1
|
Hassan AHE, Kim HJ, Park K, Choi Y, Moon S, Lee CH, Kim YJ, Cho SB, Gee MS, Lee D, Park JH, Lee JK, Ryu JH, Park KD, Lee YS. Synthesis and Biological Evaluation of O6-Aminoalkyl-Hispidol Analogs as Multifunctional Monoamine Oxidase-B Inhibitors towards Management of Neurodegenerative Diseases. Antioxidants (Basel) 2023; 12:antiox12051033. [PMID: 37237899 DOI: 10.3390/antiox12051033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Oxidative catabolism of monoamine neurotransmitters by monoamine oxidases (MAOs) produces reactive oxygen species (ROS), which contributes to neuronal cells' death and also lowers monoamine neurotransmitter levels. In addition, acetylcholinesterase activity and neuroinflammation are involved in neurodegenerative diseases. Herein, we aim to achieve a multifunctional agent that inhibits the oxidative catabolism of monoamine neurotransmitters and, hence, the detrimental production of ROS while enhancing neurotransmitter levels. Such a multifunctional agent might also inhibit acetylcholinesterase and neuroinflammation. To meet this end goal, a series of aminoalkyl derivatives of analogs of the natural product hispidol were designed, synthesized, and evaluated against both monoamine oxidase-A (MAO-A) and monoamine oxidase-B (MAO-B). Promising MAO inhibitors were further checked for the inhibition of acetylcholinesterase and neuroinflammation. Among them, compounds 3aa and 3bc were identified as potential multifunctional molecules eliciting submicromolar selective MAO-B inhibition, low-micromolar AChE inhibition, and the inhibition of microglial PGE2 production. An evaluation of their effects on memory and cognitive impairments using a passive avoidance test confirmed the in vivo activity of compound 3bc, which showed comparable activity to donepezil. In silico molecular docking provided insights into the MAO and acetylcholinesterase inhibitory activities of compounds 3aa and 3bc. These findings suggest compound 3bc as a potential lead for the further development of agents against neurodegenerative diseases.
Collapse
Affiliation(s)
- Ahmed H E Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyeon Jeong Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Keontae Park
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Yeonwoo Choi
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Suyeon Moon
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Chae Hyeon Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Yeon Ju Kim
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Soo Bin Cho
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Min Sung Gee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Danbi Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Jong-Hyun Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jong Kil Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Jong Hoon Ryu
- Department of Oriental Pharmaceutical Science College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
The Neuroprotective Activities of the Novel Multi-Target Iron-Chelators in Models of Alzheimer's Disease, Amyotrophic Lateral Sclerosis and Aging. Cells 2023; 12:cells12050763. [PMID: 36899898 PMCID: PMC10001413 DOI: 10.3390/cells12050763] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/03/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
The concept of chelation therapy as a valuable therapeutic approach in neurological disorders led us to develop multi-target, non-toxic, lipophilic, brain-permeable compounds with iron chelation and anti-apoptotic properties for neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), age-related dementia and amyotrophic lateral sclerosis (ALS). Herein, we reviewed our two most effective such compounds, M30 and HLA20, based on a multimodal drug design paradigm. The compounds have been tested for their mechanisms of action using animal and cellular models such as APP/PS1 AD transgenic (Tg) mice, G93A-SOD1 mutant ALS Tg mice, C57BL/6 mice, Neuroblastoma × Spinal Cord-34 (NSC-34) hybrid cells, a battery of behavior tests, and various immunohistochemical and biochemical techniques. These novel iron chelators exhibit neuroprotective activities by attenuating relevant neurodegenerative pathology, promoting positive behavior changes, and up-regulating neuroprotective signaling pathways. Taken together, these results suggest that our multifunctional iron-chelating compounds can upregulate several neuroprotective-adaptive mechanisms and pro-survival signaling pathways in the brain and might function as ideal drugs for neurodegenerative disorders, such as PD, AD, ALS, and aging-related cognitive decline, in which oxidative stress and iron-mediated toxicity and dysregulation of iron homeostasis have been implicated.
Collapse
|
3
|
Hassan AHE, Kim HJ, Gee MS, Park JH, Jeon HR, Lee CJ, Choi Y, Moon S, Lee D, Lee JK, Park KD, Lee YS. Positional scanning of natural product hispidol's ring-B: discovery of highly selective human monoamine oxidase-B inhibitor analogues downregulating neuroinflammation for management of neurodegenerative diseases. J Enzyme Inhib Med Chem 2022; 37:768-780. [PMID: 35196956 PMCID: PMC8881063 DOI: 10.1080/14756366.2022.2036737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/03/2022] Open
Abstract
Multifunctional molecules might offer better treatment of complex multifactorial neurological diseases. Monoaminergic pathways dysregulation and neuroinflammation are common convergence points in diverse neurodegenerative and neuropsychiatric disorders. Aiming to target these diseases, polypharmacological agents modulating both monoaminergic pathways and neuroinflammatory were addressed. A library of analogues of the natural product hispidol was prepared and evaluated for inhibition of monoamine oxidases (MAOs) isoforms. Several molecules emerged as selective potential MAO B inhibitors. The most promising compounds were further evaluated in vitro for their impact on microglia viability, induced production of proinflammatory mediators and MAO-B inhibition mechanism. Amongst tested compounds, 1p was a safe potent competitive reversible MAO-B inhibitor and inhibitor of microglial production of neuroinflammatory mediators; NO and PGE2. In-silico study provided insights into molecular basis of the observed selective MAO B inhibition. This study presents compound 1p as a promising lead compound for management of neurodegenerative disease.
Collapse
Affiliation(s)
- Ahmed H. E. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Hyeon Jeong Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Min Sung Gee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Jong-Hyun Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hye Rim Jeon
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Cheol Jung Lee
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Yeonwoo Choi
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Suyeon Moon
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Danbi Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Jong Kil Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Zhu W, Fan Y, Li Y, Peng L, Li Y, Yan F, Zhao J, Zhang L, Kurihara H, He R, Chen H. Hybridization of Amantadine with Gardenamide A Enhances NMDA Antagonism and in vivo Anti-PD Effects. Bioorg Chem 2022; 130:106223. [DOI: 10.1016/j.bioorg.2022.106223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
|
5
|
Belardo C, Alessio N, Pagano M, De Dominicis E, Infantino R, Perrone M, Iannotta M, Galderisi U, Rinaldi B, Scuteri D, Bagetta G, Palazzo E, Maione S, Luongo L. PEA-OXA ameliorates allodynia, neuropsychiatric and adipose tissue remodeling induced by social isolation. Neuropharmacology 2022; 208:108978. [PMID: 35157898 DOI: 10.1016/j.neuropharm.2022.108978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/10/2021] [Accepted: 01/30/2022] [Indexed: 12/28/2022]
Abstract
Chronic social isolation generates a persistent state of stress associated with obesity along with some neuro-endocrine disorders and central behavioral sequelae (eg anxiety, depression, aggression, and allodynia). In this study, we evaluated the effect of social isolation on body weight, depressive- and anxious-aggressive-like behavior, as well as on phenotypic changes of adipocytes from visceral adipose tissue of control (group-housed) or socially isolated (single-housed) male mice. The effect of treatment with pentadecyl-2-oxazoline (PEA-OXA), a natural alpha2 antagonist and histamine H3 protean partial agonist, on these alterations was also evaluated. Single or group-housed mice treated with vehicle or PEA-OXA underwent body weight, mechanical allodynia, anxious-, depressive- and aggressive-like behavior measurements. Proliferation rate, apoptosis, senescence, expression of fat lineage genes, lipid droplets and proinflammatory cytokines were measured on white adipose tissue adipocytes from group- or single-housed mice. Single housed mice developed weight gain, mechanical allodynia at the von Frey test, aggressiveness in the resident intruder test, depression- and anxiety-like behavior in the tail suspension and hole drop tests, respectively. Single housed mice receiving PEA-OXA showed a general resolution of both, physical-metabolic and behavioral alterations associated with social isolation. Furthermore, adipocytes from the adipose tissue of socially isolated mice showed an evident inflamed phenotype (i.e. a reduced rate of proliferation, apoptosis, senescence, and ROS hyper-production together with an increased expression of IL-1β, IL-10, IL-17, and TNF-α and a decrease of IL-6). The treatment with PEA-OXA on adipocytes from single housed mice produced a protective/anti-inflammatory phenotype with an increased expression of brown adipose tissue biomarker. This study confirms that persistent stress caused by social isolation predisposes to obesity and neuropsychiatric disorders. PEA-OXA, through its multi-target activity on alpha2 adrenoceptor and histamine H3 receptors, which have recently aroused great interest in the neuropsychiatric field, reduces weight gain, systemic pro-inflammatory state, allodynia, and affective disorders associated with social isolation.
Collapse
Affiliation(s)
- Carmela Belardo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Nicola Alessio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Martina Pagano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Emanuela De Dominicis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosmara Infantino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michela Perrone
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Monica Iannotta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Barbara Rinaldi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Damiana Scuteri
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Giacinto Bagetta
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Enza Palazzo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Sabatino Maione
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Livio Luongo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
6
|
Tang JJ, Guo C, Peng XN, Guo XC, Zhang Q, Tian JM, Gao JM. Chemical characterization and multifunctional neuroprotective effects of sesquiterpenoid-enriched Inula britannica flowers extract. Bioorg Chem 2021; 116:105389. [PMID: 34601295 DOI: 10.1016/j.bioorg.2021.105389] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 01/05/2023]
Abstract
Dried flowers of Inula britannica commercially serve as pharmaceutical/nutraceutical herbs in the manufacture of medicinal products and functional tea that has been reported to possess extensive biological property. However, the neuroprotective constituents in I. britannica flowers are not known. In the current study, phytochemicals of sesquiterpenoid-enriched I. britannica flowers extract and their potential multifunctional neuroprotective effects were investigated. Nineteen structurally diverse sesquiterpenoids, including two new sesquiterpenoid dimers, namely, inubritanolides A and B (1, 2), and four new sesquiterpenoid monomers (3-6), namely, 1-O-acetyl-6-O-chloracetylbritannilactone (3), 6-methoxybritannilactone (4), 1-hydroxy-10β-methoxy-4αH-1,10-secoeudesma-5(6),11(13)-dien-12,8β-olide (5) and 1-hydroxy-4αH-1,10-secoeudesma-5(6),10(14),11(13)-trien-12,8β-olide (6), as well as 13 known congeners (7-19) were isolated from this source. The structures of compounds 1-6 were elucidated by 1D- and 2D- NMR and HR-ESI-MS data, and their absolute configurations were discerned by electronic circular dichroism (ECD) data analysis and single crystal X-ray diffraction. Interestingly, inubritannolide A (1) is a new type [4 + 2] Diels-Alder dimer featuring a hepta-membered cycloether skeleton. Most of the compounds showed potential multifunctional neuroprotective effects, including antioxidative, anti-neuroinflammatory, and microglial polarization properties. Specifically, 1 and 6 displayed slight strong neuroprotective potency against different types of neuronal cells mediated by various inducers including H2O2, 6-hydroxydopamine (6-OHDA), and lipopolysaccharide (LPS). Overall, this is the first report on multifunctional neuroprotective effects of sesquiterpenoid-enriched I. britannica flowers extract, which supports its potential pharmaceutical/nutraceutical application in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, PR China.
| | - Cong Guo
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Xiao-Na Peng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Xiao-Chen Guo
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Jun-Mian Tian
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, PR China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
7
|
Lin R, Rao S, Li Y, Zhang L, Xu L, He Y, Liu Z, Chen H. Conjugation of tacrine with genipin derivative not only enhances effects on AChE but also leads to autophagy against Alzheimer's disease. Eur J Med Chem 2020; 211:113067. [PMID: 33338868 DOI: 10.1016/j.ejmech.2020.113067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/13/2020] [Accepted: 11/28/2020] [Indexed: 01/22/2023]
Abstract
Seven tacrine/CHR21 conjugates have been designed and synthesized. Compound 8-7 was confirmed as the most active AChE inhibitor with IC50 value of 5.8 ± 1.4 nM, which was 7.72-fold stronger than tacrine. It was also shown as a strong BuChE inhibitor (IC50 value of 3.7 ± 1.3 nM). 8-7 was clearly highlighted not only as an excellent ChEs inhibitor, but also as a good modulator on protein expression of AChE, p53, Bax, Bcl-2, LC3, p62, and ULK, indicating its functions against programmed cell apoptosis and decrease of autophagy. 8-7 significantly reversed the glutamate-induced dysfunctions including excessive calcium influx and release from internal organelles, overproduction of nitric oxide (NO) and Aβ high molecular weight oligomer. This compound can penetrate blood-brain barrier (BBB). The in vivo hepatotoxicity assay indicated that 8-7 was much less toxic than tacrine. Altogether, these data strongly support that 8-7 is a potential multitarget-directed ligand (MTDL) for treating Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Rongtian Lin
- Institute of Traditional Chinese Medicine and Natural Product, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Shuwen Rao
- Institute of Traditional Chinese Medicine and Natural Product, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Yanbing Li
- Institute of Traditional Chinese Medicine and Natural Product, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Lei Zhang
- Institute of Traditional Chinese Medicine and Natural Product, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Liyu Xu
- Institute of Traditional Chinese Medicine and Natural Product, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Yepu He
- Institute of Traditional Chinese Medicine and Natural Product, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Zhijun Liu
- Institute of Traditional Chinese Medicine and Natural Product, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Heru Chen
- Institute of Traditional Chinese Medicine and Natural Product, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou, 510632, PR China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, School of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
8
|
Millan MJ, Dekeyne A, Gobert A, Brocco M, Mannoury la Cour C, Ortuno JC, Watson D, Fone KCF. Dual-acting agents for improving cognition and real-world function in Alzheimer's disease: Focus on 5-HT6 and D3 receptors as hubs. Neuropharmacology 2020; 177:108099. [PMID: 32525060 DOI: 10.1016/j.neuropharm.2020.108099] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 01/01/2023]
Abstract
To date, there are no interventions that impede the inexorable progression of Alzheimer's disease (AD), and currently-available drugs cholinesterase (AChE) inhibitors and the N-Methyl-d-Aspartate receptor antagonist, memantine, offer only modest symptomatic benefit. Moreover, a range of mechanistically-diverse agents (glutamatergic, histaminergic, monoaminergic, cholinergic) have disappointed in clinical trials, alone and/or in association with AChE inhibitors. This includes serotonin (5-HT) receptor-6 antagonists, despite compelling preclinical observations in rodents and primates suggesting a positive influence on cognition. The emphasis has so far been on high selectivity. However, for a multi-factorial disorder like idiopathic AD, 5-HT6 antagonists possessing additional pharmacological actions might be more effective, by analogy to "multi-target" antipsychotics. Based on this notion, drug discovery programmes have coupled 5-HT6 blockade to 5-HT4 agonism and inhibition of AchE. Further, combined 5-HT6/dopamine D3 receptor (D3) antagonists are of especial interest since D3 blockade mirrors 5-HT6 antagonism in exerting broad-based pro-cognitive properties in animals. Moreover, 5-HT6 and dopamine D3 antagonists promote neurocognition and social cognition via both distinctive and convergent actions expressed mainly in frontal cortex, including suppression of mTOR over-activation and reinforcement of cholinergic and glutamatergic transmission. In addition, 5-HT6 blockade affords potential anti-anxiety, anti-depressive and anti-epileptic properties, and antagonising 5-HT6 receptors may be associated with neuroprotective ("disease-modifying") properties. Finally D3 antagonism may counter psychotic episodes and D3 receptors themselves offer a promising hub for multi-target agents. The present article reviews the status of "R and D" into multi-target 5-HT6 and D3 ligands for improved treatment of AD and other neurodegenerative disorders of aging. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
Affiliation(s)
- Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, 78290, Croissy sur Seine, France.
| | - Anne Dekeyne
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, 78290, Croissy sur Seine, France
| | - Alain Gobert
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, 78290, Croissy sur Seine, France
| | - Mauricette Brocco
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, 78290, Croissy sur Seine, France
| | - Clotilde Mannoury la Cour
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, 78290, Croissy sur Seine, France
| | - Jean-Claude Ortuno
- Centre for Excellence in Chemistry, Institut de Recherche Servier, 78290, Croissy sur Seine, France
| | - David Watson
- School of Life Sciences, Queen's Medical Centre, The University of Nottingham, NG7 2UH, England, UK
| | - Kevin C F Fone
- School of Life Sciences, Queen's Medical Centre, The University of Nottingham, NG7 2UH, England, UK
| |
Collapse
|
9
|
Novel Class of Chalcone Oxime Ethers as Potent Monoamine Oxidase-B and Acetylcholinesterase Inhibitors. Molecules 2020; 25:molecules25102356. [PMID: 32443652 PMCID: PMC7288026 DOI: 10.3390/molecules25102356] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 11/16/2022] Open
Abstract
Previously synthesized novel chalcone oxime ethers (COEs) were evaluated for inhibitory activities against monoamine oxidases (MAOs) and acetylcholinesterase (AChE). Twenty-two of the 24 COEs synthesized, except COE-17 and COE-24, had potent and/or significant selective inhibitory effects on MAO-B. COE-6 potently inhibited MAO-B with an IC50 value of 0.018 µM, which was 105, 2.3, and 1.1 times more potent than clorgyline, lazabemide, and pargyline (reference drugs), respectively. COE-7, and COE-22 were also active against MAO-B, both had an IC50 value of 0.028 µM, which was 67 and 1.5 times lower than those of clorgyline and lazabemide, respectively. Most of the COEs exhibited weak inhibitory effects on MAO-A and AChE. COE-13 most potently inhibited MAO-A (IC50 = 0.88 µM) and also significantly inhibited MAO-B (IC50 = 0.13 µM), and it could be considered as a potential nonselective MAO inhibitor. COE-19 and COE-22 inhibited AChE with IC50 values of 5.35 and 4.39 µM, respectively. The selectivity index (SI) of COE-22 for MAO-B was higher than that of COE-6 (SI = 778.6 vs. 222.2), but the IC50 value (0.028 µM) was slightly lower than that of COE-6 (0.018 µM). In reversibility experiments, inhibitions of MAO-B by COE-6 and COE-22 were recovered to the levels of reference reversible inhibitors and both competitively inhibited MAO-B, with Ki values of 0.0075 and 0.010 µM, respectively. Our results show that COE-6 and COE-22 are potent, selective MAO-B inhibitors, and COE-22 is a candidate of dual-targeting molecule for MAO-B and AChE.
Collapse
|
10
|
Di Paolo M, Papi L, Gori F, Turillazzi E. Natural Products in Neurodegenerative Diseases: A Great Promise but an Ethical Challenge. Int J Mol Sci 2019; 20:E5170. [PMID: 31635296 PMCID: PMC6834164 DOI: 10.3390/ijms20205170] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/09/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (NDs) represent one of the most important public health problems and concerns, as they are a growing cause of mortality and morbidity worldwide, particularly in the elderly. Despite remarkable breakthroughs in our understanding of NDs, there has been little success in developing effective therapies. The use of natural products may offer great potential opportunities in the prevention and therapy of NDs; however, many clinical concerns have arisen regarding their use, mainly focusing on the lack of scientific support or evidence for their efficacy and patient safety. These clinical uncertainties raise critical questions from a bioethical and legal point of view, as considerations relating to patient decisional autonomy, patient safety, and beneficial or non-beneficial care may need to be addressed. This paper does not intend to advocate for or against the use of natural products, but to analyze the ethical framework of their use, with particular attention paid to the principles of biomedical ethics. In conclusion, the notable message that emerges is that natural products may represent a great promise for the treatment of many NDs, even if many unknown issues regarding the efficacy and safety of many natural products still remain.
Collapse
Affiliation(s)
- Marco Di Paolo
- Section of Legal Medicine, Department of Surgical Pathology, Medical, Molecular and Critical Area, University of Pisa, 56124 Pisa, Italy.
| | - Luigi Papi
- Section of Legal Medicine, Department of Surgical Pathology, Medical, Molecular and Critical Area, University of Pisa, 56124 Pisa, Italy.
| | - Federica Gori
- Section of Legal Medicine, Department of Surgical Pathology, Medical, Molecular and Critical Area, University of Pisa, 56124 Pisa, Italy.
| | - Emanuela Turillazzi
- Section of Legal Medicine, Department of Surgical Pathology, Medical, Molecular and Critical Area, University of Pisa, 56124 Pisa, Italy.
| |
Collapse
|
11
|
Mathew B, Parambi DGT, Mathew GE, Uddin MS, Inasu ST, Kim H, Marathakam A, Unnikrishnan MK, Carradori S. Emerging therapeutic potentials of dual-acting MAO and AChE inhibitors in Alzheimer's and Parkinson's diseases. Arch Pharm (Weinheim) 2019; 352:e1900177. [PMID: 31478569 DOI: 10.1002/ardp.201900177] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 01/07/2023]
Abstract
No drug has been approved to prevent neuronal cell loss in patients suffering from Parkinson's disease (PD) or Alzheimer's disease (AD); despite increased comprehension of the underlying molecular causes, therapies target cognitive functional improvement and motor fluctuation control. Drug design strategies that adopt the "one protein, one target" philosophy fail to address the multifactorial aetiologies of neurodegenerative disorders such as AD and PD optimally. On the contrary, restoring neurotransmitter levels by combined combinatorial inhibition of cholinesterases, monoamine oxidases, and adenosine A2A A receptors, in conjunction with strategies to counter oxidative stress and beta-amyloid plaque accumulation, would constitute a therapeutically robust, multitarget approach. This extensive review delineates the therapeutic advantages of combining dual-acting molecules that inhibit monoamine oxidases and cholinesterases and/or adenosine A2A A receptors, and describes the structure-activity relationships of compound classes that include, but are not limited to, alkaloids, coumarins, chalcones, donepezil-propargylamine conjugates, homoisoflavonoids, resveratrol analogs, hydrazones, and pyrazolines. In the wake of recent advances in network biology, in silico approaches, and omics, this review emphasizes the need to consider conceptually informed research strategies for drug discovery, in the context of the mounting burden posed by chronic neurodegenerative diseases with complex aetiologies and pathophysiologies involving multiple signalling pathways and numerous drug targets.
Collapse
Affiliation(s)
- Bijo Mathew
- Department of Pharmaceutical Chemistry Research Lab, Division of Drug Design and Medicinal Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Della G T Parambi
- Department of Pharmaceutical Chemistry, Jouf University, Sakaka, Saudi Arabia
| | - Githa E Mathew
- Department of Pharmacology, Grace College of Pharmacy, Palakkad, India
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Sini T Inasu
- Department of Pharmaceutical Chemistry Research Lab, Division of Drug Design and Medicinal Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Hoon Kim
- Department of Pharmacy and Research, Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Akash Marathakam
- Department of Pharmaceutical Chemistry, National College of Pharmacy, Calicut, India
| | | | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
12
|
Tian Y, Yang L, Xu W, Zhang H, Wang Z, Zhang H, Zheng S, Shi Y, Xu P. Predictors for drug effects with brain disease: Shed new light from EEG parameters to brain connectomics. Eur J Pharm Sci 2017; 110:26-36. [PMID: 28456573 DOI: 10.1016/j.ejps.2017.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 01/21/2023]
Abstract
Though researchers spent a lot of effort to develop treatments for neuropsychiatric disorders, the poor translation of drug efficacy data from animals to human hampered the success of these therapeutic approaches in human. Pharmaceutical industry is challenged by low clinical success rates for new drug registration. To maximize the success in drug development, biomarkers are required to act as surrogate end points and predictors of drug effects. The pathology of brain disease could be in part due to synaptic dysfunction. Electroencephalogram (EEG), generating from the result of the postsynaptic potential discharge between cells, could be a potential measure to bridge the gaps between animal and human data. Here we discuss recent progress on using relevant EEG characteristics and brain connectomics as biomarkers to monitor drug effects and measure cognitive changes on animal models and human in real-time. It is expected that the novel approach, i.e. EEG connectomics, will offer a deeper understanding on the drug efficacy at a microcirculatory level, which will be useful to support the development of new treatments for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yin Tian
- Biomedical Engineering Department, Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology, High School Innovation Team of Architecture and Core Technologies of Smart Medical System, ChongQing University of Posts and Telecommunications, ChongQing 400065, China.
| | - Li Yang
- Biomedical Engineering Department, Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology, High School Innovation Team of Architecture and Core Technologies of Smart Medical System, ChongQing University of Posts and Telecommunications, ChongQing 400065, China
| | - Wei Xu
- Biomedical Engineering Department, Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology, High School Innovation Team of Architecture and Core Technologies of Smart Medical System, ChongQing University of Posts and Telecommunications, ChongQing 400065, China
| | - Huiling Zhang
- Biomedical Engineering Department, Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology, High School Innovation Team of Architecture and Core Technologies of Smart Medical System, ChongQing University of Posts and Telecommunications, ChongQing 400065, China
| | - Zhongyan Wang
- Biomedical Engineering Department, Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology, High School Innovation Team of Architecture and Core Technologies of Smart Medical System, ChongQing University of Posts and Telecommunications, ChongQing 400065, China
| | - Haiyong Zhang
- Biomedical Engineering Department, Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology, High School Innovation Team of Architecture and Core Technologies of Smart Medical System, ChongQing University of Posts and Telecommunications, ChongQing 400065, China
| | - Shuxing Zheng
- Biomedical Engineering Department, Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology, High School Innovation Team of Architecture and Core Technologies of Smart Medical System, ChongQing University of Posts and Telecommunications, ChongQing 400065, China
| | - Yupan Shi
- Biomedical Engineering Department, Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology, High School Innovation Team of Architecture and Core Technologies of Smart Medical System, ChongQing University of Posts and Telecommunications, ChongQing 400065, China
| | - Peng Xu
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
13
|
Bucki A, Marcinkowska M, Śniecikowska J, Więckowski K, Pawłowski M, Głuch-Lutwin M, Gryboś A, Siwek A, Pytka K, Jastrzębska-Więsek M, Partyka A, Wesołowska A, Mierzejewski P, Kołaczkowski M. Novel 3-(1,2,3,6-Tetrahydropyridin-4-yl)-1H-indole-Based Multifunctional Ligands with Antipsychotic-Like, Mood-Modulating, and Procognitive Activity. J Med Chem 2017; 60:7483-7501. [PMID: 28763213 DOI: 10.1021/acs.jmedchem.7b00839] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The most troublesome aspects of behavioral and psychological symptoms of dementia (BPSD) are nowadays addressed by antidepressant, anxiolytic, and antipsychotic drugs, often administered off-label. Considering their modest effectiveness in dementia patients, the increased risk of adverse events and cognitive decline, there is an unmet need for well-tolerated and effective therapy of BPSD. We designed and synthesized multifunctional ligands characterized in vitro as high-affinity partial agonists of D2R, antagonists of 5-HT6R, and blockers of SERT. Moreover, the molecules activated 5-HT1AR and blocked 5-HT7R while having no relevant affinity for off-target M1R and hERG channel. Compound 16 (N-{2-[4-(5-chloro-1H-indol-3-yl)-1,2,3,6-tetrahydropyridin-1-yl]ethyl}-3-methylbenzene-1-sulfonamide) exhibited a broad antipsychotic-, antidepressant-, and anxiolytic-like activity, not eliciting motor impairments in mice. Most importantly, 16 showed memory-enhancing properties and it ameliorated memory deficits induced by scopolamine. The molecule outperformed most important comparators in selected tests, indicating its potential in the treatment of both cognitive and noncognitive (behavioral and psychological) symptoms of dementia.
Collapse
Affiliation(s)
- Adam Bucki
- Faculty of Pharmacy, Jagiellonian University Medical College , 9 Medyczna Street, 30-688 Kraków, Poland
| | - Monika Marcinkowska
- Faculty of Pharmacy, Jagiellonian University Medical College , 9 Medyczna Street, 30-688 Kraków, Poland
| | - Joanna Śniecikowska
- Faculty of Pharmacy, Jagiellonian University Medical College , 9 Medyczna Street, 30-688 Kraków, Poland
| | - Krzysztof Więckowski
- Faculty of Pharmacy, Jagiellonian University Medical College , 9 Medyczna Street, 30-688 Kraków, Poland
| | - Maciej Pawłowski
- Faculty of Pharmacy, Jagiellonian University Medical College , 9 Medyczna Street, 30-688 Kraków, Poland
| | - Monika Głuch-Lutwin
- Faculty of Pharmacy, Jagiellonian University Medical College , 9 Medyczna Street, 30-688 Kraków, Poland
| | - Anna Gryboś
- Faculty of Pharmacy, Jagiellonian University Medical College , 9 Medyczna Street, 30-688 Kraków, Poland
| | - Agata Siwek
- Faculty of Pharmacy, Jagiellonian University Medical College , 9 Medyczna Street, 30-688 Kraków, Poland
| | - Karolina Pytka
- Faculty of Pharmacy, Jagiellonian University Medical College , 9 Medyczna Street, 30-688 Kraków, Poland
| | | | - Anna Partyka
- Faculty of Pharmacy, Jagiellonian University Medical College , 9 Medyczna Street, 30-688 Kraków, Poland
| | - Anna Wesołowska
- Faculty of Pharmacy, Jagiellonian University Medical College , 9 Medyczna Street, 30-688 Kraków, Poland
| | - Paweł Mierzejewski
- Institute of Psychiatry and Neurology , 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Marcin Kołaczkowski
- Faculty of Pharmacy, Jagiellonian University Medical College , 9 Medyczna Street, 30-688 Kraków, Poland.,Adamed Ltd. , Pieńków 149, 05-152 Czosnów, Poland
| |
Collapse
|
14
|
Sadek B, Saad A, Schwed JS, Weizel L, Walter M, Stark H. Anticonvulsant effects of isomeric nonimidazole histamine H 3 receptor antagonists. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3633-3651. [PMID: 27853355 PMCID: PMC5106240 DOI: 10.2147/dddt.s114147] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phenytoin (PHT), valproic acid, and modern antiepileptic drugs (AEDs), eg, remacemide, loreclezole, and safinamide, are only effective within a maximum of 70%–80% of epileptic patients, and in many cases the clinical use of AEDs is restricted by their side effects. Therefore, a continuous need remains to discover innovative chemical entities for the development of active and safer AEDs. Ligands targeting central histamine H3 receptors (H3Rs) for epilepsy might be a promising therapeutic approach. To determine the potential of H3Rs ligands as new AEDs, we recently reported that no anticonvulsant effects were observed for the (S)-2-(4-(3-(piperidin-1-yl)propoxy)benzylamino)propanamide (1). In continuation of our research, we asked whether anticonvulsant differences in activities will be observed for its R-enantiomer, namely, (R)-2-(4-(3-(piperidin-1-yl)propoxy)benzylamino)propaneamide (2) and analogs thereof, in maximum electroshock (MES)-, pentylenetetrazole (PTZ)-, and strychnine (STR)-induced convulsion models in rats having PHT and valproic acid (VPA) as reference AEDs. Unlike the S-enantiomer (1), the results show that animals pretreated intraperitoneally (ip) with the R-enantiomer 2 (10 mg/kg) were moderately protected in MES and STR induced models, whereas proconvulsant effect was observed for the same ligand in PTZ-induced convulsion models. However, animals pretreated with intraperitoneal doses of 5, 10, or 15 mg/kg of structurally bulkier (R)-enantiomer (3), in which 3-piperidinopropan-1-ol in ligand 2 was replaced by (4-(3-(piperidin-1-yl)propoxy)phenyl)methanol, and its (S)-enantiomer (4) significantly and in a dose-dependent manner reduced convulsions or exhibited full protection in MES and PTZ convulsions model, respectively. Interestingly, the protective effects observed for the (R)-enantiomer (3) in MES model were significantly greater than those of the standard H3R inverse agonist/antagonist pitolisant, comparable with those observed for PHT, and reversed when rats were pretreated with the selective H3R agonist R-(α)-methyl-histamine. Comparisons of the observed antagonistic in vitro affinities among the ligands 1–6 revealed profound stereoselectivity at human H3Rs with varying preferences for this receptor subtype. Moreover, the in vivo anticonvulsant effects observed in this study for ligands 1–6 showed stereoselectivity in different convulsion models in male adult rats.
Collapse
Affiliation(s)
- Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ali Saad
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Johannes Stephan Schwed
- Biocenter, Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany; Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Lilia Weizel
- Biocenter, Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Miriam Walter
- Biocenter, Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Holger Stark
- Biocenter, Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany; Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
15
|
Van der Schyf CJ. Psychotropic Drug Development Strategies that Target Neuropsychiatric Etiologies in Alzheimer's and Parkinson's Diseases. Drug Dev Res 2016; 77:458-468. [DOI: 10.1002/ddr.21368] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 08/25/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Cornelis J. Van der Schyf
- Department of Biomedical and Pharmaceutical Sciences; College of Pharmacy, Idaho State University; Pocatello Idaho 83209
- Graduate School; Idaho State University; 921 South 8th Avenue Pocatello Idaho 83209
| |
Collapse
|
16
|
Multi-target therapeutics for neuropsychiatric and neurodegenerative disorders. Drug Discov Today 2016; 21:1886-1914. [PMID: 27506871 DOI: 10.1016/j.drudis.2016.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/20/2016] [Accepted: 08/01/2016] [Indexed: 12/30/2022]
Abstract
Historically, neuropsychiatric and neurodegenerative disease treatments focused on the 'magic bullet' concept; however multi-targeted strategies are increasingly attractive gauging from the escalating research in this area. Because these diseases are typically co-morbid, multi-targeted drugs capable of interacting with multiple targets will expand treatment to the co-morbid disease condition. Despite their theoretical efficacy, there are significant impediments to clinical success (e.g., difficulty titrating individual aspects of the drug and inconclusive pathophysiological mechanisms). The new and revised diagnostic frameworks along with studies detailing the endophenotypic characteristics of the diseases promise to provide the foundation for the circumvention of these impediments. This review serves to evaluate the various marketed and nonmarketed multi-targeted drugs with particular emphasis on their design strategy.
Collapse
|
17
|
Andrade JMDM, Dos Santos Passos C, Kieling Rubio MA, Mendonça JN, Lopes NP, Henriques AT. Combining in vitro and in silico approaches to evaluate the multifunctional profile of rosmarinic acid from Blechnum brasiliense on targets related to neurodegeneration. Chem Biol Interact 2016; 254:135-45. [PMID: 27270453 DOI: 10.1016/j.cbi.2016.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 05/23/2016] [Accepted: 06/03/2016] [Indexed: 11/19/2022]
Abstract
Natural products are important sources of chemical diversity leading to unique scaffolds that can be exploited in the discovery of new drug candidates or chemical probes. In this context, chemical and biological investigation of ferns and lycophytes occurring in Brazil is an approach adopted by our research group aiming at discovering bioactive molecules acting on neurodegeneration targets. In the present study, rosmarinic acid (RA) isolated from Blechnum brasiliense showed an in vitro multifunctional profile characterized by antioxidant effects, and monoamine oxidases (MAO-A and MAO-B) and catechol-O-methyl transferase (COMT) inhibition. RA showed antioxidant effects against hydroxyl (HO(•)) and nitric oxide (NO) radicals (IC50 of 29.4 and 140 μM, respectively), and inhibition of lipid peroxidation (IC50 of 19.6 μM). In addition, RA inhibited MAO-A, MAO-B and COMT enzymes with IC50 values of 50.1, 184.6 and 26.7 μM, respectively. The MAO-A modulation showed a non-time-dependent profile, suggesting a reversible mechanism of inhibition. Structural insights on RA interactions with MAO-A and COMT were investigated by molecular docking. Finally, RA (up to 5 mM) demonstrated no cytotoxicity on polymorphonuclear rat cells. Taken together, our results suggest that RA may be exploited as a template for the development of new antioxidant molecules possessing additional MAO and COMT inhibition effects to be further investigated on in vitro and in vivo models of neurodegenerative diseases.
Collapse
Affiliation(s)
- Juliana Maria de Mello Andrade
- Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, 90.610-000, Porto Alegre, RS, Brazil.
| | - Carolina Dos Santos Passos
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest-Ansermet 30, CH-1211, Geneva 4, Switzerland
| | | | - Jacqueline Nakau Mendonça
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café s/no, 14.040-903, Ribeirão Preto, SP, Brazil
| | - Norberto Peporine Lopes
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café s/no, 14.040-903, Ribeirão Preto, SP, Brazil
| | - Amélia Teresinha Henriques
- Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, 90.610-000, Porto Alegre, RS, Brazil
| |
Collapse
|
18
|
Choonara YE, Kumar P, Modi G, Pillay V. Improving drug delivery technology for treating neurodegenerative diseases. Expert Opin Drug Deliv 2016; 13:1029-43. [PMID: 26967508 DOI: 10.1517/17425247.2016.1162152] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Neurodegenerative diseases (NDs) represent intricate challenges for efficient uptake and transport of drugs to the brain mainly due to the restrictive blood-brain barrier (BBB). NDs are characterized by the loss of neuronal subtypes as sporadic and/or familial and several mechanisms of neurodegeneration have been identified. AREAS COVERED This review attempts to recap, organize and concisely evaluate the advanced drug delivery systems designed for treating common NDs. It highlights key research gaps and opinionates on new neurotherapies to overcome the BBB as an addition to the current treatments of countering oxidative stress, inflammation and apoptotic mechanisms. EXPERT OPINION Current treatments do not fully address the biological, drug and therapeutic factors faced. This has led to the development of vogue treatments such as nose-to-brain technologies, bio-engineered systems, fusion protein chaperones, stem cells, gene therapy, use of natural compounds, neuroprotectants and even vaccines. However, failure of these treatments is mainly due to the BBB and non-specific delivery in the brain. In order to increase neuroavailability various advanced drug delivery systems provide promising alternatives that are able to augment the treatment of Alzheimer's disease and Parkinson's disease. However, much work is still required in this field beyond the preclinical testing phase.
Collapse
Affiliation(s)
- Yahya E Choonara
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences , University of the Witwatersrand, Johannesburg , South Africa
| | - Pradeep Kumar
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences , University of the Witwatersrand, Johannesburg , South Africa
| | - Girish Modi
- b Division of Neurosciences, Department of Neurology, Faculty of Health Sciences , University of the Witwatersrand, Johannesburg , South Africa
| | - Viness Pillay
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences , University of the Witwatersrand, Johannesburg , South Africa
| |
Collapse
|
19
|
Salkovic-Petrisic M, Knezovic A, Osmanovic-Barilar J, Smailovic U, Trkulja V, Riederer P, Amit T, Mandel S, Youdim MBH. Multi-target iron-chelators improve memory loss in a rat model of sporadic Alzheimer's disease. Life Sci 2015; 136:108-119. [PMID: 26159898 DOI: 10.1016/j.lfs.2015.06.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/27/2015] [Accepted: 06/30/2015] [Indexed: 01/04/2023]
Abstract
AIM Novel effective treatment is urgently needed for sporadic Alzheimer's disease (sAD). M30 ([5-(N-methyl-N-propargylaminomethyl)-8-hydroxyquinoline]) and HLA-20 (5-{4-propargylpiperazin-1-ylmethyl}-8-hydroxyquinoline) are brain permeable, iron chelating compounds with antioxidant activity, showing also neuroprotective activity in animal models of neurodegeneration.Weaimed to explore their therapeutic potential in non-transgenic (non-Tg) rat model of sAD developed by intracerebroventricular administration of streptozotocin (STZ-icv). MAIN METHODS Therapeutic effects of chronic oral M30 (2 and 10 mg/kg) and HLA20 (5 and 10 mg/kg) treatment on cognitive impairment in STZ-icv rat model were explored by Morris Water Maze (MWM) and Passive Avoidance (PA) tests in neuropreventive and neurorescue paradigms. Data were analysed by Kruskal–Wallis and Mann–Whitney U test (p b 0.05). KEY FINDINGS Five-day oral pre-treatment with M30 and HLA20 dose-dependently prevented development of spatial memory impairment (MWM probe trial-time +116%/M30; +60%/HLA20) in STZ-icv rat model (p b 0.05). Eleven-week oral treatment with M30 (3×/week), initiated 8 days after STZ-icv administration dosedependently ameliorated already developed cognitive deficits in MWM test (reduced number of mistakes 3 months after the STZ-icv treatment — 59%; p b 0.05) and fully restored them in PA test (+314%; p b 0.05). Chronic M30 treatment fully restored (−47%/PHF1;−65%/AT8; p b 0.05) STZ-induced hyperphosphorylation of tau protein and normalized decreased expression of insulin degrading enzyme (+37%; p b 0.05) in hippocampus. SIGNIFICANCE The results provide first evidence of therapeutic potential of M30 and HLA20 in STZ-icv rat model of sAD with underlying molecular mechanism, further supporting the important role of multi-target ironchelators in sAD treatment.
Collapse
Affiliation(s)
- Melita Salkovic-Petrisic
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 11, HR 10 000 Zagreb, Croatia.
| | - Ana Knezovic
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 11, HR 10 000 Zagreb, Croatia
| | - Jelena Osmanovic-Barilar
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 11, HR 10 000 Zagreb, Croatia
| | - Una Smailovic
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 11, HR 10 000 Zagreb, Croatia
| | - Vladimir Trkulja
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 11, HR 10 000 Zagreb, Croatia
| | - Peter Riederer
- University Hospital Wuerzburg, Center of Mental Health, Department of Clinical Neurochemistry, Clinic and Policlinic of Psychiatry, Psychosomatic and Psychotherapy, University of Wuerzburg, Fuechsleinstr. 15, 97080 Wuerzburg, Germany
| | - Tamar Amit
- Eve Topf Center for Neurodegenerative Diseases Research and Department of Molecular Pharmacology, Faculty of Medicine, Technion, Haifa, Israel
| | - Silvia Mandel
- Bruce Ruth Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Moussa B H Youdim
- Eve Topf Center for Neurodegenerative Diseases Research and Department of Molecular Pharmacology, Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
20
|
Sabe AA, Dalal RS, Chu LM, Elmadhun NY, Ramlawi B, Bianchi C, Sellke FW. Preoperative gene expression may be associated with neurocognitive decline after cardiopulmonary bypass. J Thorac Cardiovasc Surg 2014; 149:613-22; discussion 622-3. [PMID: 25483902 DOI: 10.1016/j.jtcvs.2014.10.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/29/2014] [Accepted: 10/09/2014] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Despite advances in surgical techniques, neurocognitive decline after cardiopulmonary bypass remains a common and serious complication. We have previously demonstrated that patients with neurocognitive decline have unique genetic responses 6 hours after cardiopulmonary bypass when compared with normal patients. We used genomic microarray to objectively investigate whether patients with neurocognitive decline had associated preoperative gene expression profiles and how these profiles changed up to 4 days after surgery. METHODS Patients undergoing cardiac surgery underwent neurocognitive assessments preoperatively and 4 days after surgery. Skeletal muscle was collected intraoperatively. Whole blood collected before cardiopulmonary bypass, 6 hours after cardiopulmonary bypass, and on postoperative day 4 was hybridized to Affymetrix Gene Chip U133 Plus 2.0 microarrays (Affymetrix Inc, Santa Clara, Calif). Gene expression in patients with neurocognitive decline was compared with gene expression in the normal group using JMP Genomics (SAS Institute Inc, Cary, NC). Only genes that were commonly expressed in the 2 groups with a false discovery rate of 0.05 and a fold change greater than 1.5 were carried forward to pathway analysis using Ingenuity Pathway Analysis (Ingenuity Systems, Redwood City, Calif). Microarray gene expression was validated by Green real-time polymerase chain reaction and Western blotting. RESULTS Neurocognitive decline developed in 17 of 42 patients. A total of 54,675 common transcripts were identified on microarray in each group across all time points. Preoperatively, there were 140 genes that were significantly altered between the normal and neurocognitive decline groups (P < .05). Pathway analysis demonstrated that preoperatively, patients with neurocognitive decline had increased regulation in genes associated with inflammation, cell death, and neurologic dysfunction. Of note, the number of significantly regulated genes between the 2 groups changed over each time point and decreased from 140 preoperatively to 64 six hours after cardiopulmonary bypass and to 25 four days after surgery. There was no correlation in gene expression between the blood and the skeletal muscle. CONCLUSIONS Patients in whom neurocognitive decline developed after cardiopulmonary bypass had increased differential gene expression before surgery versus patients in whom neurocognitive decline did not develop. Although significant differences in gene expression also existed postoperatively, these differences gradually decreased over time. Preoperative gene expression may be associated with neurologic injury after cardiopulmonary bypass. Further investigation into these genetic pathways may help predict patient outcome and guide patient selection.
Collapse
Affiliation(s)
- Ashraf A Sabe
- Division of Cardiothoracic Surgery, Cardiovascular Research Center, Warren Alpert Medical School of Brown University, Providence, RI
| | - Rahul S Dalal
- Division of Cardiothoracic Surgery, Cardiovascular Research Center, Warren Alpert Medical School of Brown University, Providence, RI
| | - Louis M Chu
- Division of Cardiothoracic Surgery, Cardiovascular Research Center, Warren Alpert Medical School of Brown University, Providence, RI
| | - Nassrene Y Elmadhun
- Division of Cardiothoracic Surgery, Cardiovascular Research Center, Warren Alpert Medical School of Brown University, Providence, RI
| | - Basel Ramlawi
- Methodist DeBakey Heart & Vascular Center, The Methodist Hospital, Houston, Tex
| | - Cesario Bianchi
- Division of Cardiothoracic Surgery, Cardiovascular Research Center, Warren Alpert Medical School of Brown University, Providence, RI
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Cardiovascular Research Center, Warren Alpert Medical School of Brown University, Providence, RI.
| |
Collapse
|
21
|
Modi G, Voshavar C, Gogoi S, Shah M, Antonio T, Reith MEA, Dutta AK. Multifunctional D2/D3 agonist D-520 with high in vivo efficacy: modulator of toxicity of alpha-synuclein aggregates. ACS Chem Neurosci 2014; 5:700-17. [PMID: 24960209 DOI: 10.1021/cn500084x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have developed a series of dihydroxy compounds and related analogues based on our hybrid D2/D3 agonist molecular template to develop multifunctional drugs for symptomatic and neuroprotective treatment for Parkinson's disease (PD). The lead compound (-)-24b (D-520) exhibited high agonist potency at D2/D3 receptors and produced efficacious activity in the animal models for PD. The data from thioflavin T (ThT) assay and from transmission electron microscopy (TEM) analysis demonstrate that D-520 is able to modulate aggregation of alpha-synuclein (αSN). Additionally, coincubation of D-520 with αSN is able to reduce toxicity of preformed aggregates of αSN compared to control αSN alone. Finally, in a neuroprotection study with dopaminergic MN9D cells, D-520 clearly demonstrated the effect of neuroprotection from toxicity of 6-hydroxydopamine. Thus, compound D-520 possesses properties characteristic of multifunctionality conducive to symptomatic and neuroprotective treatment of PD.
Collapse
Affiliation(s)
- Gyan Modi
- Department
of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Chandrashekhar Voshavar
- Department
of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Sanjib Gogoi
- Department
of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Mrudang Shah
- Department
of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | | | | | - Aloke K. Dutta
- Department
of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
22
|
Ramsay RR, Di Giovanni G. Interdisciplinary chemical approaches for neuropathology. CNS Neurosci Ther 2014; 20:571-3. [PMID: 24935786 DOI: 10.1111/cns.12297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Rona R Ramsay
- Biomedical Sciences Research Centre, University of St Andrews, St Andrews, UK
| | | |
Collapse
|
23
|
Fabiani Claro Flores A, Correia Flores D, Rosa de Menezes Vicenti J, Pizzuti L, Teixeira Campos P. (5E)-1-Benzyl-5-(3,3,3-tri-chloro-2-oxo-propyl-idene)pyrrolidin-2-one. Acta Crystallogr Sect E Struct Rep Online 2014; 70:o629-30. [PMID: 24940220 PMCID: PMC4051069 DOI: 10.1107/s160053681400751x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/03/2014] [Indexed: 11/22/2022]
Abstract
In the crystal structure of the title compound, C14H12Cl3NO2, no classical hydrogen-bonding interactions are observed. The methylene fragments of the benzyl groups participate in non-classic hydrogen-bond interactions with the carbonyl O atoms of neighboring molecules, generating co-operative centrosymmetric dimers with R55(10) ring motifs. The overall molecular arrangement in the unit cell seems to be highly influenced by secondary non-covalent weak C—Cl⋯π [Cl⋯Cg(phenyl ring) = 3.732 (2) Å] and C—O⋯π [O⋯Cg(pyrrolidine ring) = 2.985 (2) Å] contacts.
Collapse
Affiliation(s)
- Alex Fabiani Claro Flores
- Escola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália, km 08, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Darlene Correia Flores
- Escola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália, km 08, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Juliano Rosa de Menezes Vicenti
- Escola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália, km 08, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Lucas Pizzuti
- Universidade Federal da Grande Dourados, UFGD, CEP 79825-070, Dourados, MS, Brazil
| | - Patrick Teixeira Campos
- Instituto Federal Farroupilha, Campus Júlio de Castilhos, CEP 98130-000, Júlio de Castilhos, RS, Brazil
| |
Collapse
|
24
|
Ning X, Guo Y, Wang X, Ma X, Tian C, Shi X, Zhu R, Cheng C, Du Y, Ma Z, Zhang Z, Liu J. Design, Synthesis, and Biological Evaluation of (E)-3,4-Dihydroxystyryl Aralkyl Sulfones and Sulfoxides as Novel Multifunctional Neuroprotective Agents. J Med Chem 2014; 57:4302-12. [DOI: 10.1021/jm500258v] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | | | | | | | | | | | | | - Can Cheng
- Department
of Pharmaceutical Chemistry, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Yansheng Du
- Department
of Neurology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | | | | | | |
Collapse
|
25
|
Sadek B, Schwed JS, Subramanian D, Weizel L, Walter M, Adem A, Stark H. Non-imidazole histamine H3 receptor ligands incorporating antiepileptic moieties. Eur J Med Chem 2014; 77:269-79. [PMID: 24650714 DOI: 10.1016/j.ejmech.2014.03.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 01/23/2014] [Accepted: 03/05/2014] [Indexed: 11/16/2022]
Abstract
A small series of histamine H3 receptor (H3R) ligands (1-5) incorporating different antiepileptic structural motifs has been newly synthesized. All compounds exhibited moderate to high in vitro hH3R affinities up to a sub-nanomolar concentration range with pKi values in the range of 6.25-9.62 with varying preferences for this receptor subtype. The compounds (1-5) were further investigated in vivo on anticonvulsant effects against maximum electroshock (MES)-induced and pentylenetetrazole (PTZ)-kindled convulsions in rats having phenytoin (PHT) as the reference antiepileptic drug (AED). Surprisingly, animals pretreated with 1 mg/kg, i.p. of 5,5-diphenyl-3-(3-(piperidin-1-yl)propyl)imidazolidine-2,4-dione (4) were only moderately protected and no protection was observed for compounds 1-3 and 5 in three different doses (1 mg, 5 mg, and 10 mg/kg i.p.). Compound 4 (1 mg/kg, i.p.) failed to modify PTZ-kindled convulsion. However, a dose of 10 mg/kg significantly reduced convulsions in both models. In contrast, 5,5-diphenyl-3-(4-(3-(piperidin-1-yl)propoxy)benzyl)imidazolidine-2,4-dione (5) (1, 5, and 10 mg/kg, i.p.) showed proconvulsant effects in the MES model with further confirmation of these results in the PTZ model as no protection was observed against convulsion in the doses tested (1 and 10 mg/kg). In addition, compound 4 (10 mg/kg, i.p.) significantly prolonged myoclonic latency time and shortened total convulsion duration when compared to control, PHT or standard H3R inverse agonist/antagonist pitolisant (PIT). Our results showed that H3R pharmacophores could successfully be structurally combined to antiepileptic moieties, especially phenytoin partial structures, maintaining the H3R affinity. However, the new derivatives for multiple-target approaches in epilepsy models are complex and show that pharmacophore elements are not easily pharmacologically combinable.
Collapse
Affiliation(s)
- Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine & Health Sciences, P.O. Box 17666, Al Ain 0097, United Arab Emirates University, United Arab Emirates.
| | - Johannes Stephan Schwed
- Biocenter, Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany; Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Dhanasekaran Subramanian
- Department of Pharmacology and Therapeutics, College of Medicine & Health Sciences, P.O. Box 17666, Al Ain 0097, United Arab Emirates University, United Arab Emirates
| | - Lilia Weizel
- Biocenter, Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Miriam Walter
- Biocenter, Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Abdu Adem
- Department of Pharmacology and Therapeutics, College of Medicine & Health Sciences, P.O. Box 17666, Al Ain 0097, United Arab Emirates University, United Arab Emirates
| | - Holger Stark
- Biocenter, Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany; Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| |
Collapse
|
26
|
Naoi M, Maruyama W. Functional mechanism of neuroprotection by inhibitors of type B monoamine oxidase in Parkinson’s disease. Expert Rev Neurother 2014; 9:1233-50. [DOI: 10.1586/ern.09.68] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Prati F, Uliassi E, Bolognesi ML. Two diseases, one approach: multitarget drug discovery in Alzheimer's and neglected tropical diseases. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00069b] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Multitarget drug discovery may represent a promising therapeutic approach to treat Alzheimer's and neglected tropical diseases.
Collapse
Affiliation(s)
- F. Prati
- Department of Drug Discovery & Development
- Istituto Italiano di Tecnologia
- Genova
- Italy
- Department of Pharmacy & Biotechnology
| | - E. Uliassi
- Department of Pharmacy & Biotechnology
- University of Bologna
- Bologna
- Italy
| | - M. L. Bolognesi
- Department of Pharmacy & Biotechnology
- University of Bologna
- Bologna
- Italy
| |
Collapse
|
28
|
Zhang X, Shi M, Bjørås M, Wang W, Zhang G, Han J, Liu Z, Zhang Y, Wang B, Chen J, Zhu Y, Xiong L, Zhao G. Ginsenoside Rd promotes glutamate clearance by up-regulating glial glutamate transporter GLT-1 via PI3K/AKT and ERK1/2 pathways. Front Pharmacol 2013; 4:152. [PMID: 24376419 PMCID: PMC3858668 DOI: 10.3389/fphar.2013.00152] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/24/2013] [Indexed: 01/20/2023] Open
Abstract
Ginsenoside Rd (Rd), one of the main active ingredients in Panax ginseng, has been showed to protect against ischemic cerebral damage both in vitro and in vivo. However, the underlying mechanism of Rd is largely unknown. Excessive extracellular glutamate causes excitatory toxicity, leading to cell death, and neurodegenerative processes after brain ischemia. The clearance of extracellular glutamate by astrocytic glutamate transporter GLT-1 is essential for neuronal survival after stroke. Here we investigated the effects of Rd on the levels of extracellular glutamate and the expression of GLT-1 in vivo and in vitro. After rat middle cerebral artery occlusion, Rd significantly increased the mRNA and protein expression levels of GLT-1, and reduced the burst of glutamate as revealed by microdialysis. Consistently, specific glutamate uptake by cultured astrocytes was elevated after Rd exposure. Furthermore, we showed that Rd increased the levels of phosphorylated protein kinase B (PKB/Akt) and phospho-ERK1/2 (p-ERK1/2) in astrocyte culture after oxygen-glucose deprivation. Moreover, the effect of Rd on GLT-1 expression and glutamate uptake can be abolished by PI3K/AKT agonist LY294002 or ERK1/2 inhibitor PD98059. Taken together, our findings provide the first evidence that Rd can promote glutamate clearance by up-regulating GLT-1 expression through PI3K/AKT and ERK1/2 pathways.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Neurology, Xijing Hospital, The Forth Military Medical University Xi'an, Shaanxi, China
| | - Ming Shi
- Department of Neurology, Xijing Hospital, The Forth Military Medical University Xi'an, Shaanxi, China
| | - Magnar Bjørås
- Department of Microbiology, Institute of Clinical Medicine, Oslo University Hospital Oslo, Norway
| | - Wei Wang
- Department of Microbiology, Institute of Clinical Medicine, Oslo University Hospital Oslo, Norway
| | - Guangyun Zhang
- Department of Neurology, Xijing Hospital, The Forth Military Medical University Xi'an, Shaanxi, China
| | - Junliang Han
- Department of Neurology, Xijing Hospital, The Forth Military Medical University Xi'an, Shaanxi, China
| | - Zhirong Liu
- Department of Neurology, Xijing Hospital, The Forth Military Medical University Xi'an, Shaanxi, China
| | - Yunxia Zhang
- Department of Neurology, Xijing Hospital, The Forth Military Medical University Xi'an, Shaanxi, China
| | - Bing Wang
- Department of Neurology, Xijing Hospital, The Forth Military Medical University Xi'an, Shaanxi, China
| | - Jing Chen
- Department of Neurology, Xijing Hospital, The Forth Military Medical University Xi'an, Shaanxi, China
| | - Yi Zhu
- Department of Neurology, Xijing Hospital, The Forth Military Medical University Xi'an, Shaanxi, China
| | - Lize Xiong
- Department of Anesthesiology, Xijing Hospital, The Forth Military Medical University Xi'an, Shaanxi, China
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, The Forth Military Medical University Xi'an, Shaanxi, China
| |
Collapse
|
29
|
Mandel S, Amit T, Kalfon L, Youdim MB. Applying transcriptomic and proteomic knowledge to Parkinson's disease drug discovery. Expert Opin Drug Discov 2013; 2:1225-40. [PMID: 23496130 DOI: 10.1517/17460441.2.9.1225] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
It is recognised that in both genetic and sporadic cases of Parkinson's disease (PD), the basis of its etiopathology resides in the particular vulnerability of the dopaminergic neurons of the substantia nigra pars compacta (SNpc) to oxidative stress and in the failure to adequately remove abnormal proteins. These observations have been confirmed recently by microarray transcriptomic studies in human SN from PD brains and have extended understanding of the molecular pathways underlying the PD pathology. This article reviews recent gene expression profiling studies in sporadic PD postmortem SN and highlights gene candidates as putative molecular signatures for early disease diagnosis. In addition, the application of transcriptomics and proteomics in the quest for multifunctional neuroprotective-neurorescue drugs that might possess disease-modifying action is discussed.
Collapse
Affiliation(s)
- Silvia Mandel
- Eve Topf Center for Neurodegenerative Diseases Research, Department of Pharmacology, Faculty of Medicine, Technion, Efron Street, PO Box 9697, Haifa 31096, Israel +972 4 8295289 ; +972 4 8513145 ;
| | | | | | | |
Collapse
|
30
|
Van der Schyf CJ. The use of multi-target drugs in the treatment of neurodegenerative diseases. Expert Rev Clin Pharmacol 2012; 4:293-8. [PMID: 22114774 DOI: 10.1586/ecp.11.13] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
31
|
Bolognesi ML, Melchiorre C, Van der Schyf CJ, Youdim M. Discovery of Multi-Target Agents for Neurological Diseases via Ligand Design. DESIGNING MULTI-TARGET DRUGS 2012. [DOI: 10.1039/9781849734912-00290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The incidence of neurological disorders in the developed world is rising in concert with an increase in human life expectancy, due in large part to better nutrition and health care. Even as drug discovery efforts are refocused on these disorders, there has been a dearth in the introduction of new disease-modifying therapies to prevent or delay their onset, or reverse their progression. Mounting evidence points to complex and heterogeneous etiopathologies that underlie these diseases. Therefore, it is unlikely that disorders in this class will be mitigated by any single drug that acts exclusively on a single pathway or target. The rational design of novel drug entities with the ability to simultaneously address multiple drug targets of a complex pathophysiology has recently emerged as a new paradigm in drug discovery. Similarly to the concept of multi-target agents within the psychopharmacology field, ligand design has gained an increasing prominence within the medicinal chemistry community. In this chapter we discuss several examples of select chemical scaffolds (polyamines, alkylxanthines, and propargyl carbamates) wherein these concepts were applied to develop novel drug candidates for Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
| | | | | | - Moussa Youdim
- Technion Israel Institute of Technology Haifa Israel
| |
Collapse
|
32
|
Tacrine-6-ferulic acid, a novel multifunctional dimer, inhibits amyloid-β-mediated Alzheimer's disease-associated pathogenesis in vitro and in vivo. PLoS One 2012; 7:e31921. [PMID: 22384101 PMCID: PMC3285653 DOI: 10.1371/journal.pone.0031921] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 01/20/2012] [Indexed: 12/13/2022] Open
Abstract
We have previously synthesized a series of hybrid compounds by linking ferulic acid to tacrine as multifunctional agents based on the hypotheses that Alzheimer's disease (AD) generates cholinergic deficiency and oxidative stress. Interestingly, we found that they may have potential pharmacological activities for treating AD. Here we report for the first time that tacrine-6-ferulic acid (T6FA), one of these compounds, can prevent amyloid-β peptide (Aβ)-induced AD-associated pathological changes in vitro and in vivo. Our results showed that T6FA significantly inhibited auto- and acetylcholinesterase (AChE)-induced aggregation of Aβ1–40in vitro and blocked the cell death induced by Aβ1–40 in PC12 cells. In an AD mouse model by the intracerebroventricular injection of Aβ1–40, T6FA significantly improved the cognitive ability along with increasing choline acetyltransferase and superoxide dismutase activity, decreasing AChE activity and malondialdehyde level. Based on our findings, we conclude that T6FA may be a promising multifunctional drug candidate for AD.
Collapse
|
33
|
Joubert J, Geldenhuys WJ, Van der Schyf CJ, Oliver DW, Kruger HG, Govender T, Malan SF. Polycyclic cage structures as lipophilic scaffolds for neuroactive drugs. ChemMedChem 2012; 7:375-84. [PMID: 22307951 DOI: 10.1002/cmdc.201100559] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Indexed: 11/12/2022]
Abstract
Polycyclic cage scaffolds have been successfully used in the development of numerous lead compounds demonstrating activity in the central nervous system (CNS). Several neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, schizophrenia, and stroke, as well as drug abuse, can be modulated with polycyclic cage derivatives. These cage moieties, including adamantane and pentacycloundecane derivatives, improve the pharmacokinetic and pharmacodynamic properties of conjugated parent drugs and serve as an important scaffold in the design of therapeutically active agents for the treatment of neurological disorders. In this Minireview, we focus on the recent developments in the field of polycyclic cage compounds, as well as the relationship between the lipophilic character of these cage-derived drugs and the ability of such compounds to target and reach the CNS and improve the pharmacodynamic properties of compounds conjugated to it.
Collapse
Affiliation(s)
- Jacques Joubert
- School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | | | | | | | | | | | | |
Collapse
|
34
|
Nacher JC, Schwartz JM. Modularity in protein complex and drug interactions reveals new polypharmacological properties. PLoS One 2012; 7:e30028. [PMID: 22279562 PMCID: PMC3261189 DOI: 10.1371/journal.pone.0030028] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 12/12/2011] [Indexed: 11/18/2022] Open
Abstract
Recent studies have highlighted the importance of interconnectivity in a large range of molecular and human disease-related systems. Network medicine has emerged as a new paradigm to deal with complex diseases. Connections between protein complexes and key diseases have been suggested for decades. However, it was not until recently that protein complexes were identified and classified in sufficient amounts to carry out a large-scale analysis of the human protein complex system. We here present the first systematic and comprehensive set of relationships between protein complexes and associated drugs and analyzed their topological features. The network structure is characterized by a high modularity, both in the bipartite graph and in its projections, indicating that its topology is highly distinct from a random network and that it contains a rich and heterogeneous internal modular structure. To unravel the relationships between modules of protein complexes, drugs and diseases, we investigated in depth the origins of this modular structure in examples of particular diseases. This analysis unveils new associations between diseases and protein complexes and highlights the potential role of polypharmacological drugs, which target multiple cellular functions to combat complex diseases driven by gain-of-function mutations.
Collapse
Affiliation(s)
- Jose C Nacher
- Department of Complex and Intelligent Systems, Future University Hakodate, Hokkaido, Japan.
| | | |
Collapse
|
35
|
Zhao Y, Dou J, Luo J, Li W, Chan HH, Cui W, Zhang H, Han R, Carlier PR, Zhang X, Han Y. Neuroprotection against excitotoxic and ischemic insults by bis(12)-hupyridone, a novel anti-acetylcholinesterase dimer, possibly via acting on multiple targets. Brain Res 2011; 1421:100-9. [DOI: 10.1016/j.brainres.2011.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/25/2011] [Accepted: 09/08/2011] [Indexed: 12/14/2022]
|
36
|
Joubert J, van Dyk S, Green IR, Malan SF. Synthesis and evaluation of fluorescent heterocyclic aminoadamantanes as multifunctional neuroprotective agents. Bioorg Med Chem 2011; 19:3935-44. [PMID: 21665485 DOI: 10.1016/j.bmc.2011.05.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 05/12/2011] [Accepted: 05/18/2011] [Indexed: 12/20/2022]
Abstract
A series of fluorescent heterocyclic adamantane amines were synthesised with the goal to develop novel fluorescent ligands for neurological assay development. These derivatives demonstrated multifunctional neuroprotective activity through inhibition of the N-methyl-d-aspartate receptor/ion channel, calcium channels and the enzyme nitric oxide synthase. It also exhibited a high degree of free radical scavenging potential. N-(1-adamantyl)-2-oxo-chromene-3-carboxamide (8), N-adamantan-1-yl-5-dimethyl-amino-1-naphthalenesulfonic acid (11) and N-(1-cyano-2H-isoindol-2-yl) adamantan-1-amine (12) were found to possess a high degree of multifunctionality with favourable physical-chemical properties for bioavailability and blood-brain barrier permeability. The ability of these heterocyclic adamantane amine derivatives as nitric oxide synthase inhibitors, calcium channel modulators, NMDAR inhibitors and effective antioxidants, indicate that they may find application as multifunctional drugs in neuroprotection.
Collapse
Affiliation(s)
- Jacques Joubert
- Department of Pharmaceutical Chemistry, North-West University, Potchefstroom, South Africa
| | | | | | | |
Collapse
|
37
|
Zhang K, Ma Z, Wang J, Xie A, Xie J. Myricetin attenuated MPP(+)-induced cytotoxicity by anti-oxidation and inhibition of MKK4 and JNK activation in MES23.5 cells. Neuropharmacology 2011; 61:329-35. [PMID: 21549720 DOI: 10.1016/j.neuropharm.2011.04.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 04/06/2011] [Accepted: 04/12/2011] [Indexed: 11/19/2022]
Abstract
Increasing evidence suggests that oxidative stress may be implicated in the degeneration of dopaminergic neurons in Parkinson's disease (PD), and anti-oxidation have been shown to be effective to PD treatment. Myricetin has been reported to have the biological functions of anti-oxidation, anti-apoptosis, anti-inflammation and iron-chelation. The aim of the present study is to investigate the neuroprotective effect of myricetin on 1-methyl-4-phenylpyridinium (MPP(+))-treated MES23.5 cells and the underlying mechanisms. The results showed that myricetin treatment significantly attenuated MPP(+)-induced cell loss and nuclear condensation. Further experiments demonstrated that myricetin could suppress the production of intracellular reactive oxygen species (ROS), restore the mitochondrial transmembrane potential (▵Ψm), increase Bcl-2/Bax ratio and decrease caspase-3 activation that induced by MPP(+). Futhermore, we also showed myricetin decreased the phosphorylation of mitogen-activated protein kinase (MAPK) kinase 4 (MKK4) and c-Jun N-terminal kinase (JNK) caused by MPP(+). These results suggest that myricetin protected the MPP(+)-treated MES23.5 cells by anti-oxidation and inhibition of MKK4 and JNK activation.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China
| | | | | | | | | |
Collapse
|
38
|
Weinreb O, Mandel S, Bar-Am O, Amit T. Iron-chelating backbone coupled with monoamine oxidase inhibitory moiety as novel pluripotential therapeutic agents for Alzheimer's disease: a tribute to Moussa Youdim. J Neural Transm (Vienna) 2011; 118:479-92. [PMID: 21360301 DOI: 10.1007/s00702-011-0597-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 01/27/2011] [Indexed: 12/13/2022]
Abstract
It is for these authors a great privilege to dedicate this review article to Moussa Youdim, who is one of the most imperative pharmacologists and pioneer investigators in the search and development of novel therapeutics for neurodegenerative diseases. 40 years ago, Moussa Youdim has started studying brain iron, catecholamine receptor and monoamine oxidase (MAO)-A and -B functions. Although Moussa Youdim succeeded in exploring the novel anti-Parkinsonian, selective MAO-B inhibitor drug, rasagiline (Azilect, Teva Pharmaceutical Co.), he did not stop searching for superior therapeutic approaches for neurodegenerative disorders. To date, Moussa Youdim and his research group are designing and synthesizing pluripotential drug candidates possessing diverse pharmacological properties that can act on multiple targets and pathological features ascribed to Parkinson's disease, Alzheimer's disease (AD) and amyotrophic lateral sclerosis. One such example is the multimodal non-toxic, brain-permeable iron-chelating compound, M30 (5-[N-methyl-N-propargylaminomethyl]-8-hydroxyquinoline), which amalgamates the propargyl moiety of rasagiline with the backbone of the potent iron chelator, VK28. This review discusses the multiple effects of several leading compounds of this series, concerning their neuroprotective/neurorestorative molecular mechanisms in vivo and in vitro, with a special focus on the pathological features ascribed to AD, including antioxidant and iron chelating activities, regulation of amyloid precursor protein and amyloid β peptide expression processing, activation of pro-survival signaling pathways and regulation of cell cycle and neurite outgrowth.
Collapse
Affiliation(s)
- Orly Weinreb
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Rappaport Family Research Institute, Technion-Faculty of Medicine, P.O.B. 9697, 31096, Haifa, Israel.
| | | | | | | |
Collapse
|
39
|
Darvesh AS, Carroll RT, Geldenhuys WJ, Gudelsky GA, Klein J, Meshul CK, Van der Schyf CJ. In vivo brain microdialysis: advances in neuropsychopharmacology and drug discovery. Expert Opin Drug Discov 2011; 6:109-127. [PMID: 21532928 PMCID: PMC3083031 DOI: 10.1517/17460441.2011.547189] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION: Microdialysis is an important in vivo sampling technique, useful in the assay of extracellular tissue fluid. The technique has both pre-clinical and clinical applications but is most widely used in neuroscience. The in vivo microdialysis technique allows measurement of neurotransmitters such as acetycholine (ACh), the biogenic amines including dopamine (DA), norepinephrine (NE) and serotonin (5-HT), amino acids such as glutamate (Glu) and gamma aminobutyric acid (GABA), as well as the metabolites of the aforementioned neurotransmitters, and neuropeptides in neuronal extracellular fluid in discrete brain regions of laboratory animals such as rodents and non-human primates. AREAS COVERED: In this review we present a brief overview of the principles and procedures related to in vivo microdialysis and detail the use of this technique in the pre-clinical measurement of drugs designed to be used in the treatment of chemical addiction, neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and as well as psychiatric disorders such as attention-deficit/hyperactivity disorder (ADHD) and schizophrenia. This review offers insight into the tremendous utility and versatility of this technique in pursuing neuropharmacological investigations as well its significant potential in rational drug discovery. EXPERT OPINION: In vivo microdialysis is an extremely versatile technique, routinely used in the neuropharmacological investigation of drugs used for the treatment of neurological disorders. This technique has been a boon in the elucidation of the neurochemical profile and mechanism of action of several classes of drugs especially their effects on neurotransmitter systems. The exploitation and development of this technique for drug discovery in the near future will enable investigational new drug candidates to be rapidly moved into the clinical trial stages and to market thus providing new successful therapies for neurological diseases that are currently in demand.
Collapse
Affiliation(s)
- Altaf S. Darvesh
- Pharmaceutical Sciences-Neurotherapeutics Focus Group, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272, USA
- Psychiatry, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272, USA
| | - Richard T. Carroll
- Pharmaceutical Sciences-Neurotherapeutics Focus Group, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272, USA
| | - Werner J. Geldenhuys
- Pharmaceutical Sciences-Neurotherapeutics Focus Group, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272, USA
| | - Gary A. Gudelsky
- Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jochen Klein
- Chemistry, Biochemistry, Pharmacy, Johann Wolfgang Goethe University of Frankfurt, Frankfurt, D-60438, Germany
| | - Charles K. Meshul
- Behavioral Neuroscience, Pathology, School of Medicine, Oregon Health and Science University, Portland, OR 97239, USA
- Portland Veterans Affairs Research Center, Portland, OR 97239, USA
| | - Cornelis J. Van der Schyf
- Pharmaceutical Sciences-Neurotherapeutics Focus Group, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272, USA
- Neurobiology, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272, USA
| |
Collapse
|
40
|
Luo FC, Wang SD, Qi L, Song JY, Lv T, Bai J. Protective effect of panaxatriol saponins extracted from Panax notoginseng against MPTP-induced neurotoxicity in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2011; 133:448-453. [PMID: 20951784 DOI: 10.1016/j.jep.2010.10.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Revised: 09/09/2010] [Accepted: 10/08/2010] [Indexed: 05/30/2023]
Abstract
AIM OF THE STUDY Panaxatriol saponins (PTS), the main constituents extracted from Panax notoginseng, a Chinese herbal medicine, has been shown to be an effective agent on various diseases. Our previous study has demonstrated that PTS is an inducer of thioredoxin-1 (Trx-1) and has a possible potential as a therapeutic agent for Parkinson's disease (PD). However, the effect of PTS on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity in vivo is unknown. MATERIALS AND METHODS Using locomotor activity test and traction test, we detected the effect of PTS on MPTP-induced behavioral impairment. Tyrosine hydroxylase, Trx-1, cyclooxygenase-2, pro-caspase-9, pro-caspase-12 and caspase-3 expressions in the anatomical region of substantia nigra pars compacta (SNc) were tested by Western blot. RESULTS PTS provided neuroprotection against the loss of dopaminergic neurons and behavioral impairment caused by MPTP. MPTP-induced neuronal death in the SNc was suppressed by PTS through increasing Trx-1 expression, suppressing cyclooxygenase-2 over-expression and inhibiting mitochondria-mediated apoptosis. CONCLUSIONS PTS, an inducer of Trx-1, has pluripharmacological properties in the protection against PD including enhancing antioxidant activity, acting as neurotrophic factor, modulating inflammation and inhibiting mitochondria-mediated apoptosis.
Collapse
Affiliation(s)
- Fu-Cheng Luo
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650224, China
| | | | | | | | | | | |
Collapse
|
41
|
Geldenhuys WJ, Ko KS, Stinnett H, Van der Schyf CJ, Lim MH. Identification of multifunctional small molecule-based reversible monoamine oxidase inhibitors. MEDCHEMCOMM 2011. [DOI: 10.1039/c1md00176k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Bajot F. The Use of Qsar and Computational Methods in Drug Design. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2010. [DOI: 10.1007/978-1-4020-9783-6_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
43
|
Prins LH, Petzer JP, Malan SF. Synthesis and in vitro evaluation of pteridine analogues as monoamine oxidase B and nitric oxide synthase inhibitors. Bioorg Med Chem 2009; 17:7523-30. [DOI: 10.1016/j.bmc.2009.09.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/09/2009] [Accepted: 09/10/2009] [Indexed: 11/26/2022]
|
44
|
Fernández-Bachiller MI, Pérez C, Campillo NE, Páez JA, González-Muñoz GC, Usán P, García-Palomero E, López M, Villarroya M, García A, Martínez A, Rodríguez-Franco MI. Tacrine-Melatonin Hybrids as Multifunctional Agents for Alzheimer's Disease, with Cholinergic, Antioxidant, and Neuroprotective Properties. ChemMedChem 2009; 4:828-41. [DOI: 10.1002/cmdc.200800414] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Mandel SA, Fishman T, Youdim MBH. Gene and protein signatures in sporadic Parkinson's disease and a novel genetic model of PD. Parkinsonism Relat Disord 2009; 13 Suppl 3:S242-7. [PMID: 18267243 DOI: 10.1016/s1353-8020(08)70009-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
High-throughput gene-based platform studies in human post-mortem substantia nigra from sporadic Parkinson's disease (PD) cases have revealed significant dysregulation of genes involved in biological processes linked to previously established neurodegenerative mechanisms both in sporadic and hereditary PD. These include protein aggregation, mitochondrial dysfunction, oxidative stress, cell cycle, vesicle trafficking, synaptic transmission, dopamine metabolism and cell adhesion/cytoskeleton maintenance. These observations have extended our current view on the molecular pathways underlying the etio-pathology of the disease and provided a basis for the development of a novel genetic model of sporadic PD, centered on gradual silencing/over-expression of the candidate genes. The uncovered signatures may serve as future predictive biomarkers for early PD diagnosis, disease progression and drug development.
Collapse
Affiliation(s)
- Silvia A Mandel
- Eve Topf Center for Neurodegenerative Diseases Research and Department of Pharmacology, Faculty of Medicine, Technion, Haifa, Israel.
| | | | | |
Collapse
|
46
|
Acute treatment with red wine polyphenols protects from ischemia-induced excitotoxicity, energy failure and oxidative stress in rats. Brain Res 2008; 1239:226-34. [DOI: 10.1016/j.brainres.2008.08.073] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 08/20/2008] [Accepted: 08/21/2008] [Indexed: 12/19/2022]
|
47
|
Tumiatti V, Milelli A, Minarini A, Rosini M, Bolognesi ML, Micco M, Andrisano V, Bartolini M, Mancini F, Recanatini M, Cavalli A, Melchiorre C. Structure−Activity Relationships of Acetylcholinesterase Noncovalent Inhibitors Based on a Polyamine Backbone. 4. Further Investigation on the Inner Spacer. J Med Chem 2008; 51:7308-12. [DOI: 10.1021/jm8009684] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vincenzo Tumiatti
- Department of Pharmaceutical Sciences, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy, and Polo Scientifico-Didattico di Rimini, University of Bologna, 40100 Bologna, Italy
| | - Andrea Milelli
- Department of Pharmaceutical Sciences, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy, and Polo Scientifico-Didattico di Rimini, University of Bologna, 40100 Bologna, Italy
| | - Anna Minarini
- Department of Pharmaceutical Sciences, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy, and Polo Scientifico-Didattico di Rimini, University of Bologna, 40100 Bologna, Italy
| | - Michela Rosini
- Department of Pharmaceutical Sciences, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy, and Polo Scientifico-Didattico di Rimini, University of Bologna, 40100 Bologna, Italy
| | - Maria Laura Bolognesi
- Department of Pharmaceutical Sciences, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy, and Polo Scientifico-Didattico di Rimini, University of Bologna, 40100 Bologna, Italy
| | - Marialuisa Micco
- Department of Pharmaceutical Sciences, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy, and Polo Scientifico-Didattico di Rimini, University of Bologna, 40100 Bologna, Italy
| | - Vincenza Andrisano
- Department of Pharmaceutical Sciences, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy, and Polo Scientifico-Didattico di Rimini, University of Bologna, 40100 Bologna, Italy
| | - Manuela Bartolini
- Department of Pharmaceutical Sciences, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy, and Polo Scientifico-Didattico di Rimini, University of Bologna, 40100 Bologna, Italy
| | - Francesca Mancini
- Department of Pharmaceutical Sciences, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy, and Polo Scientifico-Didattico di Rimini, University of Bologna, 40100 Bologna, Italy
| | - Maurizio Recanatini
- Department of Pharmaceutical Sciences, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy, and Polo Scientifico-Didattico di Rimini, University of Bologna, 40100 Bologna, Italy
| | - Andrea Cavalli
- Department of Pharmaceutical Sciences, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy, and Polo Scientifico-Didattico di Rimini, University of Bologna, 40100 Bologna, Italy
| | - Carlo Melchiorre
- Department of Pharmaceutical Sciences, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy, and Polo Scientifico-Didattico di Rimini, University of Bologna, 40100 Bologna, Italy
| |
Collapse
|
48
|
Wang J, Xu HM, Yang HD, Du XX, Jiang H, Xie JX. Rg1 reduces nigral iron levels of MPTP-treated C57BL6 mice by regulating certain iron transport proteins. Neurochem Int 2008; 54:43-8. [PMID: 19000728 DOI: 10.1016/j.neuint.2008.10.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 10/10/2008] [Indexed: 02/07/2023]
Abstract
Elevated iron levels in the substantia nigra (SN) participate in neuronal death in Parkinson's disease, in which the misregulation of iron transporters such as divalent metal transporter (DMT1) and ferroportin1 (FP1) are involved. Our previous work observed that nigral iron levels were increased in MPTP-treated mice and Ginsenoside Rg1 which is one of the main components of ginseng, had neuroprotective effects against MPTP toxicity. Whether Rg1 could reduce nigral iron levels to protect the dopaminergic neurons? And whether its neuroprotective effect is achieved by regulating certain iron transporters? The present studies showed that Rg1 pre-treatment increased the dopamine and its metabolites contents in the striatum, as well as increased tyrosine hydroxylase expression in the SN. Further experiments observed that Rg1 pre-treatment substantially attenuated MPTP-elevated iron levels, decreased DMT1 expression and increased FP1 expression in the SN. These results suggest that the neuroprotective effect of Rg1 on dopaminergic neurons against MPTP is due to the ability to reduce nigral iron levels, which is achieved by regulating the expressions of DMT1 and FP1.
Collapse
Affiliation(s)
- Jun Wang
- National Key Disciplines: Physiology (in incubation), Department of Physiology, Medical College of Qingdao University, Qingdao 266071, China
| | | | | | | | | | | |
Collapse
|
49
|
Espinoza-Fonseca LM. Knowledgebase for addiction-related genes: is it possible an extrapolation to rational multi-target drug design? Bioorg Med Chem 2008; 16:9346-8. [PMID: 18815048 DOI: 10.1016/j.bmc.2008.08.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/19/2008] [Accepted: 08/26/2008] [Indexed: 10/21/2022]
Abstract
In recent years the single-probe-single-target approach in drug design has started to be smoothly replaced by the single-probe-multiple-target (or multi-target) one, where a single drug is able to tackle different, but disease-related targets in a selective manner. However, the design of multi-target drugs has been hindered by a lack of a systematic network of disease-related common pathways. The recent development of the knowledgebase of addiction-related genes (KARG) has provided important hints on how to rationally design multi-target probes by connecting experimental techniques with available network models. In this perspective, the use of KARG as a template to build knowledgebases of disease-related genes for the rational multi-target drug design is suggested. Moreover, it is proposed that building knowledgebases of disease-related genes will become a necessary and ubiquitous tool in the rational design of multi-target drugs.
Collapse
Affiliation(s)
- L Michel Espinoza-Fonseca
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
50
|
von Coburg Y, Kottke T, Weizel L, Ligneau X, Stark H. Potential utility of histamine H3 receptor antagonist pharmacophore in antipsychotics. Bioorg Med Chem Lett 2008; 19:538-42. [PMID: 19091563 DOI: 10.1016/j.bmcl.2008.09.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 09/01/2008] [Accepted: 09/03/2008] [Indexed: 11/25/2022]
Abstract
Histamine H3 receptor (H3R) antagonists have some antipsychotic properties although the clear molecular mechanism is still unknown. As actually the most effective and less side effective antipsychotics are drugs with multiple targets we have designed typical and atypical neuroleptics with an additional histamine H3 pharmacophore. The 4-(3-piperidinopropoxy)phenyl pharmacophore moiety has been linked to amitriptyline, maprotiline, chlorpromazine, chlorprothixene, fluphenazine, and clozapine. Amide, amine and ester elements have been used generally to maintain or slightly shift affinity at dopamine D(2)-like receptors (D2 and D3), to decrease affinity at histamine H(1) receptors, and to obtain H3R ligands with low nanomolar or subnanomolar affinity. Change of effects at D(1)-like receptors (D1) and (D5) were heterogeneous. With these newly profiled compounds different antipsychotic properties might be achieved.
Collapse
Affiliation(s)
- Y von Coburg
- Johann Wolfgang Goethe Universität, Institut für Pharmazeutische Chemie, Biozentrum, ZAFES/CMP, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | | | | | | | | |
Collapse
|