1
|
Kukkonen JP, Jacobson LH, Hoyer D, Rinne MK, Borgland SL. International Union of Basic and Clinical Pharmacology CXIV: Orexin Receptor Function, Nomenclature and Pharmacology. Pharmacol Rev 2024; 76:625-688. [PMID: 38902035 DOI: 10.1124/pharmrev.123.000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
The orexin system consists of the peptide transmitters orexin-A and -B and the G protein-coupled orexin receptors OX1 and OX2 Orexin receptors are capable of coupling to all four families of heterotrimeric G proteins, and there are also other complex features of the orexin receptor signaling. The system was discovered 25 years ago and was immediately identified as a central regulator of sleep and wakefulness; this is exemplified by the symptomatology of the disorder narcolepsy with cataplexy, in which orexinergic neurons degenerate. Subsequent translation of these findings into drug discovery and development has resulted to date in three clinically used orexin receptor antagonists to treat insomnia. In addition to sleep and wakefulness, the orexin system appears to be a central player at least in addiction and reward, and has a role in depression, anxiety and pain gating. Additional antagonists and agonists are in development to treat, for instance, insomnia, narcolepsy with or without cataplexy and other disorders with excessive daytime sleepiness, depression with insomnia, anxiety, schizophrenia, as well as eating and substance use disorders. The orexin system has thus proved an important regulator of numerous neural functions and a valuable drug target. Orexin prepro-peptide and orexin receptors are also expressed outside the central nervous system, but their potential physiological roles there remain unknown. SIGNIFICANCE STATEMENT: The orexin system was discovered 25 years ago and immediately emerged as an essential sleep-wakefulness regulator. This discovery has tremendously increased the understanding of these processes and has thus far resulted in the market approval of three orexin receptor antagonists, which promote more physiological aspects of sleep than previous hypnotics. Further, orexin receptor agonists and antagonists with different pharmacodynamic properties are in development since research has revealed additional potential therapeutic indications. Orexin receptor signaling is complex and may represent novel features.
Collapse
Affiliation(s)
- Jyrki P Kukkonen
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Laura H Jacobson
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Daniel Hoyer
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Maiju K Rinne
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Stephanie L Borgland
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| |
Collapse
|
2
|
Integration and Spatial Organization of Signaling by G Protein-Coupled Receptor Homo- and Heterodimers. Biomolecules 2021; 11:biom11121828. [PMID: 34944469 PMCID: PMC8698773 DOI: 10.3390/biom11121828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 01/14/2023] Open
Abstract
Information flow from a source to a receiver becomes informative when the recipient can process the signal into a meaningful form. Information exchange and interpretation is essential in biology and understanding how cells integrate signals from a variety of information-coding molecules into complex orchestrated responses is a major challenge for modern cell biology. In complex organisms, cell to cell communication occurs mostly through neurotransmitters and hormones, and receptors are responsible for signal recognition at the membrane level and information transduction inside the cell. The G protein-coupled receptors (GPCRs) are the largest family of membrane receptors, with nearly 800 genes coding for these proteins. The recognition that GPCRs may physically interact with each other has led to the hypothesis that their dimeric state can provide the framework for temporal coincidence in signaling pathways. Furthermore, the formation of GPCRs higher order oligomers provides the structural basis for organizing distinct cell compartments along the plasma membrane where confined increases in second messengers may be perceived and discriminated. Here, we summarize evidence that supports these conjectures, fostering new ideas about the physiological role played by receptor homo- and hetero-oligomerization in cell biology.
Collapse
|
3
|
Split-Tobacco Etch Virus (Split-TEV) Method in G Protein-Coupled Receptor Interacting Proteins. Methods Mol Biol 2021; 2268:223-232. [PMID: 34085272 DOI: 10.1007/978-1-0716-1221-7_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Split-TEV assay enables the identification of protein-protein interaction in mammalian cells. This method is based on the split of tobacco etch virus (TEV) protease in two fragments, where each fragment is fused to the candidate proteins predicted to interact. If there is indeed an interaction between both proteins, TEV protease reconstitutes its proteolytic activity and this activity is used to induce the expression of some reporter genes. However, some studies have detected unspecific interaction between membrane proteins due to its higher tendency to aggregate. Here we describe a variation of the Split-TEV method developed with the aim to increase the specificity in the study of G protein-coupled receptor (GPCR) interacting proteins. This approach for monitoring interactions between GPCRs is an easy and robust assay and offers good perspectives in drug discovery.
Collapse
|
4
|
Fasciani I, Petragnano F, Aloisi G, Marampon F, Carli M, Scarselli M, Maggio R, Rossi M. Allosteric Modulators of G Protein-Coupled Dopamine and Serotonin Receptors: A New Class of Atypical Antipsychotics. Pharmaceuticals (Basel) 2020; 13:ph13110388. [PMID: 33202534 PMCID: PMC7696972 DOI: 10.3390/ph13110388] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/23/2022] Open
Abstract
Schizophrenia was first described by Emil Krapelin in the 19th century as one of the major mental illnesses causing disability worldwide. Since the introduction of chlorpromazine in 1952, strategies aimed at modifying the activity of dopamine receptors have played a major role for the treatment of schizophrenia. The introduction of atypical antipsychotics with clozapine broadened the range of potential targets for the treatment of this psychiatric disease, as they also modify the activity of the serotoninergic receptors. Interestingly, all marketed drugs for schizophrenia bind to the orthosteric binding pocket of the receptor as competitive antagonists or partial agonists. In recent years, a strong effort to develop allosteric modulators as potential therapeutic agents for schizophrenia was made, mainly for the several advantages in their use. In particular, the allosteric binding sites are topographically distinct from the orthosteric pockets, and thus drugs targeting these sites have a higher degree of receptor subunit specificity. Moreover, “pure” allosteric modulators maintain the temporal and spatial fidelity of native orthosteric ligand. Furthermore, allosteric modulators have a “ceiling effect”, and their modulatory effect is saturated above certain concentrations. In this review, we summarize the progresses made in the identification of allosteric drugs for dopamine and serotonin receptors, which could lead to a new generation of atypical antipsychotics with a better profile, especially in terms of reduced side effects.
Collapse
Affiliation(s)
- Irene Fasciani
- Department of Biotechnological and Applied Clinical Sciences, University of l’Aquila, 67100 L’Aquila, Italy; (I.F.); (F.P.); (G.A.)
| | - Francesco Petragnano
- Department of Biotechnological and Applied Clinical Sciences, University of l’Aquila, 67100 L’Aquila, Italy; (I.F.); (F.P.); (G.A.)
| | - Gabriella Aloisi
- Department of Biotechnological and Applied Clinical Sciences, University of l’Aquila, 67100 L’Aquila, Italy; (I.F.); (F.P.); (G.A.)
| | - Francesco Marampon
- Department of Radiotherapy, “Sapienza” University of Rome, Policlinico Umberto I, 00161 Rome, Italy;
| | - Marco Carli
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (M.C.); (M.S.)
| | - Marco Scarselli
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (M.C.); (M.S.)
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of l’Aquila, 67100 L’Aquila, Italy; (I.F.); (F.P.); (G.A.)
- Correspondence:
| | - Mario Rossi
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK;
| |
Collapse
|
5
|
Allosteric interactions via the orthosteric ligand binding sites in a constitutive G-protein-coupled receptor homodimer. Pharmacol Res 2020; 166:105116. [PMID: 32783977 DOI: 10.1016/j.phrs.2020.105116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 11/23/2022]
Abstract
I interpret some recent data to indicate that co-operative effects take place between the (identical) orthosteric binding sites in a G-protein-coupled receptor dimer. In the current study, the reasonability of this concept was tested by creating a mathematical model. The model is composed of a symmetrical constitutive receptor dimer in which the protomers are able to affect each other allosterically, and it includes binding, receptor activation and signal amplification steps. The model was utilized for analyses of previous data as well as simulations of predicted behaviour. The model demonstrates the behaviour stated in the hypotheses, i.e. even an apparently neutral receptor ligand can allosterically affect agonist binding or receptor activation by binding to the normal orthosteric ligand binding site. Therewith the speculated allosteric action originating from the orthosteric binding site of the dimeric receptor is a realistic possibility. The results of the simulations and curve fitting constitute a reasonable starting point for further studies, and the model can be utilized to design meaningful experiments to investigate these questions.
Collapse
|
6
|
Rossi M, Taddei AR, Fasciani I, Maggio R, Giorgi F. The cell biology of the thyroid-disrupting mechanism of dichlorodiphenyltrichloroethane (DDT). J Endocrinol Invest 2018. [PMID: 28639207 DOI: 10.1007/s40618-017-0716-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Dichlorodiphenyltrichloroethane (DDT) is an organochlorine known for its pesticide properties and for its negative effects on human health. It was banned in most countries for its toxicity to the endocrine system, but due to its persistence at clinically relevant concentrations in both soil and animal tissues, DDT is still linked to several health and social problems. METHODS We have previously shown that DDT exposure is causally related to the extracellular release of vesicular organelles such as microvesicles and/or exosomes by using immunocytochemistry with gold-tagged antibodies and various fluorescent membrane markers. RESULTS It is now well recognized that microvesicles and/or exosomes organelles are implicated in cell-to-cell communication, and that they are fundamental elements for transferring proteins, RNA, DNA, lipids and transcriptional factors among cells. In this short review, we discussed the role of extracellular vesicle formation in the thyroid-disrupting mechanism of DDT. In particular, we described how DDT, by dislodging the thyrotropin hormone (TSH) receptor from the raft containing compartments of the cells, prevents its activation and internalization. CONCLUSION Based on our earlier finding and on the large body of evidence here reviewed, we propose that DDT-induced formation of extracellular vesicles containing the TSH receptor could be directly involved in the development of autoimmune responses against the TSH receptor and that, therefore, their release could lead to the development of the Graves' disease.
Collapse
Affiliation(s)
- M Rossi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - A R Taddei
- Section of Electron Microscopy, Great Equipment Center, University of Tuscia, Viterbo, Italy
| | - I Fasciani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - R Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - F Giorgi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
7
|
Fasciani I, Pietrantoni I, Rossi M, Mannoury la Cour C, Aloisi G, Marampon F, Scarselli M, Millan MJ, Maggio R. Distinctive binding properties of the negative allosteric modulator, [ 3H]SB269,652, at recombinant dopamine D 3 receptors. Eur J Pharmacol 2017; 819:181-189. [PMID: 29223348 DOI: 10.1016/j.ejphar.2017.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/27/2017] [Accepted: 12/04/2017] [Indexed: 01/11/2023]
Abstract
Recently, employing radioligand displacement and functional coupling studies, we demonstrated that SB269,652 (N-[(1r,4r)-4-[2-(7-cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-1H-indole-2-carboxamide) interacts in an atypical manner with dopamine D3 receptor displaying a unique profile reminiscent of a negative allosteric ligand. Here, we characterized the binding of radiolabelled [3H]SB269,652 to human dopamine D3 receptor stably expressed in Chinese Hamster Ovary cells. Under saturating conditions, SB269,652 showed a KD value of ≈ 1nM. Consistent with high selectivity for human dopamine D3 receptor, [3H]SB269,652 binding was undetectable in cells expressing human dopamine D1, D2L or D4 receptors and absent in synaptosomes from dopamine D3 receptor knockout vs. wild-type mice. In contrast to saturation binding experiments, the dissociation kinetics of [3H]SB269,652 from human dopamine D3 receptors initiated with an excess of unlabelled ligand were best fitted by a bi-exponential binding model. Supporting the kinetic data, competition experiments with haloperidol, S33084 (a dopamine D3 receptor antagonist) or dopamine, were best described by a two-site model. In co-transfection experiments binding of SB269,652 to dopamine D3 receptor was able to influence the functional coupling of dopamine D2 receptor, supporting the notion that SB269,652 is a negative allosteric modulator across receptor dimers. However, because SB269,652 decreases the rate of [3H]nemonapride dissociation, the present data suggest that SB269,652 behaves as a bitopic antagonist at unoccupied dopamine D3 receptor, binding simultaneously to both orthosteric and allosteric sites, and as a pure negative allosteric modulator when receptors are occupied and it can solely bind to the allosteric site.
Collapse
Affiliation(s)
- Irene Fasciani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Ilaria Pietrantoni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Mario Rossi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | | | - Gabriella Aloisi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesco Marampon
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Mark J Millan
- Centre for Innovation in Neuropsychiatry, Institut de Recherches Servier, Croissy sur Seine, France
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
8
|
Zha D, Cheng H, Li W, Wu Y, Li X, Zhang L, Feng YH, Wu X. High glucose instigates tubulointerstitial injury by stimulating hetero-dimerization of adiponectin and angiotensin II receptors. Biochem Biophys Res Commun 2017; 493:840-846. [PMID: 28870804 DOI: 10.1016/j.bbrc.2017.08.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 08/13/2017] [Indexed: 01/04/2023]
Abstract
Abnormal expression and dysfunction of adiponectin and the cognate receptors are involved in diabetes and diabetic kidney disease (DKD), whereas angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs) alleviate diabetic albuminuria and prevent development of DKD through upregulation of adiponectin expression. Here we report that high glucose stimulates expression of angiotensin II (AngII) receptors (AT1 and AT2) in renal proximal tubular epithelial cells (NRK-52E). These receptors underwent hetero-dimerization with adiponectin receptor AdipoR1 and AdipoR2, respectively. High glucose inhibited the dimerization between AT1 and AT2. Interestingly, these hetero-dimers instigated tubulointerstitial injury by inhibiting the cytoprotective action of the adiponectin receptors. These modes of receptor-receptor hetero-dimerization may contribute to high glucose-induced renal tubulointerstitial injury and could be potential therapeutic targets.
Collapse
Affiliation(s)
- Dongqing Zha
- Division of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huaiyan Cheng
- Dept. of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Weiwei Li
- Division of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yizhe Wu
- Division of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoning Li
- Division of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lian Zhang
- Division of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ying-Hong Feng
- Dept. of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Xiaoyan Wu
- Division of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
9
|
Abstract
Orexin/hypocretin peptide (orexin-A and orexin-B) signaling is believed to take place via the two G-protein-coupled receptors (GPCRs), named OX1 and OX2 orexin receptors, as described in the previous chapters. Signaling of orexin peptides has been investigated in diverse endogenously orexin receptor-expressing cells - mainly neurons but also other types of cells - and in recombinant cells expressing the receptors in a heterologous manner. Findings in the different systems are partially convergent but also indicate cellular background-specific signaling. The general picture suggests an inherently high degree of diversity in orexin receptor signaling.In the current chapter, I present orexin signaling on the cellular and molecular levels. Discussion of the connection to (potential) physiological orexin responses is only brief since these are in focus of other chapters in this book. The same goes for the post-synaptic signaling mechanisms, which are dealt with in Burdakov: Postsynaptic actions of orexin. The current chapter is organized according to the tissue type, starting from the central nervous system. Finally, receptor signaling pathways are discussed across tissues, cell types, and even species.
Collapse
Affiliation(s)
- Jyrki P Kukkonen
- Biochemistry and Cell Biology, Department of Veterinary Biosciences, University of Helsinki, POB 66, FIN-00014, Helsinki, Finland.
| |
Collapse
|
10
|
Grammatopoulos DK. Regulation of G-protein coupled receptor signalling underpinning neurobiology of mood disorders and depression. Mol Cell Endocrinol 2017; 449:82-89. [PMID: 28229904 DOI: 10.1016/j.mce.2017.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 02/08/2023]
Abstract
G-protein coupled receptors (GPCRs) have long been at the center of investigations of the neurobiology of depression and mood disorders. Different facets of GPCR signalling pathways, including those controlling monoaminergic and neuropeptidergic hormonal systems are believed to be dysregulated in major depressive and bipolar disorders. Although these receptors are key molecular targets for a variety of therapeutic agents and continue to be the focus of intense pharmaceutical development, the molecular mechanisms activated by these GPCRs and underpin the pathological basis of mood disorders remain poorly understood. This review will discuss some of the emerging regulatory mechanisms of GPCR signaling in the central nervous system (CNS) involving protein-protein interactions, downstream effectors and cross-talk with other signaling molecules and their potential involvement in the neurobiology of psychiatric disease.
Collapse
Affiliation(s)
- Dimitris K Grammatopoulos
- Translational Medicine, Warwick Medical School & Clinical Biochemistry, Coventry and Warwickshire Pathology Service, United Kingdom.
| |
Collapse
|
11
|
Rossi M, Fasciani I, Marampon F, Maggio R, Scarselli M. The First Negative Allosteric Modulator for Dopamine D 2 and D 3 Receptors, SB269652 May Lead to a New Generation of Antipsychotic Drugs. Mol Pharmacol 2017; 91:586-594. [PMID: 28265019 PMCID: PMC5438131 DOI: 10.1124/mol.116.107607] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/02/2017] [Indexed: 12/15/2022] Open
Abstract
D2 and D3 dopamine receptors belong to the largest family of cell surface proteins in eukaryotes, the G protein-coupled receptors (GPCRs). Considering their crucial physiologic functions and their relatively accessible cellular locations, GPCRs represent one of the most important classes of therapeutic targets. Until recently, the only strategy to develop drugs regulating GPCR activity was through the identification of compounds that directly acted on the orthosteric sites for endogenous ligands. However, many efforts have recently been made to identify small molecules that are able to interact with allosteric sites. These sites are less well-conserved, therefore allosteric ligands have greater selectivity on the specific receptor. Strikingly, the use of allosteric modulators can provide specific advantages, such as an increased selectivity for GPCR subunits and the ability to introduce specific beneficial therapeutic effects without disrupting the integrity of complex physiologically regulated networks. In 2010, our group unexpectedly found that N-[(1r,4r)-4-[2-(7-cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-1H-indole-2-carboxamide (SB269652), a compound supposed to interact with the orthosteric binding site of dopamine receptors, was actually a negative allosteric modulator of D2- and D3-receptor dimers, thus identifying the first allosteric small molecule acting on these important therapeutic targets. This review addresses the progress in understanding the molecular mechanisms of interaction between the negative modulator SB269652 and D2 and D3 dopamine receptor monomers and dimers, and surveys the prospects for developing new dopamine receptor allosteric drugs with SB269652 as the leading compound.
Collapse
Affiliation(s)
- Mario Rossi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (M.R.); Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy (I.F., F.M., R.M.); Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy (M.S.)
| | - Irene Fasciani
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (M.R.); Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy (I.F., F.M., R.M.); Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy (M.S.)
| | - Francesco Marampon
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (M.R.); Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy (I.F., F.M., R.M.); Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy (M.S.)
| | - Roberto Maggio
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (M.R.); Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy (I.F., F.M., R.M.); Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy (M.S.)
| | - Marco Scarselli
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (M.R.); Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy (I.F., F.M., R.M.); Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy (M.S.)
| |
Collapse
|
12
|
Van Dijck P, Brown NA, Goldman GH, Rutherford J, Xue C, Van Zeebroeck G. Nutrient Sensing at the Plasma Membrane of Fungal Cells. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0031-2016. [PMID: 28256189 PMCID: PMC11687466 DOI: 10.1128/microbiolspec.funk-0031-2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Indexed: 12/25/2022] Open
Abstract
To respond to the changing environment, cells must be able to sense external conditions. This is important for many processes including growth, mating, the expression of virulence factors, and several other regulatory effects. Nutrient sensing at the plasma membrane is mediated by different classes of membrane proteins that activate downstream signaling pathways: nontransporting receptors, transceptors, classical and nonclassical G-protein-coupled receptors, and the newly defined extracellular mucin receptors. Nontransporting receptors have the same structure as transport proteins, but have lost the capacity to transport while gaining a receptor function. Transceptors are transporters that also function as a receptor, because they can rapidly activate downstream signaling pathways. In this review, we focus on these four types of fungal membrane proteins. We mainly discuss the sensing mechanisms relating to sugars, ammonium, and amino acids. Mechanisms for other nutrients, such as phosphate and sulfate, are discussed briefly. Because the model yeast Saccharomyces cerevisiae has been the most studied, especially regarding these nutrient-sensing systems, each subsection will commence with what is known in this species.
Collapse
Affiliation(s)
- Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology KU Leuven, Flanders, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven, Belgium
| | - Neil Andrew Brown
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, AL5 2JQ, United Kingdom
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Julian Rutherford
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Chaoyang Xue
- Public Health Research Institute, Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, Newark, NJ 07103
| | - Griet Van Zeebroeck
- VIB-KU Leuven Center for Microbiology KU Leuven, Flanders, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven, Belgium
| |
Collapse
|
13
|
Variants of G protein-coupled receptors: a reappraisal of their role in receptor regulation. Biochem Soc Trans 2016; 44:589-94. [PMID: 27068974 DOI: 10.1042/bst20150239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Indexed: 01/11/2023]
Abstract
Truncated or shorter forms of G protein-coupled receptors (GPCRs), originating by alternative splicing, have been considered physiologically irrelevant for a rather long time. Nevertheless, it is now recognized that alternative splicing variants of GPCRs greatly increase the total number of receptor isoforms and can regulate receptor trafficking and signalling. Furthermore, dimerization of these truncated variants with other receptors concurs to expand receptor diversity. Highly truncated variants of GPCRs, typically, are retained in the endoplasmic reticulum (ER) and by heteromerization prevent the wild-type receptor to reach the plasma membrane, exerting a dominant-negative effect on its function. This can be responsible for some pathological conditions but in some other cases, it can offer protection from a disease because the expression of the receptor, that is necessary for binding an infectious agent, is attenuated. Here, we propose a possible new mechanism of creation of truncated GPCR variants through an internal ribosome entry site (IRES), a nucleotide sequence that allows cap independent translation of proteins by recruiting the ribosome in proximity of an internal initiation codon. We suggest that an IRES, situated in the third cytoplasmic loop, could be responsible for the translation of the last two transmembrane (TM) regions of the muscarinic M2receptor. IRES driven expression of this C-terminal part of the muscarinic M2receptor could represent a novel and additional mechanism of receptor regulation.
Collapse
|
14
|
Novel dimensions of D3 receptor function: Focus on heterodimerisation, transactivation and allosteric modulation. Eur Neuropsychopharmacol 2015; 25:1470-9. [PMID: 25453482 DOI: 10.1016/j.euroneuro.2014.09.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/24/2014] [Indexed: 02/08/2023]
Abstract
The brain׳s complexity derives not only from the way the intricate network of neurons is wired, but also by protein complexes that recognize and decode chemical information. G protein-coupled receptors (GPCRs) represent the most abundant family of proteins mediating neurotransmission in the brain, and their ability to form homo- and heteromers which amplifies the scope for synaptic communication and fine-tuning. Dopamine receptors are important drug targets and members of both the D1/D5 and D2/D3/D4 receptor families form homo- and heteromers. The present article focuses on D3 receptor homo- and heteromers, in particular, those formed in association with their D2 counterparts. We highlight the binding profiles and mechanisms of interaction with D3-D3 homomers and D3-D2 heteromers of: first, the PET ligand and potent agonist [(11)C]-(+)-PHNO; second, the novel, bitopic/allosteric dopamine D3 receptor antagonist, SB269,652; and third, diverse partial agonists like antipsychotic and aripiprazole. Molecular mechanisms of interplay between the two protomers of heteromeric D3-D2 complexes are likewise discussed: for example, "transactivation", whereby recruitment of one member of a heteromer harnesses signalling pathways is normally coupled to the other protomer. Finally, D1 receptor heteromers are also taken into consideration in deciphering the nature of interfaces required to stabilize dimeric assemblies and permit their interaction with G proteins. Improved understanding of D3 as well as D2 and D1 receptor complexes should yield important insights into their physiological roles and pathological significance, and permit the development of novel drug classes with potentially distinctive functional profiles and improved therapeutic windows.
Collapse
|
15
|
Capannolo M, Fasciani I, Romeo S, Aloisi G, Rossi M, Bellio P, Celenza G, Cinque B, Cifone MG, Scarselli M, Maggio R. The atypical antipsychotic clozapine selectively inhibits interleukin 8 (IL-8)-induced neutrophil chemotaxis. Eur Neuropsychopharmacol 2015; 25:413-24. [PMID: 25554564 DOI: 10.1016/j.euroneuro.2014.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 10/03/2014] [Accepted: 12/08/2014] [Indexed: 01/16/2023]
Abstract
Clozapine is the most effective antipsychotic to date, but its benefits are counterbalanced by the risk of severe hematological effects. In this study, we analyzed whether clozapine inhibits polymorphonuclear (PMN) leukocyte chemotaxis. We found that clozapine, within the therapeutic concentration range, potently and selectively inhibits PMN chemotaxis induced by interleukin 8 (IL-8), a chemokine inducing neutrophil migration. The effect was not due to its action at dopamine, serotonin and muscarinic receptors, or to a direct antagonism to IL-8 receptors. Furthermore, clozapine did not inhibit PMN chemotaxis by its presumed toxic mechanism. In fact, after an overnight incubation in cell culture, the drug did not increase the physiological PMN apoptosis. An interference of clozapine with the autocrine release of leukotriene B4 (LTB4), a secondary chemoattractant secreted by neutrophils in response to the primary chemoattractant IL-8, was hypothesized. In agreement with this hypothesis, clozapine attenuated the IL-8-induced release of LTB4 in PMNs. A series of experiments with an antagonist of the LTB4 receptor, U75302, and an inhibitor of LTB4 synthesis, zileuton, provided support to this conjecture. Intriguingly MK-571, an inhibitor of the multi-drug resistance protein MRP4, playing a pivotal role in effluxing LTB4, completely blocked PMN chemotaxis induced by IL-8, but gave conflicting results when tested for its ability to reduce LTB4 release, increasing LTB4 efflux by itself but reducing the release when in combination with IL-8. The reduction of PMN chemotaxis due to clozapine could predispose patients to infections. Whether this effect is a prelude to clozapine agranulocytosis requires further investigation.
Collapse
Affiliation(s)
- Marta Capannolo
- Biotechnological and Applied Clinical Sciences Department, University of L׳Aquila, 67100 L׳Aquila, Italy
| | - Irene Fasciani
- Biotechnological and Applied Clinical Sciences Department, University of L׳Aquila, 67100 L׳Aquila, Italy
| | - Stefania Romeo
- Biotechnological and Applied Clinical Sciences Department, University of L׳Aquila, 67100 L׳Aquila, Italy
| | - Gabriella Aloisi
- Biotechnological and Applied Clinical Sciences Department, University of L׳Aquila, 67100 L׳Aquila, Italy
| | - Mario Rossi
- Molecular Signaling Section, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Pierangelo Bellio
- Biotechnological and Applied Clinical Sciences Department, University of L׳Aquila, 67100 L׳Aquila, Italy
| | - Giuseppe Celenza
- Biotechnological and Applied Clinical Sciences Department, University of L׳Aquila, 67100 L׳Aquila, Italy
| | - Benedetta Cinque
- Department of Life, Health and Environment Sciences, University of L׳Aquila, 67100 L׳Aquila, Italy
| | - Maria Grazia Cifone
- Department of Life, Health and Environment Sciences, University of L׳Aquila, 67100 L׳Aquila, Italy
| | - Marco Scarselli
- Department of Translational Research and New Technology in Medicine, University of Pisa, 56126 Pisa, Italy
| | - Roberto Maggio
- Biotechnological and Applied Clinical Sciences Department, University of L׳Aquila, 67100 L׳Aquila, Italy.
| |
Collapse
|
16
|
Nitric oxide synthase inhibition reverts muscarinic receptor down-regulation induced by pilocarpine- and kainic acid-evoked seizures in rat fronto-parietal cortex. Epilepsy Res 2013; 108:11-9. [PMID: 24246145 DOI: 10.1016/j.eplepsyres.2013.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 09/02/2013] [Accepted: 10/18/2013] [Indexed: 11/20/2022]
Abstract
We investigated how nitric oxide (NO) synthase inhibitor modulates muscarinic receptor expression in epileptic rats. We found that subchronic treatment (4 days) with Nω-nitro-l-arginine reduced the down-regulation of muscarinic receptors induced by pilocarpine and kainic acid in rat fronto-parietal cortex, notwithstanding the dramatic potentiation of seizures induced by both convulsants. Furthermore, functional experiments in fronto-parietal cortex slices, showed that Nω-nitro-l-arginine reduces the down-regulating effect of pilocarpine on carbachol-induced phosphoinositol hydrolysis. Finally, Nω-nitro-l-arginine greatly potentiated the induction of basic fibroblast growth factor (FGF2) by pilocarpine. These data suggest a potential role of NO in a regulatory feedback loop to control muscarinic receptor signal during seizures. The dramatic potentiation of convulsions by NO synthase inhibitors in some animal models of seizures could derive from preventing this feedback loop.
Collapse
|
17
|
Dasgupta S, Bandyopadhyay M. Neuroprotective mode of action of resveratrol in central nervous system. PHARMANUTRITION 2013. [DOI: 10.1016/j.phanu.2013.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Gracia E, Moreno E, Cortés A, Lluís C, Mallol J, McCormick PJ, Canela EI, Casadó V. Homodimerization of adenosine A₁ receptors in brain cortex explains the biphasic effects of caffeine. Neuropharmacology 2013; 71:56-69. [PMID: 23523559 DOI: 10.1016/j.neuropharm.2013.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 02/27/2013] [Accepted: 03/12/2013] [Indexed: 11/30/2022]
Abstract
Using bioluminescence resonance energy transfer and proximity ligation assays, we obtained the first direct evidence that adenosine A₁ receptors (A₁Rs) form homomers not only in cell cultures but also in brain cortex. By radioligand binding experiments in the absence or in the presence of the A₁Rs allosteric modulator, adenosine deaminase, and by using the two-state dimer receptor model to fit binding data, we demonstrated that the protomer-protomer interactions in the A₁R homomers account for some of the pharmacological characteristics of agonist and antagonist binding to A₁Rs. These pharmacological properties include the appearance of cooperativity in agonist binding, the change from a biphasic saturation curve to a monophasic curve in self-competition experiments and the molecular cross-talk detected when two different specific molecules bind to the receptor. In this last case, we discovered that caffeine binding to one protomer increases the agonist affinity for the other protomer in the A₁R homomer, a pharmacological characteristic that correlates with the low caffeine concentrations-induced activation of agonist-promoted A₁R signaling. This pharmacological property can explain the biphasic effects reported at low and high concentration of caffeine on locomotor activity.
Collapse
Affiliation(s)
- Eduard Gracia
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Omnus DJ, Ljungdahl PO. Rts1-protein phosphatase 2A antagonizes Ptr3-mediated activation of the signaling protease Ssy5 by casein kinase I. Mol Biol Cell 2013; 24:1480-92. [PMID: 23447701 PMCID: PMC3639058 DOI: 10.1091/mbc.e13-01-0019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Ssy1-Ptr3-Ssy5 sensor of external amino acids couples Ssy1 receptor–initiated signals to casein kinase–dependent activation of the protease Ssy5. Here Ssy5 activity is shown to be tuned by interactions with Rts1-protein phosphatase 2A and the specific adapter protein Ptr3, which activates Ssy5 by mediating its proximity to casein kinase. Ligand-induced conformational changes of plasma membrane receptors initiate signals that enable cells to respond to discrete extracellular cues. In response to extracellular amino acids, the yeast Ssy1-Ptr3-Ssy5 sensor triggers the endoproteolytic processing of transcription factors Stp1 and Stp2 to induce amino acid uptake. Activation of the processing protease Ssy5 depends on the signal-induced phosphorylation of its prodomain by casein kinase I (Yck1/2). Phosphorylation is required for subsequent Skp1/Cullin/Grr1 E3 ubiquitin ligase–dependent polyubiquitylation and proteasomal degradation of the inhibitory prodomain. Here we show that Rts1, a regulatory subunit of the general protein phosphatase 2A, and Ptr3 have opposing roles in controlling Ssy5 prodomain phosphorylation. Rts1 constitutively directs protein phosphatase 2A activity toward the prodomain, effectively setting a signaling threshold required to mute Ssy5 activation in the absence of amino acid induction. Ptr3 functions as an adaptor that transduces conformational signals initiated by the Ssy1 receptor to dynamically induce prodomain phosphorylation by mediating the proximity of the Ssy5 prodomain and Yck1/2. Our results demonstrate how pathway-specific and general signaling components function synergistically to convert an extracellular stimulus into a highly specific, tuned, and switch-like transcriptional response that is critical for cells to adapt to changes in nutrient availability.
Collapse
Affiliation(s)
- Deike J Omnus
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| | | |
Collapse
|
20
|
Maggio R, Rocchi C, Scarselli M. Experimental strategies for studying G protein-coupled receptor homo- and heteromerization with radioligand binding and signal transduction methods. Methods Enzymol 2013; 521:295-310. [PMID: 23351746 DOI: 10.1016/b978-0-12-391862-8.00016-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Before the molecular biology era, functional experiments on isolated organs and radioligand binding and biochemical experiments on animal tissues were widely used to characterize G protein-coupled receptors (GPCRs). The introduction of recombinant cell lines expressing a single GPCR type has been a big step forward for studying both drug-receptor interactions and signal transduction. Before the introduction of the concept of receptor oligomerization, all data generated were attributed to the interaction of drugs with receptor monomers. Now, considerable data must be reinterpreted in light of receptor homo- and heteromerization. In this chapter, we will review some of the methods used to study radioligand binding and signal transduction modifications induced by GPCR homo- and heteromerization.
Collapse
Affiliation(s)
- Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | | | | |
Collapse
|
21
|
Quaternary Structure Predictions and Structural Communication Features of GPCR Dimers. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:105-42. [DOI: 10.1016/b978-0-12-386931-9.00005-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Fanelli F, De Benedetti PG. Update 1 of: computational modeling approaches to structure-function analysis of G protein-coupled receptors. Chem Rev 2011; 111:PR438-535. [PMID: 22165845 DOI: 10.1021/cr100437t] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Francesca Fanelli
- Dulbecco Telethon Institute, University of Modena and Reggio Emilia, via Campi 183, 41125 Modena, Italy.
| | | |
Collapse
|
23
|
Marsango S, Bonaccorsi di Patti MC, Barra D, Miele R. Evidence that prokineticin receptor 2 exists as a dimer in vivo. Cell Mol Life Sci 2011; 68:2919-29. [PMID: 21161321 PMCID: PMC11114510 DOI: 10.1007/s00018-010-0601-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/29/2010] [Accepted: 11/18/2010] [Indexed: 10/18/2022]
Abstract
Prokineticins are proteins that regulate diverse biological processes including gastrointestinal motility, angiogenesis, circadian rhythm, and innate immune response. Prokineticins bind two closed related G-protein coupled receptors (GPCRs), PKR1 and PKR2. In general, these receptors act as molecular switches to relay activation to heterotrimeric G-proteins and a growing body of evidence points to the fact that GPCRs exist as homo- or heterodimers. We show here by Western-blot analysis that PKR2 has a dimeric structure in neutrophils. By heterologous expression of PKR2 in Saccharomyces cerevisiae, we examined the mechanisms of intermolecular interaction of PKR2 dimerization. The potential involvement of three types of mechanisms was investigated: coiled-coil, disulfide bridges, and hydrophobic interactions between transmembrane domains. Characterization of differently deleted or site-directed PKR2 mutants suggests that dimerization proceeds through interactions between transmembrane domains. We demonstrate that co-expressing binding-deficient and signaling-deficient forms of PKR2 can re-establish receptor functionality, possibly through a domain-swapping mechanism.
Collapse
Affiliation(s)
- Sara Marsango
- Dipartimento di Scienze Biochimiche ‘A. Rossi Fanelli’, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | - Donatella Barra
- Dipartimento di Scienze Biochimiche ‘A. Rossi Fanelli’, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, CNR Istituto di Biologia e Patologia Molecolari, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Rossella Miele
- Dipartimento di Scienze Biochimiche ‘A. Rossi Fanelli’, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, CNR Istituto di Biologia e Patologia Molecolari, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
24
|
Affiliation(s)
- Takako Hirata
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Shuh Narumiya
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| |
Collapse
|
25
|
Agnati LF, Guidolin D, Vilardaga JP, Ciruela F, Fuxe K. On the expanding terminology in the GPCR field: the meaning of receptor mosaics and receptor heteromers. J Recept Signal Transduct Res 2010; 30:287-303. [PMID: 20429829 PMCID: PMC3595533 DOI: 10.3109/10799891003786226] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The oligomerization of G protein-coupled receptors (GPCRs) is a fact that deserves further attention as increases both the complexity and diversity of the receptor-mediated signal transduction, thus enriching the cell signaling. Consequently, in the present review we tackle among others the problems concerning the terminology used to describe aspects surrounding the GPCRs oligomerization phenomenon. Therefore, the theoretical implications of the GPCR oligomerization will be briefly discussed together with possible implications of this phenomenon especially for new strategies in drug development.
Collapse
|
26
|
The M5 muscarinic acetylcholine receptor third intracellular loop regulates receptor function and oligomerization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:813-25. [DOI: 10.1016/j.bbamcr.2010.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 04/01/2010] [Accepted: 04/05/2010] [Indexed: 11/15/2022]
|
27
|
Ciruela F, Vilardaga JP, Fernández-Dueñas V. Lighting up multiprotein complexes: lessons from GPCR oligomerization. Trends Biotechnol 2010; 28:407-15. [PMID: 20542584 DOI: 10.1016/j.tibtech.2010.05.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Revised: 04/27/2010] [Accepted: 05/05/2010] [Indexed: 11/18/2022]
Abstract
Spatiotemporal characterization of protein-protein interactions (PPIs) is essential in determining the molecular mechanisms of intracellular signaling processes. In this review, we discuss how new methodological strategies derived from non-invasive fluorescence- and luminescence-based approaches (FRET, BRET, BiFC and BiLC), when applied to the study of G protein-coupled receptor (GPCR) oligomerization, can be used to detect specific PPIs in live cells. These technologies alone or in concert with complementary methods (SRET, BRET or BiFC, and SNAP-tag or TR-FRET) can be extremely powerful approaches for PPI visualization, even between more than two proteins. Here we provide a comprehensive update on all the biotechnological aspects, including the strengths and weaknesses, of new fluorescence- and luminescence-based methodologies, with a specific focus on their application for studying PPIs.
Collapse
Affiliation(s)
- Francisco Ciruela
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL-Universitat de Barcelona, 08907 Barcelona, Spain.
| | | | | |
Collapse
|
28
|
Franco R, Canela EI, Casado V, Ferre S. Platforms for the identification of GPCR targets, and of orthosteric and allosteric modulators. Expert Opin Drug Discov 2010; 5:391-403. [DOI: 10.1517/17460441003653163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
29
|
Maggio R, Aloisi G, Silvano E, Rossi M, Millan MJ. Heterodimerization of dopamine receptors: new insights into functional and therapeutic significance. Parkinsonism Relat Disord 2009; 15 Suppl 4:S2-7. [DOI: 10.1016/s1353-8020(09)70826-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
30
|
Soriano A, Ventura R, Molero A, Hoen R, Casadó V, Cortés A, Fanelli F, Albericio F, Lluís C, Franco R, Royo M. Adenosine A2A receptor-antagonist/dopamine D2 receptor-agonist bivalent ligands as pharmacological tools to detect A2A-D2 receptor heteromers. J Med Chem 2009; 52:5590-602. [PMID: 19711895 DOI: 10.1021/jm900298c] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adenosine A(2A) (A(2A)R) and dopamine D(2) (D(2)R) receptors mediate the antagonism between adenosinergic and dopaminergic transmission in striatopallidal GABAergic neurons and are pharmacological targets for the treatment of Parkinson's disease. Here, a family of heterobivalent ligands containing a D(2)R agonist and an A(2A)R antagonist linked through a spacer of variable size was designed and synthesized to study A(2A)R-D(2)R heteromers. Bivalent ligands with shorter linkers bound to D(2)R or A(2A)R with higher affinity than the corresponding monovalent controls in membranes from brain striatum and from cells coexpressing both receptors. In contrast, no differences in affinity of bivalent versus monovalent ligands were detected in experiments using membranes from cells expressing only one receptor. These findings indicate the existence of A(2A)R-D(2)R heteromers and of a simultaneous interaction of heterobivalent ligands with both receptors. The cooperative effect derived from the simultaneous interaction suggests the occurrence of A(2A)R-D(2)R heteromers in cotransfected cells and in brain striatum. The dopamine/adenosine bivalent action could constitute a novel concept in Parkinson's disease pharmacotherapy.
Collapse
Affiliation(s)
- Aroa Soriano
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), and Department of Biochemistry and Molecular Biology, University of Barcelona, Avenida Diagonal 645, E-08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Casadó V, Cortés A, Mallol J, Pérez-Capote K, Ferré S, Lluis C, Franco R, Canela EI. GPCR homomers and heteromers: a better choice as targets for drug development than GPCR monomers? Pharmacol Ther 2009; 124:248-57. [PMID: 19664655 DOI: 10.1016/j.pharmthera.2009.07.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 07/21/2009] [Indexed: 10/20/2022]
Abstract
G protein-coupled receptors (GPCR) are targeted by many therapeutic drugs marketed to fight against a variety of diseases. Selection of novel lead compounds are based on pharmacological parameters obtained assuming that GPCR are monomers. However, many GPCR are expressed as dimers/oligomers. Therefore, drug development may consider GPCR as homo- and hetero-oligomers. A two-state dimer receptor model is now available to understand GPCR operation and to interpret data obtained from drugs interacting with dimers, and even from mixtures of monomers and dimers. Heteromers are distinct entities and therefore a given drug is expected to have different affinities and different efficacies depending on the heteromer. All these concepts would lead to broaden the therapeutic potential of drugs targeting GPCRs, including receptor heteromer-selective drugs with a lower incidence of side effects, or to identify novel pharmacological profiles using cell models expressing receptor heteromers.
Collapse
Affiliation(s)
- Vicent Casadó
- Departament de Bioquímica i Biologia Molecular, CIBERNED (Centro de Investigación en Red de Enfermedades Neurodegenerativas) and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Milligan G. G protein-coupled receptor hetero-dimerization: contribution to pharmacology and function. Br J Pharmacol 2009; 158:5-14. [PMID: 19309353 DOI: 10.1111/j.1476-5381.2009.00169.x] [Citation(s) in RCA: 267] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The concept that G protein-coupled receptors (GPCRs) can form hetero-dimers or hetero-oligomers continues to gain experimental support. However, with the exception of the GABA(B) receptor and the sweet and umami taste receptors few reported examples meet all of the criteria suggested in a recent International Union of Basic and Clinical Pharmacology sponsored review (Pin et al., 2007) that should be required to define distinct and physiologically relevant receptor species. Despite this, there are many examples in which pairs of co-expressed GPCRs reciprocally modulate their function, trafficking and/or ligand pharmacology. Such data are at least consistent with physical interactions between the receptor pairs. In recent times, it has been suggested that specific GPCR hetero-dimer or hetero-oligomer pairs may represent key molecular targets of certain clinically effective, small molecule drugs and there is growing interest in efforts to identify ligands that may modulate hetero-dimer function selectively. The current review summarizes key recent developments in these topics.
Collapse
Affiliation(s)
- Graeme Milligan
- Molecular Pharmacology Group, Neuroscience and Molecular Pharmacology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
33
|
Picchietti S, Belardinelli M, Taddei AR, Fausto AM, Pellegrino M, Maggio R, Rossi M, Giorgi F. Thyroid disruptor 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) prevents internalization of TSH receptor. Cell Tissue Res 2009; 336:31-40. [DOI: 10.1007/s00441-008-0749-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 12/19/2008] [Indexed: 11/30/2022]
|
34
|
Maggio R, Novi F, Rossi M, Corsini GU, Millan MJ. Partial agonist actions at dopamine D2L receptors are modified by co-transfection of D3 receptors: Potential role of heterodimer formation. Parkinsonism Relat Disord 2008; 14 Suppl 2:S139-44. [DOI: 10.1016/j.parkreldis.2008.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|