1
|
Rezayof A, Ghasemzadeh Z, Sahafi OH. Addictive drugs modify neurogenesis, synaptogenesis and synaptic plasticity to impair memory formation through neurotransmitter imbalances and signaling dysfunction. Neurochem Int 2023; 169:105572. [PMID: 37423274 DOI: 10.1016/j.neuint.2023.105572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
Drug abuse changes neurophysiological functions at multiple cellular and molecular levels in the addicted brain. Well-supported scientific evidence suggests that drugs negatively affect memory formation, decision-making and inhibition, and emotional and cognitive behaviors. The mesocorticolimbic brain regions are involved in reward-related learning and habitual drug-seeking/taking behaviors to develop physiological and psychological dependence on the drugs. This review highlights the importance of specific drug-induced chemical imbalances resulting in memory impairment through various neurotransmitter receptor-mediated signaling pathways. The mesocorticolimbic modifications in the expression levels of brain-derived neurotrophic factor (BDNF) and the cAMP-response element binding protein (CREB) impair reward-related memory formation following drug abuse. The contributions of protein kinases and microRNAs (miRNAs), along with the transcriptional and epigenetic regulation have also been considered in memory impairment underlying drug addiction. Overall, we integrate the research on various types of drug-induced memory impairment in distinguished brain regions and provide a comprehensive review with clinical implications addressing the upcoming studies.
Collapse
Affiliation(s)
- Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Zahra Ghasemzadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Oveis Hosseinzadeh Sahafi
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
2
|
Carnevali L, Statello R, Vacondio F, Ferlenghi F, Spadoni G, Rivara S, Mor M, Sgoifo A. Antidepressant-like effects of pharmacological inhibition of FAAH activity in socially isolated female rats. Eur Neuropsychopharmacol 2020; 32:77-87. [PMID: 31948828 DOI: 10.1016/j.euroneuro.2019.12.119] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 12/24/2022]
Abstract
Pharmacological inhibition of the enzyme fatty acid amide hydrolase (FAAH), which terminates signaling of the endocannabinoid N-arachidonoylethanolamine (or anandamide, AEA), exerts favourable effects in rodent models of stress-related depression. Yet although depression seems to be more common among women than men and in spite of some evidence of sex differences in treatment efficacy, preclinical development of FAAH inhibitors for the pharmacotherapy of stress-related depression has been predominantly conducted in male animals. Here, adult female rats were exposed to six weeks of social isolation and, starting from the second week, treated with the FAAH inhibitor URB694 (0.3 mg/kg/day, i.p.) or vehicle. Compared to pair-housed females, socially isolated female rats treated with vehicle developed behavioral (mild anhedonia, passive stress coping) and physiological (reduced body weight gain, elevated plasma corticosterone levels) alterations. Moreover, prolonged social isolation provoked a reduction in brain-derived neurotrophic factor (BDNF) and AEA levels within the hippocampus. Together, these changes are indicative of an increased risk of developing a depressive-like state. Conversely, pharmacological inhibition of FAAH activity with URB694 restored both AEA and BDNF levels within the hippocampus of socially isolated rats and prevented the development of behavioral and physiological alterations. These results suggest a potential interplay between AEA-mediated signaling and hippocampal BDNF in the pathogenesis of depression-relevant behaviors and physiological alterations and antidepressant action of FAAH inhibition in socially isolated female rats.
Collapse
Affiliation(s)
- Luca Carnevali
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| | - Rosario Statello
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | | | | | - Gilberto Spadoni
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Silvia Rivara
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Marco Mor
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Andrea Sgoifo
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| |
Collapse
|
3
|
Schiavi S, Manduca A, Segatto M, Campolongo P, Pallottini V, Vanderschuren LJMJ, Trezza V. Unidirectional opioid-cannabinoid cross-tolerance in the modulation of social play behavior in rats. Psychopharmacology (Berl) 2019; 236:2557-2568. [PMID: 30903212 DOI: 10.1007/s00213-019-05226-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/10/2019] [Indexed: 01/04/2023]
Abstract
RATIONALE The endocannabinoid and the endogenous opioid systems interact in the modulation of social play behavior, a highly rewarding social activity abundantly expressed in young mammals. Prolonged exposure to opioid or cannabinoid receptor agonists induces cross-tolerance or cross-sensitization to their acute behavioral effects. OBJECTIVES AND METHODS Behavioral and biochemical experiments were performed to investigate whether cross-tolerance or cross-sensitization occurs to the play-enhancing effects of cannabinoid and opioid drugs on social play behavior, and the possible brain substrate involved. RESULTS The play-enhancing effects induced by systemic administration of JZL184, which inhibits the hydrolysis of the endocannabinoid 2-AG, were suppressed in animals repeatedly pretreated with the opioid receptor agonist morphine. Conversely, acute morphine administration increased social play in rats pretreated with vehicle or with either JZL184 or the cannabinoid agonist WIN55,212-2. Acute administration of JZL184 increased the activation of both CB1 receptors and their effector Akt in the nucleus accumbens and prefrontal cortex, brain regions important for the expression of social play. These effects were absent in animals pretreated with morphine. Furthermore, only animals repeatedly treated with morphine and acutely administered with JZL184 showed reduced activation of CB1 receptors and Akt in the amygdala. CONCLUSIONS The present study demonstrates a dynamic opioid-cannabinoid interaction in the modulation of social play behavior, occurring in limbic brain areas strongly implicated in social play behavior. A better understanding of opioid-cannabinoid interactions in social play contributes to clarify neurobiological aspects of social behavior at young age, which may provide new therapeutic targets for social dysfunctions.
Collapse
Affiliation(s)
- Sara Schiavi
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Viale G. Marconi 446, 00146, Rome, Italy
| | - Antonia Manduca
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Viale G. Marconi 446, 00146, Rome, Italy
| | - Marco Segatto
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Viale G. Marconi 446, 00146, Rome, Italy
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Valentina Pallottini
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Viale G. Marconi 446, 00146, Rome, Italy
| | - Louk J M J Vanderschuren
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Viale G. Marconi 446, 00146, Rome, Italy.
| |
Collapse
|
4
|
Papadogkonaki S, Theodorakis Κ, Thermos K. Endogenous and synthetic cannabinoids induce the downregulation of cannabinoid CB1 receptor in retina. Exp Eye Res 2019; 185:107694. [DOI: 10.1016/j.exer.2019.107694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/20/2019] [Accepted: 06/10/2019] [Indexed: 10/26/2022]
|
5
|
Sex-specific differences in cannabinoid-induced extracellular-signal-regulated kinase phosphorylation in the cingulate cortex, prefrontal cortex, and nucleus accumbens of Lister Hooded rats. Behav Pharmacol 2018; 29:473-481. [DOI: 10.1097/fbp.0000000000000395] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Selective effects of Δ9-tetrahydrocannabinol on medium spiny neurons in the striatum. PLoS One 2018; 13:e0200950. [PMID: 30048477 PMCID: PMC6062058 DOI: 10.1371/journal.pone.0200950] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 07/04/2018] [Indexed: 12/15/2022] Open
Abstract
Derivatives from the Cannabis plant are the most commonly abused illegal substances in the world. The main psychoactive component found in the plant, Δ-9-tetrahydrocannabinol (THC), exerts its effects through the endocannabinoid system. Manipulations of this system affect some types of learning that seem to be dependent on dorsal striatum synaptic plasticity. Dendritic spines exhibit important synaptic functional attributes and a potential for plasticity, which is thought to mediate long-lasting changes in behaviour. To study the possible structural plasticity changes that prolonged THC administration might exert in the dorsal striatum, adult, male C57BL6/J mice were intraperitoneally injected with THC (10mg/kg) or vehicle for 15 days followed by a 7-day drug-free period. Using single cell intracellular injections of Lucifer Yellow, confocal microscopy, and 3D reconstruction of labelled neurons, we studied dendritic spine density and spine size in medium spiny neurons (MSNs) of the anterior dorsolateral striatum (aDLS) and posterior dorsomedial striatum (pDMS). We found that the THC treatment increased dendritic spine density in the distal part of the dendrites of MSNs in the pDMS, but no changes were found in the rest of the parameters analysed in either region studied. We also observed that dendritic spines of MSNs of pDMS presented lower volume and surface area values than MSNs of the aDLS. These results seem to indicate that THC could induce structural plasticity alterations in the circuits involving pDMS MSNs.
Collapse
|
7
|
Gamage TF, Anderson JC, Abood ME. CB 1 allosteric modulator Org27569 is an antagonist/inverse agonist of ERK1/2 signaling. Cannabis Cannabinoid Res 2016; 1:272-280. [PMID: 28660254 PMCID: PMC5484173 DOI: 10.1089/can.2016.0028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Introduction: Allosteric modulation of cannabinoid type-1 receptors (CB1) is a novel means through which signaling bias may be exerted. Org27569 remains the most-characterized CB1 allosteric modulator, yet there are conflicting reports regarding its effects on extracellular signal-regulated kinase (ERK) signaling. We conducted a systematic evaluation of Org27569's effects on cannabinoid agonists and ERK signaling. Materials and Methods: HEK293 cells transfected with the human cannabinoid type-1 receptor (hCB1) were treated with Org27569 alone or in combination with the endocannabinoid 2-arachidonoylglycerol (2-AG), the synthetic cannabinoid CP55,940, or the phytocannabinoid delta-9-tetrahydrocannabinol (THC) and ERK activation was measured by western blot. Overnight treatment with pertussis toxin (PTX) was used to determine the role of Gi/o in Org27569's inverse agonist effects. HEK293 cells transfected with green fluorescent protein tagged rat CB1 receptor were used to assess effects of Org27569 on CP55,940-induced receptor internalization. Subcellular fractionation was used to determine effects of Org27569 on ERK phosphorylation in both nuclear and cytosolic compartments. Results: We found that Org27569 is an antagonist of hCB1-mediated ERK signaling in HEK293 cells where it fully blocks CP55,940-but does not completely inhibit THC- and 2-AG-stimulated ERK1/2 activation following 5 min treatment. In rat CB1 HEK293 cells, CP55,940 (1 μM) treatment produced a significant increase in puncta at 20, 40, 60, and 120 min, consistent with receptor internalization. Org27569 (10 μM) co-treatment prevented internalization at each time point and alone had no effect. Org27569 reduced basal ERK phosphorylation in hCB1 HEK293 cells but not in untransfected cells following 20 min treatment. Overnight treatment with PTX abated this response. Following subcellular fractionation, Org27569 produced a significant decrease in ERK phosphorylation in the nuclear-enriched and cytosolic fractions. Conclusions: These data are consistent with previous studies demonstrating that CB1-mediated ERK1/2 activation is Gi/o-dependent and that Org27569 is an inverse agonist of CB1 receptors. Abrogation of Org27569's ability to reduce basal ERK phosphorylation following treatment with PTX and lack of inverse agonist effects in untransfected HEK293 cells demonstrates that Org27569 acts via CB1-Gi/o to produce this effect. To our knowledge, this is the first reported demonstration of inverse agonism of ERK signaling by Org27569.
Collapse
Affiliation(s)
- Thomas F Gamage
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA. 19140
| | - Johnathon C Anderson
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA. 19140
| | - Mary E Abood
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA. 19140.,Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA. 19140
| |
Collapse
|
8
|
Chiarlone A, Börner C, Martín-Gómez L, Jiménez-González A, García-Concejo A, García-Bermejo ML, Lorente M, Blázquez C, García-Taboada E, de Haro A, Martella E, Höllt V, Rodríguez R, Galve-Roperh I, Kraus J, Guzmán M. MicroRNA let-7d is a target of cannabinoid CB1 receptor and controls cannabinoid signaling. Neuropharmacology 2016; 108:345-52. [PMID: 27179908 DOI: 10.1016/j.neuropharm.2016.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 04/19/2016] [Accepted: 05/10/2016] [Indexed: 02/07/2023]
Abstract
Cannabinoid CB1 receptor, the molecular target of endocannabinoids and cannabis active components, is one of the most abundant metabotropic receptors in the brain. Cannabis is widely used for both recreational and medicinal purposes. Despite the ever-growing fundamental roles of microRNAs in the brain, the possible molecular connections between the CB1 receptor and microRNAs are surprisingly unknown. Here, by using reporter gene constructs that express interaction sequences for microRNAs in human SH-SY5Y neuroblastoma cells, we show that CB1 receptor activation enhances the expression of several microRNAs, including let-7d. This was confirmed by measuring hsa-let-7d expression levels. Accordingly, knocking-down CB1 receptor in zebrafish reduced dre-let-7d levels, and knocking-out CB1 receptor in mice decreased mmu-let-7d levels in the cortex, striatum and hippocampus. Conversely, knocking-down let-7d increased CB1 receptor mRNA expression in zebrafish, SH-SY5Y cells and primary striatal neurons. Likewise, in primary striatal neurons chronically exposed to a cannabinoid or opioid agonist, a let-7d-inhibiting sequence facilitated not only cannabinoid or opioid signaling but also cannabinoid/opioid cross-signaling. Taken together, these findings provide the first evidence for a bidirectional link between the CB1 receptor and a microRNA, namely let-7d, and thus unveil a new player in the complex process of cannabinoid action.
Collapse
Affiliation(s)
- Anna Chiarlone
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Instituto Universitario de Investigación Neuroquímica (IUIN), Department of Biochemistry and Molecular Biology I, Complutense University, 28040 Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Christine Börner
- Department of Pharmacology and Toxicology, University of Magdeburg, 39106 Magdeburg, Germany
| | - Laura Martín-Gómez
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Ada Jiménez-González
- Instituto de Investigaciones Biomédicas de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Adrián García-Concejo
- Instituto de Investigaciones Biomédicas de Salamanca (IBSAL), 37007 Salamanca, Spain
| | | | - Mar Lorente
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Instituto Universitario de Investigación Neuroquímica (IUIN), Department of Biochemistry and Molecular Biology I, Complutense University, 28040 Madrid, Spain
| | - Cristina Blázquez
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Instituto Universitario de Investigación Neuroquímica (IUIN), Department of Biochemistry and Molecular Biology I, Complutense University, 28040 Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Elena García-Taboada
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Instituto Universitario de Investigación Neuroquímica (IUIN), Department of Biochemistry and Molecular Biology I, Complutense University, 28040 Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Amador de Haro
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Instituto Universitario de Investigación Neuroquímica (IUIN), Department of Biochemistry and Molecular Biology I, Complutense University, 28040 Madrid, Spain
| | - Elisa Martella
- Department of Pharmacology and Toxicology, University of Magdeburg, 39106 Magdeburg, Germany
| | - Volker Höllt
- Department of Pharmacology and Toxicology, University of Magdeburg, 39106 Magdeburg, Germany
| | - Raquel Rodríguez
- Instituto de Investigaciones Biomédicas de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Ismael Galve-Roperh
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Instituto Universitario de Investigación Neuroquímica (IUIN), Department of Biochemistry and Molecular Biology I, Complutense University, 28040 Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Jürgen Kraus
- Department of Pharmacology and Toxicology, University of Magdeburg, 39106 Magdeburg, Germany
| | - Manuel Guzmán
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Instituto Universitario de Investigación Neuroquímica (IUIN), Department of Biochemistry and Molecular Biology I, Complutense University, 28040 Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain.
| |
Collapse
|
9
|
Sun WL, Quizon PM, Zhu J. Molecular Mechanism: ERK Signaling, Drug Addiction, and Behavioral Effects. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 137:1-40. [PMID: 26809997 DOI: 10.1016/bs.pmbts.2015.10.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Addiction to psychostimulants has been considered as a chronic psychiatric disorder characterized by craving and compulsive drug seeking and use. Over the past two decades, accumulating evidence has demonstrated that repeated drug exposure causes long-lasting neurochemical and cellular changes that result in enduring neuroadaptation in brain circuitry and underlie compulsive drug consumption and relapse. Through intercellular signaling cascades, drugs of abuse induce remodeling in the rewarding circuitry that contributes to the neuroplasticity of learning and memory associated with addiction. Here, we review the role of the extracellular signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase, and its related intracellular signaling pathways in drug-induced neuroadaptive changes that are associated with drug-mediated psychomotor activity, rewarding properties and relapse of drug seeking behaviors. We also discuss the neurobiological and behavioral effects of pharmacological and genetic interferences with ERK-associated molecular cascades in response to abused substances. Understanding the dynamic modulation of ERK signaling in response to drugs may provide novel molecular targets for therapeutic strategies to drug addiction.
Collapse
Affiliation(s)
- Wei-Lun Sun
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Pamela M Quizon
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA.
| |
Collapse
|
10
|
Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, Hyytiä P, Dawe GS. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse. Pharmacol Rev 2015; 67:872-1004. [PMID: 26403687 DOI: 10.1124/pr.115.010967] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Adaptation of the nervous system to different chemical and physiologic conditions is important for the homeostasis of brain processes and for learning and remembering appropriate responses to challenges. Although processes such as tolerance and dependence to various drugs of abuse have been known for a long time, it was recently discovered that even a single pharmacologically relevant dose of various drugs of abuse induces neuroplasticity in selected neuronal populations, such as the dopamine neurons of the ventral tegmental area, which persist long after the drug has been excreted. Prolonged (self-) administration of drugs induces gene expression, neurochemical, neurophysiological, and structural changes in many brain cell populations. These region-specific changes correlate with addiction, drug intake, and conditioned drugs effects, such as cue- or stress-induced reinstatement of drug seeking. In rodents, adolescent drug exposure often causes significantly more behavioral changes later in adulthood than a corresponding exposure in adults. Clinically the most impairing and devastating effects on the brain are produced by alcohol during fetal development. In adult recreational drug users or in medicated patients, it has been difficult to find persistent functional or behavioral changes, suggesting that heavy exposure to drugs of abuse is needed for neurotoxicity and for persistent emotional and cognitive alterations. This review describes recent advances in this important area of research, which harbors the aim of translating this knowledge to better treatments for addictions and related neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Bjørnar den Hollander
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Usman Farooq
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Elena Vashchinkina
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Ramamoorthy Rajkumar
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - David J Nutt
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Gavin S Dawe
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| |
Collapse
|
11
|
Winsauer PJ, Filipeanu CM, Weed PF, Sutton JL. Hormonal status and age differentially affect tolerance to the disruptive effects of delta-9-tetrahydrocannabinol (Δ(9)-THC) on learning in female rats. Front Pharmacol 2015; 6:133. [PMID: 26191005 PMCID: PMC4488627 DOI: 10.3389/fphar.2015.00133] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 06/15/2015] [Indexed: 12/28/2022] Open
Abstract
The effects of hormone status and age on the development of tolerance to Δ(9)-THC were assessed in sham-operated (intact) or ovariectomized (OVX) female rats that received either intraperitoneal saline or 5.6 mg/kg of Δ(9)-THC daily from postnatal day (PD) 75-180 (early adulthood onward) or PD 35-140 (adolescence onward). During this time, the four groups for each age (i.e., intact/saline, intact/THC, OVX/saline, and OVX/THC) were trained in a learning and performance procedure and dose-effect curves were established for Δ(9)-THC (0.56-56 mg/kg) and the cannabinoid type-1 receptor (CB1R) antagonist rimonabant (0.32-10 mg/kg). Despite the persistence of small rate-decreasing and error-increasing effects in intact and OVX females from both ages during chronic Δ(9)-THC, all of the Δ(9)-THC groups developed tolerance. However, the magnitude of tolerance, as well as the effect of hormone status, varied with the age at which chronic Δ(9)-THC was initiated. There was no evidence of dependence in any of the groups. Hippocampal protein expression of CB1R, AHA1 (a co-chaperone of CB1R) and HSP90β (a molecular chaperone modulated by AHA-1) was affected more by OVX than chronic Δ(9)-THC; striatal protein expression was not consistently affected by either manipulation. Hippocampal brain-derived neurotrophic factor expression varied with age, hormone status, and chronic treatment. Thus, hormonal status differentially affects the development of tolerance to the disruptive effects of delta-9-tetrahydrocannabinol (Δ(9)-THC) on learning and performance behavior in adolescent, but not adult, female rats. These factors and their interactions also differentially affect cannabinoid signaling proteins in the hippocampus and striatum, and ultimately, neural plasticity.
Collapse
Affiliation(s)
- Peter J. Winsauer
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center New OrleansNew Orleans, LA, USA
- Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center New OrleansNew Orleans, LA, USA
| | - Catalin M. Filipeanu
- Department of Pharmacology, Howard University College of MedicineWashington, DC, USA
| | - Peter F. Weed
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center New OrleansNew Orleans, LA, USA
| | - Jessie L. Sutton
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center New OrleansNew Orleans, LA, USA
| |
Collapse
|
12
|
Deng L, Cornett BL, Mackie K, Hohmann AG. CB1 Knockout Mice Unveil Sustained CB2-Mediated Antiallodynic Effects of the Mixed CB1/CB2 Agonist CP55,940 in a Mouse Model of Paclitaxel-Induced Neuropathic Pain. Mol Pharmacol 2015; 88:64-74. [PMID: 25904556 PMCID: PMC4468646 DOI: 10.1124/mol.115.098483] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 01/02/2023] Open
Abstract
Cannabinoids suppress neuropathic pain through activation of cannabinoid CB1 and/or CB2 receptors; however, unwanted CB1-mediated cannabimimetic effects limit clinical use. We asked whether CP55,940 [(-)-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-4-(3-hydroxypropyl)cyclohexanol], a potent cannabinoid that binds with similar affinity to CB1 and CB2 in vitro, produces functionally separable CB1- and CB2-mediated pharmacological effects in vivo. We evaluated antiallodynic effects, possible tolerance, and cannabimimetic effects (e.g., hypothermia, catalepsy, CB1-dependent withdrawal signs) after systemic CP55,940 treatment in a mouse model of toxic neuropathy produced by a chemotherapeutic agent, paclitaxel. The contribution of CB1 and CB2 receptors to in vivo actions of CP55,940 was evaluated using CB1 knockout (KO), CB2KO, and wild-type (WT) mice. Low-dose CP55,940 (0.3 mg/kg daily, i.p. ) suppressed paclitaxel-induced allodynia in WT and CB2KO mice, but not CB1KO mice. Low-dose CP55,940 also produced hypothermia and rimonabant-precipitated withdrawal in WT, but not CB1KO, mice. In WT mice, tolerance developed to CB1-mediated hypothermic effects of CP55,940 earlier than to antiallodynic effects. High-dose CP55,940 (10 mg/kg daily, i.p.) produced catalepsy in WT mice, which precluded determination of antiallodynic efficacy but produced sustained CB2-mediated suppression of paclitaxel-induced allodynia in CB1KO mice; these antiallodynic effects were blocked by the CB2 antagonist 6-iodopravadoline (AM630). High-dose CP55,940 did not produce hypothermia or rimonabant-precipitated withdrawal in CB1KO mice. Our results using the mixed CB1/CB2 agonist CP55,940 document that CB1 and CB2 receptor activations produce mechanistically distinct suppression of neuropathic pain. Our study highlights the therapeutic potential of targeting cannabinoid CB2 receptors to bypass unwanted central effects associated with CB1 receptor activation.
Collapse
MESH Headings
- Analgesics/administration & dosage
- Analgesics/pharmacology
- Animals
- Cannabinoid Receptor Antagonists/pharmacology
- Cyclohexanols/administration & dosage
- Cyclohexanols/pharmacology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Female
- Humans
- Male
- Mice
- Mice, Knockout
- Neuralgia/chemically induced
- Neuralgia/drug therapy
- Neuralgia/genetics
- Neuralgia/metabolism
- Paclitaxel
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Treatment Outcome
Collapse
Affiliation(s)
- Liting Deng
- Department of Molecular and Cellular Biochemistry (L.D.), Department of Psychological and Brain Sciences (L.D., B.L.C., K.M., A.G.H.), The Linda and Jack Gill Center for Biomolecular Science (L.D., B.L.C., K.M., A.G.H.), Indiana University, Bloomington, Indiana
| | - Benjamin L Cornett
- Department of Molecular and Cellular Biochemistry (L.D.), Department of Psychological and Brain Sciences (L.D., B.L.C., K.M., A.G.H.), The Linda and Jack Gill Center for Biomolecular Science (L.D., B.L.C., K.M., A.G.H.), Indiana University, Bloomington, Indiana
| | - Ken Mackie
- Department of Molecular and Cellular Biochemistry (L.D.), Department of Psychological and Brain Sciences (L.D., B.L.C., K.M., A.G.H.), The Linda and Jack Gill Center for Biomolecular Science (L.D., B.L.C., K.M., A.G.H.), Indiana University, Bloomington, Indiana
| | - Andrea G Hohmann
- Department of Molecular and Cellular Biochemistry (L.D.), Department of Psychological and Brain Sciences (L.D., B.L.C., K.M., A.G.H.), The Linda and Jack Gill Center for Biomolecular Science (L.D., B.L.C., K.M., A.G.H.), Indiana University, Bloomington, Indiana
| |
Collapse
|
13
|
Goodman J, Packard MG. The influence of cannabinoids on learning and memory processes of the dorsal striatum. Neurobiol Learn Mem 2015; 125:1-14. [PMID: 26092091 DOI: 10.1016/j.nlm.2015.06.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 12/15/2022]
Abstract
Extensive evidence indicates that the mammalian endocannabinoid system plays an integral role in learning and memory. Our understanding of how cannabinoids influence memory comes predominantly from studies examining cognitive and emotional memory systems mediated by the hippocampus and amygdala, respectively. However, recent evidence suggests that cannabinoids also affect habit or stimulus-response (S-R) memory mediated by the dorsal striatum. Studies implementing a variety of maze tasks in rats indicate that systemic or intra-dorsolateral striatum infusions of cannabinoid receptor agonists or antagonists impair habit memory. In mice, cannabinoid 1 (CB1) receptor knockdown can enhance or impair habit formation, whereas Δ(9)THC tolerance enhances habit formation. Studies in human cannabis users also suggest an enhancement of S-R/habit memory. A tentative conclusion based on the available data is that acute disruption of the endocannabinoid system with either agonists or antagonists impairs, whereas chronic cannabinoid exposure enhances, dorsal striatum-dependent S-R/habit memory. CB1 receptors are required for multiple forms of striatal synaptic plasticity implicated in memory, including short-term and long-term depression. Interactions with the hippocampus-dependent memory system may also have a role in some of the observed effects of cannabinoids on habit memory. The impairing effect often observed with acute cannabinoid administration argues for cannabinoid-based treatments for human psychopathologies associated with a dysfunctional habit memory system (e.g. post-traumatic stress disorder and drug addiction/relapse). In addition, the enhancing effect of repeated cannabinoid exposure on habit memory suggests a novel neurobehavioral mechanism for marijuana addiction involving the dorsal striatum-dependent memory system.
Collapse
Affiliation(s)
- Jarid Goodman
- Department of Psychology, Texas A&M Institute for Neuroscience, Texas A&M University, United States
| | - Mark G Packard
- Department of Psychology, Texas A&M Institute for Neuroscience, Texas A&M University, United States.
| |
Collapse
|
14
|
Goodman J, Packard MG. Peripheral and intra-dorsolateral striatum injections of the cannabinoid receptor agonist WIN 55,212-2 impair consolidation of stimulus-response memory. Neuroscience 2014; 274:128-37. [PMID: 24838065 DOI: 10.1016/j.neuroscience.2014.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/01/2014] [Accepted: 05/02/2014] [Indexed: 12/29/2022]
Abstract
The endocannabinoid system plays a major role in modulating memory. In the present study, we examined whether cannabinoid agonists influence the consolidation of stimulus-response/habit memory, a form of memory dependent upon the dorsolateral striatum (DLS). In Experiment 1, rats were trained in a cued platform water maze task in which animals were released from different start points and in order to escape had to find a cued platform which was moved to various spatial locations across trials. Immediately following training, rats received an i.p. injection of the cannabinoid receptor agonist WIN 55,212-2 (1 or 3mg/kg) or a vehicle solution. In Experiment 2, rats were trained in a forced-response version of the water plus-maze task in which a consistent body-turn response was reinforced across trials. Immediately following training, rats received an i.p. injection of WIN 55,212-2 (3 mg/kg) or vehicle. In Experiment 3, rats were trained in the cued platform task and after training received bilateral intra-DLS WIN 55,212-2 (100 ng/.5 μL or 200 ng/.5 μL) or vehicle. In Experiments 1-3, the higher doses of WIN 55,212-2 were associated with significant memory impairments, relative to vehicle-treated controls. The results indicate that peripheral or intra-DLS administration of a cannabinoid receptor agonist impairs consolidation of DLS-dependent memory. The findings are discussed within the context of previous research encompassing cannabinoids and DLS-dependent learning and memory processes, and the possibility that cannabinoids may be used to treat some habit-like human psychopathologies (e.g. posttraumatic stress disorder) is considered.
Collapse
Affiliation(s)
- J Goodman
- Department of Psychology, Institute for Neuroscience, Texas A&M University, United States
| | - M G Packard
- Department of Psychology, Institute for Neuroscience, Texas A&M University, United States.
| |
Collapse
|
15
|
Lazenka MF, Selley DE, Sim-Selley LJ. ΔFosB induction correlates inversely with CB₁ receptor desensitization in a brain region-dependent manner following repeated Δ⁹-THC administration. Neuropharmacology 2013; 77:224-33. [PMID: 24090766 DOI: 10.1016/j.neuropharm.2013.09.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 08/20/2013] [Accepted: 09/16/2013] [Indexed: 11/26/2022]
Abstract
Repeated Δ(9)-tetrahydrocannabinol (THC) administration produces desensitization and downregulation of cannabinoid type 1 receptors (CB₁Rs) in the brain, but the magnitude of these adaptations varies among regions. CB₁Rs in the striatum and its output regions exhibit the least magnitude and slowest development of desensitization and downregulation. The molecular mechanisms that confer these region-dependent differences are not known. The stable transcription factor, ΔFosB, is induced in the striatum following repeated THC administration and could regulate CB₁Rs. To directly compare the regional profile of ΔFosB induction and CB₁R desensitization and downregulation, mice were treated with THC (10 mg/kg) or vehicle for 13.5 days. CP55,940-stimulated [(35)S]GTPγS autoradiography and immunohistochemistry were performed to measure CB₁R desensitization and downregulation, respectively, and ΔFosB expression was measured by immunoblot. Significant CB₁R desensitization and downregulation occurred in the prefrontal cortex, lateral amygdala and hippocampus; desensitization was found in the basomedial amygdala and no changes were seen in remaining regions. ΔFosB was induced in the prefrontal cortex, caudate-putamen, nucleus accumbens and lateral amygdala. An inverse regional relationship between ΔFosB expression and CB₁R desensitization was found, such that regions with the greatest ΔFosB induction did not exhibit CB₁R desensitization and areas without ΔFosB induction had the greatest desensitization, with remaining regions exhibiting intermediate levels of both. Dual immunohistochemistry in the striatum showed both CB₁R co-localization with ΔFosB in cells and CB₁R puncta surrounding ΔFosB-positive cells. THC-induced expression of ΔFosB was absent in the striatum of CB₁R knockout mice. These data suggest that transcriptional targets of ΔFosB might inhibit CB₁R desensitization and/or that ΔFosB induction could be limited by CB₁R desensitization.
Collapse
Affiliation(s)
- Matthew F Lazenka
- Department of Pharmacology and Toxicology, Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA
| | - Dana E Selley
- Department of Pharmacology and Toxicology, Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA
| | - Laura J Sim-Selley
- Department of Pharmacology and Toxicology, Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
16
|
Hoffman AF, Lupica CR. Synaptic targets of Δ9-tetrahydrocannabinol in the central nervous system. Cold Spring Harb Perspect Med 2013; 3:cshperspect.a012237. [PMID: 23209160 DOI: 10.1101/cshperspect.a012237] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The availability of potent synthetic agonists for cannabinoid receptors has facilitated our understanding of cannabinoid actions on synaptic transmission in the central nervous system. Moreover, the ability of these compounds to inhibit neurotransmitter release at many central synapses is thought to underlie most of the behavioral effects of cannabinoid agonists. However, despite the widespread use and misuse of marijuana, and recognition of its potential adverse psychological effects in humans, comparatively few studies have examined the actions of its primary psychoactive constituent, Δ(9)-tetrahydrocannabinol (THC), at well-defined synaptic pathways. Here we examine the recent literature describing the effects of acute and repeated THC exposure on synaptic function in several brain regions and explore the importance of these neurobiological actions of THC in drug addiction.
Collapse
Affiliation(s)
- Alexander F Hoffman
- U.S. Department of Health and Human Services, National Institutes of Health, National Institute on Drug Abuse Intramural Research Program, Electrophysiology Research Section, Baltimore, Maryland 21224, USA
| | | |
Collapse
|
17
|
Miller MB, Yan Y, Eipper BA, Mains RE. Neuronal Rho GEFs in synaptic physiology and behavior. Neuroscientist 2013; 19:255-73. [PMID: 23401188 DOI: 10.1177/1073858413475486] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the mammalian brain, the majority of excitatory synapses are housed in micron-sized dendritic protrusions called spines, which can undergo rapid changes in shape and number in response to increased or decreased synaptic activity. These dynamic alterations in dendritic spines require precise control of the actin cytoskeleton. Within spines, multidomain Rho guanine nucleotide exchange factors (Rho GEFs) coordinate activation of their target Rho GTPases by a variety of pathways. In this review, we focus on the handful of disease-related Rho GEFs (Kalirin; Trio; Tiam1; P-Rex1,2; RasGRF1,2; Collybistin) localized at synapses and known to affect electrophysiology, spine morphology, and animal behavior. The goal is to integrate structure/function studies with measurements of synaptic function and behavioral phenotypes in animal models.
Collapse
Affiliation(s)
- Megan B Miller
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401, USA
| | | | | | | |
Collapse
|
18
|
Sala M, Braida D, Donzelli A, Martucci R, Busnelli M, Bulgheroni E, Rubino T, Parolaro D, Nishimori K, Chini B. Mice heterozygous for the oxytocin receptor gene (Oxtr(+/-)) show impaired social behaviour but not increased aggression or cognitive inflexibility: evidence of a selective haploinsufficiency gene effect. J Neuroendocrinol 2013; 25:107-18. [PMID: 22967062 DOI: 10.1111/j.1365-2826.2012.02385.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 02/02/2023]
Abstract
We characterised the behavioural phenotype of mice heterozygous (Oxtr(+/-)) for the oxytocin receptor gene (Oxtr) and compared it with that of Oxtr null mice (Oxtr(-/-)), which display autistic-like behaviours, including impaired sociability and preference for social novelty, impaired cognitive flexibility, and increased aggression. Similar to Oxtr(-/-) mice, the Oxtr(+/-) showed impaired sociability and preference for social novelty but, unlike the null genotype, their cognitive flexibility and aggression were normal. By autoradiography, Oxtr(+/-) mice were found to have approximately 50% fewer oxytocin receptors (OXTRs) in all of the examined brain regions. Thus, because a partial reduction in Oxtr gene expression is sufficient to compromise social behaviour, the Oxtr acts as a haploinsufficient gene. Furthermore, the inactivation of the Oxtr gene affects specific behaviours in a dose-dependent manner: social behaviour is sensitive to even a partial reduction in Oxtr gene expression, whereas defects in aggression and cognitive flexibility require the complete inactivation of the Oxtr gene to emerge. We then investigated the rescue of the Oxtr(+/-) social deficits by oxytocin (OT) and Thr(4)Gly(7)OT (TGOT) administered i.c.v. at different doses. TGOT was more potent than OT in rescuing sociability and social novelty in both genotypes. Furthermore, the TGOT doses that reverted impaired sociability and preference for social novelty in Oxtr(+/-) were lower than those required in Oxtr(-/-), thus suggesting that the rescue effect is mediated by OXTR in Oxtr(+/-) and by other receptors (presumably vasopressin V1a receptors) in Oxtr(-/-). In line with this, a low dose of the selective oxytocin antagonist desGlyDTyrOVT blocks the rescue effect of TGOT only in the Oxtr(+/-) genotype, whereas the less selective antagonist SR49059 blocks rescue in both genotypes. In conclusion, the Oxtr(+/-) mouse is a unique animal model for investigating how partial loss of the Oxtr gene impair social interactions, and for designing pharmacological rescue strategies.
Collapse
Affiliation(s)
- M Sala
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Panlilio LV, Justinova Z, Goldberg SR. Inhibition of FAAH and activation of PPAR: new approaches to the treatment of cognitive dysfunction and drug addiction. Pharmacol Ther 2013; 138:84-102. [PMID: 23333350 DOI: 10.1016/j.pharmthera.2013.01.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 12/21/2012] [Indexed: 12/16/2022]
Abstract
Enhancing the effects of endogenously-released cannabinoid ligands in the brain might provide therapeutic effects more safely and effectively than administering drugs that act directly at the cannabinoid receptor. Inhibitors of fatty acid amide hydrolase (FAAH) prevent the breakdown of endogenous ligands for cannabinoid receptors and peroxisome proliferator-activated receptors (PPAR), prolonging and enhancing the effects of these ligands when they are naturally released. This review considers recent research on the effects of FAAH inhibitors and PPAR activators in animal models of addiction and cognition (specifically learning and memory). These studies show that FAAH inhibitors can produce potentially therapeutic effects, some through cannabinoid receptors and some through PPAR. These effects include enhancing certain forms of learning, counteracting the rewarding effects of nicotine and alcohol, relieving symptoms of withdrawal from cannabis and other drugs, and protecting against relapse-like reinstatement of drug self-administration. Since FAAH inhibition might have a wide range of therapeutic actions but might also share some of the adverse effects of cannabis, it is noteworthy that at least one FAAH-inhibiting drug (URB597) has been found to have potentially beneficial effects but no indication of liability for abuse or dependence. Although these areas of research are new, the preliminary evidence indicates that they might lead to improved therapeutic interventions and a better understanding of the brain mechanisms underlying addiction and memory.
Collapse
Affiliation(s)
- Leigh V Panlilio
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
20
|
Lazenka MF, Selley DE, Sim-Selley LJ. Brain regional differences in CB1 receptor adaptation and regulation of transcription. Life Sci 2012; 92:446-52. [PMID: 22940268 DOI: 10.1016/j.lfs.2012.08.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 08/13/2012] [Accepted: 08/14/2012] [Indexed: 01/23/2023]
Abstract
Cannabinoid CB1 receptors (CB1Rs) are expressed throughout the brain and mediate the central effects of cannabinoids, including Δ(9)-tetrahydrocannabinol (THC), the main psychoactive constituent of marijuana. Repeated THC administration produces tolerance to cannabinoid-mediated effects, although the magnitude of tolerance varies by effect. Consistent with this observation, CB1R desensitization and downregulation, as well as induction of immediate early genes (IEGs), vary by brain region. Zif268 and c-Fos are induced in the forebrain after acute THC administration. Phosphorylation of the cAMP response-element binding protein (CREB) is increased in a region-specific manner after THC administration. Results differ between acute versus repeated THC injection, and suggest that tolerance to IEG activation might develop in some regions. Repeated THC treatment produces CB1R desensitization and downregulation in the brain, although less adaption occurs in the striatum as compared to regions such as the hippocampus. Repeated THC treatment also induces expression of ΔFosB, a very stable isoform of FosB, in the striatum. Transgenic expression of ∆FosB in the striatum enhances the rewarding effects of several drugs, but its role in THC-mediated effects is not known. The inverse regional relationship between CB1R desensitization and ∆FosB induction suggests that these adaptations might inhibit each other, although this possibility has not been investigated. The differential regional expression of individual IEGs by acute or repeated THC administration suggests that regulation of target genes and effects on CB1R signaling will contribute to the behavioral effects of THC.
Collapse
Affiliation(s)
- M F Lazenka
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA
| | | | | |
Collapse
|
21
|
Dalton GD, Howlett AC. Cannabinoid CB1 receptors transactivate multiple receptor tyrosine kinases and regulate serine/threonine kinases to activate ERK in neuronal cells. Br J Pharmacol 2012; 165:2497-511. [PMID: 21518335 DOI: 10.1111/j.1476-5381.2011.01455.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Signalling networks that regulate the progression of cannabinoid CB(1) receptor-mediated extracellular signal-regulated kinase (ERK) activation in neurons are poorly understood. We investigated the cellular mechanisms involved in CB(1) receptor-stimulated ERK phosphorylation in a neuronal cell model. EXPERIMENTAL APPROACH Murine N18TG2 neuronal cells were used to analyse the effect of specific protein kinase and phosphatase inhibitors on CB(1) receptor-stimulated ERK phosphorylation. The LI-COR In Cell Western assay and immunoblotting were used to measure ERK phosphorylation. KEY RESULTS The time-course of CB(1) receptor-stimulated ERK activation occurs in three phases that are regulated by distinct cellular mechanisms in N18TG2 cells. Phase I (0-5 min) maximal ERK phosphorylation is mediated by CB(1) receptor-stimulated ligand-independent transactivation of multiple receptor tyrosine kinases (RTKs). Phase I requires G(i/o) βγ subunit-stimulated phosphatidylinositol 3-kinase activation and Src kinase activation and is modulated by inhibition of cAMP-activated protein kinase A (PKA) levels. Src kinase activation is regulated by the protein tyrosine phosphatases 1B and Shp1. The Phase II (5-10 min) rapid decline in ERK phosphorylation involves PKA inhibition and serine/threonine phosphatase PP1/PP2A activation. The Phase III (>10 min) plateau in ERK phosphorylation is mediated by CB(1) receptor-stimulated, ligand-independent, transactivation of multiple RTKs. CONCLUSIONS AND IMPLICATIONS The complex expression of CB(1) receptor-stimulated ERK activation provides cellular selectivity, modulation of sensitivity to agonists, and coincidence detection with RTK signalling. RTK and PKA pathways may provide routes to novel CB(1) -based therapeutic interventions in the treatment of addictive disorders or neurodegenerative diseases. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7.
Collapse
Affiliation(s)
- George D Dalton
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | |
Collapse
|
22
|
Nguyen PT, Schmid CL, Raehal KM, Selley DE, Bohn LM, Sim-Selley LJ. β-arrestin2 regulates cannabinoid CB1 receptor signaling and adaptation in a central nervous system region-dependent manner. Biol Psychiatry 2012; 71:714-24. [PMID: 22264443 PMCID: PMC3319102 DOI: 10.1016/j.biopsych.2011.11.027] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 10/25/2011] [Accepted: 11/30/2011] [Indexed: 01/14/2023]
Abstract
BACKGROUND Cannabinoid CB(1) receptors (CB(1)Rs) mediate the effects of ▵(9)-tetrahydrocannabinol (THC), the psychoactive component in marijuana. Repeated THC administration produces tolerance and dependence, which limit therapeutic development. Moreover, THC produces motor and psychoactive side effects. β-arrestin2 mediates receptor desensitization, internalization, and signaling, but its role in these CB(1)R effects and receptor regulation is unclear. METHODS CB(1)R signaling and behaviors (antinociception, hypothermia, catalepsy) were assessed in β-arrestin2-knockout (βarr2-KO) and wild-type mice after THC administration. Cannabinoid-stimulated [(35)S]GTPγS and [(3)H]ligand autoradiography were assessed by statistical parametric mapping and region-of-interest analysis. RESULTS β-arrestin2 deletion increased CB(1)R-mediated G-protein activity in subregions of the cortex but did not affect CB(1)R binding, in vehicle-treated mice. βarr2-KO mice exhibited enhanced acute THC-mediated antinociception and hypothermia, with no difference in catalepsy. After repeated THC administration, βarr2-KO mice showed reduced CB(1)R desensitization and/or downregulation in cerebellum, caudal periaqueductal gray, and spinal cord and attenuated tolerance to THC-mediated antinociception. In contrast, greater desensitization was found in hypothalamus, cortex, globus pallidus, and substantia nigra of βarr2-KO compared with wild-type mice. Enhanced tolerance to THC-induced catalepsy was observed in βarr2-KO mice. CONCLUSIONS β-arrestin2 regulation of CB(1)R signaling following acute and repeated THC administration was region-specific, and results suggest that multiple, overlapping mechanisms regulate CB(1)Rs. The observations that βarr2-KO mice display enhanced antinociceptive responses to acute THC and decreased tolerance to the antinociceptive effects of the drug, yet enhanced tolerance to catalepsy, suggest that development of cannabinoid drugs that minimize CB(1)R interactions with β-arrestin2 might produce improved cannabinoid analgesics with reduced motor suppression.
Collapse
Affiliation(s)
- Peter T Nguyen
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
23
|
Nicoll G, Davidson S, Shanley L, Hing B, Lear M, McGuffin P, Ross R, MacKenzie A. Allele-specific differences in activity of a novel cannabinoid receptor 1 (CNR1) gene intronic enhancer in hypothalamus, dorsal root ganglia, and hippocampus. J Biol Chem 2012; 287:12828-34. [PMID: 22362764 PMCID: PMC3339935 DOI: 10.1074/jbc.m111.336750] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 02/09/2012] [Indexed: 12/30/2022] Open
Abstract
Polymorphisms within intron 2 of the CNR1 gene, which encodes cannabinoid receptor 1 (CB(1)), have been associated with addiction, obesity, and brain volume deficits. We used comparative genomics to identify a polymorphic (rs9444584-C/T) sequence (ECR1) in intron 2 of the CNR1 gene that had been conserved for 310 million years. The C-allele of ECR1 (ECR1(C)) acted as an enhancer in hypothalamic and dorsal root ganglia cells and responded to MAPK activation through the MEKK pathway but not in hippocampal cells. However, ECR1(T) was significantly more active in hypothalamic and dorsal root ganglia cells but, significantly, and in contrast to ECR1(C), was highly active in hippocampal cells where it also responded strongly to activation of MAPK. Intriguingly, rs9444584 is in strong linkage disequilibrium with two other SNPs (rs9450898 (r(2) = 0.841) and rs2023239 (r(2) = 0.920)) that have been associated with addiction, obesity (rs2023239), and reduced fronto-temporal white matter volumes in schizophrenia patients as a result of cannabis misuse (rs9450898). Considering their high linkage disequilibrium and the increased response of ECR1(T) to MAPK signaling when compared with ECR1(C), it is possible that the functional effects of the different alleles of rs9444584 may play a role in the conditions associated with rs9450898 and rs2023239. Further analysis of the different alleles of ECR1 may lead to a greater understanding of the role of CNR1 gene misregulation in these conditions as well as chronic inflammatory pain.
Collapse
Affiliation(s)
- Gemma Nicoll
- From the School of Medical Sciences, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, Scotland and
| | - Scott Davidson
- From the School of Medical Sciences, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, Scotland and
| | - Lynne Shanley
- From the School of Medical Sciences, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, Scotland and
| | - Ben Hing
- From the School of Medical Sciences, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, Scotland and
| | - Marissa Lear
- From the School of Medical Sciences, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, Scotland and
| | - Peter McGuffin
- the Medical Research Council Social, Genetic and Developmental Psychiatry Centre Centre, Institute of Psychiatry, King's College London, DeCrespigny Park, London SE5 8AF3, United Kingdom
| | - Ruth Ross
- From the School of Medical Sciences, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, Scotland and
| | - Alasdair MacKenzie
- From the School of Medical Sciences, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, Scotland and
| |
Collapse
|
24
|
Nazzaro C, Greco B, Cerovic M, Baxter P, Rubino T, Trusel M, Parolaro D, Tkatch T, Benfenati F, Pedarzani P, Tonini R. SK channel modulation rescues striatal plasticity and control over habit in cannabinoid tolerance. Nat Neurosci 2012; 15:284-93. [PMID: 22231426 DOI: 10.1038/nn.3022] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 12/01/2011] [Indexed: 12/14/2022]
Abstract
Endocannabinoids (eCBs) regulate neuronal activity in the dorso-lateral striatum (DLS), a brain region that is involved in habitual behaviors. How synaptic eCB signaling contributes to habitual behaviors under physiological and pathological conditions remains unclear. Using a mouse model of cannabinoid tolerance, we found that persistent activation of the eCB pathway impaired eCB-mediated long-term depression (LTD) and synaptic depotentiation in the DLS. The loss of eCB LTD, occurring preferentially at cortical connections to striatopallidal neurons, was associated with a shift in behavioral control from goal-directed action to habitual responding. eCB LTD and behavioral alterations were rescued by in vivo modulation of small-conductance calcium activated potassium channel (SK channel) activity in the DLS, which potentiates eCB signaling. Our results reveal a direct relationship between drug tolerance and changes in control of instrumental performance by establishing a central role for eCB LTD in habit expression. In addition, SK channels emerge as molecular targets to fine tune the eCB pathway under pathological conditions.
Collapse
Affiliation(s)
- Cristiano Nazzaro
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fernández-Medarde A, Santos E. The RasGrf family of mammalian guanine nucleotide exchange factors. Biochim Biophys Acta Rev Cancer 2010; 1815:170-88. [PMID: 21111786 DOI: 10.1016/j.bbcan.2010.11.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 11/14/2010] [Indexed: 12/31/2022]
Abstract
RasGrf1 and RasGrf2 are highly homologous mammalian guanine nucleotide exchange factors which are able to activate specific Ras or Rho GTPases. The RasGrf genes are preferentially expressed in the central nervous system, although specific expression of either locus may also occur elsewhere. RasGrf1 is a paternally-expressed, imprinted gene that is expressed only after birth. In contrast, RasGrf2 is not imprinted and shows a wider expression pattern. A variety of isoforms for both genes are also detectable in different cellular contexts. The RasGrf proteins exhibit modular structures composed by multiple domains including CDC25H and DHPH motifs responsible for promoting GDP/GTP exchange, respectively, on Ras or Rho GTPase targets. The various domains are essential to define their intrinsic exchanger activity and to modulate the specificity of their functional activity so as to connect different upstream signals to various downstream targets and cellular responses. Despite their homology, RasGrf1 and RasGrf2 display differing target specificities and non overlapping functional roles in a variety of signaling contexts related to cell growth and differentiation as well as neuronal excitability and response or synaptic plasticity. Whereas both RasGrfs are activatable by glutamate receptors, G-protein-coupled receptors or changes in intracellular calcium concentration, only RasGrf1 is reported to be activated by LPA, cAMP, or agonist-activated Trk and cannabinoid receptors. Analysis of various knockout mice strains has uncovered a specific functional contribution of RasGrf1 in processes of memory and learning, photoreception, control of post-natal growth and body size and pancreatic β-cell function and glucose homeostasis. For RasGrf2, specific roles in lymphocyte proliferation, T-cell signaling responses and lymphomagenesis have been described.
Collapse
|
26
|
Martini L, Thompson D, Kharazia V, Whistler JL. Differential regulation of behavioral tolerance to WIN55,212-2 by GASP1. Neuropsychopharmacology 2010; 35:1363-73. [PMID: 20164830 PMCID: PMC2953419 DOI: 10.1038/npp.2010.6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 12/19/2009] [Accepted: 01/06/2010] [Indexed: 12/13/2022]
Abstract
Cannabinoid agonists have shown some promise clinically as analgesics, in particular for cancer pain, in which they have the additional benefit of decreasing nausea. However, as for most other drugs, the long-term use of cannabinoids is limited by the development of tolerance. Several molecular mechanisms have been proposed to explain drug tolerance, including receptor downregulation. The cannabinoid 1 (CB1) receptors can be downregulated in vitro through an interaction with the G-protein-coupled receptor-associated sorting protein1, GASP1, that targets CB1 receptors for degradation after their agonist-mediated endocytosis. To investigate whether GASP1-mediated postendocytic sorting of the CB1 receptor contributes to tolerance to cannabinoid drugs in vivo, we generated a mouse with a disruption of GASP1. In wild-type mice, repeated administration of the cannabinoid agonist WIN55,212-2 promoted downregulation of CB1 receptor levels and concomitant tolerance to the effects of drug on antinociception, motor incoordination, and locomotor hypoactivity. In contrast, GASP1 knockout mice did not develop tolerance to any of these effects and showed no significant receptor downregulation. Taken together, this study provides evidence that GASP1 regulates CB1 receptor downregulation in vivo, and that postendocytic receptor trafficking has a key role in the development of tolerance to WIN55,212-2.
Collapse
Affiliation(s)
- Lene Martini
- Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, CA, USA
| | - Dawn Thompson
- Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, CA, USA
| | - Viktor Kharazia
- Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, CA, USA
| | - Jennifer L Whistler
- Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, CA, USA
| |
Collapse
|
27
|
Dalton GD, Bass CE, Van Horn CG, Howlett AC. Signal transduction via cannabinoid receptors. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2009; 8:422-31. [PMID: 19839935 PMCID: PMC3976677 DOI: 10.2174/187152709789824615] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 10/09/2009] [Indexed: 01/20/2023]
Abstract
The endocannabinoids anandamide and 2-arachidonoylglycerol are lipid mediators that signal via CB(1) and CB(2) cannabinoid receptors and Gi/o-proteins to inhibit adenylyl cyclase and stimulate mitogen-activated protein kinase. In the brain, CB(1) receptors interact with opioid receptors in close proximity, and these receptors may share G-proteins and effector systems. In the striatum, CB(1) receptors function in coordination with D(1) and D(2) dopamine receptors, and combined stimulation of CB(1)-D(2) receptor heteromeric complexes promotes a unique interaction to stimulate cAMP production. CB(1) receptors also trigger growth factor receptor signaling cascades in cells by engaging in cross-talk or interreceptor signal transmission with the receptor tyrosine kinase (RTK) family. Mechanisms for CB(1) receptor-RTK transactivation can include stimulation of signal transduction pathways regulated by second messengers such as phospholipase C, metalloprotease cleavage of membrane-bound precursor proteins such as epidermal growth factor which activate RTKs, RTK autophosphorylation, and recruitment of non-receptor tyrosine kinases. CB(1) and CB(2) receptors are expressed in peripheral tissues including liver and adipose tissue, and are induced in pathological conditions. Novel signal transduction resulting from endocannabinoid regulation of AMP-regulated kinase and peroxisome proliferator-activated receptors have been discovered from studies of hepatocytes and adipocytes. It can be predicted that drug discovery of the future will be based upon these novel signal transduction mechanisms for endocannabinoid mediators.
Collapse
Affiliation(s)
- George D Dalton
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
28
|
O'Sullivan SE, Kendall DA. Cannabinoid activation of peroxisome proliferator-activated receptors: potential for modulation of inflammatory disease. Immunobiology 2009; 215:611-6. [PMID: 19833407 DOI: 10.1016/j.imbio.2009.09.007] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 09/20/2009] [Indexed: 02/07/2023]
Abstract
Cannabinoids act via cell surface G protein-coupled receptors (CB(1) and CB(2)) and the ion channel receptor TRPV1. Evidence has now emerged suggesting that an additional target is the peroxisome proliferator-activated receptor (PPAR) family of nuclear receptors. There are three PPAR subtypes alpha, delta (also known as beta) and gamma, which regulate cell differentiation, metabolism and immune function. The major endocannabinoids, anandamide and 2-arachidonoylglycerol, and ajulemic acid, a structural analogue of the phytocannabinoid Delta(9)-tetrahydrocannabinol (THC), have anti-inflammatory properties mediated by PPARgamma. Other cannabinoids which activate PPARgamma include N-arachidonoyl-dopamine, THC, cannabidiol, HU210, WIN55212-2 and CP55940. The endogenous acylethanolamines, oleoylethanolamide and palmitoylethanolamide regulate feeding and body weight, stimulate fat utilization and have neuroprotective effects mediated through PPARalpha. Other endocannabinoids that activate PPARalpha include anandamide, virodhamine and noladin ether. There is, as yet, little direct evidence for interactions of cannabinoids with PPARdelta. There is a convergence of effects of cannabinoids, acting via cell surface and nuclear receptors, on immune cell function which provides promise for the targeted therapy of a variety of immune, particularly neuroinflammatory, diseases.
Collapse
Affiliation(s)
- S E O'Sullivan
- School of Graduate Entry Medicine and Health, University of Nottingham, Nottingham, UK.
| | | |
Collapse
|
29
|
Wallace MJ, Newton PM, McMahon T, Connolly J, Huibers A, Whistler J, Messing RO. PKCepsilon regulates behavioral sensitivity, binding and tolerance to the CB1 receptor agonist WIN55,212-2. Neuropsychopharmacology 2009; 34:1733-42. [PMID: 19158669 PMCID: PMC2680927 DOI: 10.1038/npp.2008.230] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The cannabinoid CB1 receptor (CB1) is one of the most abundant G protein-coupled receptors in the brain, but little is known about the mechanisms that modulate CB1 receptor signaling. Here, we show that inhibition or null mutation of the epsilon isozyme of protein kinase C (PKCepsilon) selectively enhances behavioral responses to the CB1 agonist WIN55,212-2 in mice, but not to the structurally unrelated CB1 agonist CP55,940. Binding affinity for [(3)H] WIN55,212-2 was increased in brain membranes from PKCepsilon(-/-) mice compared with PKCepsilon(+/+) mice. There was no difference in binding of the inverse agonist [(3)H] SR141716A. In addition, repeated administration of WIN55,212-2 produced greater analgesic and thermal tolerance in PKCvarepsilon(-/-) mice compared with PKCepsilon(+/+)mice. These results indicate that PKCvarepsilon selectively regulates behavioral sensitivity, CB1 receptor binding and tolerance to WIN55,212-2.
Collapse
Affiliation(s)
- Melisa J Wallace
- Department of Neurology, The Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, CA 94608, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
D'Souza DC, Pittman B, Perry E, Simen A. Preliminary evidence of cannabinoid effects on brain-derived neurotrophic factor (BDNF) levels in humans. Psychopharmacology (Berl) 2009; 202:569-78. [PMID: 18807247 PMCID: PMC2791800 DOI: 10.1007/s00213-008-1333-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 09/01/2008] [Indexed: 12/21/2022]
Abstract
BACKGROUND Acute and chronic exposure to cannabinoids has been associated with cognitive deficits, a higher risk for schizophrenia and other drug abuse. However, the precise mechanism underlying such effects is not known. Preclinical studies suggest that cannabinoids modulate brain-derived neurotrophic factor (BDNF). Accordingly, we hypothesized that Delta(9)-tetrahydrocannabinol (Delta(9)-THC), the principal active component of cannabis, would alter BDNF levels in humans. MATERIALS AND METHODS Healthy control subjects (n = 14) and light users of cannabis (n = 9) received intravenous administration of (0.0286 mg/kg) Delta(9)-THC in a double-blind, fixed order, placebo-controlled, laboratory study. Serum sampled at baseline, after placebo administration, and after Delta(9)-THC administration was assayed for BDNF using ELISA. RESULTS Delta(9)-THC increased serum BDNF levels in healthy controls but not light users of cannabis. Further, light users of cannabis had lower basal BDNF levels. Delta(9)-THC produced psychotomimetic effects, perceptual alterations, and "high" and spatial memory impairments. IMPLICATIONS The effects of socially relevant doses of cannabinoids on BDNF suggest a possible mechanism underlying the consequences of exposure to cannabis. This may be of particular importance for the developing brain and also in disorders believed to involve altered neurodevelopment such as schizophrenia. Larger studies to investigate the effects of cannabinoids on BDNF and other neurotrophins are warranted.
Collapse
Affiliation(s)
- Deepak Cyril D'Souza
- Schizophrenia Biological Research Center, VA Connecticut Healthcare System, West Haven, CT 06516, USA.
| | | | | | | |
Collapse
|
31
|
Abstract
Many drugs of abuse, including cannabinoids, opioids, alcohol and nicotine, can alter the levels of endocannabinoids in the brain. Recent studies show that release of endocannabinoids in the ventral tegmental area can modulate the reward-related effects of dopamine and might therefore be an important neurobiological mechanism underlying drug addiction. There is strong evidence that the endocannabinoid system is involved in drug-seeking behavior (especially behavior that is reinforced by drug-related cues), as well as in the mechanisms that underlie relapse to drug use. The cannabinoid CB(1) antagonist/inverse agonist rimonabant has been shown to reduce the behavioral effects of stimuli associated with drugs of abuse, including nicotine, alcohol, cocaine, and marijuana. Thus, the endocannabinoid system represents a promising target for development of new treatments for drug addiction.
Collapse
Affiliation(s)
- Zuzana Justinova
- Department of Health and Human Services, Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
32
|
Rubino T, Vigano' D, Realini N, Guidali C, Braida D, Capurro V, Castiglioni C, Cherubino F, Romualdi P, Candeletti S, Sala M, Parolaro D. Chronic delta 9-tetrahydrocannabinol during adolescence provokes sex-dependent changes in the emotional profile in adult rats: behavioral and biochemical correlates. Neuropsychopharmacology 2008; 33:2760-71. [PMID: 18172430 DOI: 10.1038/sj.npp.1301664] [Citation(s) in RCA: 267] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Few and often contradictory reports exist on the long-term neurobiological consequences of cannabinoid consumption in adolescents. The endocannabinoid system plays an important role during the different stages of brain development as cannabinoids influence the release and action of different neurotransmitters and promote neurogenesis. This study tested whether long-lasting interference by cannabinoids with the developing endogenous cannabinoid system during adolescence caused persistent behavioral alterations in adult rats. Adolescent female and male rats were treated with increasing doses of Delta(9)-tetrahydrocannabinol (THC) for 11 days (postnatal day (PND) 35-45) and left undisturbed until adulthood (PND 75) when behavioral and biochemical assays were carried out. CB1 receptor level and CB1/G-protein coupling were significantly reduced by THC exposure in the amygdala (Amyg), ventral tegmental area (VTA) and nucleus accumbens (NAc) of female rats, whereas male rats had significant alterations only in the amygdala and hippocampal formation. Neither female nor male rats showed any changes in anxiety responses (elevated plus maze and open-field tests) but female rats presented significant 'behavioral despair' (forced swim test) paralleled by anhedonia (sucrose preference). In contrast, male rats showed no behavioral despair but did present anhedonia. This different behavioral picture was supported by biochemical parameters of depression, namely CREB alteration. Only female rats had low CREB activity in the hippocampal formation and prefrontal cortex and high activity in the NAc paralleled by increases in dynorphin expression. These results suggest that heavy cannabis consumption in adolescence may induce subtle alterations in the emotional circuit in female rats, ending in depressive-like behavior, whereas male rats show altered sensitivity to rewarding stimuli.
Collapse
Affiliation(s)
- Tiziana Rubino
- DBSF, Pharmacology Section, and Neuroscience Center, University of Insubria, Varese, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Although drugs of abuse have different chemical structures and interact with different protein targets, all appear to usurp common neuronal systems that regulate reward and motivation. Addiction is a complex disease that is thought to involve drug-induced changes in synaptic plasticity due to alterations in cell signaling, gene transcription, and protein synthesis. Recent evidence suggests that drugs of abuse interact with and change a common network of signaling pathways that include a subset of specific protein kinases. The best studied of these kinases are reviewed here and include extracellular signal-regulated kinase, cAMP-dependent protein kinase, cyclin-dependent protein kinase 5, protein kinase C, calcium/calmodulin-dependent protein kinase II, and Fyn tyrosine kinase. These kinases have been implicated in various aspects of drug addiction including acute drug effects, drug self-administration, withdrawal, reinforcement, sensitization, and tolerance. Identifying protein kinase substrates and signaling pathways that contribute to the addicted state may provide novel approaches for new pharmacotherapies to treat drug addiction.
Collapse
Affiliation(s)
- Anna M Lee
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California at San Francisco, Emeryville, CA 94608, USA
| | | |
Collapse
|
34
|
Identification of Novel RasGRF1 Interacting Partners by Large-Scale Proteomic Analysis. J Mol Neurosci 2008; 37:212-24. [DOI: 10.1007/s12031-008-9118-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 06/05/2008] [Indexed: 10/21/2022]
|
35
|
Transcriptomic and proteomic analyses of mouse cerebellum reveals alterations in RasGRF1 expression following in vivo chronic treatment with delta 9-tetrahydrocannabinol. J Mol Neurosci 2008; 37:111-22. [PMID: 18584336 DOI: 10.1007/s12031-008-9114-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Accepted: 05/20/2008] [Indexed: 10/21/2022]
Abstract
We have applied transcriptomic and proteomic techniques to identify changes in the RNA and the protein levels in the mouse cerebellum after chronic treatment with Delta(9)-tetrahydrocannabinol (THC). Among approximately 14,000 transcripts in a mouse cDNA microarray library, we found 11 genes with altered expression. RasGRF1, a neuron-specific Ras guanine nucleotide exchange factor, showed a reduction both at the RNA and protein levels with a specific decrease of the protein pool associated to cell membranes. In addition, proteomic analysis on cerebellum obtained from chronically THC-treated mice detected quantitative changes of additional 27 spots, mostly in the membranous fraction. We found enrichment of alpha (Galphao, Galphaq) and beta subunits (beta4/beta2 and beta5) of guanine nucleotide-binding proteins and of two calcium-binding proteins, calretinin and hippocalcin-like protein-1. In addition, we also detected a significant increase in the membrane fraction of proteins involved in exo-endocytosis such as septins, dynamin-1, and vesicle protein sorting 29. By western blotting, we confirmed increased membrane localization of calretinin and of dynamin-1 isoforms with higher isoelectric point, indicative for an underphosphorylated state of the molecule. In conclusion, our results indicate that chronic THC modulates the expression and subcellular localization of proteins implicated in Ras signaling, calcium-buffering potential, and trafficking.
Collapse
|
36
|
McKinney DL, Cassidy MP, Collier LM, Martin BR, Wiley JL, Selley DE, Sim-Selley LJ. Dose-related differences in the regional pattern of cannabinoid receptor adaptation and in vivo tolerance development to delta9-tetrahydrocannabinol. J Pharmacol Exp Ther 2008; 324:664-73. [PMID: 17967938 PMCID: PMC2637548 DOI: 10.1124/jpet.107.130328] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chronic treatment with Delta(9)-tetrahydrocannabinol (THC) produces tolerance to cannabinoid-mediated behaviors and region-specific adaptation of brain cannabinoid receptors. However, the relationship between receptor adaptation and tolerance is not well understood, and the dose-response relationship of THC-induced cannabinoid receptor adaptation is unknown. This study assessed cannabinoid receptor function in the brain and cannabinoid-mediated behaviors after chronic treatment with different dosing regimens of THC. Mice were treated twice per day for 6.5 days with the following: vehicle, 10 mg/kg THC, or escalating doses of 10 to 20 to 30 or 10 to 30 to 60 mg/kg THC. Tolerance to cannabinoid-mediated locomotor inhibition, ring immobility, antinociception, and hypothermia was produced by both ramping THC-dose paradigms. Administration of 10 mg/kg THC produced less tolerance development, the magnitude of which depended upon the particular behavior. Decreases in cannabinoid-mediated G-protein activation, which varied with treatment dose and region, were observed in autoradiographic and membrane guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS)-binding assays in brains from THC-treated mice. Agonist-stimulated [(35)S]GTPgammaS binding was reduced in the hippocampus, cingulate cortex, periaqueductal gray, and cerebellum after all treatments. Decreased agonist-stimulated [(35)S]GTPgammaS binding in the caudate-putamen, nucleus accumbens, and preoptic area occurred only after administration of 10 to 30 to 60 mg/kg THC, and no change was found in the globus pallidus or entopeduncular nucleus after any treatment. Changes in the CB(1) receptor B(max) values also varied by region, with hippocampus and cerebellum showing reductions after all treatments and striatum/globus pallidus showing effects only at higher dosing regimens. These results reveal that tolerance and CB(1) receptor adaptation exhibit similar dose-dependent development, and they are consistent with previous studies demonstrating less cannabinoid receptor adaptation in striatal circuits.
Collapse
Affiliation(s)
- Diana L McKinney
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Box 980524, 1112 East Clay St., Richmond, VA 23298, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Zhai H, Li Y, Wang X, Lu L. Drug-induced alterations in the extracellular signal-regulated kinase (ERK) signalling pathway: implications for reinforcement and reinstatement. Cell Mol Neurobiol 2008; 28:157-72. [PMID: 18041576 PMCID: PMC11515050 DOI: 10.1007/s10571-007-9240-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 11/06/2007] [Indexed: 12/01/2022]
Abstract
Drug addiction, characterized by high rates of relapse, is recognized as a kind of neuroadaptive disorder. Since the extracellular signal-regulated kinase (ERK) pathway is critical to neuroplasticity in the adult brain, understanding the role this pathway plays is important for understanding the molecular mechanism underlying drug addiction and relapse. Here, we review previous literatures that focus on the effects of exposure to cocaine, amphetamine, Delta(9)-tetrahydrocannabinol (THC), nicotine, morphine, and alcohol on ERK signaling in the mesocorticolimbic dopamine system; these alterations of ERK signaling have been thought to contribute to the drug's rewarding effects and to the long-term maladaptation induced by drug abuse. We then discuss the possible upstreams of the ERK signaling pathway activated by exposure of drugs of abuse and the environmental cues previously paired with drugs. Finally, we argue that since ERK activation is a key molecular process in reinstatement of conditioned place preference and drug self-administration, the pharmacological manipulation of the ERK pathway is a potential treatment strategy for drug addiction.
Collapse
Affiliation(s)
- Haifeng Zhai
- Department of Neuropharmacology, National Institute on Drug Dependence, Peking University, 38, Xue Yuan Road, Hai Dian District, Beijing 100083 China
| | - Yanqin Li
- Department of Neuropharmacology, National Institute on Drug Dependence, Peking University, 38, Xue Yuan Road, Hai Dian District, Beijing 100083 China
| | - Xi Wang
- Department of Neuropharmacology, National Institute on Drug Dependence, Peking University, 38, Xue Yuan Road, Hai Dian District, Beijing 100083 China
| | - Lin Lu
- Department of Neuropharmacology, National Institute on Drug Dependence, Peking University, 38, Xue Yuan Road, Hai Dian District, Beijing 100083 China
| |
Collapse
|
38
|
Korzh A, Keren O, Gafni M, Bar-Josef H, Sarne Y. Modulation of extracellular signal-regulated kinase (ERK) by opioid and cannabinoid receptors that are expressed in the same cell. Brain Res 2007; 1189:23-32. [PMID: 18068691 DOI: 10.1016/j.brainres.2007.10.070] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 09/17/2007] [Accepted: 10/28/2007] [Indexed: 11/30/2022]
Abstract
In the present study we investigated the signal transduction pathways leading to the activation of extracellular signal-regulated kinase (ERK) by opioid or cannabinoid drugs, when their receptors are coexpressed in the same cell-type. In N18TG2 neuroblastoma cells, the opioid agonist etorphine and the cannabinoid agonist CP-55940 induced the phosphorylation of ERK by a similar mechanism that involved activation of delta-opioid receptors or CB1 cannabinoid receptors coupled to Gi/Go proteins, matrix metalloproteases, vascular endothelial growth factor (VEGF) receptors and MAPK/ERK kinase (MEK). In HEK-293 cells, these two drugs induced the phosphorylation of ERK by separate mechanisms. While CP-55940 activated ERK by transactivation of VEGFRs, similar to its effect in N18TG2 cells, the opioid agonist etorphine activated ERK by a mechanism that did not involve transactivation of a receptor tyrosine kinase. Interestingly, the activation of ERK by etorphine was resistant to the inhibition of MEK, suggesting the possible existence of a novel, undescribed yet mechanism for the activation of ERK by opioids. This mechanism was found to be specific to etorphine, as activation of ERK by the micro-opioid receptor (MOR) agonist DAMGO ([D-Ala(2), N-Me-Phe(4), Gly(5)-ol] enkephalin) was mediated by MEK in these cells, suggesting that etorphine and DAMGO activate distinct, ligand-specific, conformations of MOR. The characterization of cannabinoid- and opioid-induced ERK activation in these two cell-lines enables future studies into possible interactions between these two groups of drugs at the level of MAPK signaling.
Collapse
Affiliation(s)
- Alexander Korzh
- The Mauerberger Chair in Neuropharmacology, Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
39
|
Rubino T, Sala M, Viganò D, Braida D, Castiglioni C, Limonta V, Guidali C, Realini N, Parolaro D. Cellular mechanisms underlying the anxiolytic effect of low doses of peripheral Delta9-tetrahydrocannabinol in rats. Neuropsychopharmacology 2007; 32:2036-45. [PMID: 17287821 DOI: 10.1038/sj.npp.1301330] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We investigated the effect of low doses of intraperitoneal Delta(9)-tetrahydrocannabinol (THC) on anxiety behavior in rats using the elevated plus maze (EPM). An anxiolytic effect was obtained in a range of doses between 0.075 and 1.5 mg/kg, the 0.75 dose being the most effective. Pretreatment with the CB1 receptor antagonist AM251 fully reversed THC's effect, suggesting CB1 receptors were involved. In order to elucidate the neuroanatomical substrates underlying the effect of the maximal effective dose of THC, we investigated cFos expression in anxiety-related brain regions (prefrontal cortex, nucleus accumbens, amygdala, and hippocampus) of rats exposed to the EPM. THC significantly lowered the amount of cFos in prefrontal cortex and amygdala without affecting the other cerebral areas. As there is increasing evidence that CREB function regulates anxiety-like behavior in rats, the second biochemical parameter we measured was phosphorylated CREB in the same brain areas. Rats treated with THC showed a significant increase in CREB activation in the prefrontal cortex and hippocampus. In the prefrontal cortex this increased activation was linked to an increase in ERK activation, whereas in the hippocampus there was a drop in the activity of CAMKII, a kinase with inhibitory effect on CREB activation. All these effects were reversed by AM251 pretreatment, suggesting that stimulation of CB1 receptors is fundamental for triggering the biochemical events. Our results suggest that the stimulation of these receptors in the prefrontal cortex, amygdala, and hippocampus with the subsequent activation of different signaling pathways is the first event underlying the effects of cannabinoids on anxious states.
Collapse
Affiliation(s)
- Tiziana Rubino
- DBSF, Pharmacology Section and Center of Neuroscience, University of Insubria, via A. da Giussano 10, 21052 Busto Arsizio, Varese, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
O'Sullivan SE. Cannabinoids go nuclear: evidence for activation of peroxisome proliferator-activated receptors. Br J Pharmacol 2007; 152:576-82. [PMID: 17704824 PMCID: PMC2190029 DOI: 10.1038/sj.bjp.0707423] [Citation(s) in RCA: 394] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cannabinoids act at two classical cannabinoid receptors (CB1 and CB2), a 7TM orphan receptor and the transmitter-gated channel transient receptor potential vanilloid type-1 receptor. Recent evidence also points to cannabinoids acting at members of the nuclear receptor family, peroxisome proliferator-activated receptors (PPARs, with three subtypes alpha, beta (delta) and gamma), which regulate cell differentiation and lipid metabolism. Much evidence now suggests that endocannabinoids are natural activators of PPAR alpha. Oleoylethanolamide regulates feeding and body weight, stimulates fat utilization and has neuroprotective effects mediated through activation of PPAR alpha. Similarly, palmitoylethanolamide regulates feeding and lipid metabolism and has anti-inflammatory properties mediated by PPAR alpha. Other endocannabinoids that activate PPAR alpha include anandamide, virodhamine and noladin. Some (but not all) endocannabinoids also activate PPAR gamma; anandamide and 2-arachidonoylglycerol have anti-inflammatory properties mediated by PPAR gamma. Similarly, ajulemic acid, a structural analogue of a metabolite of Delta(9)-tetrahydrocannabinol (THC), causes anti-inflammatory effects in vivo through PPAR gamma. THC also activates PPAR gamma, leading to a time-dependent vasorelaxation in isolated arteries. Other cannabinoids which activate PPAR gamma include N-arachidonoyl-dopamine, HU210, WIN55212-2 and CP55940. In contrast, little research has been carried out on the effects of cannabinoids at PPAR delta. In this newly emerging area, a number of research questions remain unanswered; for example, why do cannabinoids activate some isoforms and not others? How much of the chronic effects of cannabinoids are through activation of nuclear receptors? And importantly, do cannabinoids confer the same neuro- and cardioprotective benefits as other PPAR alpha and PPAR gamma agonists? This review will summarize the published literature implicating cannabinoid-mediated PPAR effects and discuss the implications thereof.
Collapse
Affiliation(s)
- S E O'Sullivan
- School of Biomedical Sciences, University of Notttingham, Queen's Medical Center, Nottingham, UK. saoirse.o'
| |
Collapse
|
41
|
Moranta D, Esteban S, García-Sevilla JA. Acute, chronic and withdrawal effects of the cannabinoid receptor agonist WIN55212-2 on the sequential activation of MAPK/Raf-MEK-ERK signaling in the rat cerebral frontal cortex: short-term regulation by intrinsic and extrinsic pathways. J Neurosci Res 2007; 85:656-67. [PMID: 17139682 DOI: 10.1002/jnr.21140] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The cannabinoids (CB) modulate the extracellular signal-regulated kinase (ERK), leading to various forms of plasticity in the brain. Little is known, however, on the in vivo short- and long-term activation and regulation of the components of mitogen-activated protein kinase (MAPK)/ERK signaling by CB. The CB agonist WIN55212-2 (8 mg/kg) increased the immunodensities of phosphorylated c-Raf-1 (42%), MEK1/2 (63%), ERK1 (24%), and ERK2 (28%) in the rat cerebral frontal cortex. These effects were antagonized by SR141716A (rimonabant, 10 mg/kg), a selective CB(1) receptor antagonist. Repeated WIN55212-2 treatment (2-8 mg/kg for 5 days) resulted in tachyphylaxis to the acute activation of Raf-MEK-ERK signaling. Acute WIN55212-2 also induced a hypothermic effect in rats, which was reduced after repeated administration (tolerance). Treatment with SR141716A after chronic WIN55212-2 resulted in the expected cannabinoid withdrawal syndrome, without concomitant alterations in the phosphorylation state of c-Raf-1, MEK1/2, or ERK1/2. Pretreatment with SL327 (20 mg/kg, a MEK1/2 inhibitor) increased the basal phosphorylation of c-Raf-1 (40%) and MEK1/2 (74%; feedback regulation) and fully prevented the up-regulation of ERK1/2 (23-31%) induced by WIN55212-2. Pretreatment with MK801 (1 mg/kg, a NMDA receptor antagonist) effectively blocked the up-regulation c-Raf-1 (41%), MEK1/2 (57%) and ERK1/2 (25-30%) induced by the CB agonist. The main findings demonstrate that the acute stimulation of CB(1) receptors in the frontal cortex results in the sequential phosphorylation of Raf-MEK-ERK cascade, in which c-Raf-1 activation (rate-limiting process) plays a crucial role. Moreover, the in vivo stimulating effect of WIN55212-2 on Raf-MEK-ERK signaling is under the extrinsic regulation of an excitatory glutamatergic mechanism.
Collapse
Affiliation(s)
- David Moranta
- Laboratori de Neurofarmacologia, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain
| | | | | |
Collapse
|
42
|
Tappe-Theodor A, Agarwal N, Katona I, Rubino T, Martini L, Swiercz J, Mackie K, Monyer H, Parolaro D, Whistler J, Kuner T, Kuner R. A molecular basis of analgesic tolerance to cannabinoids. J Neurosci 2007; 27:4165-77. [PMID: 17428994 PMCID: PMC6672554 DOI: 10.1523/jneurosci.5648-06.2007] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Clinical usage of cannabinoids in chronic pain states is limited by their central side effects and the pharmacodynamic tolerance that sets in after repeated dosage. Analgesic tolerance to cannabinoids in vivo could be caused by agonist-induced downregulation and intracellular trafficking of cannabinoid receptors, but little is known about the molecular mechanisms involved. We show here that the type 1 cannabinoid receptor (CB1) interacts physically with G-protein-associated sorting protein 1 (GASP1), a protein that sorts receptors in lysosomal compartments destined for degradation. CB1-GASP1 interaction was observed to be required for agonist-induced downregulation of CB1 in spinal neurons ex vivo as well as in vivo. Importantly, uncoupling CB1 from GASP1 in mice in vivo abrogated tolerance toward cannabinoid-induced analgesia. These results suggest that GASP1 is a key regulator of the fate of CB1 after agonist exposure in the nervous system and critically determines analgesic tolerance to cannabinoids.
Collapse
Affiliation(s)
- Anke Tappe-Theodor
- Pharmacology Institute, University of Heidelberg, 69120 Heidelberg, Germany
| | - Nitin Agarwal
- Pharmacology Institute, University of Heidelberg, 69120 Heidelberg, Germany
| | - István Katona
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary
| | - Tiziana Rubino
- Department of Structural and Functional Biology, Pharmacology Section and Neuroscience Center, University of Insubria, 21100 Busto Arsizio, Varese, Italy
| | - Lene Martini
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, San Francisco, California 94608
| | - Jakub Swiercz
- Pharmacology Institute, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ken Mackie
- Department of Anesthesiology, University of Washington School of Medicine, Seattle, Washington 98195-6540
| | - Hannah Monyer
- Department of Clinical Neurobiology, Interdisciplinary Center for Neuroscience, 69120 Heidelberg, Germany, and
| | - Daniela Parolaro
- Department of Structural and Functional Biology, Pharmacology Section and Neuroscience Center, University of Insubria, 21100 Busto Arsizio, Varese, Italy
| | - Jennifer Whistler
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, San Francisco, California 94608
| | - Thomas Kuner
- Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Rohini Kuner
- Pharmacology Institute, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
43
|
Baldassa S, Gnesutta N, Fascio U, Sturani E, Zippel R. SCLIP, a Microtubule-destabilizing Factor, Interacts with RasGRF1 and Inhibits Its Ability to Promote Rac Activation and Neurite Outgrowth. J Biol Chem 2007; 282:2333-45. [PMID: 17135267 DOI: 10.1074/jbc.m604495200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RasGRF1 is a neuron-specific guanine nucleotide exchange factor for the small GTPases Ras and Rac. It is implicated in the regulation of memory formation and in the development of tolerance to drug abuse, although the mechanisms have been elucidated only in part. Here we report the isolation, by the yeast two-hybrid screen, of the microtubule-destabilizing factor SCLIP (SCG10-like protein) as a novel RasGRF1-interacting protein. This interaction requires the region spanning the Dbl-homology domain of RasGRF1, endowed with catalytic activity on Rac. In search for a possible function we found by biochemical means that SCLIP influences the signaling properties of RasGRF1, greatly reducing its ability to activate the Rac/p38 MAPK pathway, while the Ras/Erk one remains unaffected. Moreover, a potential role is suggested by transfection studies in neuronal PC12 cells in which RasGRF1 induces neurite outgrowth, and coexpression of SCLIP counteracts this effect, causing a dramatic decrease in the percentage of cells bearing neurites, which also appear significantly shortened. This study unveils a physical and functional interaction between RasGRF1 and SCLIP. We suggest that this novel interplay may have possible implications in mechanisms that regulate neuronal morphology and structural plasticity.
Collapse
Affiliation(s)
- Simona Baldassa
- Department of Biomolecular Sciences and Biotechnology, University of Milan, Italy.
| | | | | | | | | |
Collapse
|
44
|
Einat H, Manji HK. Cellular plasticity cascades: genes-to-behavior pathways in animal models of bipolar disorder. Biol Psychiatry 2006; 59:1160-71. [PMID: 16457783 DOI: 10.1016/j.biopsych.2005.11.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 11/11/2005] [Accepted: 11/17/2005] [Indexed: 11/28/2022]
Abstract
BACKGROUND Despite extensive research, the molecular/cellular underpinnings of bipolar disorder (BD) remain to be fully elucidated. Recent data has demonstrated that mood stabilizers exert major effects on signaling that regulate cellular plasticity; however, a direct extrapolation to mechanisms of disease demands proof that manipulation of candidate genes, proteins, or pathways result in relevant behavioral changes. METHODS We critique and evaluate the behavioral changes induced by manipulation of cellular plasticity cascades implicated in BD. RESULTS Not surprisingly, the behavioral data suggest that several important signaling molecules might play important roles in mediating facets of the complex symptomatology of BD. Notably, the protein kinase C and extracellular signal-regulated kinase cascades might play important roles in the antimanic effects of mood stabilizers, whereas glycogen synthase kinase (GSK)-3 might mediate facets of lithium's antimanic/antidepressant actions. Glucocorticoid receptor (GR) modulation also seems to be capable to inducing affective-like changes observed in mood disorders. And Bcl-2, amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors, and inositol homeostasis represent important pharmacological targets for mood stabilizers, but additional behavioral research is needed to more fully delineate their behavioral effects. CONCLUSIONS Behavioral data support the notion that regulation of cellular plasticity is involved in affective-like behavioral changes observed in BD. These findings are leading to the development of novel therapeutics for this devastating illness.
Collapse
Affiliation(s)
- Haim Einat
- College of Pharmacy, Duluth, University of Minnesota, 55812, USA.
| | | |
Collapse
|
45
|
Tonini R, Ciardo S, Cerovic M, Rubino T, Parolaro D, Mazzanti M, Zippel R. ERK-dependent modulation of cerebellar synaptic plasticity after chronic Delta9-tetrahydrocannabinol exposure. J Neurosci 2006; 26:5810-8. [PMID: 16723539 PMCID: PMC6675260 DOI: 10.1523/jneurosci.5469-05.2006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic exposure to Delta9-tetrahydrocannabinol (THC) induces tolerance to cannabinoid-induced locomotor effects, which are mediated by cannabinoid receptors (CB1Rs) located in motor control regions, including the cerebellum. There is substantial evidence of cerebellar CB1R molecular adaptation and modifications in receptor signaling after prolonged cannabinoid exposure. However, very little is known about the effects of chronic cannabinoid administration on cerebellar synaptic plasticity, which may contribute to the development of cannabinoid behavioral tolerance. In the cerebellar cortex, activation of CB1R inhibits excitatory synaptic transmission at parallel fiber (PF)-Purkinje cell (PC) synapses by decreasing neurotransmitter release. Our study aimed to investigate the neurophysiological adaptive responses occurring at cerebellar PF-PC cell synapses after repeated THC exposure. In THC-tolerant mice, an increase of the basal release probability was found at PF-PC synapses, in parallel with a facilitation of slow mGluR1 (metabotropic glutamate receptor type 1)-mediated excitatory postsynaptic currents and a reduced sensitivity to the inhibitory effects of the CB1R agonist CP55,940 [(-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol]. Additionally, after repeated THC exposures, presynaptic PF-PC long-term potentiation was blocked by A1R (adenosine receptor-1) activation. Inhibition of the extracellular signal regulated kinase (ERK) pathway prevented these alterations of cerebellar synaptic transmission and plasticity. In summary, we provide evidence for ERK-dependent modulatory mechanisms at PF-PC synapses after chronic THC administration. This contributes to generation of forms of pathological synaptic plasticity that might play a role in cannabinoid dependence.
Collapse
Affiliation(s)
- Raffaella Tonini
- Department of Cellular and Developmental Biology, University La Sapienza, 00185 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
46
|
Forlani G, Baldassa S, Lavagni P, Sturani E, Zippel R. The guanine nucleotide exchange factor RasGRF1 directly binds microtubules via DHPH2-mediated interaction. FEBS J 2006; 273:2127-38. [PMID: 16649990 DOI: 10.1111/j.1742-4658.2006.05226.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
RasGRF is a family of guanine nucleotide exchange factors with dual specificity for both Ras and Rac GTPases. In this study, using mouse brain extracts, we show that both RasGRF1 and RasGRF2 interact with microtubules in an in vitro microtubule assembly system and this binding is very tight. To characterize this association, recombinant purified proteins containing different regions of RasGRF1 were tested for their ability to bind microtubules preassembled from pure tubulin. Only the DHPH2 tandem directly associates with microtubules, whereas the isolated DH or PH2 domains do not, indicating that the entire DHPH2 region is required for this association. The interaction occurs with high affinity (Kd approximately = 2 microM) and with a stoichiometry, at saturating conditions, of one DHPH2 molecule for two tubulin dimers. Competition experiments support the hypothesis that the DHPH2 module is largely responsible for RasGRF1-microtubule interaction. In vivo colocalization of RasGRF1 and microtubules was also observed by fluorescence confocal microscopy in nonneuronal cells after stimulation with an oxidative stress agent and in highly differentiated neuron-like cells. Identification of microtubules as new binding partners of RasGRF1 may help to elucidate the signaling network in which RasGRF1 is involved.
Collapse
Affiliation(s)
- Greta Forlani
- Department of Biomolecular Sciences and Biotechnology, University of Milan, Italy
| | | | | | | | | |
Collapse
|
47
|
Maldonado R, Valverde O, Berrendero F. Involvement of the endocannabinoid system in drug addiction. Trends Neurosci 2006; 29:225-32. [PMID: 16483675 DOI: 10.1016/j.tins.2006.01.008] [Citation(s) in RCA: 401] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 11/24/2005] [Accepted: 01/26/2006] [Indexed: 11/17/2022]
Abstract
Recent studies have shown that the endocannabinoid system is involved in the common neurobiological mechanism underlying drug addiction. This system participates in the primary rewarding effects of cannabinoids, nicotine, alcohol and opioids, through the release of endocannabinoids in the ventral tegmental area. Endocannabinoids are also involved in the motivation to seek drugs by a dopamine-independent mechanism, demonstrated for psychostimulants and opioids. The endocannabinoid system also participates in the common mechanisms underlying relapse to drug-seeking behaviour by mediating the motivational effects of drug-related environmental stimuli and drug re-exposure. In agreement, clinical trials have suggested that the CB(1) cannabinoid antagonist rimonabant can cause smoking cessation. Thus, CB(1) cannabinoid antagonists could represent a new generation of compounds to treat drug addiction.
Collapse
Affiliation(s)
- Rafael Maldonado
- Laboratori de Neurofarmacologia, Facultat de Ciències de la Salut i de la Vida, Universitat Pompeu Fabra, Carrer Dr. Aiguader 80, 08003 Barcelona, Spain.
| | | | | |
Collapse
|