1
|
Andersen JV. The Glutamate/GABA-Glutamine Cycle: Insights, Updates, and Advances. J Neurochem 2025; 169:e70029. [PMID: 40066661 PMCID: PMC11894596 DOI: 10.1111/jnc.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025]
Abstract
Synaptic homeostasis of the principal neurotransmitters glutamate and GABA is tightly regulated by an intricate metabolic coupling between neurons and astrocytes known as the glutamate/GABA-glutamine cycle. In this cycle, astrocytes take up glutamate and GABA from the synapse and convert these neurotransmitters into glutamine. Astrocytic glutamine is subsequently transferred to neurons, serving as the principal precursor for neuronal glutamate and GABA synthesis. The glutamate/GABA-glutamine cycle integrates multiple cellular processes, including neurotransmitter release, uptake, synthesis, and metabolism. All of these processes are deeply interdependent and closely coupled to cellular energy metabolism. Astrocytes display highly active mitochondrial oxidative metabolism and several unique metabolic features, including glycogen storage and pyruvate carboxylation, which are essential to sustain continuous glutamine release. However, new roles of oligodendrocytes and microglia in neurotransmitter recycling are emerging. Malfunction of the glutamate/GABA-glutamine cycle can lead to severe synaptic disruptions and may be implicated in several brain diseases. Here, I review central aspects and recent advances of the glutamate/GABA-glutamine cycle to highlight how the cycle is functionally connected to critical brain functions and metabolism. First, an overview of glutamate, GABA, and glutamine transport is provided in relation to neurotransmitter recycling. Then, central metabolic aspects of the glutamate/GABA-glutamine cycle are reviewed, with a special emphasis on the critical metabolic roles of glial cells. Finally, I discuss how aberrant neurotransmitter recycling is linked to neurodegeneration and disease, focusing on astrocyte metabolic dysfunction and brain lipid homeostasis as emerging pathological mechanisms. Instead of viewing the glutamate/GABA-glutamine cycle as individual biochemical processes, a more holistic and integrative approach is needed to advance our understanding of how neurotransmitter recycling modulates brain function in both health and disease.
Collapse
Affiliation(s)
- Jens V. Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
2
|
Albrecht J, Czuczwar SJ, Zielińska M, Miziak B. Methionine Sulfoximine as a Tool for Studying Temporal Lobe Epilepsy: Initiator, Developer, Attenuator. Neurochem Res 2025; 50:84. [PMID: 39843842 DOI: 10.1007/s11064-024-04329-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/03/2024] [Accepted: 12/27/2024] [Indexed: 01/24/2025]
Abstract
Methionine sulfoximine (MSO) is a compound originally discovered as a byproduct of agene-based milled flour maturation. MSO irreversibly inhibits the astrocytic enzyme glutamine synthase (GS) but also interferes with the transport of glutamine (Gln) and of glutamate (Glu), and γ-aminobutyric acid (GABA) synthesized within the Glu/Gln-GABA cycle, in this way dysregulating neurotransmission balance in favor of excitation. No wonder that intraperitoneal administration of MSO has long been known to induce behavioral and/or electrographic seizures. Recently, a temporal lobe epilepsy (TLE) model based on local continuous infusion of MSO into the hippocampus has been developed reproducing the main features of human mesial TLE: induction of focal seizures, their spreading, increase in intensity over time, and development of spontaneous recurrent seizures. Fully developed TLE in this model is associated with hippocampal degeneration, hallmarked by reactive astrogliosis, and causally related to the concomitant loss of GS-containing astrocytes. By contrast, short-term pre-exposure of rats to relatively low MSO doses that only moderately inhibited GS, attenuated and delayed the initial seizures in the lithium-pilocarpine model of TLE and in other seizure-associated contexts: in the pentylenetetrazole kindling model in rat, and in spontaneously firing or electrically stimulated brain slices. The anti-initial seizure activity of MSO may partly bypass inhibition of GS: the postulated mechanisms include: (i) decreased release of excitatory neurotransmitter Glu, (ii) prevention or diminution of seizure-associated brain edema, (iii) stimulation of glycogenesis, an energy-sparing process; (iv) central or peripheral hypothermia. Further work is needed to verify either of the above mechanisms.
Collapse
Affiliation(s)
- Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| | - Stanisław J Czuczwar
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, 20-090, Lublin, Poland
| |
Collapse
|
3
|
Neal ES, Xu W, Borges K. Metabolic aspects of genetic ion channel epilepsies. J Neurochem 2024; 168:3911-3935. [PMID: 37594756 PMCID: PMC11591411 DOI: 10.1111/jnc.15938] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/17/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023]
Abstract
Nowadays, particularly in countries with high incomes, individual mutations in people affected by genetic epilepsies are identified, and genetic therapies are being developed. In addition, drugs are being screened to directly target specific mutations, and personalised medicine is possible. However, people with epilepsy do not yet benefit from these advances, and many types of epilepsies are medication-resistant, including Dravet syndrome. Thus, in the meantime, alternative and effective treatment options are needed. There is increasing evidence that metabolic deficits contribute to epileptic seizures and that such metabolic impairments may be amenable to treatment, with metabolic treatment options like the ketogenic diet being employed with some success. However, the brain metabolic alterations that occur in ion channel epilepsies are not well-understood, nor how these may differ from epilepsies that are of acquired and unknown origins. Here, we provide an overview of studies investigating metabolic alterations in epilepsies caused by mutations in the SCN1A and KCNA1 genes, which are currently the most studied ion channel epilepsies in animal models. The metabolic changes found in these models are likely to contribute to seizures. A metabolic basis of these ion channel epilepsies is supported by human and/or animal studies that show beneficial effects of the ketogenic diet, which may be mediated by the provision of auxiliary brain fuel in the form of ketone bodies. Other potentially more preferred dietary therapies including medium-chain triglycerides and triheptanoin have also been tested in a limited number of studies, but their efficacies remain to be clearly established. The extent to which brain metabolism is affected in people with Dravet syndrome, KCNA1 epilepsy and the models thereof still requires clarification. This requires more experiments that yield functional insight into metabolism.
Collapse
Affiliation(s)
- Elliott S. Neal
- School of Biomedical SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| | - Weizhi Xu
- School of Biomedical SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| | - Karin Borges
- School of Biomedical SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| |
Collapse
|
4
|
Shichkova P, Coggan JS, Markram H, Keller D. Brain Metabolism in Health and Neurodegeneration: The Interplay Among Neurons and Astrocytes. Cells 2024; 13:1714. [PMID: 39451233 PMCID: PMC11506225 DOI: 10.3390/cells13201714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/31/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
The regulation of energy in the brain has garnered substantial attention in recent years due to its significant implications in various disorders and aging. The brain's energy metabolism is a dynamic and tightly regulated network that balances energy demand and supply by engaging complementary molecular pathways. The crosstalk among these pathways enables the system to switch its preferred fuel source based on substrate availability, activity levels, and cell state-related factors such as redox balance. Brain energy production relies on multi-cellular cooperation and is continuously supplied by fuel from the blood due to limited internal energy stores. Astrocytes, which interface with neurons and blood vessels, play a crucial role in coordinating the brain's metabolic activity, and their dysfunction can have detrimental effects on brain health. This review characterizes the major energy substrates (glucose, lactate, glycogen, ketones and lipids) in astrocyte metabolism and their role in brain health, focusing on recent developments in the field.
Collapse
Affiliation(s)
- Polina Shichkova
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| | - Jay S. Coggan
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
- Laboratory of Neural Microcircuitry, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Daniel Keller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| |
Collapse
|
5
|
Dienel GA, Rothman DL. In vivo calibration of genetically encoded metabolite biosensors must account for metabolite metabolism during calibration and cellular volume. J Neurochem 2024; 168:506-532. [PMID: 36726217 DOI: 10.1111/jnc.15775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/21/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023]
Abstract
Isotopic assays of brain glucose utilization rates have been used for more than four decades to establish relationships between energetics, functional activity, and neurotransmitter cycling. Limitations of these methods include the relatively long time (1-60 min) for the determination of labeled metabolite levels and the lack of cellular resolution. Identification and quantification of fuels for neurons and astrocytes that support activation and higher brain functions are a major, unresolved issues. Glycolysis is preferentially up-regulated during activation even though oxygen level and supply are adequate, causing lactate concentrations to quickly rise during alerting, sensory processing, cognitive tasks, and memory consolidation. However, the fate of lactate (rapid release from brain or cell-cell shuttling coupled with local oxidation) is long disputed. Genetically encoded biosensors can determine intracellular metabolite concentrations and report real-time lactate level responses to sensory, behavioral, and biochemical challenges at the cellular level. Kinetics and time courses of cellular lactate concentration changes are informative, but accurate biosensor calibration is required for quantitative comparisons of lactate levels in astrocytes and neurons. An in vivo calibration procedure for the Laconic lactate biosensor involves intracellular lactate depletion by intravenous pyruvate-mediated trans-acceleration of lactate efflux followed by sensor saturation by intravenous infusion of high doses of lactate plus ammonium chloride. In the present paper, the validity of this procedure is questioned because rapid lactate-pyruvate interconversion in blood, preferential neuronal oxidation of both monocarboxylates, on-going glycolytic metabolism, and cellular volumes were not taken into account. Calibration pitfalls for the Laconic lactate biosensor also apply to other metabolite biosensors that are standardized in vivo by infusion of substrates that can be metabolized in peripheral tissues. We discuss how technical shortcomings negate the conclusion that Laconic sensor calibrations support the existence of an in vivo astrocyte-neuron lactate concentration gradient linked to lactate shuttling from astrocytes to neurons to fuel neuronal activity.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Douglas L Rothman
- Magnetic Resonance Research Center and Departments of Radiology and Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
6
|
Wu A, Lee D, Xiong WC. Lactate Metabolism, Signaling, and Function in Brain Development, Synaptic Plasticity, Angiogenesis, and Neurodegenerative Diseases. Int J Mol Sci 2023; 24:13398. [PMID: 37686202 PMCID: PMC10487923 DOI: 10.3390/ijms241713398] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Neural tissue requires a great metabolic demand despite negligible intrinsic energy stores. As a result, the central nervous system (CNS) depends upon a continuous influx of metabolic substrates from the blood. Disruption of this process can lead to impairment of neurological functions, loss of consciousness, and coma within minutes. Intricate neurovascular networks permit both spatially and temporally appropriate metabolic substrate delivery. Lactate is the end product of anaerobic or aerobic glycolysis, converted from pyruvate by lactate dehydrogenase-5 (LDH-5). Although abundant in the brain, it was traditionally considered a byproduct or waste of glycolysis. However, recent evidence indicates lactate may be an important energy source as well as a metabolic signaling molecule for the brain and astrocytes-the most abundant glial cell-playing a crucial role in energy delivery, storage, production, and utilization. The astrocyte-neuron lactate-shuttle hypothesis states that lactate, once released into the extracellular space by astrocytes, can be up-taken and metabolized by neurons. This review focuses on this hypothesis, highlighting lactate's emerging role in the brain, with particular emphasis on its role during development, synaptic plasticity, angiogenesis, and disease.
Collapse
Affiliation(s)
- Anika Wu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (A.W.); (D.L.)
| | - Daehoon Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (A.W.); (D.L.)
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (A.W.); (D.L.)
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
7
|
Nabatame S, Tanigawa J, Tominaga K, Kagitani-Shimono K, Yanagihara K, Imai K, Ando T, Tsuyusaki Y, Araya N, Matsufuji M, Natsume J, Yuge K, Bratkovic D, Arai H, Okinaga T, Matsushige T, Azuma Y, Ishihara N, Miyatake S, Kato M, Matsumoto N, Okamoto N, Takahashi S, Hattori S, Ozono K. Association between cerebrospinal fluid parameters and developmental and neurological status in glucose transporter 1 deficiency syndrome. J Neurol Sci 2023; 447:120597. [PMID: 36965413 DOI: 10.1016/j.jns.2023.120597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/30/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
OBJECTIVE In glucose transporter 1 deficiency syndrome (Glut1DS), cerebrospinal fluid glucose (CSFG) and CSFG to blood glucose ratio (CBGR) show significant differences among groups classified by phenotype or genotype. The purpose of this study was to investigate the association between these biochemical parameters and Glut1DS severity. METHODS The medical records of 45 patients who visited Osaka University Hospital between March 2004 and December 2021 were retrospectively examined. Neurological status was determined using the developmental quotient (DQ), assessed using the Kyoto Scale of Psychological Development 2001, and the Scale for the Assessment and Rating of Ataxia (SARA). CSF parameters included CSFG, CBGR, and CSF lactate (CSFL). RESULTS CSF was collected from 41 patients, and DQ and SARA were assessed in 24 and 27 patients, respectively. Simple regression analysis showed moderate associations between neurological status and biochemical parameters. CSFG resulted in a higher R2 than CBGR in these analyses. CSF parameters acquired during the first year of life were not comparable to those acquired later. CSFL was measured in 16 patients (DQ and SARA in 11 and 14 patients, respectively). Although simple regression analysis also showed moderate associations between neurological status and CSFG and CSFL, the multiple regression analysis for DQ and SARA resulted in strong associations through the use of a combination of CSFG and CSFL as explanatory variables. CONCLUSION The severity of Glut1DS can be predicted from CSF parameters. Glucose and lactate are independent contributors to the developmental and neurological status in Glut1DS.
Collapse
Affiliation(s)
- Shin Nabatame
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Junpei Tanigawa
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Koji Tominaga
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Child Development, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Kuriko Kagitani-Shimono
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Child Development, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Keiko Yanagihara
- Department of Pediatric Neurology, Osaka Women's and Children's Hospital, 840 Murodocho, Izumi, Osaka 594-1101, Japan.
| | - Katsumi Imai
- Department of Clinical Research, National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, 886 Urushiyama, Aoi, Shizuoka, Shizuoka 420-8688, Japan.
| | - Toru Ando
- Department of Pediatric Medicine, Municipal Tsuruga Hospital, 1-6-60, Mishimacho, Tsuruga, Fukui 914-8502, Japan.
| | - Yu Tsuyusaki
- Division of Neurology, Kanagawa Children's Medical Center, 2-138-4 Mutsukawa, Minami, Yokohama, Kanagawa 232-8555, Japan.
| | - Nami Araya
- Department of Pediatrics, School of Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba, Shiwa, Iwate 028-3695, Japan; Epilepsy Clinic Bethel Satellite Sendai-Station, Comfort Hotel Sendai-Higashiguchi #1F, 205-5 Nakakecho, Miyagino, Sendai, Miyagi 983-0864, Japan.
| | - Mayumi Matsufuji
- Department of Pediatrics, Kagoshima City Hospital, 37-1 Uearatacho, Kagoshima, Kagoshima 890-8760, Japan.
| | - Jun Natsume
- Department of Developmental Disability Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa, Nagoya, Aichi 466-8550, Japan.
| | - Kotaro Yuge
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahimachi, Kurume, Fukuoka 830-0011, Japan.
| | - Drago Bratkovic
- Metabolic Clinic, Women's and Children's Hospital, 72 King William Rd, North Adelaide 5006, SA, Australia.
| | - Hiroshi Arai
- Department of Pediatric Neurology, Bobath Memorial Hospital, 1-6-5 Higashinakahama, Joto, Osaka, Osaka 536-0023, Japan.
| | - Takeshi Okinaga
- Department of Pediatrics, Bell Land General Hospital, 500-3 Higashiyama, Naka, Sakai, Osaka, 599-8247, Japan.
| | - Takeshi Matsushige
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505, Japan.
| | - Yoshiteru Azuma
- Department of Pediatrics, Aichi Medical University, 1-1, Yazakokarimata, Nagakute, Aichi 480-1195, Japan; Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa 236-0004, Japan.
| | - Naoko Ishihara
- Department of Pediatrics, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi 470-1192, Japan.
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa 236-0004, Japan; Clinical Genetics Department, Yokohama City University Hospital, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa 236-0004, Japan.
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan.
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa 236-0004, Japan.
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, 840 Murodocho, Izumi, Osaka 594-1101, Japan.
| | - Satoru Takahashi
- Department of Pediatrics, Asahikawa Medical University, 2-1-1-1 Midorigaoka-higashi, Asahikawa, Hokkaido 078-8510, Japan.
| | - Satoshi Hattori
- Department of Biomedical Statistics, Graduate School of Medicine and Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
8
|
Köhler S, Winkler U, Junge T, Lippmann K, Eilers J, Hirrlinger J. Gray and white matter astrocytes differ in basal metabolism but respond similarly to neuronal activity. Glia 2023; 71:229-244. [PMID: 36063073 DOI: 10.1002/glia.24268] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/12/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022]
Abstract
Astrocytes are a heterogeneous population of glial cells in the brain, which adapt their properties to the requirements of the local environment. Two major groups of astrocytes are protoplasmic astrocytes residing in gray matter as well as fibrous astrocytes of white matter. Here, we compared the energy metabolism of astrocytes in the cortex and corpus callosum as representative gray matter and white matter regions, in acute brain slices taking advantage of genetically encoded fluorescent nanosensors for the NADH/NAD+ redox ratio and for ATP. Astrocytes of the corpus callosum presented a more reduced basal NADH/NAD+ redox ratio, and a lower cytosolic concentration of ATP compared to cortical astrocytes. In cortical astrocytes, the neurotransmitter glutamate and increased extracellular concentrations of K+ , typical correlates of neuronal activity, induced a more reduced NADH/NAD+ redox ratio. While application of glutamate decreased [ATP], K+ as well as the combination of glutamate and K+ resulted in an increase of ATP levels. Strikingly, a very similar regulation of metabolism by K+ and glutamate was observed in astrocytes in the corpus callosum. Finally, strong intrinsic neuronal activity provoked by application of bicuculline and withdrawal of Mg2+ caused a shift of the NADH/NAD+ redox ratio to a more reduced state as well as a slight reduction of [ATP] in gray and white matter astrocytes. In summary, the metabolism of astrocytes in cortex and corpus callosum shows distinct basal properties, but qualitatively similar responses to neuronal activity, probably reflecting the different environment and requirements of these brain regions.
Collapse
Affiliation(s)
- Susanne Köhler
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Ulrike Winkler
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Tabea Junge
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Kristina Lippmann
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Jens Eilers
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Johannes Hirrlinger
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany.,Department of Neurogenetics, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
9
|
Chen Z, Yuan Z, Yang S, Zhu Y, Xue M, Zhang J, Leng L. Brain Energy Metabolism: Astrocytes in Neurodegenerative Diseases. CNS Neurosci Ther 2022; 29:24-36. [PMID: 36193573 PMCID: PMC9804080 DOI: 10.1111/cns.13982] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/23/2022] [Accepted: 09/11/2022] [Indexed: 02/06/2023] Open
Abstract
Astrocytes are the most abundant cells in the brain. They have many important functions in the central nervous system (CNS), including the maintenance of glutamate and ion homeostasis, the elimination of oxidative stress, energy storage in glycogen, tissue repair, regulating synaptic activity by releasing neurotransmitters, and participating in synaptic formation. Astrocytes have special highly ramified structure. Their branches contact with synapses of neurons inwardly, with fine structure and wrapping synapses; their feet contact with blood vessels of brain parenchyma outward, almost wrapping the whole brain. The adjacent astrocytes rarely overlap and communicate with each other through gap junction channels. The ideal location of astrocytes enables them to sense the weak changes of their surroundings and provide the structural basis for the energy supply of neurons. Neurons and astrocytes are closely coupled units of energy metabolism in the brain. Neurons consume a lot of ATPs in the process of neurotransmission. Astrocytes provide metabolic substrates for neurons, maintain high activity of neuron, and facilitate information transmission of neurons. This article reviews the characteristics of glucose metabolism, lipid metabolism, and amino acid metabolism of astrocytes. The metabolic interactions between astrocytes and neurons, astrocytes and microglia were also detailed discussed. Finally, we classified analyzed the role of metabolic disorder of astrocytes in the occurrence and development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhenlei Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging ResearchInstitute of Neuroscience, School of Medicine, Xiamen UniversityXiamenChina
| | - Ziqi Yuan
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging ResearchInstitute of Neuroscience, School of Medicine, Xiamen UniversityXiamenChina
| | - Shangchen Yang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging ResearchInstitute of Neuroscience, School of Medicine, Xiamen UniversityXiamenChina
| | - Yufei Zhu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging ResearchInstitute of Neuroscience, School of Medicine, Xiamen UniversityXiamenChina
| | - Maoqiang Xue
- Department of Basic Medical Science, School of MedicineXiamen UniversityXiamenChina
| | - Jie Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging ResearchInstitute of Neuroscience, School of Medicine, Xiamen UniversityXiamenChina
| | - Lige Leng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging ResearchInstitute of Neuroscience, School of Medicine, Xiamen UniversityXiamenChina
| |
Collapse
|
10
|
Grochowalska K, Pikul P, Piwkowska A. Insights into the regulation of podocyte and glomerular function by lactate and its metabolic sensor G-protein-coupled receptor 81. J Cell Physiol 2022; 237:4097-4111. [PMID: 36084306 DOI: 10.1002/jcp.30874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/04/2022] [Accepted: 08/25/2022] [Indexed: 11/10/2022]
Abstract
Podocytes and their foot processes are an important cellular layer of the renal filtration barrier that is involved in regulating glomerular permeability. Disturbances of podocyte function play a central role in the development of proteinuria in diabetic nephropathy. The retraction and effacement of podocyte foot processes that form slit diaphragms are a common feature of proteinuria. Correlations between the retraction of foot processes and the development of proteinuria are not well understood. Unraveling peculiarities of podocyte energy metabolism notably under diabetic conditions will provide insights into the pathogenesis of diabetic nephropathy. Intracellular metabolism in the cortical area of podocytes is regulated by glycolysis, whereas energy balance in the central area is controlled by oxidative phosphorylation and glycolysis. High glucose concentrations were recently reported to force podocytes to switch from mitochondrial oxidative phosphorylation to glycolysis, resulting in lactic acidosis. In this review, we hypothesize that the lactate receptor G-protein-coupled receptor 81 (also known as hydroxycarboxylic acid receptor 81) may contribute to the control of podocyte function in both health and disease.
Collapse
Affiliation(s)
- Klaudia Grochowalska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| | - Piotr Pikul
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland.,Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| |
Collapse
|
11
|
Briquet M, Rocher AB, Alessandri M, Rosenberg N, de Castro Abrantes H, Wellbourne-Wood J, Schmuziger C, Ginet V, Puyal J, Pralong E, Daniel RT, Offermanns S, Chatton JY. Activation of lactate receptor HCAR1 down-modulates neuronal activity in rodent and human brain tissue. J Cereb Blood Flow Metab 2022; 42:1650-1665. [PMID: 35240875 PMCID: PMC9441721 DOI: 10.1177/0271678x221080324] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lactate can be used by neurons as an energy substrate to support their activity. Evidence suggests that lactate also acts on a metabotropic receptor called HCAR1, first described in the adipose tissue. Whether HCAR1 also modulates neuronal circuits remains unclear. In this study, using qRT-PCR, we show that HCAR1 is present in the human brain of epileptic patients who underwent resective surgery. In brain slices from these patients, pharmacological HCAR1 activation using a non-metabolized agonist decreased the frequency of both spontaneous neuronal Ca2+ spiking and excitatory post-synaptic currents (sEPSCs). In mouse brains, we found HCAR1 expression in different regions using a fluorescent reporter mouse line and in situ hybridization. In the dentate gyrus, HCAR1 is mainly present in mossy cells, key players in the hippocampal excitatory circuitry and known to be involved in temporal lobe epilepsy. By using whole-cell patch clamp recordings in mouse and rat slices, we found that HCAR1 activation causes a decrease in excitability, sEPSCs, and miniature EPSCs frequency of granule cells, the main output of mossy cells. Overall, we propose that lactate can be considered a neuromodulator decreasing synaptic activity in human and rodent brains, which makes HCAR1 an attractive target for the treatment of epilepsy.
Collapse
Affiliation(s)
- Marc Briquet
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Anne-Bérengère Rocher
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Maxime Alessandri
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Nadia Rosenberg
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | | | - Joel Wellbourne-Wood
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Céline Schmuziger
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Vanessa Ginet
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Etienne Pralong
- Department of Neurosurgery Service, University Hospital of Lausanne and Faculty of Biology and Medicine, UNIL, Lausanne, Switzerland
| | - Roy Thomas Daniel
- Department of Neurosurgery Service, University Hospital of Lausanne and Faculty of Biology and Medicine, UNIL, Lausanne, Switzerland
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jean-Yves Chatton
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Cellular Imaging Facility, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Rothman DL, Dienel GA, Behar KL, Hyder F, DiNuzzo M, Giove F, Mangia S. Glucose sparing by glycogenolysis (GSG) determines the relationship between brain metabolism and neurotransmission. J Cereb Blood Flow Metab 2022; 42:844-860. [PMID: 34994222 PMCID: PMC9254033 DOI: 10.1177/0271678x211064399] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Over the last two decades, it has been established that glucose metabolic fluxes in neurons and astrocytes are proportional to the rates of the glutamate/GABA-glutamine neurotransmitter cycles in close to 1:1 stoichiometries across a wide range of functional energy demands. However, there is presently no mechanistic explanation for these relationships. We present here a theoretical meta-analysis that tests whether the brain's unique compartmentation of glycogen metabolism in the astrocyte and the requirement for neuronal glucose homeostasis lead to the observed stoichiometries. We found that blood-brain barrier glucose transport can be limiting during activation and that the energy demand could only be met if glycogenolysis supports neuronal glucose metabolism by replacing the glucose consumed by astrocytes, a mechanism we call Glucose Sparing by Glycogenolysis (GSG). The predictions of the GSG model are in excellent agreement with a wide range of experimental results from rats, mice, tree shrews, and humans, which were previously unexplained. Glycogenolysis and glucose sparing dictate the energy available to support neuronal activity, thus playing a fundamental role in brain function in health and disease.
Collapse
Affiliation(s)
- Douglas L Rothman
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA
| | - Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Kevin L Behar
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA.,Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Mauro DiNuzzo
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, RM, Italy
| | - Federico Giove
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, RM, Italy.,Fondazione Santa Lucia IRCCS, Rome, RM, Italy
| | - Silvia Mangia
- Department of Radiology, Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
13
|
Herculano-Houzel S, Rothman DL. From a Demand-Based to a Supply-Limited Framework of Brain Metabolism. Front Integr Neurosci 2022; 16:818685. [PMID: 35431822 PMCID: PMC9012138 DOI: 10.3389/fnint.2022.818685] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 12/20/2022] Open
Abstract
What defines the rate of energy use by the brain, as well as per neurons of different sizes in different structures and animals, is one fundamental aspect of neuroscience for which much has been theorized, but very little data are available. The prevalent theories and models consider that energy supply from the vascular system to different brain regions is adjusted both dynamically and in the course of development and evolution to meet the demands of neuronal activity. In this perspective, we offer an alternative view: that regional rates of energy use might be mostly constrained by supply, given the properties of the brain capillary network, the highly stable rate of oxygen delivery to the whole brain under physiological conditions, and homeostatic constraints. We present evidence that these constraints, based on capillary density and tissue oxygen homeostasis, are similar between brain regions and mammalian species, suggesting they derive from fundamental biophysical limitations. The same constraints also determine the relationship between regional rates of brain oxygen supply and usage over the full physiological range of brain activity, from deep sleep to intense sensory stimulation, during which the apparent uncoupling of blood flow and oxygen use is still a predicted consequence of supply limitation. By carefully separating "energy cost" into energy supply and energy use, and doing away with the problematic concept of energetic "demands," our new framework should help shine a new light on the neurovascular bases of metabolic support of brain function and brain functional imaging. We speculate that the trade-offs between functional systems and even the limitation to a single attentional spot at a time might be consequences of a strongly supply-limited brain economy. We propose that a deeper understanding of brain energy supply constraints will provide a new evolutionary understanding of constraints on brain function due to energetics; offer new diagnostic insight to disturbances of brain metabolism; lead to clear, testable predictions on the scaling of brain metabolic cost and the evolution of brains of different sizes; and open new lines of investigation into the microvascular bases of progressive cognitive loss in normal aging as well as metabolic diseases.
Collapse
Affiliation(s)
- Suzana Herculano-Houzel
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| | - Douglas L. Rothman
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
- Magnetic Resonance Research Center, Yale University, New Haven, CT, United States
| |
Collapse
|
14
|
Evaluation of Hydroxycarboxylic Acid Receptor 1 (HCAR1) as a Building Block for Genetically Encoded Extracellular Lactate Biosensors. BIOSENSORS 2022; 12:bios12030143. [PMID: 35323413 PMCID: PMC8946183 DOI: 10.3390/bios12030143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022]
Abstract
The status of lactate has evolved from being considered a waste product of cellular metabolism to a useful metabolic substrate and, more recently, to a signaling molecule. The fluctuations of lactate levels within biological tissues, in particular in the interstitial space, are crucial to assess with high spatial and temporal resolution, and this is best achieved using cellular imaging approaches. In this study, we evaluated the suitability of the lactate receptor, hydroxycarboxylic acid receptor 1 (HCAR1, formerly named GPR81), as a basis for the development of a genetically encoded fluorescent lactate biosensor. We used a biosensor strategy that was successfully applied to molecules such as dopamine, serotonin, and norepinephrine, based on their respective G-protein-coupled receptors. In this study, a set of intensiometric sensors was constructed and expressed in living cells. They showed selective expression at the plasma membrane and responded to physiological concentrations of lactate. However, these sensors lost the original ability of HCAR1 to selectively respond to lactate versus other related small carboxylic acid molecules. Therefore, while representing a promising building block for a lactate biosensor, HCAR1 was found to be sensitive to perturbations of its structure, affecting its ability to distinguish between related carboxylic molecules.
Collapse
|
15
|
Takahashi S. Metabolic Contribution and Cerebral Blood Flow Regulation by Astrocytes in the Neurovascular Unit. Cells 2022; 11:cells11050813. [PMID: 35269435 PMCID: PMC8909328 DOI: 10.3390/cells11050813] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/10/2022] Open
Abstract
The neurovascular unit (NVU) is a conceptual framework that has been proposed to better explain the relationships between the neural cells and blood vessels in the human brain, focused mainly on the brain gray matter. The major components of the NVU are the neurons, astrocytes (astroglia), microvessels, pericytes, and microglia. In addition, we believe that oligodendrocytes should also be included as an indispensable component of the NVU in the white matter. Of all these components, astrocytes in particular have attracted the interest of researchers because of their unique anatomical location; these cells are interposed between the neurons and the microvessels of the brain. Their location suggests that astrocytes might regulate the cerebral blood flow (CBF) in response to neuronal activity, so as to ensure an adequate supply of glucose and oxygen to meet the metabolic demands of the neurons. In fact, the adult human brain, which accounts for only 2% of the entire body weight, consumes approximately 20–25% of the total amount of glucose and oxygen consumed by the whole body. The brain needs a continuous supply of these essential energy sources through the CBF, because there are practically no stores of glucose or oxygen in the brain; both acute and chronic cessation of CBF can adversely affect brain functions. In addition, another important putative function of the NVU is the elimination of heat and waste materials produced by neuronal activity. Recent evidence suggests that astrocytes play pivotal roles not only in supplying glucose, but also fatty acids and amino acids to neurons. Loss of astrocytic support can be expected to lead to malfunction of the NVU as a whole, which underlies numerous neurological disorders. In this review, we shall focus on historical and recent findings with regard to the metabolic contributions of astrocytes in the NVU.
Collapse
Affiliation(s)
- Shinichi Takahashi
- Department of Neurology and Stroke, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka-shi 350-1298, Japan; ; Tel.: +81-42-984-4111 (ext. 7412) or +81-3-3353-1211 (ext. 62613); Fax: +81-42-984-0664 or +81-3-3357-5445
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
16
|
Takahashi S, Mashima K. Neuroprotection and Disease Modification by Astrocytes and Microglia in Parkinson Disease. Antioxidants (Basel) 2022; 11:antiox11010170. [PMID: 35052674 PMCID: PMC8773262 DOI: 10.3390/antiox11010170] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/03/2022] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress and neuroinflammation are common bases for disease onset and progression in many neurodegenerative diseases. In Parkinson disease, which is characterized by the degeneration of dopaminergic neurons resulting in dopamine depletion, the pathogenesis differs between hereditary and solitary disease forms and is often unclear. In addition to the pathogenicity of alpha-synuclein as a pathological disease marker, the involvement of dopamine itself and its interactions with glial cells (astrocyte or microglia) have attracted attention. Pacemaking activity, which is a hallmark of dopaminergic neurons, is essential for the homeostatic maintenance of adequate dopamine concentrations in the synaptic cleft, but it imposes a burden on mitochondrial oxidative glucose metabolism, leading to reactive oxygen species production. Astrocytes provide endogenous neuroprotection to the brain by producing and releasing antioxidants in response to oxidative stress. Additionally, the protective function of astrocytes can be modified by microglia. Some types of microglia themselves are thought to exacerbate Parkinson disease by releasing pro-inflammatory factors (M1 microglia). Although these inflammatory microglia may further trigger the inflammatory conversion of astrocytes, microglia may induce astrocytic neuroprotective effects (A2 astrocytes) simultaneously. Interestingly, both astrocytes and microglia express dopamine receptors, which are upregulated in the presence of neuroinflammation. The anti-inflammatory effects of dopamine receptor stimulation are also attracting attention because the functions of astrocytes and microglia are greatly affected by both dopamine depletion and therapeutic dopamine replacement in Parkinson disease. In this review article, we will focus on the antioxidative and anti-inflammatory effects of astrocytes and their synergism with microglia and dopamine.
Collapse
Affiliation(s)
- Shinichi Takahashi
- Department of Neurology and Stroke, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka-shi 350-1298, Japan
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
- Correspondence: ; Tel.: +81-42-984-4111 (ext. 7412); Fax: +81-42-984-0664
| | - Kyoko Mashima
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
- Department of Neurology, Tokyo Saiseikai Central Hospital, 1-4-17 Mita, Minato-ku, Tokyo 108-0073, Japan
| |
Collapse
|
17
|
Napoli E, Panoutsopoulos AA, Kysar P, Satriya N, Sterling K, Shibata B, Imai D, Ruskin DN, Zarbalis KS, Giulivi C. Wdfy3 regulates glycophagy, mitophagy, and synaptic plasticity. J Cereb Blood Flow Metab 2021; 41:3213-3231. [PMID: 34187232 PMCID: PMC8669292 DOI: 10.1177/0271678x211027384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Autophagy is essential to cell function, as it enables the recycling of intracellular constituents during starvation and in addition functions as a quality control mechanism by eliminating spent organelles and proteins that could cause cellular damage if not properly removed. Recently, we reported on Wdfy3's role in mitophagy, a clinically relevant macroautophagic scaffold protein that is linked to intellectual disability, neurodevelopmental delay, and autism spectrum disorder. In this study, we confirm our previous report that Wdfy3 haploinsufficiency in mice results in decreased mitophagy with accumulation of mitochondria with altered morphology, but expanding on that observation, we also note decreased mitochondrial localization at synaptic terminals and decreased synaptic density, which may contribute to altered synaptic plasticity. These changes are accompanied by defective elimination of glycogen particles and a shift to increased glycogen synthesis over glycogenolysis and glycophagy. This imbalance leads to an age-dependent higher incidence of brain glycogen deposits with cerebellar hypoplasia. Our results support and further extend Wdfy3's role in modulating both brain bioenergetics and synaptic plasticity by including glycogen as a target of macroautophagic degradation.
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Alexios A Panoutsopoulos
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, USA
| | - Patricia Kysar
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA, USA
| | - Nathaniel Satriya
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Kira Sterling
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Bradley Shibata
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA, USA
| | - Denise Imai
- Anatomic Pathology Service, Veterinary Medical Teaching Hospital, University of California, Davis, CA, USA
| | - David N Ruskin
- Department of Psychology and Neuroscience Program, Trinity College, Hartford, CT, USA
| | - Konstantinos S Zarbalis
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, USA.,Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, CA, USA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA.,Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, CA, USA
| |
Collapse
|
18
|
Hagihara H, Shoji H, Otabi H, Toyoda A, Katoh K, Namihira M, Miyakawa T. Protein lactylation induced by neural excitation. Cell Rep 2021; 37:109820. [PMID: 34644564 DOI: 10.1016/j.celrep.2021.109820] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/20/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023] Open
Abstract
Lactate has diverse roles in the brain at the molecular and behavioral levels under physiological and pathophysiological conditions. This study investigates whether lysine lactylation (Kla), a lactate-derived post-translational modification in macrophages, occurs in brain cells and if it does, whether Kla is induced by the stimuli that accompany changes in lactate levels. Here, we show that Kla in brain cells is regulated by neural excitation and social stress, with parallel changes in lactate levels. These stimuli increase Kla, which is associated with the expression of the neuronal activity marker c-Fos, as well as with decreased social behavior and increased anxiety-like behavior in the stress model. In addition, we identify 63 candidate lysine-lactylated proteins and find that stress preferentially increases histone H1 Kla. This study may open an avenue for the exploration of a role of neuronal activity-induced lactate mediated by protein lactylation in the brain.
Collapse
Affiliation(s)
- Hideo Hagihara
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Hikari Otabi
- College of Agriculture, Ibaraki University, Ami, Ibaraki 300-0393, Japan; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8538, Japan
| | - Atsushi Toyoda
- College of Agriculture, Ibaraki University, Ami, Ibaraki 300-0393, Japan; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8538, Japan; Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM), Ami, Ibaraki 300-0393, Japan
| | - Kaoru Katoh
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan; Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Masakazu Namihira
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
19
|
Dienel GA. Stop the rot. Enzyme inactivation at brain harvest prevents artifacts: A guide for preservation of the in vivo concentrations of brain constituents. J Neurochem 2021; 158:1007-1031. [PMID: 33636013 DOI: 10.1111/jnc.15293] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 12/25/2022]
Abstract
Post-mortem metabolism is widely recognized to cause rapid and prolonged changes in the concentrations of multiple classes of compounds in brain, that is, they are labile. Post-mortem changes from levels in living brain include components of pathways of metabolism of glucose and energy compounds, amino acids, lipids, signaling molecules, neuropeptides, phosphoproteins, and proteins. Methods that stop enzyme activity at brain harvest were developed almost 50 years ago and have been extensively used in studies of brain functions and diseases. Unfortunately, these methods are not commonly used to harvest brain tissue for mass spectrometry-based metabolomic studies or for imaging mass spectrometry studies (IMS, also called mass spectrometry imaging, MSI, or matrix-assisted laser desorption/ionization-MSI, MALDI-MSI). Instead these studies commonly kill animals, decapitate, dissect out brain and regions of interest if needed, then 'snap' freeze the tissue to stop enzymatic activity after harvest, with post-mortem intervals typically ranging from ~0.5 to 3 min. To increase awareness of the importance of stopping metabolism at harvest and preventing the unnecessary complications of not doing so, this commentary provides examples of labile metabolites and the magnitudes of their post-mortem changes in concentrations during brain harvest. Brain harvest methods that stop metabolism at harvest eliminate post-mortem enzymatic activities and can improve characterization of normal and diseased brain. In addition, metabolomic studies would be improved by reporting absolute units of concentration along with normalized peak areas or fold changes. Then reported values can be evaluated and compared with the extensive neurochemical literature to help prevent reporting of artifactual data.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
20
|
Xia B, Zhang K, Liu C. PYGB Promoted Tumor Progression by Regulating Wnt/β-Catenin Pathway in Gastric Cancer. Technol Cancer Res Treat 2021; 19:1533033820926592. [PMID: 32462986 PMCID: PMC7257874 DOI: 10.1177/1533033820926592] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Gastric cancer is one of the most common gastrointestinal malignancy with high mortality
in East Asia. Investigation of pathogenic mechanisms of gastric cancer is crucial to
develop novel therapeutic strategies and identify new therapeutic candidates. Brain-type
glycogen phosphorylase is a glycogen phosphorylase involved in glycogen metabolism, which
participates in multiple physiological and pathological processes. Overexpression of
brain-type glycogen phosphorylase has been reported in various types of cancer, such as
colorectal cancer and non-small cell lung cancer, however, the potential role of
brain-type glycogen phosphorylase in gastric cancer remains unclear. Herein, we observed
brain-type glycogen phosphorylase expression was significantly elevated in human gastric
cancer tissues and positively correlated with the clinical-pathological features including
tumor size, lymph node involvement, and tumor, node, metastasis stage of patients with
gastric cancer. We further reported brain-type glycogen phosphorylase depletion suppressed
the growth of gastric cancer, weakened the epithelial–mesenchymal transformation, and
reduced the migration and invasion ability in cell models. We further confirmed brain-type
glycogen phosphorylase depletion inhibited tumor growth and lung metastasis in mice.
Importantly, we found brain-type glycogen phosphorylase regulated the progression of
gastric cancer via Wnt/β-catenin pathway, shedding lights on brain-type glycogen
phosphorylase as a promising therapeutic target for drug design and development targeting
gastric cancer.
Collapse
Affiliation(s)
- Boning Xia
- Department of Gastrointestinal Anorectal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing City, China
| | - Ke Zhang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha City, Hunan Province, China
| | - Chang Liu
- Department of Gastrointestinal Anorectal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing City, China
| |
Collapse
|
21
|
Metabolomic and Imaging Mass Spectrometric Assays of Labile Brain Metabolites: Critical Importance of Brain Harvest Procedures. Neurochem Res 2020; 45:2586-2606. [PMID: 32949339 DOI: 10.1007/s11064-020-03124-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/29/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022]
Abstract
Metabolomic technologies including imaging mass spectrometry (IMS; also called mass spectrometry imaging, MSI, or matrix-assisted laser desorption/ionization-mass spectrometry imaging, MALDI MSI) are important methods to evaluate levels of many compounds in brain with high spatial resolution, characterize metabolic phenotypes of brain disorders, and identify disease biomarkers. ATP is central to brain energetics, and reports of its heterogeneous distribution in brain and regional differences in ATP/ADP ratios reported in IMS studies conflict with earlier studies. These discordant data were, therefore, analyzed and compared with biochemical literature that used rigorous methods to preserve labile metabolites. Unequal, very low regional ATP levels and low ATP/ADP ratios are explained by rapid metabolism during postmortem ischemia. A critical aspect of any analysis of brain components is their stability during and after tissue harvest so measured concentrations closely approximate their physiological levels in vivo. Unfortunately, the requirement for inactivation of brain enzymes by freezing or heating is not widely recognized outside the neurochemistry discipline, and procedures that do not prevent postmortem autolysis, including decapitation, brain removal/dissection, and 'snap freezing' are commonly used. Strong emphasis is placed on use of supplementary approaches to calibrate metabolite abundance in units of concentration in IMS studies and comparison of IMS results with biochemical data obtained by different methods to help identify potential artifacts.
Collapse
|
22
|
Stevenson R, Samokhina E, Rossetti I, Morley JW, Buskila Y. Neuromodulation of Glial Function During Neurodegeneration. Front Cell Neurosci 2020; 14:278. [PMID: 32973460 PMCID: PMC7473408 DOI: 10.3389/fncel.2020.00278] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Glia, a non-excitable cell type once considered merely as the connective tissue between neurons, is nowadays acknowledged for its essential contribution to multiple physiological processes including learning, memory formation, excitability, synaptic plasticity, ion homeostasis, and energy metabolism. Moreover, as glia are key players in the brain immune system and provide structural and nutritional support for neurons, they are intimately involved in multiple neurological disorders. Recent advances have demonstrated that glial cells, specifically microglia and astroglia, are involved in several neurodegenerative diseases including Amyotrophic lateral sclerosis (ALS), Epilepsy, Parkinson's disease (PD), Alzheimer's disease (AD), and frontotemporal dementia (FTD). While there is compelling evidence for glial modulation of synaptic formation and regulation that affect neuronal signal processing and activity, in this manuscript we will review recent findings on neuronal activity that affect glial function, specifically during neurodegenerative disorders. We will discuss the nature of each glial malfunction, its specificity to each disorder, overall contribution to the disease progression and assess its potential as a future therapeutic target.
Collapse
Affiliation(s)
- Rebecca Stevenson
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Evgeniia Samokhina
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Ilaria Rossetti
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - John W. Morley
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- International Centre for Neuromorphic Systems, The MARCS Institute for Brain, Behaviour and Development, Penrith, NSW, Australia
| |
Collapse
|
23
|
Swanson RA. A thermodynamic function of glycogen in brain and muscle. Prog Neurobiol 2020; 189:101787. [PMID: 32151532 PMCID: PMC11156230 DOI: 10.1016/j.pneurobio.2020.101787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/30/2020] [Accepted: 03/03/2020] [Indexed: 11/20/2022]
Abstract
Brain and muscle glycogen are generally thought to function as local glucose reserves, for use during transient mismatches between glucose supply and demand. However, quantitative measures show that glucose supply is likely never rate-limiting for energy metabolism in either brain or muscle under physiological conditions. These tissues nevertheless do utilize glycogen during increased energy demand, despite the availability of free glucose, and despite the ATP cost of cycling glucose through glycogen polymer. This seemingly wasteful process can be explained by considering the effect of glycogenolysis on the amount of energy obtained from ATP (ΔG'ATP). The amount of energy obtained from ATP is reduced by elevations in inorganic phosphate (Pi). Glycogen utilization sequesters Pi in the glycogen phosphorylase reaction and in downstream phosphorylated glycolytic intermediates, thereby buffering Pi elevations and maximizing energy yield at sites of rapid ATP consumption. This thermodynamic effect of glycogen may be particularly important in the narrow, spatially constrained astrocyte processes that ensheath neuronal synapses and in cells such as astrocytes and myocytes that release Pi from phosphocreatine during energy demand. The thermodynamic effect may also explain glycolytic super-compensation in brain when glycogen is not available, and aspects of exercise physiology in muscle glycogen phosphorylase deficiency (McArdle disease).
Collapse
Affiliation(s)
- Raymond A Swanson
- Neurology Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, USA; Dept. of Neurology, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
24
|
Takahashi S. Metabolic compartmentalization between astroglia and neurons in physiological and pathophysiological conditions of the neurovascular unit. Neuropathology 2020; 40:121-137. [PMID: 32037635 PMCID: PMC7187297 DOI: 10.1111/neup.12639] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022]
Abstract
Astroglia or astrocytes, the most abundant cells in the brain, are interposed between neuronal synapses and microvasculature in the brain gray matter. They play a pivotal role in brain metabolism as well as in the regulation of cerebral blood flow, taking advantage of their unique anatomical location. In particular, the astroglial cellular metabolic compartment exerts supportive roles in dedicating neurons to the generation of action potentials and protects them against oxidative stress associated with their high energy consumption. An impairment of normal astroglial function, therefore, can lead to numerous neurological disorders including stroke, neurodegenerative diseases, and neuroimmunological diseases, in which metabolic derangements accelerate neuronal damage. The neurovascular unit (NVU), the major components of which include neurons, microvessels, and astroglia, is a conceptual framework that was originally used to better understand the pathophysiology of cerebral ischemia. At present, the NVU is a tool for understanding normal brain physiology as well as the pathophysiology of numerous neurological disorders. The metabolic responses of astroglia in the NVU can be either protective or deleterious. This review focuses on three major metabolic compartments: (i) glucose and lactate; (ii) fatty acid and ketone bodies; and (iii) D- and L-serine. Both the beneficial and the detrimental roles of compartmentalization between neurons and astroglia will be discussed. A better understanding of the astroglial metabolic response in the NVU is expected to lead to the development of novel therapeutic strategies for diverse neurological diseases.
Collapse
Affiliation(s)
- Shinichi Takahashi
- Department of Neurology and StrokeSaitama Medical University International Medical CenterSaitamaJapan
- Department of PhysiologyKeio University School of MedicineTokyoJapan
| |
Collapse
|
25
|
Heterogeneity of Astrocytes in Grey and White Matter. Neurochem Res 2019; 46:3-14. [PMID: 31797158 DOI: 10.1007/s11064-019-02926-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023]
Abstract
Astrocytes are a diverse and heterogeneous type of glial cells. The major task of grey and white matter areas in the brain are computation of information at neuronal synapses and propagation of action potentials along axons, respectively, resulting in diverse demands for astrocytes. Adapting their function to the requirements in the local environment, astrocytes differ in morphology, gene expression, metabolism, and many other properties. Here we review the differential properties of protoplasmic astrocytes of grey matter and fibrous astrocytes located in white matter in respect to glutamate and energy metabolism, to their function at the blood-brain interface and to coupling via gap junctions. Finally, we discuss how this astrocytic heterogeneity might contribute to the different susceptibility of grey and white matter to ischemic insults.
Collapse
|
26
|
Wilson DF, Matschinsky FM. Hyperbaric oxygen toxicity in brain: A case of hyperoxia induced hypoglycemic brain syndrome. Med Hypotheses 2019; 132:109375. [PMID: 31454640 DOI: 10.1016/j.mehy.2019.109375] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/09/2019] [Accepted: 08/18/2019] [Indexed: 12/25/2022]
Abstract
Hyperbaric oxygen exposure is a recent hazzard for higher animals that originated as humans began underwater construction, exploration, and sports. Exposure can lead to abnormal brain EEG, convulsions, and death, the time to onset of each stage of pathology decreasing with increase in oxygen pressure. We provide evidence that hyperoxia, through oxidative phosphorylation, increases the energy state ([ATP]/[ADP][Pi]) of cells critical to providing glucose to cells behind the blood brain barrier (BBB). Brain cells without an absolute dependence on glucose metabolism; i.e. those having sufficient ATP synthesis using lactate and glutamate as oxidizable substrates, are not themselves very adversely affected by hyperoxia. The increased energy state and decrease in free [AMP], however, suppress glucose transport through the blood brain barrier (BBB) and into cells behind the BBB. Glucose has to pass in sequence through three steps of transport by facilitated diffusion and transporter activity for each step is regulated in part by AMP dependent protein kinase. The physiological role of this regulation is to increase glucose transport in response to hypoxia and/or systemic hypoglycemia. Hyperoxia, however, through unphysiological decrease in free [AMP] suppresses 1) glucose transport through the BBB (endothelial GLUT1 transporters) into cerebrospinal fluid (CSF); 2) glucose transport from CSF into cells behind the BBB (GLUT3 transporters) and (GLUT4 transporters). Cumulative suppression of glucose transport results in local regions of hypoglycemia and induces hypoglycemic failure. It is suggested that failure is initiated at axons and synapses with insufficient mitochondria to meet their energy requirements.
Collapse
Affiliation(s)
- David F Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Franz M Matschinsky
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Metabolic perturbations after pediatric TBI: It's not just about glucose. Exp Neurol 2019; 316:74-84. [PMID: 30951705 DOI: 10.1016/j.expneurol.2019.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/13/2019] [Accepted: 03/30/2019] [Indexed: 12/22/2022]
Abstract
Improved patient survival following pediatric traumatic brain injury (TBI) has uncovered a currently limited understanding of both the adaptive and maladaptive metabolic perturbations that occur during the acute and long-term phases of recovery. While much is known about the redundancy of metabolic pathways that provide adequate energy and substrates for normal brain growth and development, the field is only beginning to characterize perturbations in these metabolic pathways after pediatric TBI. To date, the majority of studies have focused on dysregulated oxidative glucose metabolism after injury; however, the immature brain is well-equipped to use alternative substrates to fuel energy production, growth, and development. A comprehensive understanding of metabolic changes associated with pediatric TBI cannot be limited to investigations of glucose metabolism alone. All energy substrates used by the brain should be considered in developing nutritional and pharmacological interventions for pediatric head trauma. This review summarizes post-injury changes in brain metabolism of glucose, lipids, ketone bodies, and amino acids with discussion of the therapeutic potential of altering substrate utilization to improve pediatric TBI outcomes.
Collapse
|
28
|
The Lactate Receptor HCAR1 Modulates Neuronal Network Activity through the Activation of G α and G βγ Subunits. J Neurosci 2019; 39:4422-4433. [PMID: 30926749 DOI: 10.1523/jneurosci.2092-18.2019] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/28/2022] Open
Abstract
The discovery of a G-protein-coupled receptor for lactate named hydroxycarboxylic acid receptor 1 (HCAR1) in neurons has pointed to additional nonmetabolic effects of lactate for regulating neuronal network activity. In this study, we characterized the intracellular pathways engaged by HCAR1 activation, using mouse primary cortical neurons from wild-type (WT) and HCAR1 knock-out (KO) mice from both sexes. Using whole-cell patch clamp, we found that the activation of HCAR1 with 3-chloro-5-hydroxybenzoic acid (3Cl-HBA) decreased miniature EPSC frequency, increased paired-pulse ratio, decreased firing frequency, and modulated membrane intrinsic properties. Using fast calcium imaging, we show that HCAR1 agonists 3,5-dihydroxybenzoic acid, 3Cl-HBA, and lactate decreased by 40% spontaneous calcium spiking activity of primary cortical neurons from WT but not from HCAR1 KO mice. Notably, in neurons lacking HCAR1, the basal activity was increased compared with WT. HCAR1 mediates its effect in neurons through a Giα-protein. We observed that the adenylyl cyclase-cAMP-protein kinase A axis is involved in HCAR1 downmodulation of neuronal activity. We found that HCAR1 interacts with adenosine A1, GABAB, and α2A-adrenergic receptors, through a mechanism involving both its Giα and Giβγ subunits, resulting in a complex modulation of neuronal network activity. We conclude that HCAR1 activation in neurons causes a downmodulation of neuronal activity through presynaptic mechanisms and by reducing neuronal excitability. HCAR1 activation engages both Giα and Giβγ intracellular pathways to functionally interact with other Gi-coupled receptors for the fine tuning of neuronal activity.SIGNIFICANCE STATEMENT Expression of the lactate receptor hydroxycarboxylic acid receptor 1 (HCAR1) was recently described in neurons. Here, we describe the physiological role of this G-protein-coupled receptor (GPCR) and its activation in neurons, providing information on its expression and mechanism of action. We dissected out the intracellular pathway through which HCAR1 activation tunes down neuronal network activity. For the first time, we provide evidence for the functional cross talk of HCAR1 with other GPCRs, such as GABAB, adenosine A1- and α2A-adrenergic receptors. These results set HCAR1 as a new player for the regulation of neuronal network activity acting in concert with other established receptors. Thus, HCAR1 represents a novel therapeutic target for pathologies characterized by network hyperexcitability dysfunction, such as epilepsy.
Collapse
|
29
|
Wu L, Wong CP, Swanson RA. Methodological considerations for studies of brain glycogen. J Neurosci Res 2019; 97:914-922. [PMID: 30892752 DOI: 10.1002/jnr.24412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 01/02/2023]
Abstract
Glycogen stores in the brain have been recognized for decades, but the underlying physiological function of this energy reserve remains elusive. This uncertainty stems in part from several technical challenges inherent in the study of brain glycogen metabolism. These include low glycogen content in the brain, non-homogeneous labeling of glycogen by radiotracers, rapid glycogenolysis during postmortem tissue handling, and effects of the stress response on brain glycogen turnover. Here we briefly review the aspects of the glycogen structure and metabolism that bear on these technical challenges and present ways they can be addressed.
Collapse
Affiliation(s)
- Long Wu
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, San Francisco, California
| | - Candance P Wong
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, San Francisco, California
| | - Raymond A Swanson
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, San Francisco, California
| |
Collapse
|
30
|
Abstract
Glucose is the long-established, obligatory fuel for brain that fulfills many critical functions, including ATP production, oxidative stress management, and synthesis of neurotransmitters, neuromodulators, and structural components. Neuronal glucose oxidation exceeds that in astrocytes, but both rates increase in direct proportion to excitatory neurotransmission; signaling and metabolism are closely coupled at the local level. Exact details of neuron-astrocyte glutamate-glutamine cycling remain to be established, and the specific roles of glucose and lactate in the cellular energetics of these processes are debated. Glycolysis is preferentially upregulated during brain activation even though oxygen availability is sufficient (aerobic glycolysis). Three major pathways, glycolysis, pentose phosphate shunt, and glycogen turnover, contribute to utilization of glucose in excess of oxygen, and adrenergic regulation of aerobic glycolysis draws attention to astrocytic metabolism, particularly glycogen turnover, which has a high impact on the oxygen-carbohydrate mismatch. Aerobic glycolysis is proposed to be predominant in young children and specific brain regions, but re-evaluation of data is necessary. Shuttling of glucose- and glycogen-derived lactate from astrocytes to neurons during activation, neurotransmission, and memory consolidation are controversial topics for which alternative mechanisms are proposed. Nutritional therapy and vagus nerve stimulation are translational bridges from metabolism to clinical treatment of diverse brain disorders.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas ; and Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| |
Collapse
|
31
|
Dienel GA. Does shuttling of glycogen-derived lactate from astrocytes to neurons take place during neurotransmission and memory consolidation? J Neurosci Res 2019; 97:863-882. [PMID: 30667077 DOI: 10.1002/jnr.24387] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/24/2018] [Accepted: 01/07/2019] [Indexed: 12/17/2022]
Abstract
Glycogen levels in resting brain and its utilization rates during brain activation are high, but the functions fulfilled by glycogenolysis in living brain are poorly understood. Studies in cultured astrocytes have identified glycogen as the preferred fuel to provide ATP for Na+ ,K+ -ATPase for the uptake of extracellular K+ and for Ca2+ -ATPase to pump Ca2+ into the endoplasmic reticulum. Studies in astrocyte-neuron co-cultures led to the suggestion that glycogen-derived lactate is shuttled to neurons as oxidative fuel to support glutamatergic neurotransmission. Furthermore, both knockout of brain glycogen synthase and inhibition of glycogenolysis prior to a memory-evoking event impair memory consolidation, and shuttling of glycogen-derived lactate as neuronal fuel was postulated to be required for memory. However, lactate shuttling has not been measured in any of these studies, and procedures to inhibit glycogenolysis and neuronal lactate uptake are not specific. Testable alternative mechanisms to explain the observed findings are proposed: (i) disruption of K+ and Ca2+ homeostasis, (ii) release of gliotransmitters, (iii) imposition of an energy crisis on astrocytes and neurons by inhibition of mitochondrial pyruvate transport by compounds used to block neuronal monocarboxylic acid transporters, and (iv) inhibition of astrocytic filopodial movements that secondarily interfere with glutamate and K+ uptake from the synaptic cleft. Evidence that most pyruvate/lactate derived from glycogen is not oxidized and does not accumulate suggests predominant glycolytic metabolism of glycogen to support astrocytic energy demands. Sparing of blood-borne glucose for use by neurons is a reasonable explanation for the requirement for glycogenolysis in neurotransmission and memory processing.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
32
|
Glycogenolysis in Cerebral Cortex During Sensory Stimulation, Acute Hypoglycemia, and Exercise: Impact on Astrocytic Energetics, Aerobic Glycolysis, and Astrocyte-Neuron Interactions. ADVANCES IN NEUROBIOLOGY 2019; 23:209-267. [DOI: 10.1007/978-3-030-27480-1_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Dienel GA, Carlson GM. Major Advances in Brain Glycogen Research: Understanding of the Roles of Glycogen Have Evolved from Emergency Fuel Reserve to Dynamic, Regulated Participant in Diverse Brain Functions. ADVANCES IN NEUROBIOLOGY 2019; 23:1-16. [DOI: 10.1007/978-3-030-27480-1_1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
DiNuzzo M, Walls AB, Öz G, Seaquist ER, Waagepetersen HS, Bak LK, Nedergaard M, Schousboe A. State-Dependent Changes in Brain Glycogen Metabolism. ADVANCES IN NEUROBIOLOGY 2019; 23:269-309. [PMID: 31667812 DOI: 10.1007/978-3-030-27480-1_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A fundamental understanding of glycogen structure, concentration, polydispersity and turnover is critical to qualify the role of glycogen in the brain. These molecular and metabolic features are under the control of neuronal activity through the interdependent action of neuromodulatory tone, ionic homeostasis and availability of metabolic substrates, all variables that concur to define the state of the system. In this chapter, we briefly describe how glycogen responds to selected behavioral, nutritional, environmental, hormonal, developmental and pathological conditions. We argue that interpreting glycogen metabolism through the lens of brain state is an effective approach to establish the relevance of energetics in connecting molecular and cellular neurophysiology to behavior.
Collapse
Affiliation(s)
- Mauro DiNuzzo
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Anne B Walls
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | | | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lasse K Bak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maiken Nedergaard
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY, USA
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Wu L, Butler NJM, Swanson RA. Technical and Comparative Aspects of Brain Glycogen Metabolism. ADVANCES IN NEUROBIOLOGY 2019; 23:169-185. [DOI: 10.1007/978-3-030-27480-1_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Rothman DL, Dienel GA. Development of a Model to Test Whether Glycogenolysis Can Support Astrocytic Energy Demands of Na +, K +-ATPase and Glutamate-Glutamine Cycling, Sparing an Equivalent Amount of Glucose for Neurons. ADVANCES IN NEUROBIOLOGY 2019; 23:385-433. [PMID: 31667817 DOI: 10.1007/978-3-030-27480-1_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent studies of glycogen in brain have suggested a much more important role in brain energy metabolism and function than previously recognized, including findings of much higher than previously recognized concentrations, consumption at substantial rates compared with utilization of blood-borne glucose, and involvement in ion pumping and in neurotransmission and memory. However, it remains unclear how glycogenolysis is coupled to neuronal activity and provides support for neuronal as well as astroglial function. At present, quantitative aspects of glycogenolysis in brain functions are very difficult to assess due to its metabolic lability, heterogeneous distributions within and among cells, and extreme sensitivity to physiological stimuli. To begin to address this problem, the present study develops a model based on pathway fluxes, mass balance, and literature relevant to functions and turnover of pathways that intersect with glycogen mobilization. A series of equations is developed to describe the stoichiometric relationships between net glycogen consumption that is predominantly in astrocytes with the rate of the glutamate-glutamine cycle, rates of astrocytic and neuronal glycolytic and oxidative metabolism, and the energetics of sodium/potassium pumping in astrocytes and neurons during brain activation. Literature supporting the assumptions of the model is discussed in detail. The overall conclusion is that astrocyte glycogen metabolism is primarily coupled to neuronal function via fueling glycolytically pumping of Na+ and K+ and sparing glucose for neuronal oxidation, as opposed to previous proposals of coupling neurotransmission via glutamate transport, lactate shuttling, and neuronal oxidation of lactate.
Collapse
Affiliation(s)
- Douglas L Rothman
- Magnetic Resonance Research Center and Department of Radiology, Yale University, New Haven, CT, USA.
| | - Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
37
|
Rehni AK, Dave KR. Impact of Hypoglycemia on Brain Metabolism During Diabetes. Mol Neurobiol 2018; 55:9075-9088. [PMID: 29637442 PMCID: PMC6179939 DOI: 10.1007/s12035-018-1044-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/27/2018] [Indexed: 12/24/2022]
Abstract
Diabetes is a metabolic disease afflicting millions of people worldwide. A substantial fraction of world's total healthcare expenditure is spent on treating diabetes. Hypoglycemia is a serious consequence of anti-diabetic drug therapy, because it induces metabolic alterations in the brain. Metabolic alterations are one of the central mechanisms mediating hypoglycemia-related functional changes in the brain. Acute, chronic, and/or recurrent hypoglycemia modulate multiple metabolic pathways, and exposure to hypoglycemia increases consumption of alternate respiratory substrates such as ketone bodies, glycogen, and monocarboxylates in the brain. The aim of this review is to discuss hypoglycemia-induced metabolic alterations in the brain in glucose counterregulation, uptake, utilization and metabolism, cellular respiration, amino acid and lipid metabolism, and the significance of other sources of energy. The present review summarizes information on hypoglycemia-induced metabolic changes in the brain of diabetic and non-diabetic subjects and the manner in which they may affect brain function.
Collapse
Affiliation(s)
- Ashish K Rehni
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Miller School of Medicine, 1420 NW 9th Ave, NRB/203E, Miami, FL, 33136, USA
| | - Kunjan R Dave
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Department of Neurology, University of Miami Miller School of Medicine, 1420 NW 9th Ave, NRB/203E, Miami, FL, 33136, USA.
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
38
|
Schiffmann R, Wallace ME, Rinaldi D, Ledoux I, Luton MP, Coleman S, Akman HO, Martin K, Hogrel JY, Blankenship D, Turner J, Mochel F. A double-blind, placebo-controlled trial of triheptanoin in adult polyglucosan body disease and open-label, long-term outcome. J Inherit Metab Dis 2018; 41:877-883. [PMID: 29110179 DOI: 10.1007/s10545-017-0103-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/17/2017] [Accepted: 10/15/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Adult polyglucosan body disease (APBD) is a progressive neurometabolic disorder caused by a deficiency of glycogen branching enzyme. We tested the efficacy of triheptanoin as a therapy for patients with APBD based on the hypothesis that decreased glycogen degradation leads to brain energy deficit. METHODS AND RESULTS This was a two-site, randomized crossover trial of 23 patients (age 35-73 years; 63% men) who received triheptanoin or vegetable oil as placebo. The trial took place over 1 year and was followed by a 4-year open-label phase. Generalized linear mixed models were used to analyze this study. At baseline, using the 6-min walk test, patients could walk a mean of 389 ± 164 m (range 95-672; n = 19), highlighting the great clinical heterogeneity of our cohort. The overall mean difference between patients on triheptanoin versus placebo was 6 m; 95% confidence interval (CI) -11 to 22; p = 0.50. Motion capture gait analysis, gait quality, and stair climbing showed no consistent direction of change. All secondary endpoints were statistically nonsignificant after false discovery rate adjustment. Triheptanoin was safe and generally well tolerated. During the open-label phase of the study, the most affected patients at baseline kept deteriorating while mildly disabled patients remained notably stable up to 4 years. CONCLUSIONS We cannot conclude that triheptanoin was effective in the treatment of APBD over a 6-month period, but we found it had a good safety profile. This study also emphasizes the difficulty of conducting trials in very rare diseases presenting with a wide clinical heterogeneity. ClinicalTrials.gov Identifier: NCT00947960.
Collapse
Affiliation(s)
- Raphael Schiffmann
- Baylor Scott & White Research Institute, Dallas, TX, USA.
- Institute of Metabolic Disease, 3812 Elm Street, Dallas, TX, 75226, USA.
| | - Mary E Wallace
- Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Daisy Rinaldi
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Brain and Spine Institute, Paris, France
| | - Isabelle Ledoux
- Institute of Myology, Neuromuscular Physiology and Evaluation Lab, F-75013, Paris, France
| | - Marie-Pierre Luton
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Brain and Spine Institute, Paris, France
| | - Scott Coleman
- Department of Orthopedics, Baylor University Medical Center, Dallas, TX, USA
| | - H Orhan Akman
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Karine Martin
- Clinical Research Unit, AP-HP, Pitié-Salpêtrière University Hospital, Paris, France
| | - Jean-Yves Hogrel
- Institute of Myology, Neuromuscular Physiology and Evaluation Lab, F-75013, Paris, France
| | | | - Jacob Turner
- Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Fanny Mochel
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Brain and Spine Institute, Paris, France
- Reference Center for Neurometabolic Diseases, Pitié-Salpêtrière University Hospital and Neurometabolic Research Group, University Pierre and Marie Curie, Paris, France
- Department of Genetics, AP-HP, Pitié-Salpêtrière University Hospital, Paris, France
| |
Collapse
|
39
|
Bak LK, Walls AB, Schousboe A, Waagepetersen HS. Astrocytic glycogen metabolism in the healthy and diseased brain. J Biol Chem 2018; 293:7108-7116. [PMID: 29572349 DOI: 10.1074/jbc.r117.803239] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The brain contains a fairly low amount of glycogen, mostly located in astrocytes, a fact that has prompted the suggestion that glycogen does not have a significant physiological role in the brain. However, glycogen metabolism in astrocytes is essential for several key physiological processes and is adversely affected in disease. For instance, diminished ability to break down glycogen impinges on learning, and epilepsy, Alzheimer's disease, and type 2 diabetes are all associated with abnormal astrocyte glycogen metabolism. Glycogen metabolism supports astrocytic K+ and neurotransmitter glutamate uptake and subsequent glutamine synthesis-three fundamental steps in excitatory signaling at most brain synapses. Thus, there is abundant evidence for a key role of glycogen in brain function. Here, we summarize the physiological brain functions that depend on glycogen, discuss glycogen metabolism in disease, and investigate how glycogen breakdown is regulated at the cellular and molecular levels.
Collapse
Affiliation(s)
- Lasse K Bak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2 Universitetsparken, 2100 Copenhagen, Denmark.
| | - Anne B Walls
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2 Universitetsparken, 2100 Copenhagen, Denmark.
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2 Universitetsparken, 2100 Copenhagen, Denmark
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2 Universitetsparken, 2100 Copenhagen, Denmark
| |
Collapse
|
40
|
Sonnay S, Gruetter R, Duarte JMN. How Energy Metabolism Supports Cerebral Function: Insights from 13C Magnetic Resonance Studies In vivo. Front Neurosci 2017; 11:288. [PMID: 28603480 PMCID: PMC5445183 DOI: 10.3389/fnins.2017.00288] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/04/2017] [Indexed: 12/25/2022] Open
Abstract
Cerebral function is associated with exceptionally high metabolic activity, and requires continuous supply of oxygen and nutrients from the blood stream. Since the mid-twentieth century the idea that brain energy metabolism is coupled to neuronal activity has emerged, and a number of studies supported this hypothesis. Moreover, brain energy metabolism was demonstrated to be compartmentalized in neurons and astrocytes, and astrocytic glycolysis was proposed to serve the energetic demands of glutamatergic activity. Shedding light on the role of astrocytes in brain metabolism, the earlier picture of astrocytes being restricted to a scaffold-associated function in the brain is now out of date. With the development and optimization of non-invasive techniques, such as nuclear magnetic resonance spectroscopy (MRS), several groups have worked on assessing cerebral metabolism in vivo. In this context, 1H MRS has allowed the measurements of energy metabolism-related compounds, whose concentrations can vary under different brain activation states. 1H-[13C] MRS, i.e., indirect detection of signals from 13C-coupled 1H, together with infusion of 13C-enriched glucose has provided insights into the coupling between neurotransmission and glucose oxidation. Although these techniques tackle the coupling between neuronal activity and metabolism, they lack chemical specificity and fail in providing information on neuronal and glial metabolic pathways underlying those processes. Currently, the improvement of detection modalities (i.e., direct detection of 13C isotopomers), the progress in building adequate mathematical models along with the increase in magnetic field strength now available render possible detailed compartmentalized metabolic flux characterization. In particular, direct 13C MRS offers more detailed dataset acquisitions and provides information on metabolic interactions between neurons and astrocytes, and their role in supporting neurotransmission. Here, we review state-of-the-art MR methods to study brain function and metabolism in vivo, and their contribution to the current understanding of how astrocytic energy metabolism supports glutamatergic activity and cerebral function. In this context, recent data suggests that astrocytic metabolism has been underestimated. Namely, the rate of oxidative metabolism in astrocytes is about half of that in neurons, and it can increase as much as the rate of neuronal metabolism in response to sensory stimulation.
Collapse
Affiliation(s)
- Sarah Sonnay
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de LausanneLausanne, Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de LausanneLausanne, Switzerland.,Department of Radiology, University of LausanneLausanne, Switzerland.,Department of Radiology, University of GenevaGeneva, Switzerland
| | - João M N Duarte
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de LausanneLausanne, Switzerland
| |
Collapse
|
41
|
Glycogen Shunt Activity and Glycolytic Supercompensation in Astrocytes May Be Distinctly Mediated via the Muscle Form of Glycogen Phosphorylase. Neurochem Res 2017; 42:2490-2494. [DOI: 10.1007/s11064-017-2267-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/31/2017] [Accepted: 04/10/2017] [Indexed: 02/08/2023]
|
42
|
Tups A, Benzler J, Sergi D, Ladyman SR, Williams LM. Central Regulation of Glucose Homeostasis. Compr Physiol 2017; 7:741-764. [PMID: 28333388 DOI: 10.1002/cphy.c160015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Dienel GA. Lack of appropriate stoichiometry: Strong evidence against an energetically important astrocyte-neuron lactate shuttle in brain. J Neurosci Res 2017; 95:2103-2125. [PMID: 28151548 DOI: 10.1002/jnr.24015] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 11/28/2016] [Accepted: 12/16/2016] [Indexed: 12/22/2022]
Abstract
Glutamate-stimulated aerobic glycolysis in astrocytes coupled with lactate shuttling to neurons where it can be oxidized was proposed as a mechanism to couple excitatory neuronal activity with glucose utilization (CMRglc ) during brain activation. From the outset, this model was not viable because it did not fulfill critical stoichiometric requirements: (i) Calculated glycolytic rates and measured lactate release rates were discordant in cultured astrocytes. (ii) Lactate oxidation requires oxygen consumption, but the oxygen-glucose index (OGI, calculated as CMRO2 /CMRglc ) fell during activation in human brain, and the small rise in CMRO2 could not fully support oxidation of lactate produced by disproportionate increases in CMRglc . (iii) Labeled products of glucose metabolism are not retained in activated rat brain, indicating rapid release of a highly labeled, diffusible metabolite identified as lactate, thereby explaining the CMRglc -CMRO2 mismatch. Additional independent lines of evidence against lactate shuttling include the following: astrocytic oxidation of glutamate after its uptake can help "pay" for its uptake without stimulating glycolysis; blockade of glutamate receptors during activation in vivo prevents upregulation of metabolism and lactate release without impairing glutamate uptake; blockade of β-adrenergic receptors prevents the fall in OGI in activated human and rat brain while allowing glutamate uptake; and neurons upregulate glucose utilization in vivo and in vitro under many stimulatory conditions. Studies in immature cultured cells are not appropriate models for lactate shuttling in adult brain because of their incomplete development of metabolic capability and astrocyte-neuron interactions. Astrocyte-neuron lactate shuttling does not make large, metabolically significant contributions to energetics of brain activation. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
44
|
Dienel GA, Rothman DL, Nordström CH. Microdialysate concentration changes do not provide sufficient information to evaluate metabolic effects of lactate supplementation in brain-injured patients. J Cereb Blood Flow Metab 2016; 36:1844-1864. [PMID: 27604313 PMCID: PMC5094313 DOI: 10.1177/0271678x16666552] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/03/2016] [Indexed: 12/31/2022]
Abstract
Cerebral microdialysis is a widely used clinical tool for monitoring extracellular concentrations of selected metabolites after brain injury and to guide neurocritical care. Extracellular glucose levels and lactate/pyruvate ratios have high diagnostic value because they can detect hypoglycemia and deficits in oxidative metabolism, respectively. In addition, patterns of metabolite concentrations can distinguish between ischemia and mitochondrial dysfunction, and are helpful to choose and evaluate therapy. Increased intracranial pressure can be life-threatening after brain injury, and hypertonic solutions are commonly used for pressure reduction. Recent reports have advocated use of hypertonic sodium lactate, based on claims that it is glucose sparing and provides an oxidative fuel for injured brain. However, changes in extracellular concentrations in microdialysate are not evidence that a rise in extracellular glucose level is beneficial or that lactate is metabolized and improves neuroenergetics. The increase in glucose concentration may reflect inhibition of glycolysis, glycogenolysis, and pentose phosphate shunt pathway fluxes by lactate flooding in patients with mitochondrial dysfunction. In such cases, lactate will not be metabolizable and lactate flooding may be harmful. More rigorous approaches are required to evaluate metabolic and physiological effects of administration of hypertonic sodium lactate to brain-injured patients.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA, and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, USA
| | - Douglas L Rothman
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Carl-Henrik Nordström
- Department of Neurosurgery, Lund University Hospital, Lund, Sweden, and Department of Neurosurgery, Odense University Hospital, Odense, Denmark
| |
Collapse
|
45
|
Dienel GA, Cruz NF. Aerobic glycolysis during brain activation: adrenergic regulation and influence of norepinephrine on astrocytic metabolism. J Neurochem 2016; 138:14-52. [DOI: 10.1111/jnc.13630] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/24/2016] [Accepted: 03/31/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Gerald A. Dienel
- Department of Cell Biology and Physiology; University of New Mexico; Albuquerque; New Mexico USA
- Department of Neurology; University of Arkansas for Medical Sciences; Little Rock Arkansas USA
| | - Nancy F. Cruz
- Department of Neurology; University of Arkansas for Medical Sciences; Little Rock Arkansas USA
| |
Collapse
|
46
|
Gibbs ME. Role of Glycogenolysis in Memory and Learning: Regulation by Noradrenaline, Serotonin and ATP. Front Integr Neurosci 2016; 9:70. [PMID: 26834586 PMCID: PMC4717441 DOI: 10.3389/fnint.2015.00070] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/17/2015] [Indexed: 01/06/2023] Open
Abstract
This paper reviews the role played by glycogen breakdown (glycogenolysis) and glycogen re-synthesis in memory processing in two different chick brain regions, (1) the hippocampus and (2) the avian equivalent of the mammalian cortex, the intermediate medial mesopallium (IMM). Memory processing is regulated by the neuromodulators noradrenaline and serotonin soon after training glycogen breakdown and re-synthesis. In day-old domestic chicks, memory formation is dependent on the breakdown of glycogen (glycogenolysis) at three specific times during the first 60 min after learning (around 2.5, 30, and 55 min). The chicks learn to discriminate in a single trial between beads of two colors and tastes. Inhibition of glycogen breakdown by the inhibitor of glycogen phosphorylase 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) given at specific times prior to the formation of long-term memory prevents memory forming. Noradrenergic stimulation of cultured chicken astrocytes by a selective β2-adrenergic (AR) agonist reduces glycogen levels and we believe that in vivo this triggers memory consolidation at the second stage of glycogenolysis. Serotonin acting at 5-HT2B receptors acts on the first stage, but not on the second. We have shown that noradrenaline, acting via post-synaptic α2-ARs, is also responsible for the synthesis of glycogen and our experiments suggest that there is a readily accessible labile pool of glycogen in astrocytes which is depleted within 10 min if glycogen synthesis is inhibited. Endogenous ATP promotion of memory consolidation at 2.5 and 30 min is also dependent on glycogen breakdown. ATP acts at P2Y1 receptors and the action of thrombin suggests that it causes the release of internal calcium ([Ca2+]i) in astrocytes. Glutamate and GABA, the primary neurotransmitters in the brain, cannot be synthesized in neurons de novo and neurons rely on astrocytic glutamate synthesis, requiring glycogenolysis.
Collapse
Affiliation(s)
- Marie E Gibbs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville VIC, Australia
| |
Collapse
|
47
|
Falkowska A, Gutowska I, Goschorska M, Nowacki P, Chlubek D, Baranowska-Bosiacka I. Energy Metabolism of the Brain, Including the Cooperation between Astrocytes and Neurons, Especially in the Context of Glycogen Metabolism. Int J Mol Sci 2015; 16:25959-81. [PMID: 26528968 PMCID: PMC4661798 DOI: 10.3390/ijms161125939] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/27/2015] [Accepted: 10/16/2015] [Indexed: 01/15/2023] Open
Abstract
Glycogen metabolism has important implications for the functioning of the brain, especially the cooperation between astrocytes and neurons. According to various research data, in a glycogen deficiency (for example during hypoglycemia) glycogen supplies are used to generate lactate, which is then transported to neighboring neurons. Likewise, during periods of intense activity of the nervous system, when the energy demand exceeds supply, astrocyte glycogen is immediately converted to lactate, some of which is transported to the neurons. Thus, glycogen from astrocytes functions as a kind of protection against hypoglycemia, ensuring preservation of neuronal function. The neuroprotective effect of lactate during hypoglycemia or cerebral ischemia has been reported in literature. This review goes on to emphasize that while neurons and astrocytes differ in metabolic profile, they interact to form a common metabolic cooperation.
Collapse
Affiliation(s)
- Anna Falkowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24, 71-460 Szczecin, Poland.
| | - Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Przemysław Nowacki
- Department of Neurology, Pomeranian Medical University, Unii Lubelskiej 1, 71-225 Szczecin, Poland.
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| |
Collapse
|
48
|
Tang F, Lane S, Korsak A, Paton JFR, Gourine AV, Kasparov S, Teschemacher AG. Lactate-mediated glia-neuronal signalling in the mammalian brain. Nat Commun 2015; 5:3284. [PMID: 24518663 PMCID: PMC3926012 DOI: 10.1038/ncomms4284] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 01/20/2014] [Indexed: 12/12/2022] Open
Abstract
Astrocytes produce and release L-lactate as a potential source of energy for neurons. Here we present evidence that L-lactate, independently of its caloric value, serves as an astrocytic signalling molecule in the locus coeruleus (LC). The LC is the principal source of norepinephrine to the frontal brain and thus one of the most influential modulatory centers of the brain. Optogenetically activated astrocytes release L-lactate, which excites LC neurons and triggers release of norepinephrine. Exogenous L-lactate within the physiologically relevant concentration range mimics these effects. L-lactate effects are concentration-dependent, stereo-selective, independent of L-lactate uptake into neurons and involve a cAMP-mediated step. In vivo injections of L-lactate in the LC evokes arousal similar to the excitatory transmitter, L-glutamate. Our results imply the existence of an unknown receptor for this ‘glio-transmitter’. The astrocytic release of the metabolite L-lactate is implicated in modulating neuronal activity in the brain. Here, the authors show that L-lactate released from astrocytes excites noradrenergic neurons in the locus coeruleus and triggers the release of noradrenaline, increasing network excitability.
Collapse
Affiliation(s)
- F Tang
- 1] School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK [2]
| | - S Lane
- 1] School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK [2]
| | - A Korsak
- Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK
| | - J F R Paton
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | - A V Gourine
- Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK
| | - S Kasparov
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | - A G Teschemacher
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
49
|
Duarte JMN. Metabolic Alterations Associated to Brain Dysfunction in Diabetes. Aging Dis 2015; 6:304-21. [PMID: 26425386 DOI: 10.14336/ad.2014.1104] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/04/2014] [Indexed: 12/13/2022] Open
Abstract
From epidemiological studies it is known that diabetes patients display increased risk of developing dementia. Moreover, cognitive impairment and Alzheimer's disease (AD) are also accompanied by impaired glucose homeostasis and insulin signalling. Although there is plenty of evidence for a connection between insulin-resistant diabetes and AD, definitive linking mechanisms remain elusive. Cerebrovascular complications of diabetes, alterations in glucose homeostasis and insulin signalling, as well as recurrent hypoglycaemia are the factors that most likely affect brain function and structure. While difficult to study in patients, the mechanisms by which diabetes leads to brain dysfunction have been investigated in experimental models that display phenotypes of the disease. The present article reviews the impact of diabetes and AD on brain structure and function, and discusses recent findings from translational studies in animal models that link insulin resistance to metabolic alterations that underlie brain dysfunction. Such modifications of brain metabolism are likely to occur at early stages of neurodegeneration and impact regional neurochemical profiles and constitute non-invasive biomarkers detectable by magnetic resonance spectroscopy (MRS).
Collapse
Affiliation(s)
- João M N Duarte
- Laboratory for Functional and Metabolic Imaging (LIFMET), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
50
|
DiNuzzo M, Giove F, Maraviglia B, Mangia S. Monoaminergic Control of Cellular Glucose Utilization by Glycogenolysis in Neocortex and Hippocampus. Neurochem Res 2015; 40:2493-504. [PMID: 26168779 DOI: 10.1007/s11064-015-1656-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/23/2015] [Accepted: 06/30/2015] [Indexed: 01/01/2023]
Abstract
Brainstem nuclei are the principal sites of monoamine (MA) innervation to major forebrain structures. In the cortical grey matter, increased secretion of MA neuromodulators occurs in response to a wealth of environmental and homeostatic challenges, whose onset is associated with rapid, preparatory changes in neural activity as well as with increases in energy metabolism. Blood-borne glucose is the main substrate for energy production in the brain. Once entered the tissue, interstitial glucose is equally accessible to neurons and astrocytes, the two cell types accounting for most of cellular volume and energy metabolism in neocortex and hippocampus. Astrocytes also store substantial amounts of glycogen, but non-stimulated glycogen turnover is very small. The rate of cellular glucose utilization in the brain is largely determined by hexokinase, which under basal conditions is more than 90 % inhibited by its product glucose-6-phosphate (Glc-6-P). During rapid increases in energy demand, glycogen is a primary candidate in modulating the intracellular level of Glc-6-P, which can occur only in astrocytes. Glycogenolysis can produce Glc-6-P at a rate higher than uptake and phosphorylation of glucose. MA neurotransmitter are released extrasinaptically by brainstem neurons projecting to neocortex and hippocampus, thus activating MA receptors located on both neuronal and astrocytic plasma membrane. Importantly, MAs are glycogenolytic agents and thus they are exquisitely suitable for regulation of astrocytic Glc-6-P concentration, upstream substrate flow through hexokinase and hence cellular glucose uptake. Conforming to such mechanism, Gerald A. Dienel and Nancy F. Cruz recently suggested that activation of noradrenergic locus coeruleus might reversibly block astrocytic glucose uptake by stimulating glycogenolysis in these cells, thereby anticipating the rise in glucose need by active neurons. In this paper, we further develop the idea that the whole monoaminergic system modulates both function and metabolism of forebrain regions in a manner mediated by glycogen mobilization in astrocytes.
Collapse
Affiliation(s)
- Mauro DiNuzzo
- Magnetic Resonance for Brain Investigation Laboratory, Museo Storico della Fisica e Centro di Studi e Ricerche "Enrico Fermi", Rome, Italy. .,Magnetic Resonance for Brain Investigation Laboratory, Via Ardeatina 306, 00179, Rome, Italy.
| | - Federico Giove
- Magnetic Resonance for Brain Investigation Laboratory, Museo Storico della Fisica e Centro di Studi e Ricerche "Enrico Fermi", Rome, Italy.,Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy
| | - Bruno Maraviglia
- Magnetic Resonance for Brain Investigation Laboratory, Museo Storico della Fisica e Centro di Studi e Ricerche "Enrico Fermi", Rome, Italy.,Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Silvia Mangia
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|