction was observed in dibutyryl cAMP-treated cells. Of interest was the following observation: of the five nuclear proteins, NGF increased the synthesis of two proteins with MrS of 56,000 [doublet] and 50,000 D that were associated with a biochemically and morphologically defined nuclear matrix fraction. A cytoplasmic protein, with an Mr of 92,000 D (pI 4.8) appeared to be induced de novo by NGF. NGF also decreased the rate of synthesis of several cytoplasmic and nuclear proteins of low molecular mass (less than 40,000 D). Since only 1-h pulses of [35S]methionine were used, and since experiments with actinomycin D showed that most of these NGF-induced early changes in rates of synthesis included a transcription-dependent step, it seems likely that early effects of NGF include activation of specific genes.
Collapse
|
30
|
Phosphorylation of nerve growth factor receptor proteins in sympathetic neurons and PC12 cells. In vitro phosphorylation by the cAMP-independent protein kinase FA/GSK-3. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)69310-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
31
|
Cremins J, Wagner JA, Halegoua S. Nerve growth factor action is mediated by cyclic AMP- and Ca+2/phospholipid-dependent protein kinases. J Cell Biol 1986; 103:887-93. [PMID: 2875079 PMCID: PMC2114293 DOI: 10.1083/jcb.103.3.887] [Citation(s) in RCA: 153] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Nerve growth factor (NGF) mediates the phosphorylation of tyrosine hydroxylase in PC12 cells on two distinct peptide fragments, separable by two-dimensional tryptic phosphopeptide mapping (phosphopeptides T1 and T3). Phorbol diester derivatives capable of activating Ca+2/phospholipid-dependent protein kinase (C-kinase) cause a specific phosphorylation of peptide T3 in a dose-dependent, saturable manner. Derivatives of the endogenous C-kinase activator diacylglycerol, also cause the phosphorylation of tyrosine hydroxylase on peptide T3. The C-kinase inhibitors chlorpromazine and trifluoperazine inhibit the phorbol diester stimulated phosphorylation of site T3 in a dose-dependent manner. These agents inhibit the phosphorylation of T3 in response to NGF, but have no effect on NGF's ability to cause T1 phosphorylation. In a PC12 mutant deficient in cAMP-dependent protein kinase activity, NGF mediates the phosphorylation of tyrosine hydroxylase on peptide T3 but not on T1. We conclude that NGF mediates the activation of both the cAMP-dependent protein kinase and the C-kinase to phosphorylate substrate proteins. These kinases can act independently to phosphorylate tyrosine hydroxylase, each at a different site, and each of which results in the enzyme activation. A molecular framework is thus provided for events underlying NGF action.
Collapse
|
32
|
Bernd P. Characterization of nerve growth factor binding to cultured neural crest cells: evidence of an early developmental form of the NGF receptor. Dev Biol 1986; 115:415-24. [PMID: 3011567 DOI: 10.1016/0012-1606(86)90261-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cultured neural crest cells undergoing differentiation have been shown to contain a subpopulation of cells with specific receptors for nerve growth factor (NGF). These cells are the potential targets of NGF during differentiation and development. This study was done to pharmacologically characterize the binding of NGF to long-term (1- to 3-week) cultures of quail neural crest cells. The data indicate that 125I-NGF binding was specific and saturable, with less than 20% nonspecific binding. Scatchard analysis revealed the presence of one type (class) of receptors with a binding constant (Kd) similar to that of the low-affinity binding site described for embryonic dorsal root and sympathetic ganglia (approximately 3.2 nM). This was corroborated by displacement experiments (Kd of 1.3 nM), in which 125I-NGF binding was measured in the presence of increasing concentrations of nonradioactive NGF. In addition, affinity labeling revealed that the 125I-NGF-receptor complex had a molecular weight of about 93K, characteristic of the low-affinity NGF receptor of PC12 cells. The NGF receptor of cultured neural crest cells was trypsin-sensitive, as is typical of the low-affinity NGF binding sites. These findings indicate that differentiating neural crest cells lack high-affinity 125I-NGF binding sites. In contrast, embryonic dorsal root and sympathetic ganglia cells, known NGF targets, have both high- and low-affinity receptors. Measurements of the differential release of surface-bound 125I-NGF indicated that a relatively small amount (about 14%) of NGF is internalized over a 1-hr period. Cultured neural crest cells which bear NGF receptors were also shown by light microscopic radioautographic techniques to incorporate [3H]thymidine. I suggest, therefore, that cultured neural crest cells which have not terminally differentiated, as judged by morphological criteria and continued proliferation, may express an early developmental form of the NGF receptor.
Collapse
|
33
|
Green SH, Rydel RE, Connolly JL, Greene LA. PC12 cell mutants that possess low- but not high-affinity nerve growth factor receptors neither respond to nor internalize nerve growth factor. J Biophys Biochem Cytol 1986; 102:830-43. [PMID: 3005338 PMCID: PMC2114139 DOI: 10.1083/jcb.102.3.830] [Citation(s) in RCA: 243] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Four mutant PC12 pheochromocytoma cell lines that are nerve growth factor (NGF)-nonresponsive (PC12nnr) have been selected from chemically mutagenized cultures by a double selection procedure: failure both to grow neurites in the presence of NGF and to survive in NGF-supplemented serum-free medium. The PC12nnr cells were deficient in all additional NGF responses surveyed: abatement of cell proliferation, changes in glycoprotein composition, induction of ornithine decarboxylase, rapid changes in protein phosphorylation, and cell surface ruffling. However, PC12nnr cells closely resembled non-NGF-treated PC12 cells in most properties tested: cell size and shape; division rate; protein, phosphoprotein, and glycoprotein composition; and cell surface morphology. All four PC12nnr lines differed from PC12 cells in three ways in addition to failure of NGF response: PC12nnr cells failed to internalize bound NGF by the normal, saturable, high-affinity mechanism present in PC12 cells. The PC12nnr cells bound NGF but entirely, or nearly entirely, at low-affinity sites only, whereas PC12 cells possess both high- and low-affinity NGF binding sites. The responses to dibutyryl cyclic AMP that were tested appeared to be enhanced or altered in the PC12nnr cells compared to PC12 cells. Internalization of, and responses to, epidermal growth factor were normal in the PC12nnr cells ruling out a generalized defect in hormonal binding, uptake, or response mechanisms. These findings are consistent with a causal association between the presence of high-affinity NGF receptors and of NGF responsiveness and internalization. A possible relationship is also suggested between regulation of cAMP responses and regulation of NGF responses or NGF receptor affinity.
Collapse
|
34
|
Acheson A, Edgar D, Timpl R, Thoenen H. Laminin increases both levels and activity of tyrosine hydroxylase in calf adrenal chromaffin cells. J Cell Biol 1986; 102:151-9. [PMID: 2867097 PMCID: PMC2114030 DOI: 10.1083/jcb.102.1.151] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have investigated the effects of substrate-bound laminin on levels of enzymes of the catecholamine biosynthetic pathway in primary cultures of calf adrenal chromaffin cells. Laminin increases the levels of the enzymes tyrosine hydroxylase, dopamine-beta-hydroxylase, and phenylethanolamine-N-methyl-transferase. This effect is selective, in that levels of other enzymes (lactate dehydrogenase, aromatic amino acid decarboxylase, and acetylcholinesterase) are not increased. The effect of laminin can be blocked by antibodies directed against a fragment of the heparin-binding domain of the molecule, whereas antibodies directed against other fragments do not block the increase in tyrosine hydroxylase. Thus the laminin domain involved in enzyme regulation in chromaffin cells is apparently the same as that previously implicated in laminin's interactions with neurons to potentiate survival and stimulate neurite outgrowth (Edgar, D., R. Timpl, and H. Thoenen, 1984, EMBO (Eur. Mol. Biol. Organ.) J., 3:1463-1468). The increase in chromaffin cell tyrosine hydroxylase levels is preceded by an activation of the enzyme in which the Vmax (but not the Km) is altered. The effects of laminin appear to be developmentally regulated, since neither activation nor increased levels of tyrosine hydroxylase occur in adult adrenal chromaffin cells exposed to laminin.
Collapse
|
35
|
Ferrari G, Greene LA. Does phospholipid methylation play a role in the primary mechanism of action of nerve growth factor? J Neurochem 1985; 45:853-9. [PMID: 4031866 DOI: 10.1111/j.1471-4159.1985.tb04072.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nerve growth factor (NGF)-untreated (naive) and neurite-bearing NGF-treated ("primed") PC12 rat pheochromocytoma cells were used as model system to study the role of phospholipid methylation in the NGF mechanism of action. The neurite-bearing cultures were deprived of NGF for 3 h before experimentation. Under both experimental conditions, the cells were labelled with [methyl-3H]methionine and then challenged with NGF for time periods ranging from 5 s to 30 min. Methylated phospholipids were extracted and then resolved and identified by TLC as phosphatidyl mono-, di-, and trimethyl ethanolamine. Quantification of the amount of radioactivity incorporated into each of the phospholipids indicated that NGF does not significantly alter phospholipid methylation either in naive or in neurite-bearing cells. Furthermore, using a methyltransferase inhibitor, it was found that neurite outgrowth still occurs when phospholipid methylation is almost completely blocked. These results indicate that phospholipid methylation does not play a primary role in the mechanism of action of NGF.
Collapse
|