1
|
Fujii J. Redox remodeling of central metabolism as a driving force for cellular protection, proliferation, differentiation, and dysfunction. Free Radic Res 2024; 58:606-629. [PMID: 39316831 DOI: 10.1080/10715762.2024.2407147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
The production of reactive oxygen species (ROS) is elevated via metabolic hyperactivation in response to a variety of stimuli such as growth factors and inflammation. Tolerable amounts of ROS moderately inactivate enzymes via oxidative modification, which can be reversed back to the native form in a redox-dependent manner. The excessive production of ROS, however, causes cell dysfunction and death. Redox-reactive enzymes are present in primary metabolic pathways such as glycolysis and the tricarboxylic acid cycle, and these act as floodgates for carbon flux. Oxidation of a specific form of cysteine inhibits glyceraldehyde-3-phosphate dehydrogenase, which is reversible, and causes an accumulation of upstream intermediary compounds that increases the flux of glucose-6-phosphate to the pentose phosphate pathway. These reactions increase the NADPH and ribose-5-phosphate that are available for reductive reactions and nucleotide synthesis, respectively. On the other hand, oxidative inactivation of mitochondrial aconitase increases citrate, which is then recruited to synthesize fatty acids in the cytoplasm. Decreases in the use of carbohydrate for ATP production can be compensated via amino acid catabolism, and this metabolic change makes nitrogen available for nucleic acid synthesis. Coupling of the urea cycle also converts nitrogen to urea and polyamine, the latter of which supports cell growth. This metabolic remodeling stimulates the proliferation of tumor cells and fibrosis in oxidatively damaged tissues. Oxidative modification of these enzymes is generally reversible in the early stages of oxidizing reactions, which suggests that early treatment with appropriate antioxidants promotes the maintenance of natural metabolism.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| |
Collapse
|
2
|
Okinaka Y, Maeda M, Kataoka Y, Nakagomi T, Doi A, Boltze J, Claussen C, Gul S, Taguchi A. Direct Water-Soluble Molecules Transfer from Transplanted Bone Marrow Mononuclear Cell to Hippocampal Neural Stem Cells. Stem Cells Dev 2024; 33:505-515. [PMID: 39028017 DOI: 10.1089/scd.2024.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Intravascularly transplanted bone marrow cells, including bone marrow mononuclear cells (BM-MNC) and mesenchymal stem cells, transfer water-soluble molecules to cerebral endothelial cells via gap junctions. After transplantation of BM-MNC, this fosters hippocampal neurogenesis and enhancement of neuronal function. Herein, we report the impact of transplanted BM-MNC on neural stem cells (NSC) in the brain. Surprisingly, direct transfer of water-soluble molecules from transplanted BM-MNC and peripheral mononuclear cells to NSC in the hippocampus was observed already 10 min after cell transplantation, and transfer from BM-MNC to GFAP-positive cortical astrocytes was also observed. In vitro investigations revealed that BM-MNC abolish the expression of hypoxia-inducible factor-1α in astrocytes. We suggest that the transient and direct transfer of water-soluble molecules between cells in circulation and NSC in the brain may be one of the biological mechanisms underlying the repair of brain function.
Collapse
Affiliation(s)
- Yuka Okinaka
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation, Kobe, Japan
| | - Mitsuyo Maeda
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yosky Kataoka
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo Medical University, Nishinomiya, Japan
| | - Akiko Doi
- Institute for Advanced Medical Sciences, Hyogo Medical University, Nishinomiya, Japan
| | - Johannes Boltze
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation, Kobe, Japan
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Carsten Claussen
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg, Germany
| | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg, Germany
| | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation, Kobe, Japan
| |
Collapse
|
3
|
Mitochondrial Sirtuins in Parkinson’s Disease. Neurochem Res 2022; 47:1491-1502. [DOI: 10.1007/s11064-022-03560-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/20/2022]
|
4
|
Mirzaei N, Davis N, Chau TW, Sastre M. Astrocyte Reactivity in Alzheimer's Disease: Therapeutic Opportunities to Promote Repair. Curr Alzheimer Res 2021; 19:1-15. [PMID: 34719372 DOI: 10.2174/1567205018666211029164106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/02/2021] [Accepted: 07/31/2021] [Indexed: 11/22/2022]
Abstract
Astrocytes are fast climbing the ladder of importance in neurodegenerative disorders, particularly in Alzheimer's disease (AD), with the prominent presence of reactive astrocytes sur- rounding amyloid β- plaques, together with activated microglia. Reactive astrogliosis, implying morphological and molecular transformations in astrocytes, seems to precede neurodegeneration, suggesting a role in the development of the disease. Single-cell transcriptomics has recently demon- strated that astrocytes from AD brains are different from "normal" healthy astrocytes, showing dys- regulations in areas such as neurotransmitter recycling, including glutamate and GABA, and im- paired homeostatic functions. However, recent data suggest that the ablation of astrocytes in mouse models of amyloidosis results in an increase in amyloid pathology as well as in the inflammatory profile and reduced synaptic density, indicating that astrocytes mediate neuroprotective effects. The idea that interventions targeting astrocytes may have great potential for AD has therefore emerged, supported by a range of drugs and stem cell transplantation studies that have successfully shown a therapeutic effect in mouse models of AD. In this article, we review the latest reports on the role and profile of astrocytes in AD brains and how manipulation of astrocytes in animal mod- els has paved the way for the use of treatments enhancing astrocytic function as future therapeutic avenues for AD.
Collapse
Affiliation(s)
- Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048. United States
| | - Nicola Davis
- Department of Brain Sciences, Imperial College London, Hammer-smith Hospital, Du Cane Road, LondonW12 0NN. United Kingdom
| | - Tsz Wing Chau
- Department of Brain Sciences, Imperial College London, Hammer-smith Hospital, Du Cane Road, LondonW12 0NN. United Kingdom
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammer-smith Hospital, Du Cane Road, LondonW12 0NN. United Kingdom
| |
Collapse
|
5
|
Fedotova АА, Tiaglik АB, Semyanov АV. Effect of Diet as a Factor of Exposome
on Brain Function. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021030108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Charvériat M, Mouthon F, Rein W, Verkhratsky A. Connexins as therapeutic targets in neurological and neuropsychiatric disorders. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166098. [PMID: 33545299 DOI: 10.1016/j.bbadis.2021.166098] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/06/2021] [Accepted: 01/19/2021] [Indexed: 12/16/2022]
Abstract
Astrocytes represent the reticular part of the central nervous system; gap junctions formed by connexins Cx43, Cx30- and Cx26 provide for homocellular astrocyte-astrocyte coupling, whereas connexins Cx30, Cx32, Cx43, and Cx47 connect astrocytes and oligodendrocytes. Astroglial networks are anatomically and functionally segregated being homologous to neuronal ensembles. Connexons, gap junctions and hemichannels (unpaired connexons) are affected in various neuropathologies from neuropsychiatric to neurodegenerative diseases. Manipulation of astrocytic connexins modulates the size and outreach of astroglial syncytia thus affecting astroglial homeostatic support. Modulation of astrocytic connexin significantly modifies pharmacological profile of many CNS drugs, which represents an innovative therapeutic approach for CNS disorders; this approach is now actively tested in pre-clinical and clinical studies. Wide combination of connexin modulators with CNS drugs open new promising perspectives for fundamental studies and therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - A Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
7
|
Mulkearns-Hubert EE, Reizes O, Lathia JD. Connexins in Cancer: Jekyll or Hyde? Biomolecules 2020; 10:E1654. [PMID: 33321749 PMCID: PMC7764653 DOI: 10.3390/biom10121654] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
The expression, localization, and function of connexins, the protein subunits that comprise gap junctions, are often altered in cancer. In addition to cell-cell coupling through gap junction channels, connexins also form hemichannels that allow communication between the cell and the extracellular space and perform non-junctional intracellular activities. Historically, connexins have been considered tumor suppressors; however, they can also serve tumor-promoting functions in some contexts. Here, we review the literature surrounding connexins in cancer cells in terms of specific connexin functions and propose that connexins function upstream of most, if not all, of the hallmarks of cancer. The development of advanced connexin targeting approaches remains an opportunity for the field to further interrogate the role of connexins in cancer phenotypes, particularly through the use of in vivo models. More specific modulators of connexin function will both help elucidate the functions of connexins in cancer and advance connexin-specific therapies in the clinic.
Collapse
Affiliation(s)
- Erin E. Mulkearns-Hubert
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
| | - Ofer Reizes
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College, Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Justin D. Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College, Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
8
|
Götz S, Bribian A, López-Mascaraque L, Götz M, Grothe B, Kunz L. Heterogeneity of astrocytes: Electrophysiological properties of juxtavascular astrocytes before and after brain injury. Glia 2020; 69:346-361. [PMID: 32809228 DOI: 10.1002/glia.23900] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 07/20/2020] [Accepted: 07/30/2020] [Indexed: 12/31/2022]
Abstract
Astrocyte heterogeneity is increasingly recognized, but still little is known about juxtavascular astrocytes with their somata directly adjacent to blood vessels, despite their importance after brain injury. As juxtavascular astrocytes originate from common progenitor cells, that is, have a clonal origin, they may intrinsically differ from other, non-juxtavascular astrocytes. To explore this, we examined the electrophysiological properties of these groups of astrocytes and the underlying ion channels. Using brain slices of BAC Aldh1l1-eGFP transgenic mice with astrocytes labeled by GFP expression, we compared juxtavascular and non-juxtavascular astrocytes in the somatosensory cortex by means of whole-cell patch-clamp recordings and immunohistochemical staining. Prior to injury, juxta- and non-juxtavascular astrocytes exhibit comparable electrophysiological properties with characteristic mostly passive conductance and a typical negative resting membrane potential. Immunohistochemical analysis of K+ channels showed that all astrocytes were Kir 4.1+ , but revealed an intriguing difference for Kv 4.3. The expression of Kv 4.3 in sibling astrocytes (non-juxtavascular, juxtavascular and pial) was dependent on their ontogenetic origin with lowest levels in juxtavascular astrocytes located in upper cortical layers. After traumatic brain injury (TBI), we found profound changes in the electrophysiological type of astrocytes with a predominance of non-passive properties and this pattern was significantly enriched in juxtavascular astrocytes. This was accompanied by pronounced down-regulation of Kir 4.1 in proliferating astrocytes, which was significantly more in juxtavascular compared to non-juxtavascular astrocytes. Taken together, TBI induces profound differences in electrophysiological properties between juxtavascular and non-juxtavascular astrocytes that might be related to the preponderance of juxtavascular astrocyte proliferation.
Collapse
Affiliation(s)
- Stefanie Götz
- Division of Neurobiology, Department of Biology II, Ludwig-Maximilians-Universitaet (LMU) Munich, Martinsried, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universitaet (LMU) Munich, Martinsried, Germany.,Biomedical Center (BMC), Ludwig-Maximilians-Universitaet (LMU) Munich, SyNergy - Munich Cluster for Systems Neurology, Munich, Germany
| | - Ana Bribian
- Instituto Cajal-CSIC, Molecular, Cellular and Developmental Neurobiology Department, Madrid, Spain
| | - Laura López-Mascaraque
- Instituto Cajal-CSIC, Molecular, Cellular and Developmental Neurobiology Department, Madrid, Spain
| | - Magdalena Götz
- Biomedical Center (BMC), Ludwig-Maximilians-Universitaet (LMU) Munich, SyNergy - Munich Cluster for Systems Neurology, Munich, Germany.,Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians-Universitaet (LMU) Munich, Martinsried, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Martinsried, Germany
| | - Benedikt Grothe
- Division of Neurobiology, Department of Biology II, Ludwig-Maximilians-Universitaet (LMU) Munich, Martinsried, Germany.,Biomedical Center (BMC), Ludwig-Maximilians-Universitaet (LMU) Munich, SyNergy - Munich Cluster for Systems Neurology, Munich, Germany
| | - Lars Kunz
- Division of Neurobiology, Department of Biology II, Ludwig-Maximilians-Universitaet (LMU) Munich, Martinsried, Germany
| |
Collapse
|
9
|
Jothi J, Janardhanam VA, Rama K. Connexin 30 mediated rewiring of glucose metabolism in rat C6 xenograft and grades of glioma. Mol Cell Biochem 2020; 470:157-164. [PMID: 32462383 DOI: 10.1007/s11010-020-03757-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/16/2020] [Indexed: 12/19/2022]
Abstract
Connexin 30 (Cx30), a tumour-suppressive gap junctional protein, impacts on insulin-like growth factor receptor 1-mediated progression and stemness of glioma. Of late, metabolic reprogramming, a recently adjudged hall mark of malignancy, could reasonably associated with the changes in gap junctional communication in glioma. This newly recognized hallmark of reprogramming of metabolism to maintain the rapid proliferation necessitates further probing to establish the stronger hall marks. Hence, the current study attempted to link the association between the expression of Cx30 with glucose uptake and glucose metabolism in glioma. We have transfected Cx30 in C6 glioma cells, characterized by a low level of intercellular communication and developed xenografts to study the status of glucose transporters (GLUTs), hexokinase 2 and Pyruvate dehydrogenase kinase 1 (PDK 1) along with human glioma tissues by RT-PCR and immunoblotting. The results showed a significant increase in the levels of GLUTs, hexokinase 2 and PDK 1 in C6-implanted rat xenografts and high grades compared to their respective controls, whereas Cx30-transfected C6-implanted rat xenograft and low grades show no significant change compared to that of controls supporting the association between Gap junctional communications and glucose metabolism. We strongly speculate the impact of Cx30 over the glucose metabolism that might provide therapeutic prospects and challenges for anti-glycolytic cancer therapy.
Collapse
Affiliation(s)
- Jayalakshmi Jothi
- Department of Biochemistry, University of Madras, Chennai, Tamilnadu, 600025, India
| | | | - K Rama
- Department of Neuropathology, Madras Medical College and Government General Hospital, Chennai, Tamilnadu, 600003, India
| |
Collapse
|
10
|
Civita P, M. Leite D, Pilkington GJ. Pre-Clinical Drug Testing in 2D and 3D Human In Vitro Models of Glioblastoma Incorporating Non-Neoplastic Astrocytes: Tunneling Nano Tubules and Mitochondrial Transfer Modulates Cell Behavior and Therapeutic Respons. Int J Mol Sci 2019; 20:E6017. [PMID: 31795330 PMCID: PMC6929151 DOI: 10.3390/ijms20236017] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/19/2019] [Accepted: 11/23/2019] [Indexed: 12/15/2022] Open
Abstract
The role of astrocytes in the glioblastoma (GBM) microenvironment is poorly understood; particularly with regard to cell invasion and drug resistance. To assess this role of astrocytes in GBMs we established an all human 2D co-culture model and a 3D hyaluronic acid-gelatin based hydrogel model (HyStem™-HP) with different ratios of GBM cells to astrocytes. A contact co-culture of fluorescently labelled GBM cells and astrocytes showed that the latter promotes tumour growth and migration of GBM cells. Notably, the presence of non-neoplastic astrocytes in direct contact, even in low amounts in co-culture, elicited drug resistance in GBM. Recent studies showed that non-neoplastic cells can transfer mitochondria along tunneling nanotubes (TNT) and rescue damaged target cancer cells. In these studies, we explored TNT formation and mitochondrial transfer using 2D and 3D in vitro co-culture models of GBM and astrocytes. TNT formation occurs in glial fibrillary acidic protein (GFAP) positive "reactive" astrocytes after 48 h co-culture and the increase of TNT formations was greater in 3D hyaluronic acid-gelatin based hydrogel models. This study shows that human astrocytes in the tumour microenvironment, both in 2D and 3D in vitro co-culture models, could form TNT connections with GBM cells. We postulate that the association on TNT delivery non-neoplastic mitochondria via a TNT connection may be related to GBM drug response as well as proliferation and migration.
Collapse
Affiliation(s)
- Prospero Civita
- Brain Tumour Research Centre, Institute of Biological and Biomedical Sciences (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK;
| | - Diana M. Leite
- Brain Tumour Research Centre, Institute of Biological and Biomedical Sciences (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK;
- Department of Chemistry, University College London, 20 Gordon Street, Christopher Ingold Building, London WC1H 0AJ, UK
| | - Geoffrey J. Pilkington
- Brain Tumour Research Centre, Institute of Biological and Biomedical Sciences (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK;
| |
Collapse
|
11
|
Palpagama TH, Waldvogel HJ, Faull RLM, Kwakowsky A. The Role of Microglia and Astrocytes in Huntington's Disease. Front Mol Neurosci 2019; 12:258. [PMID: 31708741 PMCID: PMC6824292 DOI: 10.3389/fnmol.2019.00258] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/10/2019] [Indexed: 12/21/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease. HD patients present with movement disorders, behavioral and psychiatric symptoms and cognitive decline. This review summarizes the contribution of microglia and astrocytes to HD pathophysiology. Neuroinflammation in the HD brain is characterized by a reactive morphology in these glial cells. Microglia and astrocytes are critical in regulating neuronal activity and maintaining an optimal milieu for neuronal function. Previous studies provide evidence that activated microglia and reactive astrocytes contribute to HD pathology through transcriptional activation of pro-inflammatory genes to perpetuate a chronic inflammatory state. Reactive astrocytes also display functional changes in glutamate and ion homeostasis and energy metabolism. Astrocytic and microglial changes may further contribute to the neuronal death observed with the progression of HD. Importantly, the degree to which these neuroinflammatory changes are detrimental to neurons and contribute to the progression of HD pathology is not well understood. Furthermore, recent observations provide compelling evidence that activated microglia and astrocytes exert a variety of beneficial functions that are essential for limiting tissue damage and preserving neuronal function in the HD brain. Therefore, a better understanding of the neuroinflammatory environment in the brain in HD may lead to the development of targeted and innovative therapeutic opportunities.
Collapse
Affiliation(s)
- Thulani H Palpagama
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Wang J, Yang ZY, Guo YF, Kuang JY, Bian XW, Yu SC. Targeting different domains of gap junction protein to control malignant glioma. Neuro Oncol 2019; 20:885-896. [PMID: 29106645 DOI: 10.1093/neuonc/nox207] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A rational treatment strategy for glioma, the most common primary central nervous system tumor, should focus on early invasive growth and resistance to current therapeutics. Connexin 43 (Cx43), a gap junction protein, plays important roles not only in the development of the central nervous system and but also in the progression of glioma. The different structural domains of Cx43, including extracellular loops, transmembrane domains, and an intracellular carboxyl terminal, have distinct functions in the invasion and proliferation of gliomas. Targeting these domains of Cx43, which is expressed in distinct patterns in the heterogeneous glioma cell population, can inhibit tumor cell invasion and new tumor formation. Thus, this review summarizes the structural characteristics of Cx43, the effects of regulating different Cx43 domains on the biological characteristics of glioma cells, intervention strategies targeting different domains of Cx43, and future research directions.
Collapse
Affiliation(s)
- Jun Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| | - Ze-Yu Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| | - Yu-Feng Guo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| | - Jing-Ya Kuang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| | - Shi-Cang Yu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| |
Collapse
|
13
|
Bordone MP, Salman MM, Titus HE, Amini E, Andersen JV, Chakraborti B, Diuba AV, Dubouskaya TG, Ehrke E, Espindola de Freitas A, Braga de Freitas G, Gonçalves RA, Gupta D, Gupta R, Ha SR, Hemming IA, Jaggar M, Jakobsen E, Kumari P, Lakkappa N, Marsh APL, Mitlöhner J, Ogawa Y, Paidi RK, Ribeiro FC, Salamian A, Saleem S, Sharma S, Silva JM, Singh S, Sulakhiya K, Tefera TW, Vafadari B, Yadav A, Yamazaki R, Seidenbecher CI. The energetic brain - A review from students to students. J Neurochem 2019; 151:139-165. [PMID: 31318452 DOI: 10.1111/jnc.14829] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
The past 20 years have resulted in unprecedented progress in understanding brain energy metabolism and its role in health and disease. In this review, which was initiated at the 14th International Society for Neurochemistry Advanced School, we address the basic concepts of brain energy metabolism and approach the question of why the brain has high energy expenditure. Our review illustrates that the vertebrate brain has a high need for energy because of the high number of neurons and the need to maintain a delicate interplay between energy metabolism, neurotransmission, and plasticity. Disturbances to the energetic balance, to mitochondria quality control or to glia-neuron metabolic interaction may lead to brain circuit malfunction or even severe disorders of the CNS. We cover neuronal energy consumption in neural transmission and basic ('housekeeping') cellular processes. Additionally, we describe the most common (glucose) and alternative sources of energy namely glutamate, lactate, ketone bodies, and medium chain fatty acids. We discuss the multifaceted role of non-neuronal cells in the transport of energy substrates from circulation (pericytes and astrocytes) and in the supply (astrocytes and microglia) and usage of different energy fuels. Finally, we address pathological consequences of disrupted energy homeostasis in the CNS.
Collapse
Affiliation(s)
- Melina Paula Bordone
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mootaz M Salman
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Haley E Titus
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Elham Amini
- Department of Medicine, University Kebangsaan Malaysia Medical Centre (HUKM), Cheras, Kuala Lumpur, Malaysia
| | - Jens V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Artem V Diuba
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatsiana G Dubouskaya
- Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Eric Ehrke
- Centre for Biomolecular Interactions, University of Bremen, Bremen, Germany
| | - Andiara Espindola de Freitas
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, California, USA
| | | | | | | | - Richa Gupta
- CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Sharon R Ha
- Baylor College of Medicine, Houston, Texas, USA
| | - Isabel A Hemming
- Brain Growth and Disease Laboratory, The Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia.,School of Medicine and Pharmacology, The University of Western Australia, Crawley, Australia
| | - Minal Jaggar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Emil Jakobsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Punita Kumari
- Defense Institute of Physiology and allied sciences, Defense Research and Development Organization, Timarpur, Delhi, India
| | - Navya Lakkappa
- Department of Pharmacology, JSS college of Pharmacy, Ooty, India
| | - Ashley P L Marsh
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Jessica Mitlöhner
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Magdeburg, Germany
| | - Yuki Ogawa
- The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | | | | | - Ahmad Salamian
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Suraiya Saleem
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sorabh Sharma
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Joana M Silva
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal
| | - Shripriya Singh
- CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Kunjbihari Sulakhiya
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | - Tesfaye Wolde Tefera
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Behnam Vafadari
- Institute of environmental medicine, UNIKA-T, Technical University of Munich, Munich, Germany
| | - Anuradha Yadav
- CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Reiji Yamazaki
- Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.,Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University, Magdeburg, Germany
| | - Constanze I Seidenbecher
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
14
|
Galland F, Seady M, Taday J, Smaili SS, Gonçalves CA, Leite MC. Astrocyte culture models: Molecular and function characterization of primary culture, immortalized astrocytes and C6 glioma cells. Neurochem Int 2019; 131:104538. [PMID: 31430518 DOI: 10.1016/j.neuint.2019.104538] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/10/2019] [Accepted: 08/17/2019] [Indexed: 12/22/2022]
Abstract
The understanding of the physiology of astrocytes and their role in brain function progresses continuously. Primary astrocyte culture is an alternative method to study these cells in an isolated system: in their physiologic and pathologic states. Cell lines are often used as an astrocyte model, since they are easier and faster to manipulate and cost less. However, there are a few studies evaluating the different features of these cells which may put into question the validity of using them as astrocyte models. The aim of this study was to compare primary cultures (PC) with two cell lines - immortalized astrocytes and C6 cells, in terms of protein characterization, morphology and metabolic functional activity. Our results showed, under the same culture condition, that immortalized astrocytes and C6 are positive for differentiated astrocytic markers (eg. GFAP, S100B, AQP4 and ALDH1L1), although expressing them in less quantities then primary astrocyte cultures. Glutamate metabolism and cell communication are reduced in proliferative cells. However, glucose uptake is elevated in C6 lineage cells in comparison with primary astrocytes, probably due to their tumorigenic origin and high proliferation rate. Immortalized astrocytes presented a lower growth rate than C6 cells, and a similar basal morphology as primary astrocytes. However, they did not prove to be as good reproductive models of some of the classic astrocytic functions, such as S100B secretion and GFAP content, especially while under stimulation. In contrast, C6 cells presented similar results in comparison to primary astrocytes in response to stimuli. Here we provide a functional comparison of three astrocytic models, in an attempt to select the most suitable model for the study of astrocytes, optimizing the research in this area of knowledge.
Collapse
Affiliation(s)
- Fabiana Galland
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marina Seady
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jessica Taday
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Soraya Soubhi Smaili
- Departamento de Farmacologia da Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carlos Alberto Gonçalves
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marina Concli Leite
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
15
|
Vincze R, Péter M, Szabó Z, Kardos J, Héja L, Kovács Z. Connexin 43 Differentially Regulates Epileptiform Activity in Models of Convulsive and Non-convulsive Epilepsies. Front Cell Neurosci 2019; 13:173. [PMID: 31133805 PMCID: PMC6523398 DOI: 10.3389/fncel.2019.00173] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/11/2019] [Indexed: 11/13/2022] Open
Abstract
The influence of astrocytic cell networks on neuronal network activity is an emerging issue in epilepsy. Among the various mechanisms by which astrocytes modulate neuronal function, synchronization of astrocytes via gap junction channels is widely considered to be a crucial mechanism in epileptic conditions, contributing to the synchronization of the neuronal cell networks, possibly inducing recurrent epileptiform activity. Here, we explored whether modulation of astrocytic gap junctions could alter epileptic seizures in different types of epilepsy. Opening of gap junctions by trimethylamine intensifies seizure-like events (SLEs) in the low-[Mg2+] in vitro model of temporal lobe epilepsy, while alleviates seizures in the in vivo WAG/Rij rat model of absence epilepsy. In contrast, application of the gap junction blocker carbenoxolone prevents the appearance of SLEs in the low-[Mg2+] epilepsy model, but aggravates seizures in non-convulsive absence epilepsy, in vivo. Pharmacological dissection of neuronal vs. astrocytic connexins shows that astrocytic Cx43 contribute to seizure formation to a significantly higher extent than neuronal Cx36. We conclude that astrocytic gap junctions are key players in the formation of epileptiform activity and we provide a scheme for the different mode of action in the convulsive and non-convulsive epilepsy types.
Collapse
Affiliation(s)
- Renáta Vincze
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Márton Péter
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zsolt Szabó
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zsolt Kovács
- Department of Biology, Eötvös Loránd University, Savaria University Centre, Szombathely, Hungary
| |
Collapse
|
16
|
Zhang Q, Jia GJ, Zhang GB, Wang L, Wu Z, Jia W, Hao SY, Ni M, Li D, Wang K, Zhang JT. A Logistic Regression Model for Detecting the Presence of Malignant Progression in Atypical Meningiomas. World Neurosurg 2019; 126:e392-e401. [PMID: 30822595 DOI: 10.1016/j.wneu.2019.02.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To develop a method to distinguish atypical meningiomas (AMs) with malignant progression (MP) from primary AMs without a clinical history. METHODS The clinical, radiologic, and pathologic data of 33 previously Simpson grade I resected (if any) as well as no radiotherapy treated intracranial AMs between January 2008 and December 2015 were reviewed. Immunohistochemical staining for connexin 43 (Cx43) and Ki-67 was performed. Descriptive analysis and univariate and multivariate logistic regression analyses were used to explore independent predictors of MP. A multivariable logistic model was developed to estimate the risk of MP, and its diagnostic value was determined from a receiver operating characteristic curve. RESULTS There were 11 AMs (33.3%) with histopathologically confirmed MP from benign meningiomas. The other 22 (66.7%) were initially diagnosed AMs with no histopathologically confirmed MP during a median 60.5 months (range, 42-126 months) of follow-up. Univariate and multivariate logistic analyses showed that irregular tumor shape (P = 0.010) and low Cx43 expression (P = 0.010) were independent predictors of the presence of MP, and the predicted probability was calculated by the following formula: P = 1/[1+exp.{1.218-(3.202×Shape)+(3.814×Cx43)}]. P > 0.5 for an irregularly shaped (score 1) AM with low Cx43 expression (score 0) indicated a high probability of MP. The sensitivity, specificity, positive predictive value, negative predictive value, and overall predictive accuracy were 63.6, 95.6, 87.5, 84.0, and 84.8%, respectively. CONCLUSIONS Low Cx43 expression and irregular tumor shape were independent predictors of the presence of MP. The relevant logistic regression model was found to be effective in distinguishing MP-AMs from primary AMs.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, People's Republic of China; Beijing Key Laboratory of Brain Tumor, Beijing, People's Republic of China
| | - Gui-Jun Jia
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, People's Republic of China; Beijing Key Laboratory of Brain Tumor, Beijing, People's Republic of China
| | - Guo-Bin Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, People's Republic of China; Beijing Key Laboratory of Brain Tumor, Beijing, People's Republic of China
| | - Liang Wang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, People's Republic of China; Beijing Key Laboratory of Brain Tumor, Beijing, People's Republic of China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, People's Republic of China; Beijing Key Laboratory of Brain Tumor, Beijing, People's Republic of China
| | - Wang Jia
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, People's Republic of China; Beijing Key Laboratory of Brain Tumor, Beijing, People's Republic of China
| | - Shu-Yu Hao
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, People's Republic of China; Beijing Key Laboratory of Brain Tumor, Beijing, People's Republic of China
| | - Ming Ni
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, People's Republic of China; Beijing Key Laboratory of Brain Tumor, Beijing, People's Republic of China
| | - Da Li
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, People's Republic of China; Beijing Key Laboratory of Brain Tumor, Beijing, People's Republic of China
| | - Ke Wang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, People's Republic of China; Beijing Key Laboratory of Brain Tumor, Beijing, People's Republic of China
| | - Jun-Ting Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, People's Republic of China; Beijing Key Laboratory of Brain Tumor, Beijing, People's Republic of China.
| |
Collapse
|
17
|
Mederos S, González-Arias C, Perea G. Astrocyte-Neuron Networks: A Multilane Highway of Signaling for Homeostatic Brain Function. Front Synaptic Neurosci 2018; 10:45. [PMID: 30542276 PMCID: PMC6277918 DOI: 10.3389/fnsyn.2018.00045] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 11/12/2018] [Indexed: 12/22/2022] Open
Abstract
Research on glial cells over the past 30 years has confirmed the critical role of astrocytes in pathophysiological brain states. However, most of our knowledge about astrocyte physiology and of the interactions between astrocytes and neurons is based on the premises that astrocytes constitute a homogeneous cell type, without considering the particular properties of the circuits or brain nuclei in which the astrocytes are located. Therefore, we argue that more-sophisticated experiments are required to elucidate the specific features of astrocytes in different brain regions, and even within different layers of a particular circuit. Thus, in addition to considering the diverse mechanisms used by astrocytes to communicate with neurons and synaptic partners, it is necessary to take into account the cellular heterogeneity that likely contributes to the outcomes of astrocyte-neuron signaling. In this review article, we briefly summarize the current data regarding the anatomical, molecular and functional properties of astrocyte-neuron communication, as well as the heterogeneity within this communication.
Collapse
Affiliation(s)
- Sara Mederos
- Department of Functional and Systems Neurobiology, Instituto Cajal (IC), CSIC, Madrid, Spain
| | - Candela González-Arias
- Department of Functional and Systems Neurobiology, Instituto Cajal (IC), CSIC, Madrid, Spain
| | - Gertrudis Perea
- Department of Functional and Systems Neurobiology, Instituto Cajal (IC), CSIC, Madrid, Spain
| |
Collapse
|
18
|
Cocaine evokes a profile of oxidative stress and impacts innate antiviral response pathways in astrocytes. Neuropharmacology 2018; 135:431-443. [PMID: 29578037 DOI: 10.1016/j.neuropharm.2018.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/28/2018] [Accepted: 03/17/2018] [Indexed: 12/16/2022]
Abstract
HIV-1 and Zika virus (ZIKV) represent RNA viruses with neurotropic characteristics. Infected individuals suffer neurocognitive disorders aggravated by environmental toxins, including drugs of abuse such as cocaine, exacerbating HIV-associated neurocognitive disorders through a combination of astrogliosis, oxidative stress and innate immune signaling; however, little is known about how cocaine impacts the progression of ZIKV neural perturbations. Impaired innate immune signaling is characterized by weakened antiviral activation of interferon signaling and alterations in inflammatory signaling, factors contributing to cognitive sequela associated with cocaine in HIV-1/ZIKV infection. We employed cellular/molecular biology techniques to test if cocaine suppresses the efficacy of astrocytes to initiate a Type 1 interferon response to HIV-1/ZIKV, in vitro. We found cocaine activated antiviral signaling pathways and type I interferon in the absence of inflammation. Cocaine pre-exposure suppressed antiviral responses to HIV-1/ZIKV, triggering antiviral signaling and phosphorylation of interferon regulatory transcription factor 3 to stimulate type I interferon gene transcription. Our data indicate that oxidative stress is a major driver of cocaine-mediated astrocyte antiviral immune responses. Although astrocyte antiviral signaling is activated following detection of foreign pathogenic material, oxidative stress and increased cytosolic double-stranded DNA (dsDNA) can drive antiviral signaling via stimulation of pattern recognition receptors. Pretreatment with the glial modulators propentofylline (PPF) or pioglitazone (PIO) reversed cocaine-mediated attenuation of astrocyte responses to HIV-1/ZIKV. Both PPF/PIO protected against cocaine-mediated generation of reactive oxygen species (ROS), increased dsDNA, antiviral signaling pathways and increased type I interferon, indicating that cocaine induces astrocyte type I interferon signaling in the absence of virus and oxidative stress is a major driver of cocaine-mediated astrocyte antiviral immunity. Lastly, PPF and PIO have therapeutic potential to ameliorate cocaine-mediated dysregulation of astrocyte antiviral immunity possibly via a myriad of protective actions including decreases in reactive phenotype and damaging immune factors.
Collapse
|
19
|
Yuan SS, Li ML, Chen JS, Zhou L, Zhou W. Application of Mono- and Disaccharides in Drug Targeting and Efficacy. ChemMedChem 2018; 13:764-778. [DOI: 10.1002/cmdc.201700762] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/10/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Si S. Yuan
- School of Pharmaceutical Sciences; Guangzhou University of Chinese Medicine; E. 232 University Town, Waihuan Road Panyu Guangzhou 510006 China
| | - Mao L. Li
- School of Pharmaceutical Sciences; Guangzhou University of Chinese Medicine; E. 232 University Town, Waihuan Road Panyu Guangzhou 510006 China
| | - Jian S. Chen
- College of Horticulture; South China Agricultural University; 483 Wushan Road Guangzhou 510642 China
| | - Li Zhou
- College of Science; Hunan Agricultural University; Furong Road Changsha 410128 China
| | - Wen Zhou
- School of Pharmaceutical Sciences; Guangzhou University of Chinese Medicine; E. 232 University Town, Waihuan Road Panyu Guangzhou 510006 China
| |
Collapse
|
20
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
21
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 1068] [Impact Index Per Article: 152.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
22
|
Liu L, MacKenzie KR, Putluri N, Maletić-Savatić M, Bellen HJ. The Glia-Neuron Lactate Shuttle and Elevated ROS Promote Lipid Synthesis in Neurons and Lipid Droplet Accumulation in Glia via APOE/D. Cell Metab 2017; 26:719-737.e6. [PMID: 28965825 PMCID: PMC5677551 DOI: 10.1016/j.cmet.2017.08.024] [Citation(s) in RCA: 360] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/21/2017] [Accepted: 08/30/2017] [Indexed: 01/04/2023]
Abstract
Elevated reactive oxygen species (ROS) induce the formation of lipids in neurons that are transferred to glia, where they form lipid droplets (LDs). We show that glial and neuronal monocarboxylate transporters (MCTs), fatty acid transport proteins (FATPs), and apolipoproteins are critical for glial LD formation. MCTs enable glia to secrete and neurons to absorb lactate, which is converted to pyruvate and acetyl-CoA in neurons. Lactate metabolites provide a substrate for synthesis of fatty acids, which are processed and transferred to glia by FATP and apolipoproteins. In the presence of high ROS, inhibiting lactate transfer or lowering FATP or apolipoprotein levels decreases glial LD accumulation in flies and in primary mouse glial-neuronal cultures. We show that human APOE can substitute for a fly glial apolipoprotein and that APOE4, an Alzheimer's disease susceptibility allele, is impaired in lipid transport and promotes neurodegeneration, providing insights into disease mechanisms.
Collapse
Affiliation(s)
- Lucy Liu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kevin R MacKenzie
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology and Advanced Technology Cor, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mirjana Maletić-Savatić
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Hugo J Bellen
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
23
|
Condamine S, Lavoie R, Verdier D, Kolta A. Functional rhythmogenic domains defined by astrocytic networks in the trigeminal main sensory nucleus. Glia 2017; 66:311-326. [DOI: 10.1002/glia.23244] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/07/2017] [Accepted: 09/25/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Steven Condamine
- Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, C.P. 6128, succursale Centre-ville; Montréal Québec H3C 3J7 Canada
- Département de Neurosciences; Université de Montréal, Pavillon Paul-G.Desmarais, C.P. 6128, succursale Centre-ville; Montréal Québec H3C 3J7 Canada
| | - Raphaël Lavoie
- Douglas Mental Health University Institute, 6875 boulevard LaSalle; Montreal Québec H4H 1R3 Canada
| | - Dorly Verdier
- Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, C.P. 6128, succursale Centre-ville; Montréal Québec H3C 3J7 Canada
- Département de Neurosciences; Université de Montréal, Pavillon Paul-G.Desmarais, C.P. 6128, succursale Centre-ville; Montréal Québec H3C 3J7 Canada
| | - Arlette Kolta
- Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, C.P. 6128, succursale Centre-ville; Montréal Québec H3C 3J7 Canada
- Département de Neurosciences; Université de Montréal, Pavillon Paul-G.Desmarais, C.P. 6128, succursale Centre-ville; Montréal Québec H3C 3J7 Canada
- Faculté de Médecine Dentaire, Université de Montréal, C.P. 6128, succursale Centre-ville; Montréal Québec H3C 3J7 Canada
| |
Collapse
|
24
|
Augustin H, McGourty K, Allen MJ, Madem SK, Adcott J, Kerr F, Wong CT, Vincent A, Godenschwege T, Boucrot E, Partridge L. Reduced insulin signaling maintains electrical transmission in a neural circuit in aging flies. PLoS Biol 2017; 15:e2001655. [PMID: 28902870 PMCID: PMC5597081 DOI: 10.1371/journal.pbio.2001655] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 08/04/2017] [Indexed: 12/11/2022] Open
Abstract
Lowered insulin/insulin-like growth factor (IGF) signaling (IIS) can extend healthy lifespan in worms, flies, and mice, but it can also have adverse effects (the “insulin paradox”). Chronic, moderately lowered IIS rescues age-related decline in neurotransmission through the Drosophila giant fiber system (GFS), a simple escape response neuronal circuit, by increasing targeting of the gap junctional protein innexin shaking-B to gap junctions (GJs). Endosomal recycling of GJs was also stimulated in cultured human cells when IIS was reduced. Furthermore, increasing the activity of the recycling small guanosine triphosphatases (GTPases) Rab4 or Rab11 was sufficient to maintain GJs upon elevated IIS in cultured human cells and in flies, and to rescue age-related loss of GJs and of GFS function. Lowered IIS thus elevates endosomal recycling of GJs in neurons and other cell types, pointing to a cellular mechanism for therapeutic intervention into aging-related neuronal disorders. Insulin and insulin-like growth factors play an important role in the nervous system development and function. Reduced insulin signaling, however, can improve symptoms of neurodegenerative diseases in different model organisms and protect against age-associated decline in neuronal function extending lifespan. Here, we analyze the effects of genetically attenuated insulin signaling on the escape response pathway in the fruit fly Drosophila melanogaster. This simple neuronal circuit is dominated by electrical synapses composed of the gap junctional shaking-B protein, which allows for the transfer of electrical impulses between cells. Transmission through the circuit is known to slow down with age. We show that this functional decline is prevented by systemic or circuit-specific suppression of insulin signaling due to the preservation of the number of gap junctional proteins in aging animals. Our experiments in a human cell culture system reveal increased membrane targeting of gap junctional proteins via small proteins Rab4 and Rab11 under reduced insulin conditions. We also find that increasing the level of these recycling-mediating proteins in flies preserves the escape response circuit output in old flies and suggests ways of improving the function of neuronal circuits dominated by electrical synapses during aging.
Collapse
Affiliation(s)
- Hrvoje Augustin
- Max Planck Institute for Biology of Aging, Köln, Germany
- Institute of Healthy Aging, and Genetics, Evolution, and Environment, University College London, London, United Kingdom
| | - Kieran McGourty
- Department of Structural and Molecular Biology, London, United Kingdom
| | - Marcus J. Allen
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Sirisha Kudumala Madem
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Jennifer Adcott
- Max Planck Institute for Biology of Aging, Köln, Germany
- Institute of Healthy Aging, and Genetics, Evolution, and Environment, University College London, London, United Kingdom
| | - Fiona Kerr
- Max Planck Institute for Biology of Aging, Köln, Germany
- Institute of Healthy Aging, and Genetics, Evolution, and Environment, University College London, London, United Kingdom
| | - Chi Tung Wong
- Max Planck Institute for Biology of Aging, Köln, Germany
| | - Alec Vincent
- Max Planck Institute for Biology of Aging, Köln, Germany
| | - Tanja Godenschwege
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Emmanuel Boucrot
- Department of Structural and Molecular Biology, London, United Kingdom
| | - Linda Partridge
- Max Planck Institute for Biology of Aging, Köln, Germany
- Institute of Healthy Aging, and Genetics, Evolution, and Environment, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Inhibition of Gap Junction Elevates Glutamate Uptake in Cultured Astrocytes. Neurochem Res 2017; 43:59-65. [PMID: 28589517 DOI: 10.1007/s11064-017-2316-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 10/19/2022]
Abstract
Glutamate uptake is a main function of astrocytes to keep extracellular glutamate levels low and protect neurons against glutamate-induced excitotoxicity. On the other hand, astrocyte networks formed by gap junctions, which are consisted with connexins and connecting neighboring cells, are reported to play a critical role in maintaining the homeostasis in the brain. In the present study, we examined the effects of gap junction inhibitors on the glutamate uptake activity in cultured rat cortical astrocytes. At first, we confirmed the effects of gap junction inhibitors, 1-octanol and carbenoxolone, on cell-cell communication by the scrape-loading assay using a fluorescent dye Lucifer yellow. Both of 1-octanol and carbenoxolone treatments for 20 min in cultured astrocytes significantly suppressed the cell-cell communication assessed as the distance of dye-spreading. 1-octanol and carbenoxolone increased the glutamate uptake by astrocytes and glutamate aspartate transporter (GLAST) expression on the cell membrane. These results suggest that gap junction inhibitors increase the glutamate uptake activity through the increase of GLAST proteins located on the cell membrane. The regulation of gap junction in astrocytes might protect neurons against glutamate-induced excitotoxicity.
Collapse
|
26
|
Niu J, Li T, Yi C, Huang N, Koulakoff A, Weng C, Li C, Zhao CJ, Giaume C, Xiao L. Connexin-based channels contribute to metabolic pathways in the oligodendroglial lineage. J Cell Sci 2016; 129:1902-14. [PMID: 27006115 DOI: 10.1242/jcs.178731] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 03/14/2016] [Indexed: 12/22/2022] Open
Abstract
Oligodendrocyte precursor cells (OPCs) undergo a series of energy-consuming developmental events; however, the uptake and trafficking pathways for their energy metabolites remain unknown. In the present study, we found that 2-NBDG, a fluorescent glucose analog, can be delivered between astrocytes and oligodendrocytes through connexin-based gap junction channels but cannot be transferred between astrocytes and OPCs. Instead, connexin hemichannel-mediated glucose uptake supports OPC proliferation, and ethidium bromide uptake or increase of 2-NBDG uptake rate is correlated with intracellular Ca(2+) elevation in OPCs, indicating a Ca(2+)-dependent activation of connexin hemichannels. Interestingly, deletion of connexin 43 (Cx43, also known as GJA1) in astrocytes inhibits OPC proliferation by decreasing matrix glucose levels without impacting on OPC hemichannel properties, a process that also occurs in corpus callosum from acute brain slices. Thus, dual functions of connexin-based channels contribute to glucose supply in oligodendroglial lineage, which might pave a new way for energy-metabolism-directed oligodendroglial-targeted therapies.
Collapse
Affiliation(s)
- Jianqin Niu
- Department of Histology and Embryology, Faculty of Basic Medicine, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Tao Li
- Department of Histology and Embryology, Faculty of Basic Medicine, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Chenju Yi
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Institut National de la Santé et de la Recherche Médicale U1050, Paris 75231, Cedex 05, France
| | - Nanxin Huang
- Department of Histology and Embryology, Faculty of Basic Medicine, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Annette Koulakoff
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Institut National de la Santé et de la Recherche Médicale U1050, Paris 75231, Cedex 05, France
| | - Chuanhuang Weng
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Chengren Li
- Department of Histology and Embryology, Faculty of Basic Medicine, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Cong-Jian Zhao
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Christian Giaume
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Institut National de la Santé et de la Recherche Médicale U1050, Paris 75231, Cedex 05, France
| | - Lan Xiao
- Department of Histology and Embryology, Faculty of Basic Medicine, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
27
|
Iglesias J, Morales L, Barreto GE. Metabolic and Inflammatory Adaptation of Reactive Astrocytes: Role of PPARs. Mol Neurobiol 2016; 54:2518-2538. [PMID: 26984740 DOI: 10.1007/s12035-016-9833-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/04/2016] [Indexed: 01/10/2023]
Abstract
Astrocyte-mediated inflammation is associated with degenerative pathologies such as Alzheimer's and Parkinson's diseases and multiple sclerosis. The acute inflammation and morphological and metabolic changes that astrocytes develop after the insult are known as reactive astroglia or astrogliosis that is an important response to protect and repair the lesion. Astrocytes optimize their metabolism to produce lactate, glutamate, and ketone bodies in order to provide energy to the neurons that are deprived of nutrients upon insult. Firstly, we review the basis of inflammation and morphological changes of the different cell population implicated in reactive gliosis. Next, we discuss the more active metabolic pathways in healthy astrocytes and explain the metabolic response of astrocytes to the insult in different pathologies and which metabolic alterations generate complications in these diseases. We emphasize the role of peroxisome proliferator-activated receptors isotypes in the inflammatory and metabolic adaptation of astrogliosis developed in ischemia or neurodegenerative diseases. Based on results reported in astrocytes and other cells, we resume and hypothesize the effect of peroxisome proliferator-activated receptor (PPAR) activation with ligands on different metabolic pathways in order to supply energy to the neurons. The activation of selective PPAR isotype activity may serve as an input to better understand the role played by these receptors on the metabolic and inflammatory compensation of astrogliosis and might represent an opportunity to develop new therapeutic strategies against traumatic brain injuries and neurodegenerative diseases.
Collapse
Affiliation(s)
- José Iglesias
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.
| | - Ludis Morales
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
- Universidad Científica del Sur, Lima, Peru
| |
Collapse
|
28
|
Koyama Y. Functional alterations of astrocytes in mental disorders: pharmacological significance as a drug target. Front Cell Neurosci 2015. [PMID: 26217185 PMCID: PMC4491615 DOI: 10.3389/fncel.2015.00261] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Astrocytes play an essential role in supporting brain functions in physiological and pathological states. Modulation of their pathophysiological responses have beneficial actions on nerve tissue injured by brain insults and neurodegenerative diseases, therefore astrocytes are recognized as promising targets for neuroprotective drugs. Recent investigations have identified several astrocytic mechanisms for modulating synaptic transmission and neural plasticity. These include altered expression of transporters for neurotransmitters, release of gliotransmitters and neurotrophic factors, and intercellular communication through gap junctions. Investigation of patients with mental disorders shows morphological and functional alterations in astrocytes. According to these observations, manipulation of astrocytic function by gene mutation and pharmacological tools reproduce mental disorder-like behavior in experimental animals. Some drugs clinically used for mental disorders affect astrocyte function. As experimental evidence shows their role in the pathogenesis of mental disorders, astrocytes have gained much attention as drug targets for mental disorders. In this paper, I review functional alterations of astrocytes in several mental disorders including schizophrenia, mood disorder, drug dependence, and neurodevelopmental disorders. The pharmacological significance of astrocytes in mental disorders is also discussed.
Collapse
Affiliation(s)
- Yutaka Koyama
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University Tondabayashi, Osaka, Japan
| |
Collapse
|
29
|
Masaki K. Early disruption of glial communication via connexin gap junction in multiple sclerosis, Baló's disease and neuromyelitis optica. Neuropathology 2015; 35:469-80. [DOI: 10.1111/neup.12211] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/09/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Katsuhisa Masaki
- Department of Neurology; Neurological Institute; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| |
Collapse
|
30
|
Gago-Fuentes R, Fernández-Puente P, Megias D, Carpintero-Fernández P, Mateos J, Acea B, Fonseca E, Blanco FJ, Mayan MD. Proteomic Analysis of Connexin 43 Reveals Novel Interactors Related to Osteoarthritis. Mol Cell Proteomics 2015; 14:1831-45. [PMID: 25903580 DOI: 10.1074/mcp.m115.050211] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Indexed: 11/06/2022] Open
Abstract
We have previously reported that articular chondrocytes in tissue contain long cytoplasmic arms that physically connect two distant cells. Cell-to-cell communication occurs through connexin channels termed Gap Junction (GJ) channels, which achieve direct cellular communication by allowing the intercellular exchange of ions, small RNAs, nutrients, and second messengers. The Cx43 protein is overexpressed in several human diseases and inflammation processes and in articular cartilage from patients with osteoarthritis (OA). An increase in the level of Cx43 is known to alter gene expression, cell signaling, growth, and cell proliferation. The interaction of proteins with the C-terminal tail of connexin 43 (Cx43) directly modulates GJ-dependent and -independent functions. Here, we describe the isolation of Cx43 complexes using mild extraction conditions and immunoaffinity purification. Cx43 complexes were extracted from human primary articular chondrocytes isolated from healthy donors and patients with OA. The proteomic content of the native complexes was determined using LC-MS/MS, and protein associations with Cx43 were validated using Western blot and immunolocalization experiments. We identified >100 Cx43-associated proteins including previously uncharacterized proteins related to nucleolar functions, RNA transport, and translation. We also identified several proteins involved in human diseases, cartilage structure, and OA as novel functional Cx43 interactors, which emphasized the importance of Cx43 in the normal physiology and structural and functional integrity of chondrocytes and articular cartilage. Gene Ontology (GO) terms of the proteins identified in the OA samples showed an enrichment of Cx43-interactors related to cell adhesion, calmodulin binding, the nucleolus, and the cytoskeleton in OA samples compared with healthy samples. However, the mitochondrial proteins SOD2 and ATP5J2 were identified only in samples from healthy donors. The identification of Cx43 interactors will provide clues to the functions of Cx43 in human cells and its roles in the development of several diseases, including OA.
Collapse
Affiliation(s)
- Raquel Gago-Fuentes
- From the ‡CellCOM Research Group. Instituto de Investigación Biomédica A Coruña (INIBIC), XXIAC, University of A Coruña. Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Patricia Fernández-Puente
- §Rheumatology Division, ProteoRed/ISCIII, Proteomics Group, Instituto de Investigación Biomédica A Coruña (INIBIC), XXIAC. University of A Coruña. Xubias de Arriba 84, 15006 A Coruña, Spain; ¶Rheumatology Division, CIBER-BBN/ISCIII, Instituto de Investigación Biomédica A Coruña (INIBIC), XXIAC. University of A Coruña. Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Diego Megias
- ‖Confocal Microscopy Core Unit. Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Paula Carpintero-Fernández
- From the ‡CellCOM Research Group. Instituto de Investigación Biomédica A Coruña (INIBIC), XXIAC, University of A Coruña. Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Jesus Mateos
- §Rheumatology Division, ProteoRed/ISCIII, Proteomics Group, Instituto de Investigación Biomédica A Coruña (INIBIC), XXIAC. University of A Coruña. Xubias de Arriba 84, 15006 A Coruña, Spain; ¶Rheumatology Division, CIBER-BBN/ISCIII, Instituto de Investigación Biomédica A Coruña (INIBIC), XXIAC. University of A Coruña. Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Benigno Acea
- From the ‡CellCOM Research Group. Instituto de Investigación Biomédica A Coruña (INIBIC), XXIAC, University of A Coruña. Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Eduardo Fonseca
- From the ‡CellCOM Research Group. Instituto de Investigación Biomédica A Coruña (INIBIC), XXIAC, University of A Coruña. Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Francisco Javier Blanco
- §Rheumatology Division, ProteoRed/ISCIII, Proteomics Group, Instituto de Investigación Biomédica A Coruña (INIBIC), XXIAC. University of A Coruña. Xubias de Arriba 84, 15006 A Coruña, Spain; ¶Rheumatology Division, CIBER-BBN/ISCIII, Instituto de Investigación Biomédica A Coruña (INIBIC), XXIAC. University of A Coruña. Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Maria Dolores Mayan
- From the ‡CellCOM Research Group. Instituto de Investigación Biomédica A Coruña (INIBIC), XXIAC, University of A Coruña. Xubias de Arriba 84, 15006 A Coruña, Spain;
| |
Collapse
|
31
|
Tabernero A, Gangoso E, Jaraíz-Rodríguez M, Medina JM. The role of connexin43-Src interaction in astrocytomas: A molecular puzzle. Neuroscience 2015; 323:183-94. [PMID: 25711938 DOI: 10.1016/j.neuroscience.2015.02.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/10/2015] [Accepted: 02/13/2015] [Indexed: 12/18/2022]
Abstract
Connexin43 (Cx43) as a building block of gap junction channels and hemichannels exerts important functions in astrocytes. When these cells acquire a malignant phenotype Cx43 protein but not mRNA levels are downregulated, being negligible in high-grade astrocytoma or glioblastoma multiforme, the most common and deadliest of malignant primary brain tumors in adults. Some microRNAs associated to glioma target Cx43 and could explain the lack of correlation between mRNA and protein levels of Cx43 found in some high-grade astrocytomas. More importantly, these microRNAs could be a promising therapeutic target. A great number of studies have confirmed the relationship between cancer and connexins that was proposed by Loewenstein more than 40years ago, but these studies have also revealed that this is a very complex relationship. Indeed, restoring Cx43 to glioma cells reduces their rate of proliferation and their tumorigenicity but this tumor suppressor effect could be counterbalanced by its effects on invasiveness, adhesion and migration. The mechanisms underlying these effects suggest the participation of a great variety of proteins that bind to different regions of Cx43. The present review focuses on an intrinsically disordered region of the C-terminal domain of Cx43 in which converges the interaction of several proteins, including the proto-oncogene Src. We summarize data that indicate that Cx43-Src interaction inhibits the oncogenic activity of Src and promotes a conformational change in the structure of Cx43 that allosterically modifies the binding to other important signaling proteins. As a consequence, crucial cell functions, such as proliferation or migration, could be strongly affected. We propose that the knowledge of the structural basis of the antitumorigenic effect of Cx43 on astrocytomas could help to design new therapies against this incurable disease.
Collapse
Affiliation(s)
- A Tabernero
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Spain.
| | - E Gangoso
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Spain
| | - M Jaraíz-Rodríguez
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Spain
| | - J M Medina
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Spain
| |
Collapse
|
32
|
Dienel GA, Cruz NF. Contributions of glycogen to astrocytic energetics during brain activation. Metab Brain Dis 2015; 30:281-98. [PMID: 24515302 PMCID: PMC4130810 DOI: 10.1007/s11011-014-9493-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/21/2014] [Indexed: 12/11/2022]
Abstract
Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10-12 μmol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net glycogen consumption, which increases during stronger stimuli. Because glycogen level is restored by non-oxidative metabolism, astrocytes can influence the global ratio of oxygen to glucose utilization. Compensatory increases in utilization of blood glucose during inhibition of glycogen phosphorylase are large and approximate glycogenolysis rates during sensory stimulation. In contrast, glycogenolysis rates during hypoglycemia are low due to continued glucose delivery and oxidation of endogenous substrates; rates that preserve neuronal function in the absence of glucose are also low, probably due to metabolite oxidation. Modeling studies predict that glycogenolysis maintains a high level of glucose-6-phosphate in astrocytes to maintain feedback inhibition of hexokinase, thereby diverting glucose for use by neurons. The fate of glycogen carbon in vivo is not known, but lactate efflux from brain best accounts for the major metabolic characteristics during activation of living brain. Substantial shuttling coupled with oxidation of glycogen-derived lactate is inconsistent with available evidence. Glycogen has important roles in astrocytic energetics, including glucose sparing, control of extracellular K(+) level, oxidative stress management, and memory consolidation; it is a multi-functional compound.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Slot 500, 4301 W. Markham St., Little Rock, AR, 72205, USA,
| | | |
Collapse
|
33
|
The roads to mitochondrial dysfunction in a rat model of posttraumatic syringomyelia. BIOMED RESEARCH INTERNATIONAL 2015; 2015:831490. [PMID: 25685811 PMCID: PMC4309244 DOI: 10.1155/2015/831490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 10/13/2014] [Indexed: 11/26/2022]
Abstract
The pathophysiology of posttraumatic syringomyelia is incompletely understood. We examined whether local ischemia occurs after spinal cord injury. If so, whether it causes neuronal mitochondrial dysfunction and depletion, and subsequent energy metabolism impairment results in cell starvation of energy and even cell death, contributing to the enlargement of the cavity. Local blood flow was measured in a rat model of posttraumatic syringomyelia that had received injections of quisqualic acid and kaolin. We found an 86 ± 11% reduction of local blood flow at C8 where a cyst formed at 6 weeks after syrinx induction procedure (P < 0.05), and no difference in blood flow rate between the laminectomy and intact controls. Electron microscopy confirmed irreversible neuronal mitochondrion depletion surrounding the cyst, but recoverable mitochondrial loses in laminectomy rats. Profound energy loss quantified in the spinal cord of syrinx animals, and less ATP and ADP decline observed in laminectomy rats. Our findings demonstrate that an excitotoxic injury induces local ischemia in the spinal cord and results in neuronal mitochondrial depletion, and profound ATP loss, contributing to syrinx enlargement. Ischemia did not occur following laminectomy induced trauma in which mitochondrial loss and decline in ATP were reversible. This confirms excitotoxic injury contributing to the pathology of posttraumatic syringomyelia.
Collapse
|
34
|
Signaling molecules regulating phenotypic conversions of astrocytes and glial scar formation in damaged nerve tissues. Neurochem Int 2014; 78:35-42. [DOI: 10.1016/j.neuint.2014.08.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/17/2014] [Accepted: 08/22/2014] [Indexed: 12/21/2022]
|
35
|
Robinson CR, Dougherty PM. Spinal astrocyte gap junction and glutamate transporter expression contributes to a rat model of bortezomib-induced peripheral neuropathy. Neuroscience 2014; 285:1-10. [PMID: 25446343 DOI: 10.1016/j.neuroscience.2014.11.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 01/01/2023]
Abstract
There is increasing evidence implicating astrocytes in multiple forms of chronic pain, as well as in the specific context of chemotherapy-induced peripheral neuropathy (CIPN). However, it is still unclear what the exact role of astrocytes may be in the context of CIPN. Findings in oxaliplatin and paclitaxel models have displayed altered expression of astrocytic gap junctions and glutamate transporters as means by which astrocytes may contribute to observed behavioral changes. The current study investigated whether these changes were also generalizable to the bortezomib CIPN. Changes in mechanical sensitivity were verified in bortezomib-treated animals, and these changes were prevented by co-treatment with a glial activation inhibitor (minocycline), a gap junction decoupler (carbenoxolone), and by a glutamate transporter upregulator (ceftriaxone). Immunohistochemistry data at day 30 in bortezomib-treated animals showed increases in expression of glial fibrillary acidic protein (GFAP) and connexin 43 but a decrease in GLAST expression. These changes were prevented by co-treatment with minocycline. Follow-up Western blotting data showed a shift in connexin 43 from a non-phosphorylated state to a phosphorylated state, indicating increased trafficking of expressed connexin 43 to the cell membrane. These data suggest that increases in behavioral sensitivity to cutaneous stimuli may be tied to persistent synaptic glutamate resulting from increased calcium flow between spinal astrocytes.
Collapse
Affiliation(s)
- C R Robinson
- The Department of Anesthesiology and Pain Medicine Research, The University of Texas M.D. Anderson Cancer Center, 1400 Holcombe, Unit 409, Houston, TX 77030, Unites States
| | - P M Dougherty
- The Department of Anesthesiology and Pain Medicine Research, The University of Texas M.D. Anderson Cancer Center, 1400 Holcombe, Unit 409, Houston, TX 77030, Unites States.
| |
Collapse
|
36
|
Triggering of protection mechanism against Phoneutria nigriventer spider venom in the brain. PLoS One 2014; 9:e107292. [PMID: 25211468 PMCID: PMC4161398 DOI: 10.1371/journal.pone.0107292] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/11/2014] [Indexed: 01/03/2023] Open
Abstract
Severe accidents caused by the "armed" spider Phoneutria nigriventer cause neurotoxic manifestations in victims. In experiments with rats, P. nigriventer venom (PNV) temporarily disrupts the properties of the BBB by affecting both the transcellular and the paracellular route. However, it is unclear how cells and/or proteins participate in the transient opening of the BBB. The present study demonstrates that PNV is a substrate for the multidrug resistance protein-1 (MRP1) in cultured astrocyte and endothelial cells (HUVEC) and increases mrp1 and cx43 and down-regulates glut1 mRNA transcripts in cultured astrocytes. The inhibition of nNOS by 7-nitroindazole suggests that NO derived from nNOS mediates some of these effects by either accentuating or opposing the effects of PNV. In vivo, MRP1, GLUT1 and Cx43 protein expression is increased differentially in the hippocampus and cerebellum, indicating region-related modulation of effects. PNV contains a plethora of Ca(2+), K(+) and Na(+) channel-acting neurotoxins that interfere with glutamate handling. It is suggested that the findings of the present study are the result of a complex interaction of signaling pathways, one of which is the NO, which regulates BBB-associated proteins in response to PNV interference on ions physiology. The present study provides additional insight into PNV-induced BBB dysfunction and shows that a protective mechanism is activated against the venom. The data shows that PNV has qualities for potential use in drug permeability studies across the BBB.
Collapse
|
37
|
Takeuchi H, Suzumura A. Gap junctions and hemichannels composed of connexins: potential therapeutic targets for neurodegenerative diseases. Front Cell Neurosci 2014; 8:189. [PMID: 25228858 PMCID: PMC4151093 DOI: 10.3389/fncel.2014.00189] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/19/2014] [Indexed: 12/03/2022] Open
Abstract
Microglia are macrophage-like resident immune cells that contribute to the maintenance of homeostasis in the central nervous system (CNS). Abnormal activation of microglia can cause damage in the CNS, and accumulation of activated microglia is a characteristic pathological observation in neurologic conditions such as trauma, stroke, inflammation, epilepsy, and neurodegenerative diseases. Activated microglia secrete high levels of glutamate, which damages CNS cells and has been implicated as a major cause of neurodegeneration in these conditions. Glutamate-receptor blockers and microglia inhibitors (e.g., minocycline) have been examined as therapeutic candidates for several neurodegenerative diseases; however, these compounds exerted little therapeutic benefit because they either perturbed physiological glutamate signals or suppressed the actions of protective microglia. The ideal therapeutic approach would hamper the deleterious roles of activated microglia without diminishing their protective effects. We recently found that abnormally activated microglia secrete glutamate via gap-junction hemichannels on the cell surface. Moreover, administration of gap-junction inhibitors significantly suppressed excessive microglial glutamate release and improved disease symptoms in animal models of neurologic conditions such as stroke, multiple sclerosis, amyotrophic lateral sclerosis, and Alzheimer's disease. Recent evidence also suggests that neuronal and glial communication via gap junctions amplifies neuroinflammation and neurodegeneration. Elucidation of the precise pathologic roles of gap junctions and hemichannels may lead to a novel therapeutic strategies that can slow and halt the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hideyuki Takeuchi
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University Nagoya, Japan
| | - Akio Suzumura
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University Nagoya, Japan
| |
Collapse
|
38
|
Deng ZH, Liao J, Zhang JY, Liang C, Song CH, Han M, Wang LH, Xue H, Zhang K, Zabeau L, Tavernier J, Yan GT. Inhibition of the connexin 43 elevation may be involved in the neuroprotective activity of leptin against brain ischemic injury. Cell Mol Neurobiol 2014; 34:871-9. [PMID: 24794794 PMCID: PMC11488862 DOI: 10.1007/s10571-014-0066-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/17/2014] [Indexed: 02/08/2023]
Abstract
Leptin is a multifunctional hormone produced by the ob gene and is secreted by adipocytes that regulate food intake and energy metabolism. Numerous studies demonstrated that leptin is a novel neuroprotective effector, however, the mechanisms are largely unknown. Herein, we demonstrate the protective activities of leptin after ischemic stroke and provide the first evidence for the involvement of the connexin 43 (Cx43) in leptin-mediated neuroprotection. We found that leptin treatment reduces the infarct volume, improves animal behavioral parameters, and inhibits the elevation of Cx43 expression in vivo. In vitro, leptin reverses ischemia-induced SY5Y and U87 cells Cx43 elevation, secreted glutamate levels in medium and SY5Y cell death, these roles could be abolished by leptin receptor blocker. Additionally, leptin administration upregulated the extracellular signal-regulated kinase1/2 (ERK1/2) phosphorylation. Moreover, ERK1/2 inhibitors pretreatment reversed the effects of leptin on Cx43 expression, glutamate levels and cell apoptosis. In conclusion, the present study demonstrated that leptin can reduce the Cx43 expression and cell death both in vivo and in vitro via ERK1/2 signaling pathway. This result provides a novel regulatory signaling pathway of the neuroprotective effects of leptin and may contribute to ischemic brain injury prevention and therapy.
Collapse
Affiliation(s)
- Zi-Hui Deng
- Research Laboratory of Biochemistry, Basic Medical Institute, General Hospital of PLA, 28 Fuxing Road, Beijing, 100853, People's Republic of China,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
O'Carroll SJ, Becker DL, Davidson JO, Gunn AJ, Nicholson LFB, Green CR. The use of connexin-based therapeutic approaches to target inflammatory diseases. Methods Mol Biol 2014; 1037:519-46. [PMID: 24029957 DOI: 10.1007/978-1-62703-505-7_31] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Alterations in Connexin43 (Cx43) expression levels have been shown to play a role in inflammatory processes including skin wounding and neuroinflammation. Cx43 protein levels increase following a skin wound and can inhibit wound healing. Increased Cx43 has been observed following stroke, epilepsy, ischemia, optic nerve damage, and spinal cord injury with gap junctional communication and hemichannel opening leading to increased secondary damage via the inflammatory response. Connexin43 modulation has been identified as a potential target for protection and repair in neuroinflammation and skin wound repair. This review describes the use of a Cx43 specific antisense oligonucleotide (Cx43 AsODN) and peptide mimetics of the connexin extracellular loop domain to modulate Cx43 expression and/or function in inflammatory disorders of the skin and central nervous system. An overview of the role of connexin43 in inflammatory conditions, how antisense and peptide have allowed us to elucidate the role of Cx43 in these diseases, create models of diseases to test interventions and their potential for use clinically or in current clinical trials is presented. Antisense oligonucleotides are applied topically and have been used to improve wound healing following skin injury. They have also been used to develop ex vivo models of neuroinflammatory diseases that will allow testing of intervention strategies. The connexin mimetic peptides have shown potential in a number of neuroinflammatory disorders in ex vivo models as well as in vivo when delivered directly to the injury site or when delivered systemically.
Collapse
Affiliation(s)
- Simon J O'Carroll
- Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
40
|
Cisbani G, Cicchetti F. Review: The fate of cell grafts for the treatment of Huntington's disease: thepost-mortemevidence. Neuropathol Appl Neurobiol 2014; 40:71-90. [DOI: 10.1111/nan.12104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 12/03/2013] [Indexed: 12/13/2022]
Affiliation(s)
- G. Cisbani
- Centre de Recherche du CHU de Québec (CHUL); Québec QC Canada
| | - F. Cicchetti
- Centre de Recherche du CHU de Québec (CHUL); Québec QC Canada
- Département de Psychiatrie et Neurosciences; Université Laval; Québec QC Canada
| |
Collapse
|
41
|
Affiliation(s)
- Hideyuki Takeuchi
- Department of Neuroimmunology; Research Institute of Environmental Medicine; Nagoya University; Nagoya Japan
| |
Collapse
|
42
|
Giaume C, Leybaert L, Naus CC, Sáez JC. Connexin and pannexin hemichannels in brain glial cells: properties, pharmacology, and roles. Front Pharmacol 2013; 4:88. [PMID: 23882216 PMCID: PMC3713369 DOI: 10.3389/fphar.2013.00088] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/21/2013] [Indexed: 12/22/2022] Open
Abstract
Functional interaction between neurons and glia is an exciting field that has expanded tremendously during the past decade. Such partnership has multiple impacts on neuronal activity and survival. Indeed, numerous findings indicate that glial cells interact tightly with neurons in physiological as well as pathological situations. One typical feature of glial cells is their high expression level of gap junction protein subunits, named connexins (Cxs), thus the membrane channels they form may contribute to neuroglial interaction that impacts neuronal activity and survival. While the participation of gap junction channels in neuroglial interactions has been regularly reviewed in the past, the other channel function of Cxs, i.e., hemichannels located at the cell surface, has only recently received attention. Gap junction channels provide the basis for a unique direct cell-to-cell communication, whereas Cx hemichannels allow the exchange of ions and signaling molecules between the cytoplasm and the extracellular medium, thus supporting autocrine and paracrine communication through a process referred to as “gliotransmission,” as well as uptake and release of metabolites. More recently, another family of proteins, termed pannexins (Panxs), has been identified. These proteins share similar membrane topology but no sequence homology with Cxs. They form multimeric membrane channels with pharmacology somewhat overlapping with that of Cx hemichannels. Such duality has led to several controversies in the literature concerning the identification of the molecular channel constituents (Cxs versus Panxs) in glia. In the present review, we update and discuss the knowledge of Cx hemichannels and Panx channels in glia, their properties and pharmacology, as well as the understanding of their contribution to neuroglial interactions in brain health and disease.
Collapse
Affiliation(s)
- Christian Giaume
- Collège de France, Center for Interdisciplinary Research in Biology/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050 Paris, France ; University Pierre et Marie Curie Paris, France ; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University Paris, France
| | | | | | | |
Collapse
|
43
|
Gliopreventive effects of guanosine against glucose deprivation in vitro. Purinergic Signal 2013; 9:643-54. [PMID: 23846842 DOI: 10.1007/s11302-013-9377-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022] Open
Abstract
Guanosine, a guanine-based purine, is recognized as an extracellular signaling molecule that is released from astrocytes and confers neuroprotective effects in several in vivo and in vitro studies. Astrocytes regulate glucose metabolism, glutamate transport, and defense mechanism against oxidative stress. C6 astroglial cells are widely used as an astrocyte-like cell line to study the astrocytic function and signaling pathways. Our previous studies showed that guanosine modulates the glutamate uptake activity, thus avoiding glutamatergic excitotoxicity and protecting neural cells. The goal of this study was to determine the gliopreventive effects of guanosine against glucose deprivation in vitro in cultured C6 cells. Glucose deprivation induced cytotoxicity, an increase in reactive oxygen and nitrogen species (ROS/RNS) levels and lipid peroxidation as well as affected the metabolism of glutamate, which may impair important astrocytic functions. Guanosine prevented glucose deprivation-induced toxicity in C6 cells by modulating oxidative and nitrosative stress and glial responses, such as the glutamate uptake, the glutamine synthetase activity, and the glutathione levels. Glucose deprivation decreased the level of EAAC1, the main glutamate transporter present in C6 cells. Guanosine also prevented this effect, most likely through PKC, PI3K, p38 MAPK, and ERK signaling pathways. Taken together, these results show that guanosine may represent an important mechanism for protection of glial cells against glucose deprivation. Additionally, this study contributes to a more thorough understanding of the glial- and redox-related protective properties of guanosine in astroglial cells.
Collapse
|
44
|
Galeffi F, Turner DA. Exploiting metabolic differences in glioma therapy. Curr Drug Discov Technol 2013; 9:280-93. [PMID: 22339075 DOI: 10.2174/157016312803305906] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/30/2011] [Accepted: 02/11/2012] [Indexed: 12/20/2022]
Abstract
Brain function depends upon complex metabolic interactions amongst only a few different cell types, with astrocytes providing critical support for neurons. Astrocyte functions include buffering the extracellular space, providing substrates to neurons, interchanging glutamate and glutamine for synaptic transmission with neurons, and facilitating access to blood vessels. Whereas neurons possess highly oxidative metabolism and easily succumb to ischemia, astrocytes rely more on glycolysis and metabolism associated with synthesis of critical intermediates, hence are less susceptible to lack of oxygen. Astrocytoma and higher grade glioma cells demonstrate both basic metabolic mechanisms of astrocytes as well as tumors in general, e.g. they show a high glycolytic rate, lactate extrusion, ability to proliferate even under hypoxia, and opportunistic use of mechanisms to enhance metabolism and blood vessel generation, and suppression of cell death pathways. There may be differences in metabolism between neurons, normal astrocytes and astrocytoma cells, providing therapeutic opportunities against astrocytomas, including a wide range of enzyme and transporter differences, regulation of hypoxia-inducible factor (HIF), glutamate uptake transporters and glutamine utilization, differential sensitivities of monocarboxylate transporters, presence of glycogen, high interlinking with gap junctions, use of NADPH for lipid synthesis, utilizing differential regulation of synthetic enzymes (e.g. isocitrate dehydrogenase, pyruvate carboxylase, pyruvate dehydrogenase, lactate dehydrogenase, malate-aspartate NADH shuttle) and different glucose uptake mechanisms. These unique metabolic susceptibilities may augment conventional therapeutic attacks based on cell division differences and surface receptors alone, and are starting to be implemented in clinical trials.
Collapse
|
45
|
Kreft M, Lukšič M, Zorec TM, Prebil M, Zorec R. Diffusion of D-glucose measured in the cytosol of a single astrocyte. Cell Mol Life Sci 2013; 70:1483-92. [PMID: 23224430 PMCID: PMC11113596 DOI: 10.1007/s00018-012-1219-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 11/18/2012] [Accepted: 11/22/2012] [Indexed: 01/26/2023]
Abstract
Astrocytes interact with neurons and endothelial cells and may mediate exchange of metabolites between capillaries and nerve terminals. In the present study, we investigated intracellular glucose diffusion in purified astrocytes after local glucose uptake. We used a fluorescence resonance energy transfer (FRET)-based nano sensor to monitor the time dependence of the intracellular glucose concentration at specific positions within the cell. We observed a delay in onset and kinetics in regions away from the glucose uptake compared with the region where we locally super-fused astrocytes with the D-glucose-rich solution. We propose a mathematical model of glucose diffusion in astrocytes. The analysis showed that after gradual uptake of glucose, the locally increased intracellular glucose concentration is rapidly spread throughout the cytosol with an apparent diffusion coefficient (D app) of (2.38 ± 0.41) × 10(-10) m(2) s(-1) (at 22-24 °C). Considering that the diffusion coefficient of D-glucose in water is D = 6.7 × 10(-10) m(2) s(-1) (at 24 °C), D app determined in astrocytes indicates that the cytosolic tortuosity, which hinders glucose molecules, is approximately three times higher than in aqueous solution. We conclude that the value of D app for glucose measured in purified rat astrocytes is consistent with the view that cytosolic diffusion may allow glucose and glucose metabolites to traverse from the endothelial cells at the blood-brain barrier to neurons and neighboring astrocytes.
Collapse
Affiliation(s)
- Marko Kreft
- LN-MCP, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Zaloška cesta 4, 1000, Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
46
|
Hansen F, de Souza DF, Silveira SDL, Hoefel AL, Fontoura JB, Tramontina AC, Bobermin LD, Leite MC, Perry MLS, Gonçalves CA. Methylglyoxal alters glucose metabolism and increases AGEs content in C6 glioma cells. Metab Brain Dis 2012; 27:531-9. [PMID: 22802013 DOI: 10.1007/s11011-012-9329-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 07/04/2012] [Indexed: 12/14/2022]
Abstract
Methylglyoxal is a dicarbonyl compound that is physiologically produced by enzymatic and non-enzymatic reactions. It can lead to cytotoxicity, which is mainly related to Advanced Glycation End Products (AGEs) formation. Methylglyoxal and AGEs are involved in the pathogenesis of Neurodegenerative Diseases (ND) and, in these situations, can cause the impairment of energetic metabolism. Astroglial cells play critical roles in brain metabolism and the appropriate functioning of astrocytes is essential for the survival and function of neurons. However, there are only a few studies evaluating the effect of methylglyoxal on astroglial cells. The aim of this study was to evaluate the effect of methylglyoxal exposure, over short (1 and 3 h) and long term (24 h) periods, on glucose, glycine and lactate metabolism in C6 glioma cells, as well as investigate the glyoxalase system and AGEs formation. Glucose uptake and glucose oxidation to CO(2) increased in 1 h and the conversion of glucose to lipids increased at 3 h. In addition, glycine oxidation to CO(2) and conversion of glycine to lipids increased at 1 h, whereas the incorporation of glycine in proteins decreased at 1 and 3 h. Methylglyoxal decreased glyoxalase I and II activities and increased AGEs content within 24 h. Lactate oxidation and lactate levels were not modified by methylglyoxal exposure. These data provide evidence that methylglyoxal may impair glucose metabolism and can affect glyoxalase activity. In periods of increased methylglyoxal exposure, such alterations could be exacerbated, leading to further increases in intracellular methylglyoxal and AGEs, and therefore triggering and/or worsening ND.
Collapse
Affiliation(s)
- Fernanda Hansen
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Theis M, Giaume C. Connexin-based intercellular communication and astrocyte heterogeneity. Brain Res 2012; 1487:88-98. [PMID: 22789907 DOI: 10.1016/j.brainres.2012.06.045] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 06/10/2012] [Accepted: 06/13/2012] [Indexed: 12/21/2022]
Abstract
This review gives an overview of the current knowledge on connexin-mediated communication in astrocytes, covering gap junction and hemichannel functions mediated by connexins. Astroglia is the main brain cell type that expresses the largest amount of connexin and exhibits high level of gap junctional communication compared to neurons and oligodendrocytes. However, in certain developmental and regional situations, astrocytes are also coupled with oligodendrocytes and neurons. This heterotypic coupling is infrequent and minor in terms of extent of the coupling area, which does not mean that it is not important in terms of cell interaction. Here, we present an update on heterogeneity of connexin expression and function at the molecular, subcellular, cellular and networking levels. Interestingly, while astrocytes were initially considered as a homogenous population, there is now increasing evidence for morphological, developmental, molecular and physiological heterogeneity of astrocytes. Consequently, the specificity of gap junction channel- and hemichannel-mediated communication, which tends to synchronize cell populations, is also a parameter to take into account when neuroglial interactions are investigated. This article is part of a Special Issue entitled Electrical Synapses.
Collapse
Affiliation(s)
- Martin Theis
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Sigmund-Freud-Straße 25, D-53105 Bonn, Germany.
| | | |
Collapse
|
48
|
Endothelial cells and astrocytes: a concerto en duo in ischemic pathophysiology. Int J Cell Biol 2012; 2012:176287. [PMID: 22778741 PMCID: PMC3388591 DOI: 10.1155/2012/176287] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/30/2012] [Indexed: 11/17/2022] Open
Abstract
The neurovascular/gliovascular unit has recently gained increased attention in cerebral ischemic research, especially regarding the cellular and molecular changes that occur in astrocytes and endothelial cells. In this paper we summarize the recent knowledge of these changes in association with edema formation, interactions with the basal lamina, and blood-brain barrier dysfunctions. We also review the involvement of astrocytes and endothelial cells with recombinant tissue plasminogen activator, which is the only FDA-approved thrombolytic drug after stroke. However, it has a narrow therapeutic time window and serious clinical side effects. Lastly, we provide alternative therapeutic targets for future ischemia drug developments such as peroxisome proliferator- activated receptors and inhibitors of the c-Jun N-terminal kinase pathway. Targeting the neurovascular unit to protect the blood-brain barrier instead of a classical neuron-centric approach in the development of neuroprotective drugs may result in improved clinical outcomes after stroke.
Collapse
|
49
|
Ebara F, Inada S, Morikawa M, Asaoka SH, Isozaki Y, Saito A, Etoh T, Shiotsuka Y, Roh SG, Wegner J, Gotoh T. Effect of nutrient intake on intramuscular glucose metabolism during the early growth stage in cross-bred steers (Japanese Black male × Holstein female). J Anim Physiol Anim Nutr (Berl) 2012; 97:684-93. [DOI: 10.1111/j.1439-0396.2012.01310.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
High-Glucose and S100B Stimulate Glutamate Uptake in C6 Glioma Cells. Neurochem Res 2012; 37:1399-408. [DOI: 10.1007/s11064-012-0722-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 01/31/2012] [Accepted: 02/07/2012] [Indexed: 10/28/2022]
|