1
|
Taki N, Kimura A, Shiraishi Y, Maruyama T, Ohmori T, Takeshita K. Conditional deletion of IκBζ in hematopoietic cells promotes functional recovery after spinal cord injury in mice. J Orthop Sci 2025; 30:287-294. [PMID: 38760245 DOI: 10.1016/j.jos.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Transcription factor protein IκBζ (encoded by the Nfkbiz gene) regulates nuclear factor-κB (NF-κB) and is involved in the pathophysiology of various inflammatory diseases. However, the role of IκBζ in secondary damage following spinal cord injury (SCI) remains to be determined. Here, we investigated the effect of IκBζ expressed in hematopoietic cells on the progression of secondary damage and functional recovery after SCI. METHODS We used conditional IκBζ-knockout mice (Mx1-Cre;Nfkbizfl/f) to examine the role of IκBζ in hematopoietic cells after SCI. Contusion SCI was induced using a force of 60 kdyn. The recovery of locomotor performance was evaluated using the nine-point Basso Mouse Scale (BMS) until 42 days post-injury. Expression patterns of inflammatory cytokines and chemokines were examined by quantitative real-time PCR or proteome array analysis. Bone marrow transplantation (BMT) was performed to eliminate the effect of IκBζ deletion in non-hematopoietic cells. RESULTS Mx1-Cre;Nfkbizfl/fl mice had significantly improved locomotor function compared with wild-type (WT) mice. The mRNA expression of Nfkbiz in WT mice peaked at 12 h after SCI and then decreased slowly in both the spinal cord and white blood cells. In situ hybridization showed that Nfkbiz mRNA was localized in cell nuclei, including macrophage-like cells, in the injured spinal cord of WT mice at 1 day after SCI. Compared with WT mice, Mx1-Cre;Nfkbizfl/fl mice had significantly increased mRNA expressions of interleukin (Il)-4 and Il-10 in the injured spinal cord. In addition, Mx1-Cre;Nfkbizfl/fl mice had significantly higher protein levels of granulocyte-macrophage colony-stimulating factor and C-C motif chemokine 11 compared with WT mice. BMT from Mx1-Cre;Nfkbizfl/fl mice into WT mice improved functional recovery after SCI compared with control mice (WT cells into WT mice). CONCLUSIONS IκBζ deletion in hematopoietic cells improved functional recovery after SCI, possibly by shifting the inflammatory balance towards anti-inflammatory and pro-regenerative directions.
Collapse
Affiliation(s)
- Naoya Taki
- Department of Orthopaedic Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Atsushi Kimura
- Department of Orthopaedic Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| | - Yasuyuki Shiraishi
- Department of Orthopaedic Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Takashi Maruyama
- Mucosal Immunology Section, National Institute for Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20852, USA
| | - Tsukasa Ohmori
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, 329-0498, Japan
| | - Katsushi Takeshita
- Department of Orthopaedic Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
2
|
Xing J, Wang J, Han L, Wang Y, Sun X, Shi J, Kong Q, Sun K, Zhang B. Causal Association Between Inflammatory Proteins, Inflammatory Cells, and Cauda Equina Syndrome: A Two-Sample Mendelian Randomization. World Neurosurg 2025; 197:123826. [PMID: 40020998 DOI: 10.1016/j.wneu.2025.123826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Recent studies have shown that inflammation plays a crucial role in the progression of cauda equina syndrome (CES). However, the exact cause-and-effect relationship between them is still unclear. METHODS We used CES data from the FinnGen genome-wide association study (GWAS), containing 329 cases and 408,351 control patients. Inflammatory proteins data were obtained from a large scale GWAS of 14,828 European ancestry participants, and inflammatory cells data were obtained from a GWAS summary of 3757 Sardinians. We chose inverse variance weighted as the main method and the Cochrane Q test to assess heterogeneity in the results. The MR-Egger intercept test and MR pleiotropy residual sum and outliers test were used to evaluate the horizontal pleiotropy, and sensitivity analysis was performed by leave-one-out analysis. RESULTS We examined robust associations between inflammatory proteins, inflammatory cells, and CES using Mendelian randomization. Two inflammatory proteins and 12 inflammatory cells were found as risk factors for CES: IL-8 and PD-L1; and basophil plasmacytoid dendritic cell, CD86+plasmacytoid dendritic cell, CD62L-plasmacytoid dendritic cell, CD39+secreting Treg, IgD+CD38-B cell, switched memory B cell, IgD+CD24+B cell, CD62L+dendritic cell, CD4+T cell, γδ T cell, and CD33dim HLA DR-myeloid cell. Two inflammatory proteins and 7 inflammatory cells were found as protective factors for CES: IL-10RA and CCL25; and transitional B cell, terminal differentiation double negative T cell, CD28-CD127-CD25++CD8br T cell, IgD+CD38br B cell, CD28+CD45RA-CD8br Treg, IgD+CD38-naive B cell, and granulocyte. Heterogeneity and pleiotropy analysis confirmed the reliability of the results. Our study reveals the causal relationship between inflammatory proteins, inflammatory cells, and CES, offering new insights for the development of future therapeutic drugs and early warning indicators. CONCLUSIONS Our findings extend genetic research to causal analysis between inflammatory proteins, cells, and CES. We found 2 proteins and 12 cells as risk factors and 2 proteins and 7 cells as protective factors. Further investigations are needed to verify whether these inflammation markers can be used to prevent or treat CES.
Collapse
Affiliation(s)
- Jianpeng Xing
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jinyu Wang
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Linhui Han
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yuan Wang
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xiaofei Sun
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jiangang Shi
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Qingjie Kong
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaiqiang Sun
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Bin Zhang
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
3
|
Patilas C, Varsamos I, Galanis A, Vavourakis M, Zachariou D, Marougklianis V, Kolovos I, Tsalimas G, Karampinas P, Kaspiris A, Vlamis J, Pneumaticos S. The Role of Interleukin-10 in the Pathogenesis and Treatment of a Spinal Cord Injury. Diagnostics (Basel) 2024; 14:151. [PMID: 38248028 PMCID: PMC10814517 DOI: 10.3390/diagnostics14020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Spinal cord injury (SCI) is a devastating condition that often leads to severe and permanent neurological deficits. The complex pathophysiology of an SCI involves a cascade of events, including inflammation, oxidative stress, and secondary injury processes. Among the myriad of molecular players involved, interleukin-10 (IL-10) emerges as a key regulator with the potential to modulate both the inflammatory response and promote neuroprotection. This comprehensive review delves into the intricate interplay of IL-10 in the pathogenesis of an SCI and explores its therapeutic implications in the quest for effective treatments. IL-10 has been found to regulate inflammation, oxidative stress, neuronal apoptosis, and glial scars after an SCI. Its neuroprotective properties have been evaluated in a plethora of animal studies. IL-10 administration, either isolated or in combination with other molecules or biomaterials, has shown neuroprotective effects through a reduction in inflammation, the promotion of tissue repair and regeneration, the modulation of glial scar formation, and improved functional outcomes. In conclusion, IL-10 emerges as a pivotal player in the pathogenesis and treatment of SCIs. Its multifaceted role in modulating inflammation, oxidative stress, neuronal apoptosis, glial scars, and neuroprotection positions IL-10 as a promising therapeutic target. The ongoing research exploring various strategies for harnessing the potential of IL-10 offers hope for the development of effective treatments that could significantly improve outcomes for individuals suffering from spinal cord injuries. As our understanding of IL-10's intricacies deepens, it opens new avenues for innovative and targeted therapeutic interventions, bringing us closer to the goal of alleviating the profound impact of SCIs on patients' lives.
Collapse
Affiliation(s)
| | | | | | - Michail Vavourakis
- 3rd Department of Orthopaedic Surgery, National & Kapodistrian University of Athens, KAT General Hospital, 14561 Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Li J, Wang P, Zhou T, Jiang W, Wu H, Zhang S, Deng L, Wang H. Neuroprotective effects of interleukin 10 in spinal cord injury. Front Mol Neurosci 2023; 16:1214294. [PMID: 37492521 PMCID: PMC10363608 DOI: 10.3389/fnmol.2023.1214294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
Spinal cord injury (SCI) starts with a mechanical and/or bio-chemical insult, followed by a secondary phase, leading progressively to severe collapse of the nerve tissue. Compared to the peripheral nervous system, injured spinal cord is characterized by weak axonal regeneration, which leaves most patients impaired or paralyzed throughout lifetime. Therefore, confining, alleviating, or reducing the expansion of secondary injuries and promoting functional connections between rostral and caudal regions of lesion are the main goals of SCI therapy. Interleukin 10 (IL-10), as a pivotal anti-inflammatory and immunomodulatory cytokine, exerts a wide spectrum of positive effects in the treatment of SCI. The mechanisms underlying therapeutic effects mainly include anti-oxidative stress, limiting excessive inflammation, anti-apoptosis, antinociceptive effects, etc. Furthermore, IL-10 displays synergistic effects when combined with cell transplantation or neurotrophic factor, enhancing treatment outcomes. This review lists pleiotropic mechanisms underlying IL-10-mediated neuroprotection after SCI, which may offer fresh perspectives for clinical translation.
Collapse
Affiliation(s)
- Juan Li
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Pei Wang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Ting Zhou
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Wenwen Jiang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Hang Wu
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Shengqi Zhang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Lingxiao Deng
- Department of Neurological Surgery, Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Hongxing Wang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| |
Collapse
|
5
|
Lee CY, Chooi WH, Ng S, Chew SY. Modulating neuroinflammation through molecular, cellular and biomaterial-based approaches to treat spinal cord injury. Bioeng Transl Med 2023; 8:e10389. [PMID: 36925680 PMCID: PMC10013833 DOI: 10.1002/btm2.10389] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/02/2022] [Accepted: 07/16/2022] [Indexed: 11/09/2022] Open
Abstract
The neuroinflammatory response that is elicited after spinal cord injury contributes to both tissue damage and reparative processes. The complex and dynamic cellular and molecular changes within the spinal cord microenvironment result in a functional imbalance of immune cells and their modulatory factors. To facilitate wound healing and repair, it is necessary to manipulate the immunological pathways during neuroinflammation to achieve successful therapeutic interventions. In this review, recent advancements and fresh perspectives on the consequences of neuroinflammation after SCI and modulation of the inflammatory responses through the use of molecular-, cellular-, and biomaterial-based therapies to promote tissue regeneration and functional recovery will be discussed.
Collapse
Affiliation(s)
- Cheryl Yi‐Pin Lee
- Institute of Molecular and Cell BiologyA*STAR Research EntitiesSingaporeSingapore
| | - Wai Hon Chooi
- Institute of Molecular and Cell BiologyA*STAR Research EntitiesSingaporeSingapore
| | - Shi‐Yan Ng
- Institute of Molecular and Cell BiologyA*STAR Research EntitiesSingaporeSingapore
| | - Sing Yian Chew
- School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingaporeSingapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
- School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
6
|
Mirzaie J, Nasiry D, Ayna Ö, Raoofi A, Delbari A, Rustamzadeh A, Nezhadi A, Jamalpoor Z. Neuroprotective effects of lovastatin against traumatic spinal cord injury in rats. J Chem Neuroanat 2022; 125:102148. [PMID: 36031087 DOI: 10.1016/j.jchemneu.2022.102148] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Lovastatin, as a drug of statins subgroup, has been conceptualized to have anti-inflammatory, antioxidant, and anti-apoptotic properties. Accordingly, the present study aimed to investigate the neuroprotective ramification of lovastatin on spinal cord injury (SCI). MATERIAL AND METHODS Seventy-five female adult Wistar rats were divided into five groups (n = 15). In addition to non-treated (Control group) and laminectomy alone (Sham group), SCI animals were randomly assigned to non-treated spinal cord injury (SCI group), treated with 2 mg/kg of lovastatin (Lova 2 group), and treated with 5 mg/kg of lovastatin (Lova 5 group). At the end of the study, to evaluate the treatments, MDA, CAT, SOD, and GSH factors were evaluated biochemically, apoptosis and gliosis were assessed by immunohistochemical while measuring caspase-3 and GFAP antibodies, and inflammation was estimated by examining the expression of IL-10, TNF-α, and IL-1β genes. The stereological method was used to appraise the total volume of the spinal cord at the site of injury, the volume of the central cavity created, and the density of neurons and glial cells in the traumatic area. In addition, Basso-Beattie-Bresnehan (BBB) and narrow beam test (NBT) were utilized to rate neurological functions. RESULTS Our results exposed the fact that biochemical factors (except MDA), stereological parameters, and neurological functions were significantly ameliorated in both lovastatin-treated groups, especially in Lova 5 ones, compared to the SCI group. The expression of the IL-10 gene was significantly upregulated in both lovastatin-treated groups compared to the SCI group and was considerably heighten in Lova 5 group. Expression of TNF-α and IL-1β, as well as the rate of apoptosis and GFAP positive cells significantly decreased in both lovastatin treated groups compared to the SCI group, and it was more pronounced in the Lova 5 ones. CONCLUSION Overall, using lovastatin, especially at a dose of 5 mg/kg, has a dramatic neuroprotective impact on SCI treatment.
Collapse
Affiliation(s)
- Jafar Mirzaie
- Neuroscience Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Davood Nasiry
- Amol Faculty of Paramedicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ömer Ayna
- Kiev Medical University, Dermatology Departments, Kiev, Ukraine
| | - Amir Raoofi
- Cellular and Molecular Research Center, Department of Anatomical Sciences, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Ali Delbari
- Cellular and Molecular Research Center, Department of Anatomical Sciences, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Auob Rustamzadeh
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Akram Nezhadi
- Neuroscience Research Center, Aja University of Medical Sciences, Tehran, Iran.
| | - Zahra Jamalpoor
- Trauma Research Center, Aja University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Wang R, Zhou R, Chen Z, Gao S, Zhou F. The Glial Cells Respond to Spinal Cord Injury. Front Neurol 2022; 13:844497. [PMID: 35599739 PMCID: PMC9120539 DOI: 10.3389/fneur.2022.844497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/08/2022] [Indexed: 12/24/2022] Open
Abstract
It is been over 100 years since glial cells were discovered by Virchow. Since then, a great deal of research was carried out to specify these further roles and properties of glial cells in central nervous system (CNS). As it is well-known that glial cells, such as astrocytes, microglia, oligodendrocytes (OLs), and oligodendrocyte progenitor cells (OPCs) play an important role in supporting and enabling the effective nervous system function in CNS. After spinal cord injury (SCI), these glial cells play different roles in SCI and repair. In this review, we will discuss in detail about the role of glial cells in the healthy CNS and how they respond to SCI.
Collapse
|
8
|
Hellenbrand DJ, Quinn CM, Piper ZJ, Morehouse CN, Fixel JA, Hanna AS. Inflammation after spinal cord injury: a review of the critical timeline of signaling cues and cellular infiltration. J Neuroinflammation 2021; 18:284. [PMID: 34876174 PMCID: PMC8653609 DOI: 10.1186/s12974-021-02337-2] [Citation(s) in RCA: 284] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/30/2021] [Indexed: 03/02/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating neurological condition that results in a loss of motor and sensory function. Although extensive research to develop treatments for SCI has been performed, to date, none of these treatments have produced a meaningful amount of functional recovery after injury. The primary injury is caused by the initial trauma to the spinal cord and results in ischemia, oxidative damage, edema, and glutamate excitotoxicity. This process initiates a secondary injury cascade, which starts just a few hours post-injury and may continue for more than 6 months, leading to additional cell death and spinal cord damage. Inflammation after SCI is complex and driven by a diverse set of cells and signaling molecules. In this review, we utilize an extensive literature survey to develop the timeline of local immune cell and cytokine behavior after SCI in rodent models. We discuss the precise functional roles of several key cytokines and their effects on a variety of cell types involved in the secondary injury cascade. Furthermore, variations in the inflammatory response between rats and mice are highlighted. Since current SCI treatment options do not successfully initiate functional recovery or axonal regeneration, identifying the specific mechanisms attributed to secondary injury is critical. With a more thorough understanding of the complex SCI pathophysiology, effective therapeutic targets with realistic timelines for intervention may be established to successfully attenuate secondary damage.
Collapse
Affiliation(s)
- Daniel J Hellenbrand
- Department of Neurological Surgery, School of Medicine and Public Health (UWSMPH), University of Wisconsin, 600 Highland Ave, Madison, WI, 53792, USA
| | - Charles M Quinn
- Department of Neurological Surgery, School of Medicine and Public Health (UWSMPH), University of Wisconsin, 600 Highland Ave, Madison, WI, 53792, USA
| | - Zachariah J Piper
- Department of Neurological Surgery, School of Medicine and Public Health (UWSMPH), University of Wisconsin, 600 Highland Ave, Madison, WI, 53792, USA
| | - Carolyn N Morehouse
- Department of Neurological Surgery, School of Medicine and Public Health (UWSMPH), University of Wisconsin, 600 Highland Ave, Madison, WI, 53792, USA
| | - Jordyn A Fixel
- Department of Neurological Surgery, School of Medicine and Public Health (UWSMPH), University of Wisconsin, 600 Highland Ave, Madison, WI, 53792, USA
| | - Amgad S Hanna
- Department of Neurological Surgery, School of Medicine and Public Health (UWSMPH), University of Wisconsin, 600 Highland Ave, Madison, WI, 53792, USA.
| |
Collapse
|
9
|
Jiang L, Wei ZC, Xu LL, Yu SY, Li C. Inhibition of miR-145-5p Reduces Spinal Cord Injury-Induced Inflammatory and Oxidative Stress Responses via Affecting Nurr1-TNF-α Signaling Axis. Cell Biochem Biophys 2021; 79:791-799. [PMID: 34133012 DOI: 10.1007/s12013-021-00992-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2021] [Indexed: 01/10/2023]
Abstract
Inflammation and oxidative stress feature prominently in the secondary spinal cord injury (SCI). The present work is targeted at deciphering miR-145-5p's role and underlying mechanism in SCI. We randomly divided Sprague-Dawley rats into SCI group and control group. Microglial BV2 cells were separated into control group and lipopolysaccharide (LPS) treatment group. Enzyme-linked immunosorbent assay was carried out for determining the concentrations of interleukin-6, interleukin-1β, and tumor necrosis factor-α (TNF-α). The expressions of malondialdehyde, glutathione peroxidase, superoxide dismutase, and reactive oxygen species were also detected. TNF-α, miR-145-5p, and Nurr1 expressions were examined by western blot and quantitative real-time polymerase chain reaction. Western blotting and dual-luciferase reporter gene assay were conducted to examine the regulating impact that miR-145-5p had on Nurr1 and TNF-α. MiR-145-5p was remarkably upregulated in the SCI rat model's spinal cord tissues and BV2 cells treated with LPS, and Nurr1 expression was dramatically lowered. Furthermore, miR-145-5p inhibition markedly repressed inflammatory and oxidative stress responses. Moreover, it was proved that Nurr1 was a direct miR-145-5p target. The inhibition of miR-145-5p helped promote Nurr1 expression to block TNF-α signaling. MiR-145-5p inhibition mitigates inflammation and oxidative stress via targeting Nurr1 to regulate TNF-α signaling, which ameliorates SCI.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Neurosurgery, Rizhao Central Hospital, Rizhao, 276800, Shandong, China.
| | - Zeng-Chun Wei
- Department of Orthopedics, Rizhao Central Hospital, Rizhao, 276800, Shandong, China
| | - Li-Li Xu
- Department of ICU, Rizhao Central Hospital, Rizhao, 276800, Shandong, China
| | - Shan-Ying Yu
- Department of Rehabilitation Medicine, Rizhao Central Hospital, Rizhao, 276800, Shandong, China
| | - Chao Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
10
|
Zhao X, Zhao X, Wang Z. Synergistic neuroprotective effects of hyperbaric oxygen and N-acetylcysteine against traumatic spinal cord injury in rat. J Chem Neuroanat 2021; 118:102037. [PMID: 34601074 DOI: 10.1016/j.jchemneu.2021.102037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND The mitochondrial dysfunction and following oxidative stress, as well as the spread of inflammation plays major roles in the failure to regenerate following severe spinal cord injury (SCI). In this regard, we investigated the neuroprotective effects of hyperbaric oxygen (HBO), as an anti-apoptotic and anti-inflammatory agent, and N-acetylcysteine (NAC), as a mitochondrial enhancer, in SCI. MATERIAL AND METHODS Seventy-five female adult Wistar rats divided into five groups (n = 15): laminectomy alone (Sham) group, SCI group, HBO group (underwent SCI and received HBO), NAC group (underwent SCI and received NAC), and HBO+NAC group (underwent SCI and simultaneously received NAC and HBO). At the end of study, spinal cord tissue samples were taken for evaluation of biochemical profiles including malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD) and glutathione (GSH) levels, immunohistochemistry for caspase-3 as well as gene expressions of interleukin (IL)-10, tumor necrosis factor alpha (TNF-α), and IL-1β. Stereological assessments were performed to determine the total volumes, central cavity volumes and as well as numerical density of the neural and glial cells in traumatic area. Moreover, neurological functions were evaluated by the Basso-Beattie-Bresnehan (BBB) and electromyography (EMG). RESULTS Our results showed that the stereological parameters, biochemical profiles (except MDA) and neurological function were significantly higher in each HBO, NAC and HBO+NAC groups compared to the SCI group, and were highest in HBO+NAC ones. The transcript for IL-10 gene was significantly upregulated in all treatment regimens compared to SCI group, and was highest in HBO+NAC ones. While expression of TNF-α and IL-1β, latency, as well as density of apoptosis cells in caspase-3 evaluation significantly more decreased in HBO+NAC group compared to other groups. CONCLUSION Overall, using combined therapy with HBO and NAC has synergistic neuroprotective effects in SCI treatment.
Collapse
Affiliation(s)
- Xiaocheng Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiaopeng Zhao
- Department of Neurosurgery, Xilinguole Meng Mongolian General Hospital, Xilinguole 026000, China
| | - Zengguang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
11
|
Chen JY, Fu EJ, Patel PR, Hostetler AJ, Sawan HA, Moss KA, Hocevar SE, Anderson AJ, Chestek CA, Shea LD. Lentiviral Interleukin-10 Gene Therapy Preserves Fine Motor Circuitry and Function After a Cervical Spinal Cord Injury in Male and Female Mice. Neurotherapeutics 2021; 18:503-514. [PMID: 33051853 PMCID: PMC8116384 DOI: 10.1007/s13311-020-00946-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2020] [Indexed: 12/16/2022] Open
Abstract
In mammals, spinal cord injuries often result in muscle paralysis through the apoptosis of lower motor neurons and denervation of neuromuscular junctions. Previous research shows that the inflammatory response to a spinal cord injury can cause additional tissue damage after the initial trauma. To modulate this inflammatory response, we delivered lentiviral anti-inflammatory interleukin-10, via loading onto an implantable biomaterial scaffold, into a left-sided hemisection at the C5 vertebra in mice. We hypothesized that improved behavioral outcomes associated with anti-inflammatory treatment are due to the sparing of fine motor circuit components. We examined behavioral recovery using a ladder beam, tissue sparing using histology, and electromyogram recordings using intraspinal optogenetic stimulation at 2 weeks post-injury. Ladder beam analysis shows interleukin-10 treatment results in significant improvement of behavioral recovery at 2 and 12 weeks post-injury when compared to mice treated with a control virus. Histology shows interleukin-10 results in greater numbers of lower motor neurons, axons, and muscle innervation at 2 weeks post-injury. Furthermore, electromyogram recordings suggest that interleukin-10-treated animals have signal-to-noise ratios and peak-to-peak amplitudes more similar to that of uninjured controls than to that of control injured animals at 2 weeks post-injury. These data show that gene therapy using anti-inflammatory interleukin-10 can significantly reduce tissue damage and subsequent motor deficits after a spinal cord injury. Together, these results suggest that early modulation of the injury response can preserve muscle function with long-lasting benefits.
Collapse
Affiliation(s)
- Jessica Y Chen
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Boulevard, 1119 Carl A Gerstacker Building, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Emily J Fu
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Boulevard, 1119 Carl A Gerstacker Building, Ann Arbor, MI, 48109, USA
| | - Paras R Patel
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Boulevard, 1119 Carl A Gerstacker Building, Ann Arbor, MI, 48109, USA
| | - Alexander J Hostetler
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Boulevard, 1119 Carl A Gerstacker Building, Ann Arbor, MI, 48109, USA
| | - Hasan A Sawan
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Boulevard, 1119 Carl A Gerstacker Building, Ann Arbor, MI, 48109, USA
| | - Kayla A Moss
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Boulevard, 1119 Carl A Gerstacker Building, Ann Arbor, MI, 48109, USA
| | - Sarah E Hocevar
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Boulevard, 1119 Carl A Gerstacker Building, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Aileen J Anderson
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, 92697, USA
| | - Cynthia A Chestek
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Boulevard, 1119 Carl A Gerstacker Building, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
- Robotics Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Boulevard, 1119 Carl A Gerstacker Building, Ann Arbor, MI, 48109, USA.
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
12
|
Dilated cardiomyopathy impairs mitochondrial biogenesis and promotes inflammation in an age- and sex-dependent manner. Aging (Albany NY) 2020; 12:24117-24133. [PMID: 33303703 PMCID: PMC7762497 DOI: 10.18632/aging.202283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
Dilated cardiomyopathy (DCM) belongs to the myocardial diseases associated with a severe impairment of cardiac function, but the question of how sex and age affect this pathology has not been fully explored. Impaired energy homeostasis, mitochondrial dysfunction, and systemic inflammation are well-described phenomena associated with aging. In this study, we investigated if DCM affects these phenomena in a sex- and age-related manner. We analyzed the expression of mitochondrial and antioxidant proteins and the inflammatory state in DCM heart tissue from younger and older women and men. A significant downregulation of Sirt1 expression was detected in older DCM patients. Sex-related differences were observed in the phosphorylation of AMPK that only appeared in older males with DCM, possibly due to an alternative Sirt1 regulation mechanism. Furthermore, reduced expression of several mitochondrial proteins (TOM40, TIM23, Sirt3, and SOD2) and genes (cox1, nd4) was only detected in old DCM patients, suggesting that age has a greater effect than DCM on these alterations. Finally, an increased expression of inflammatory markers in older, failing hearts, with a stronger pro-inflammatory response in men, was observed. Together, these findings indicate that age- and sex-related increased inflammation and disturbance of mitochondrial homeostasis occurs in male individuals with DCM.
Collapse
|
13
|
Al Mamun A, Monalisa I, Tul Kubra K, Akter A, Akter J, Sarker T, Munir F, Wu Y, Jia C, Afrin Taniya M, Xiao J. Advances in immunotherapy for the treatment of spinal cord injury. Immunobiology 2020; 226:152033. [PMID: 33321368 DOI: 10.1016/j.imbio.2020.152033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/19/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a leading cause of morbidity and disability in the world. Over the past few decades, the exact molecular mechanisms describing secondary, persistent injuries, as well as primary and transient injuries, have attracted massive attention to the clinicians and researchers. Recent investigations have distinctly shown the critical roles of innate and adaptive immune responses in regulating sterile neuroinflammation and functional outcomes after SCI. In past years, some promising advances in immunotherapeutic options have efficaciously been identified for the treatment of SCI. In our narrative review, we have mainly focused on the new therapeutic strategies such as the maturation and apoptosis of immune cells by several agents, mesenchymal stem cells (MSCs) as well as multi-factor combination therapy, which have recently provided novel ideas and prospects for the future treatment of SCI. This article also illustrates the latest progress in clarifying the potential roles of innate and adaptive immune responses in SCI, the progression and specification of prospective immunotherapy and outstanding issues in the area.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China
| | - Ilma Monalisa
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Khadija Tul Kubra
- Department of Pharmacy, University of Development Alternative, Dhaka 1209, Bangladesh
| | - Afroza Akter
- Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Jaheda Akter
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chattogram-4318, Chittagong, Bangladesh
| | - Tamanna Sarker
- Department of Pharmacy, University of Asia Pacific, Dhaka 1205, Bangladesh
| | - Fahad Munir
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035 Zhejiang Province, China
| | - Chang Jia
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang Province, China
| | - Masuma Afrin Taniya
- Department of Life Sciences, School of Environment and Life Sciences, Independent University, Bangladesh, Dhaka 1229, Bangladesh
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China.
| |
Collapse
|
14
|
Spitzbarth I, Moore SA, Stein VM, Levine JM, Kühl B, Gerhauser I, Baumgärtner W. Current Insights Into the Pathology of Canine Intervertebral Disc Extrusion-Induced Spinal Cord Injury. Front Vet Sci 2020; 7:595796. [PMID: 33195632 PMCID: PMC7653192 DOI: 10.3389/fvets.2020.595796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/30/2020] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) in dogs is commonly attributed to intervertebral disc extrusion (IVDE). Over the last years substantial progress was made in the elucidation of factors contributing to the pathogenesis of this common canine disease. A detailed understanding of the underlying histopathological and molecular alterations in the lesioned spinal cord represents a prerequisite to translate knowledge on the time course of secondary injury processes into the clinical setting. This review summarizes the current state of knowledge of the underlying pathology of canine IVDE-related SCI. Pathological alterations in the spinal cord of dogs affected by IVDE-related SCI include early and persisting axonal damage and glial responses, dominated by phagocytic microglia/macrophages. These processes are paralleled by a pro-inflammatory microenvironment with dysregulation of cytokines and matrix metalloproteinases within the spinal cord. These data mirror findings from a clinical and therapeutic perspective and can be used to identify biomarkers that are able to more precisely predict the clinical outcome. The pathogenesis of progressive myelomalacia, a devastating complication of SCI in dogs, is not understood in detail so far; however, a fulminant and exaggerating secondary injury response with massive reactive oxygen species formation seems to be involved in this unique neuropathological entity. There are substantial gaps in the knowledge of pathological changes in IVDE with respect to more advanced and chronic lesions and the potential involvement of demyelination. Moreover, the role of microglia/macrophage polarization in IVDE-related SCI still remains to be investigated. A close collaboration of clinical neurologists and veterinary pathologists will help to facilitate an integrative approach to a more detailed understanding of the molecular pathogenesis of canine IVDE and thus to identify therapeutic targets.
Collapse
Affiliation(s)
- Ingo Spitzbarth
- Faculty of Veterinary Medicine, Institute of Veterinary Pathology, Leipzig University, Leipzig, Germany
| | - Sarah A Moore
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH, United States
| | - Veronika M Stein
- Department for Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Jonathan M Levine
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Bianca Kühl
- Department of Pathology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hanover, Germany
| | | |
Collapse
|
15
|
Aging-Related Phenotypic Conversion of Medullary Microglia Enhances Intraoral Incisional Pain Sensitivity. Int J Mol Sci 2020; 21:ijms21217871. [PMID: 33114176 PMCID: PMC7660637 DOI: 10.3390/ijms21217871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Activated microglia involved in the development of orofacial pain hypersensitivity have two major polarization states. The aim of this study was to assess the involvement of the aging-related phenotypic conversion of medullary microglia in the enhancement of intraoral pain sensitivity using senescence-accelerated mice (SAM)-prone/8 (SAMP8) and SAM-resistant/1 (SAMR1) mice. Mechanical head-withdrawal threshold (MHWT) was measured for 21 days post palatal mucosal incision. The number of CD11c-immunoreactive (IR) cells [affective microglia (M1)] and CD163-IR cells [protective microglia (M2)], and tumor-necrosis-factor-α (TNF-α)-IR M1 and interleukin (IL)-10-IR M2 were analyzed via immunohistochemistry on days 3 and 11 following incision. The decrease in MHWT observed following incision was enhanced in SAMP8 mice. M1 levels and the number of TNF-α-IR M1 were increased on day 3 in SAMP8 mice compared with those in SAMR1 mice. On day 11, M1 and M2 activation was observed in both groups, whereas IL-10-IR M2 levels were attenuated in SAMP8 mice, and the number of TNF-α-IR M1 cells increased, compared to those in SAMR1 mice. These results suggest that the mechanical allodynia observed following intraoral injury is potentiated and sustained in SAMP8 mice due to enhancement of TNF-α signaling, M1 activation, and an attenuation of M2 activation accompanying IL-10 release.
Collapse
|
16
|
Tamura K, Maeta N. Efficacy of autologous bone marrow mononuclear cell transplantation in dogs with chronic spinal cord injury. Open Vet J 2020; 10:206-215. [PMID: 32821665 PMCID: PMC7419067 DOI: 10.4314/ovj.v10i2.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/17/2020] [Indexed: 11/17/2022] Open
Abstract
Background: Spinal cord injury (SCI) is relatively common in dogs and is a devastating condition involving loss of sensory neurons and motor neurons. However, the main clinical protocol for the management of SCI is surgery to decompress and stabilize the vertebra. Cell transplantation therapy is a very promising strategy for the treatment of chronic SCI, but extensive preclinical and clinical research work remains. Aim: The aim of this study is to confirm the effect of bone marrow-derived mononuclear cell (BM-MNC) transplantation for chronic SCI in dogs. Methods: We tested the treatment efficiency of chronic SCI in 12 dogs using BM-MNC transplantation. Neurological evaluation used the Texas Spinal Cord Injury Scale (TSCIS). Concurrently, we characterized the transplanted cells by evaluation using quantitative real-time polymerase chain reaction, flow cytometry, and enzyme-linked immunosorbent assay. Result: All dogs had a pre-transplantation TSCIS score of 0. Two animals did not show any improvement in their final TSCIS scores. The remaining 10 dogs (83.4%) achieved improvement in the final TSCIS scores. Five of them (41.7%) regained ambulatory function with a TSCIS score greater than 10. We determined that canine BM-MNCs expressed hepatocyte growth factor (HGF) mRNA at higher levels than other cytokines, with significant increases in HGF levels in cerebrospinal fluid within 48 hours after autologous BM-MNC transplantation into the subarachnoid space of the spinal dura matter in dogs. Conclusions: BM-MNC transplantation may be effective for at least some cases of chronic SCI.
Collapse
Affiliation(s)
| | - Noritaka Maeta
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
| |
Collapse
|
17
|
Up-regulation of MicroRNAs-21 and -223 in a Sprague-Dawley Rat Model of Traumatic Spinal Cord Injury. Brain Sci 2020; 10:brainsci10030141. [PMID: 32121653 PMCID: PMC7139624 DOI: 10.3390/brainsci10030141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/29/2020] [Accepted: 03/01/2020] [Indexed: 12/18/2022] Open
Abstract
In this experimental animal study, we examined alterations in the degree of transcription of two microRNAs (miRs)—miR-21 and -223—in a Sprague-Dawley (SD) rat model of traumatic spinal cord injury (TSCI). Depending on the volume of the balloon catheter (V), a total of 75 male SD rats were divided into the three experimental groups: the sham group (n = 25; V = 0 μL), the mild group (n = 25; V = 20 μL), and the severe group (n = 25; V = 50 μL). Successful induction of TSCI was confirmed on both locomotor rating scale at 4 h and 1, 3 and 7 days post-lesion and histopathologic examinations. Then, RNA isolation and quantitative polymerase chain reaction (PCR) were performed. No differences in the level of miR-21 expression were found at the first time point studied (4 h post-lesion) between the three experimental groups, whereas such differences were significant at all the other time points (p < 0.05). Moreover, there were significant alterations in the level of miR-223 expression at all time points studied through all the experimental groups (p < 0.05). Furthermore, locomotor rating scale scores had a linear relationship with the level of miR-21 expression (R2 = 0.4363, Y = 1.661X + 3.096) and that of miR-223 one (R2 = 0.9104, Y = 0.8385X + 2.328). Taken together, we conclude that up-regulation of miR-21 and -223 might be closely associated with progression and the early course of TSCI, respectively.
Collapse
|
18
|
Yu L, Qian J. Dihydrotanshinone I Alleviates Spinal Cord Injury via Suppressing Inflammatory Response, Oxidative Stress and Apoptosis in Rats. Med Sci Monit 2020; 26:e920738. [PMID: 32112706 PMCID: PMC7063851 DOI: 10.12659/msm.920738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Spinal cord injury (SCI) is a serious nervous system injury, causing extremely low quality of life and immensurable economic losses. However, there is few therapies that can effectively cure the injury. The goal of the present study was to explore the potential therapeutic effects of dihydrotanshinone I (DI) for SCI and the involving mechanism. Material/Methods A SCI rat model was structured to investigate the effects of DI on recovery of SCI. Tarlov’s scale was employed to assess the neuronal function and histopathological examination was carried out by hematoxylin and eosin staining. In addition, tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, inducible nitric oxide synthase (iNOS), total oxidant status (TOS) and total antioxidant status (TAS) levels were detected. Tunel assay and western blot analysis were performed to evaluate cell apoptosis. Furthermore, western blot assay was used to measure the protein expressions. Results The results demonstrated that the treatment of DI alleviated the pathological damage induced by SCI and promoted the neuronal functional recovery. DI suppressed TNF-α, IL-1β, IL-6, iNOS, and TOS levels while improved the TAS level. Moreover, increased cell apoptosis in SCI rats was inhibited by administration of DI. Most importantly, DI reserved the soaring of TLR4, MyD88, HMGB1, and NOX4 level after induction of SCI. Thus, the observation revealed that the HMGB1/TLR4/NOX4 pathway may be involved in the protective effects of DI on SCI. Conclusions In conclusion, the findings suggest that DI alleviates SCI by restraining secretion of inflammatory factors, and occurrence of oxidative stress and apoptosis in vivo. DI may be developed into an effective alternative therapy for SCI in clinic.
Collapse
Affiliation(s)
- Liuqian Yu
- Department of Orthopeadics, Dajiangdong Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Jinfeng Qian
- Section IV, Department of Orthopaedics, Hospital of Marine Police Corps of the Chinese People's Armed Police Force, Jiaxing, Zhejiang, China (mainland)
| |
Collapse
|
19
|
Gao F, Shen J, Zhao L, Hao Q, Yang Y. Curcumin Alleviates Lipopolysaccharide (LPS)-Activated Neuroinflammation via Modulation of miR-199b-5p/IκB Kinase β (IKKβ)/Nuclear Factor Kappa B (NF-κB) Pathway in Microglia. Med Sci Monit 2019; 25:9801-9810. [PMID: 31862869 PMCID: PMC6937907 DOI: 10.12659/msm.918237] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/04/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Microglia reside in the spinal cord plays a key role in the onset, progression of post-spinal cord injury (SCI) neuroinflammation. Curcumin has been shown to exhibit diverse anti-inflammatory and anti-tumor activities. The aim of this study was to explore the effect of curcumin on the inflammatory response in lipopolysaccharide (LPS)-activated microglia and its mechanism. MATERIAL AND METHODS The expression levels of phosphorylated-p65 (p-p65), tumor necrosis factor (TNF)-alpha, interleukin (IL)-1ß, and IkappaB kinase ß (IKKß) were examined by western blot assay. MiR-199b-5p expression was detected by quantitative real-time polymerase chain reaction assay. The putative binding sites of miR-199b-5p in IKKß 3'UTR were predicted by bioinformatics, and direct interaction between miR-199b-5p and IKKß was verified by dual-luciferase reporter assay and RNA-immunoprecipitation assay. RESULTS Curcumin significantly suppressed inflammatory response induced by LPS by inactivation of nuclear factor kappa B (NF-kappaB) in microglial cells, as reflected by the decreased levels of p-p65, as well as the pro-inflammatory mediators, including inducible nitric oxide synthase (iNOS), TNF-alpha, and IL-1ß. Moreover, curcumin increased the level of miR-199b-5p and decreased IKKß expression in activated microglial cells. Knockdown of miR-199b-5p or overexpression of IKKß reversed the inhibitory effect of curcumin on inflammatory response and NF-kappaB activation. MiR-199b-5p directly targeted IKKß and suppressed its expression. Silencing of IKKß abolished miR-199b-5p-stimulated inflammatory cytokines production and NF-kappaB activation. CONCLUSIONS Curcumin attenuated neuroinflammation induced by LPS through regulating miR-199b-5p/IKKß/NF-kappaB axis in microglia.
Collapse
Affiliation(s)
- Feng Gao
- Department of Physiology, School of Medicine of Yan’an University, Yan’an, Shaanxi, P.R. China
| | - Juan Shen
- Department of Videography, School of Medicine of Yan’an University, Yan’an, Shaanxi, P.R. China
| | - Lin Zhao
- Department of Anatomy, School of Medicine of Yan’an University, Yan’an, Shaanxi, P.R. China
| | - Qin Hao
- Department of Central Laboratory, School of Medicine of Yan’an University, Yan’an, Shaanxi, P.R. China
| | - Yanling Yang
- Department of Physiology, School of Medicine of Yan’an University, Yan’an, Shaanxi, P.R. China
| |
Collapse
|
20
|
Yu L, Qian J. WITHDRAWN: Dihydrotanshinone I alleviates spinal cord injury via suppressing inflammatory response, oxidative stress and apoptosis in rats. Pathol Res Pract 2019. [DOI: 10.1016/j.prp.2019.152771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Ginsenoside Rg1 defenses PC-12 cells against hydrogen peroxide-caused damage via up-regulation of miR-216a-5p. Life Sci 2019; 236:116948. [DOI: 10.1016/j.lfs.2019.116948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022]
|
22
|
Involvement of Interleukin-10 in Analgesia of Electroacupuncture on Incision Pain. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:8413576. [PMID: 31885668 PMCID: PMC6925708 DOI: 10.1155/2019/8413576] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/31/2019] [Accepted: 08/29/2019] [Indexed: 12/26/2022]
Abstract
Objective Postincision pain often occurs after surgery and is an emergency to be treated in clinic. Electroacupuncture (EA) is a Chinese traditional treatment widely used to cure acute or chronic pain, but its mechanism is not clear. Interleukin-10 (IL-10) is a powerful anti-inflammatory cytokine that shows neuroprotective effects in inflammation and injury in the CNS. The present study attempts to reveal that IL-10 is crucial for EA analgesia on postincision pain. Methods A model of incision pain was established in C57BL/6J mice. The pain threshold was detected by behavioral test, and the expression of IL-10 and its receptor was detected by an immunohistochemical method. C-fiber-evoked field potentials were recorded by in vivo analysis. Results The mechanical allodynia induced by paw incision was significantly inhibited by pretreatment of EA in mice. Intrathecal injection of IL-10 neutralizing antibody (2 µg/10 µL) but not intraplantar injection (10 µg/10 µL) reversed the analgesia of EA. The upregulations of IL-10 mRNA and protein were induced by EA at 6 h and 1 d after incision, respectively. Spinal long-term potentiation (LTP), a substrate for central sensitization, was also suppressed by EA with IL-10. IL-10 recombinant protein (1 µg/10 µL, i.t.) mimicked the analgesia of EA on mechanical allodynia and inhibition on the spinal LTP. Posttreatment of EA after incision also transitorily relieved the mechanical allodynia, which can be blocked by spinal IL-10 antibody. IL-10 and its receptor, IL-10RA, are predominantly expressed in the superficial spinal astrocytes. Conclusions These results suggested that pretreatment of EA effectively prevented postincision pain and IL-10 in spinal astrocytes was critical for the analgesia of EA and central sensitization.
Collapse
|
23
|
Chio JCT, Wang J, Badner A, Hong J, Surendran V, Fehlings MG. The effects of human immunoglobulin G on enhancing tissue protection and neurobehavioral recovery after traumatic cervical spinal cord injury are mediated through the neurovascular unit. J Neuroinflammation 2019; 16:141. [PMID: 31288834 PMCID: PMC6615094 DOI: 10.1186/s12974-019-1518-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/11/2019] [Indexed: 12/30/2022] Open
Abstract
Background Spinal cord injury (SCI) is a condition with few effective treatment options. The blood-spinal cord barrier consists of pericytes, astrocytes, and endothelial cells, which are collectively termed the neurovascular unit. These cells support spinal cord homeostasis by expressing tight junction proteins. Physical trauma to the spinal cord disrupts the barrier, which leads to neuroinflammation by facilitating immune cell migration to the damaged site in a process involving immune cell adhesion. Immunosuppressive strategies, including methylprednisolone (MPSS), have been investigated to treat SCI. However, despite some success, MPSS has the potential to increase a patient’s susceptibility to wound infection and impaired wound healing. Hence, immunomodulation may be a more attractive approach than immunosuppression. Approved for modulating neuroinflammation in certain disorders, including Guillain-Barre syndrome, intravenous administration of human immunoglobulin G (hIgG) has shown promise in the setting of experimental SCI, though the optimal dose and mechanism of action remain undetermined. Methods Female adult Wistar rats were subjected to moderate-severe clip compression injury (35 g) at the C7-T1 level and randomized to receive a single intravenous (IV) bolus of hIgG (0.02, 0.2, 0.4, 1, 2 g/kg), MPSS (0.03 g/kg), or control buffer at 15 min post-SCI. At 24 h and 6 weeks post-SCI, molecular, histological, and neurobehavioral effects of hIgG were analyzed. Results At 24 h post-injury, human immunoglobulin G co-localized with spinal cord pericytes, astrocytes, and vessels. hIgG (2 g/kg) protected the spinal cord neurovasculature after SCI by increasing tight junction protein expression and reducing inflammatory enzyme expression. Improvements in vascular integrity were associated with changes in spinal cord inflammation. Interestingly, hIgG (2 g/kg) increased serum expression of inflammatory cytokines and co-localized (without decreasing protein expression) with spinal cord vascular cell adhesion molecule-1, a protein used by immune cells to enter into inflamed tissue. Acute molecular benefits of hIgG (2 g/kg) led to greater tissue preservation, functional blood flow, and neurobehavioral recovery at 6 weeks post-SCI. Importantly, the effects of hIgG (2 g/kg) were superior to control buffer and hIgG (0.4 g/kg), and comparable with MPSS (0.03 g/kg). Conclusions hIgG (2 g/kg) is a promising therapeutic approach to mitigate secondary pathology in SCI through antagonizing immune cell infiltration at the level of the neurovascular unit.
Collapse
Affiliation(s)
- Jonathon Chon Teng Chio
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, 7KD-430, Toronto, Ontario, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Spinal Program, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Jian Wang
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, 7KD-430, Toronto, Ontario, M5T 2S8, Canada
| | - Anna Badner
- Sue and Bill Gross Stem Cell Research Centre, University of California, 845 Health Sciences Road, Irvine, CA, 92617, USA
| | - James Hong
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, 7KD-430, Toronto, Ontario, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Spinal Program, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | | | - Michael G Fehlings
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, 7KD-430, Toronto, Ontario, M5T 2S8, Canada. .,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada. .,Spinal Program, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada. .,University of Toronto, Toronto, Ontario, Canada. .,Gerry and Tootsie Halbert Chair in Neural Repair and Regeneration, University of Toronto, Toronto, Canada. .,Krembil Neuroscience Program, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, Ontario, M5T 2S8, Canada.
| |
Collapse
|
24
|
Ban J, Sámano C, Mladinic M, Munitic I. Glia in amyotrophic lateral sclerosis and spinal cord injury: common therapeutic targets. Croat Med J 2019. [PMID: 31044582 PMCID: PMC6509626 DOI: 10.3325/cmj.2019.60.109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The toolkit for repairing damaged neurons in amyotrophic lateral sclerosis (ALS) and spinal cord injury (SCI) is extremely limited. Here, we reviewed the in vitro and in vivo studies and clinical trials on nonneuronal cells in the neurodegenerative processes common to both these conditions. Special focus was directed to microglia and astrocytes, because their activation and proliferation, also known as neuroinflammation, is a key driver of neurodegeneration. Neuroinflammation is a multifaceted process that evolves during the disease course, and can be either beneficial or toxic to neurons. Given the fundamental regulatory functions of glia, pathogenic mechanisms in neuroinflammation represent promising therapeutic targets. We also discussed neuroprotective, immunosuppressive, and stem-cell based approaches applicable to both ALS and SCI.
Collapse
Affiliation(s)
| | | | | | - Ivana Munitic
- Ivana Munitic, Department of Biotechnology, University of Rijeka, R. Matejčić 2, 51000 Rijeka, Croatia,
| |
Collapse
|
25
|
Mammana S, Gugliandolo A, Cavalli E, Diomede F, Iori R, Zappacosta R, Bramanti P, Conti P, Fontana A, Pizzicannella J, Mazzon E. Human gingival mesenchymal stem cells pretreated with vesicular moringin nanostructures as a new therapeutic approach in a mouse model of spinal cord injury. J Tissue Eng Regen Med 2019; 13:1109-1121. [PMID: 30942960 PMCID: PMC6771565 DOI: 10.1002/term.2857] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/19/2019] [Accepted: 03/15/2019] [Indexed: 01/12/2023]
Abstract
Spinal cord injury (SCI) is a neurological disorder that arises from a primary acute mechanical lesion, followed by a pathophysiological cascade of events that leads to further spinal cord tissue damage. Several preclinical and clinical studies have highlighted the ability of stem cell therapy to improve long-term functional recovery in SCI. Previously, we demonstrated that moringin (MOR) treatment accelerates the differentiation process in mesenchymal stem cells inducing an early up-regulation of neural development associated genes. In the present study, we investigated the anti-inflammatory, anti-apoptotic, and regenerative effects of gingival mesenchymal stem cells (GMSCs) pretreated with nanostructured liposomes enriched with MOR in an animal model of SCI. SCI was produced by extradural compression of the spinal cord at levels T6-T7 in ICR (CD-1) mice. Animals were randomly assigned to the following groups: Sham, SCI, SCI + GMSCs (1 × 106 cell/i.v.), SCI + MOR-GMSCs (1 × 106 cell/i.v.). Our data show that MOR-treated GMSCs exert anti-inflammatory and anti-apoptotic activities. In particular, MOR-treated GMSCs are able to reduce the spinal cord levels of COX-2, GFAP, and inflammatory cytokines IL-1β and IL-6 and to restore spinal cord normal morphology. Also, MOR-treated GMSCs influenced the apoptotic pathway, by reducing Bax, caspase 3, and caspase 9 expressions.
Collapse
Affiliation(s)
- Santa Mammana
- Department of Experimental NeurologyIRCCS Centro Neurolesi Bonino‐PulejoMessinaItaly
| | - Agnese Gugliandolo
- Department of Experimental NeurologyIRCCS Centro Neurolesi Bonino‐PulejoMessinaItaly
| | - Eugenio Cavalli
- Department of Experimental NeurologyIRCCS Centro Neurolesi Bonino‐PulejoMessinaItaly
| | - Francesca Diomede
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral, and Biotechnological SciencesUniversity “G. d'Annunzio”ChietiItaly
| | - Renato Iori
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia AgrariaCentro di Ricerca Agricoltura e Ambiente (CREA‐AA)BolognaItaly
| | | | - Placido Bramanti
- Department of Experimental NeurologyIRCCS Centro Neurolesi Bonino‐PulejoMessinaItaly
| | - Pio Conti
- Immunology Division, Postgraduate Medical SchoolUniversity “G. d'Annunzio”ChietiItaly
| | | | - Jacopo Pizzicannella
- Department of Medical, Oral and Biotechnological SciencesUniversity “G. d'Annunzio”ChietiItaly
| | - Emanuela Mazzon
- Department of Experimental NeurologyIRCCS Centro Neurolesi Bonino‐PulejoMessinaItaly
| |
Collapse
|
26
|
Hellenbrand DJ, Reichl KA, Travis BJ, Filipp ME, Khalil AS, Pulito DJ, Gavigan AV, Maginot ER, Arnold MT, Adler AG, Murphy WL, Hanna AS. Sustained interleukin-10 delivery reduces inflammation and improves motor function after spinal cord injury. J Neuroinflammation 2019; 16:93. [PMID: 31039819 PMCID: PMC6489327 DOI: 10.1186/s12974-019-1479-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
Background The anti-inflammatory cytokine interleukin-10 (IL-10) has been explored previously as a treatment method for spinal cord injury (SCI) due to its ability to attenuate pro-inflammatory cytokines and reduce apoptosis. Primary limitations when using systemic injections of IL-10 are that it is rapidly cleared from the injury site and that it does not cross the blood–spinal cord barrier. Objective Here, mineral-coated microparticles (MCMs) were used to obtain a local sustained delivery of IL-10 directly into the injury site after SCI. Methods Female Sprague-Dawley rats were contused at T10 and treated with either an intraperitoneal injection of IL-10, an intramedullary injection of IL-10, or MCMs bound with IL-10 (MCMs+IL-10). After treatment, cytokine levels were measured in the spinal cord, functional testing and electrophysiology were performed, axon tracers were injected into the brainstem and motor cortex, macrophage levels were counted using flow cytometry and immunohistochemistry, and lesion size was measured. Results When treated with MCMs+IL-10, IL-10 was significantly elevated in the injury site and inflammatory cytokines were significantly suppressed, prompting significantly less cells expressing antigens characteristic of inflammatory macrophages and significantly more cells expressing antigens characteristic of earlier stage anti-inflammatory macrophages. Significantly more axons were preserved within the rubrospinal and reticulospinal tracts through the injury site when treated with MCMs+IL-10; however, there was no significant difference in corticospinal tract axons preserved, regardless of treatment group. The rats treated with MCMs+IL-10 were the only group with a significantly higher functional score compared to injured controls 28 days post-contusion. Conclusion These data demonstrate that MCMs can effectively deliver biologically active IL-10 for an extended period of time altering macrophage phenotype and aiding in functional recovery after SCI.
Collapse
Affiliation(s)
- Daniel J Hellenbrand
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA.,Department of Biomedical Engineering, University of Wisconsin, Madison, WI, 53706, USA
| | - Kaitlyn A Reichl
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA.,Department of Biomedical Engineering, University of Wisconsin, Madison, WI, 53706, USA
| | - Benjamin J Travis
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA
| | - Mallory E Filipp
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA
| | - Andrew S Khalil
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, 53706, USA
| | - Domenic J Pulito
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA
| | - Ashley V Gavigan
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA
| | - Elizabeth R Maginot
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA
| | - Mitchell T Arnold
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA
| | - Alexander G Adler
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, 53706, USA.,Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, WI, 53705, USA
| | - Amgad S Hanna
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA.
| |
Collapse
|
27
|
Ban J, Sámano C, Mladinic M, Munitic I. Glia in amyotrophic lateral sclerosis and spinal cord injury: common therapeutic targets. Croat Med J 2019; 60:109-120. [PMID: 31044582 PMCID: PMC6509626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/28/2019] [Indexed: 07/17/2024] Open
Abstract
The toolkit for repairing damaged neurons in amyotrophic lateral sclerosis (ALS) and spinal cord injury (SCI) is extremely limited. Here, we reviewed the in vitro and in vivo studies and clinical trials on nonneuronal cells in the neurodegenerative processes common to both these conditions. Special focus was directed to microglia and astrocytes, because their activation and proliferation, also known as neuroinflammation, is a key driver of neurodegeneration. Neuroinflammation is a multifaceted process that evolves during the disease course, and can be either beneficial or toxic to neurons. Given the fundamental regulatory functions of glia, pathogenic mechanisms in neuroinflammation represent promising therapeutic targets. We also discussed neuroprotective, immunosuppressive, and stem-cell based approaches applicable to both ALS and SCI.
Collapse
Affiliation(s)
| | | | | | - Ivana Munitic
- Ivana Munitic, Department of Biotechnology, University of Rijeka, R. Matejčić 2, 51000 Rijeka, Croatia,
| |
Collapse
|
28
|
Badner A, Vidal PM, Hong J, Hacker J, Fehlings MG. Endogenous Interleukin-10 Deficiency Exacerbates Vascular Pathology in Traumatic Cervical Spinal Cord Injury. J Neurotrauma 2019; 36:2298-2307. [PMID: 30843463 DOI: 10.1089/neu.2018.6081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although the majority of traumatic spinal cord injuries (SCIs) take place at the cervical level, pre-clinical studies have been disproportionally focused on thoracic insults. With differences in anatomy, physiology, and immune response between spinal cord levels, there is evidence that injury pathophysiology may vary, requiring tailored treatment paradigms. Further, as only a few therapies have been successfully translated to the clinic, cervical models are increasingly recognized as essential for the characterization of trauma and therapy. Using a novel and clinically relevant cervical contusion-compression mouse model of bilateral incomplete injury, this study aimed to assess the role of interleukin10 (IL-10), a potent cytokine with broad anti-inflammatory effects, in SCI vascular pathology. While the effects of IL-10 loss have been previously evaluated, the vascular changes are poorly characterized. Here, using in vivo high-resolution ultrasound imaging, we demonstrate that IL-10 deficiency is associated with increased acute vascular damage. Importantly, the loss of endogenous IL-10 led to significant differences in the acute systemic response to SCI, specifically the circulating levels of IL-12 (p70), LIX (CXCL5), IL-1β, tumor necrosis factor (TNF)-α, and IL-6 relative to genotype sham controls. These effects also fostered modest impairments in long-term functional recovery, assessed by the Basso Mouse Scale, as well as histological outcomes.
Collapse
Affiliation(s)
- Anna Badner
- 1Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,2Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Pia M Vidal
- 1Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - James Hong
- 1Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,2Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Justin Hacker
- 1Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Michael G Fehlings
- 1Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,2Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Front Neurol 2019; 10:282. [PMID: 30967837 PMCID: PMC6439316 DOI: 10.3389/fneur.2019.00282] [Citation(s) in RCA: 737] [Impact Index Per Article: 122.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/05/2019] [Indexed: 12/11/2022] Open
Abstract
Traumatic spinal cord injury (SCI) is a life changing neurological condition with substantial socioeconomic implications for patients and their care-givers. Recent advances in medical management of SCI has significantly improved diagnosis, stabilization, survival rate and well-being of SCI patients. However, there has been small progress on treatment options for improving the neurological outcomes of SCI patients. This incremental success mainly reflects the complexity of SCI pathophysiology and the diverse biochemical and physiological changes that occur in the injured spinal cord. Therefore, in the past few decades, considerable efforts have been made by SCI researchers to elucidate the pathophysiology of SCI and unravel the underlying cellular and molecular mechanisms of tissue degeneration and repair in the injured spinal cord. To this end, a number of preclinical animal and injury models have been developed to more closely recapitulate the primary and secondary injury processes of SCI. In this review, we will provide a comprehensive overview of the recent advances in our understanding of the pathophysiology of SCI. We will also discuss the neurological outcomes of human SCI and the available experimental model systems that have been employed to identify SCI mechanisms and develop therapeutic strategies for this condition.
Collapse
Affiliation(s)
- Arsalan Alizadeh
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Spinal Cord Research Center, University of Manitoba, Winnipeg, MB, Canada
| | - Scott Matthew Dyck
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Spinal Cord Research Center, University of Manitoba, Winnipeg, MB, Canada
| | - Soheila Karimi-Abdolrezaee
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Spinal Cord Research Center, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
30
|
Protocatechuic acid improves functional recovery after spinal cord injury by attenuating blood-spinal cord barrier disruption and hemorrhage in rats. Neurochem Int 2019; 124:181-192. [PMID: 30664898 DOI: 10.1016/j.neuint.2019.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/04/2019] [Accepted: 01/14/2019] [Indexed: 01/31/2023]
Abstract
After spinal cord injury (SCI), blood-spinal cord barrier (BSCB) disruption and hemorrhage lead to blood cell infiltration and progressive secondary injuries including inflammation. Inflammatory response is one of the major events resulting in apoptosis, scar formation and neuronal dysfunction after SCI. Here, we investigated whether protocatechuic acid (PCA), a natural phenolic compound, would attenuate BSCB disruption and hemorrhage, leading to functional improvement after SCI. After a moderate contusion injury at T9, PCA (50 mg/kg) was administrated via intraperitoneal injection immediately, 6 h, and 12 h after SCI, and the same dose of PCA once a day until 7 d after injury. Our data show that PCA inhibited apoptotic cell death of neurons and oligodendrocytes and improved functional recovery after injury. PCA also attenuated BSCB disruption and hemorrhage and reduced the infiltration of neutrophils and macrophages compared to vehicle control. Moreover, PCA inhibited the expression and activation of matrix metalloprotease-9, which is well known to disrupt BSCB after SCI. Furthermore, PCA treatment significantly inhibited the expression of sulfonylurea receptor 1 and transient receptor potential melastatin 4, which are known to mediate hemorrhage at an early stage after SCI. Consistent with these findings, the mRNA and protein expression of inflammatory mediators such as tumor necrosis factor alpha, interleukin 1 beta, cyclooxygenase-2, inducible nitric oxide synthase, and chemokines was significantly alleviated by PCA treatment. Thus, our results suggest that PCA improved functional recovery after SCI in part by inhibiting BSCB disruption and hemorrhage through the down-regulation of sulfonylurea receptor 1/transient receptor potential melastatin 4 and matrix metalloprotease-9.
Collapse
|
31
|
Yousefifard M, Sarveazad A, Babahajian A, Baikpour M, Shokraneh F, Vaccaro AR, Harrop JS, Fehlings MG, Hosseini M, Rahimi‐Movaghar V. Potential diagnostic and prognostic value of serum and cerebrospinal fluid biomarkers in traumatic spinal cord injury: A systematic review. J Neurochem 2019; 149:317-330. [DOI: 10.1111/jnc.14637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/03/2018] [Accepted: 11/20/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Mahmoud Yousefifard
- Physiology Research Center Faculty of Medicine Iran University of Medical Sciences Tehran Iran
| | - Arash Sarveazad
- Colorectal Research Center Iran University of Medical Sciences Tehran Iran
| | - Asrin Babahajian
- Liver and Digestive Research Center Kurdistan University of Medical Sciences Sanandaj Iran
| | - Masoud Baikpour
- Department of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Farhad Shokraneh
- Cochrane Schizophrenia Group Institute of Mental Health University of Nottingham Nottingham UK
| | - Alexander R. Vaccaro
- Department of Orthopedics and Neurosurgery Rothman Institute Thomas Jefferson University Philadelphia Pennsylvania USA
| | - James S. Harrop
- Department of Neurosurgery Thomas Jefferson University Philadelphia Pennsylvania USA
| | - Michael G. Fehlings
- Division of Genetics and Development Krembil Research Institute University Health Network Toronto Ontario Canada
- Division of Neurosurgery, Toronto Western Hospital University Health Network Toronto Ontario Canada
- Department of Surgery and Spine Program University of Toronto Toronto Ontario Canada
| | - Mostafa Hosseini
- Department of Epidemiology and Biostatistics School of Public Health Tehran University of Medical Sciences Tehran Iran
| | - Vafa Rahimi‐Movaghar
- Sina Trauma and Surgery Research Center Tehran University of Medical Sciences Tehran Iran
- Brain and Spinal Injuries Research Center (BASIR) Neuroscience Institute Imam Khomeini Hospital Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
32
|
Ren H, Chen X, Tian M, Zhou J, Ouyang H, Zhang Z. Regulation of Inflammatory Cytokines for Spinal Cord Injury Repair Through Local Delivery of Therapeutic Agents. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800529. [PMID: 30479916 PMCID: PMC6247077 DOI: 10.1002/advs.201800529] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/06/2018] [Indexed: 05/29/2023]
Abstract
The balance of inflammation is critical to the repair of spinal cord injury (SCI), which is one of the most devastating traumas in human beings. Inflammatory cytokines, the direct mediators of local inflammation, have differential influences on the repair of the injured spinal cord. Some inflammatory cytokines are demonstrated beneficial to spinal cord repair in SCI models, while some detrimental. Various animal researches have revealed that local delivery of therapeutic agents efficiently regulates inflammatory cytokines and promotes repair from SCI. Quite a few clinical studies have also shown the promotion of repair from SCI through regulation of inflammatory cytokines. However, local delivery of a single agent affects only a part of the inflammatory cytokines that need to be regulated. Meanwhile, different individuals have differential profiles of inflammatory cytokines. Therefore, future studies may aim to develop personalized strategies of locally delivered therapeutic agent cocktails for effective and precise regulation of inflammation, and substantial functional recovery from SCI.
Collapse
Affiliation(s)
- Hao Ren
- The Third Affiliated Hospital of Guangzhou Medical UniversityNo. 63 Duobao RoadGuangzhou510150P. R. China
| | - Xuri Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineSchool of Basic Medical ScienceZhejiang UniversityNo. 866 Yuhangtang RoadHangzhou310058P. R. China
| | - Mengya Tian
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineSchool of Basic Medical ScienceZhejiang UniversityNo. 866 Yuhangtang RoadHangzhou310058P. R. China
| | - Jing Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineSchool of Basic Medical ScienceZhejiang UniversityNo. 866 Yuhangtang RoadHangzhou310058P. R. China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineSchool of Basic Medical ScienceZhejiang UniversityNo. 866 Yuhangtang RoadHangzhou310058P. R. China
| | - Zhiyong Zhang
- Translational Research Center for Regenerative Medicine and 3D Printing TechnologiesGuangzhou Medical UniversityNo. 63 Duobao RoadGuangzhou510150P. R. China
| |
Collapse
|
33
|
Yellow Laser Stimulation at GV2 Acupoint Mitigates Apoptosis, Oxidative Stress, Inflammation, and Motor Deficit in Spinal Cord Injury Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5407052. [PMID: 30402127 PMCID: PMC6196894 DOI: 10.1155/2018/5407052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/06/2018] [Accepted: 09/20/2018] [Indexed: 01/09/2023]
Abstract
Currently, the suppression of oxidative stress and inflammation is considered as the treatment targets of spinal cord injury due to their roles on the hindrance of recovery process. Since laser acupuncture decreased oxidative stress and enhanced the survival of neurons from oxidative stress damage and GV2 stimulation was selected as one stimulated acupoint in order to enhance the recovery of spinal cord injury, we hypothesized that laser acupuncture at GV2 should enhance the recovery of spinal cord injury. To test this hypothesis, male Wistar rats were induced spinal cord injury at T10 level and they were exposed to a 10 minute-stimulation at GV2 by yellow laser. Laser acupuncture was performed at 0.25 and 1, 2, 6, and 12 hours after spinal cord injury. Then, the stimulation was performed once daily for 7 days. Locomotor assessment was carried out on days 3 and 7 after injury. At the end of study period, the densities of polymorphonuclear of leukocyte, Bax, Caspase-3, Bcl-2, and BDNF positive stained cells in ventral horn of spinal cord were determined. Cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), and oxidative stress status was also assessed. The results showed that laser acupuncture at GV2 increased BBB score, gross motor score, and densities of Bcl-2 and BDNF positive stained cells but decreased density with polymorphonuclear leukocyte, the densities of Bax and Caspase-3 positive stained cells, COX-2 level, and oxidative stress status in ventral horn of the lesion spinal cord. The reduction of serum COX-2 was also decreased. Therefore, GV2 stimulation by yellow laser might enhance the recovery of spinal cord via the increase in BDNF and the decrease in inflammation, apoptosis, and oxidative stress status in the lesion spinal cord.
Collapse
|
34
|
Suppression of miR-127 protects PC-12 cells from LPS-induced inflammatory injury by downregulation of PDCD4. Biomed Pharmacother 2017; 96:1154-1162. [DOI: 10.1016/j.biopha.2017.11.107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/09/2017] [Accepted: 11/20/2017] [Indexed: 11/21/2022] Open
|
35
|
Fu X, Shen Y, Wang W, Li X. MiR-30a-5p ameliorates spinal cord injury-induced inflammatory responses and oxidative stress by targeting Neurod 1 through MAPK/ERK signalling. Clin Exp Pharmacol Physiol 2017; 45:68-74. [PMID: 28925510 DOI: 10.1111/1440-1681.12856] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/16/2017] [Accepted: 08/25/2017] [Indexed: 01/28/2023]
Abstract
Spinal cord injury (SCI) is a major disability requiring more effective treatment than is currently available. MicroRNAs have been shown to effectively regulate gene expression at the translational level. The aim of the present study was to explore the potential role of miR-30-5p and possible mechanism in SCI. We found that miR-30-5p was notably down-regulated, while Neurod 1 expression was highly elevated in microglia from the mouse model of SCI. Additionally, overexpression of miR-30a-5p significantly suppressed inflammatory responses as reflected by a decrease in the secretion of the cytokines TNF-α, IL-1β and IL-10 triggered by SCI. Furthermore, introduction of miR-30a-5p strengthened the scavenging of oxygen free radicals accompanied by an increase in the expression of SEPN1, TXNL1 and GPX1. More importantly, our study explored that Neurod 1 was a direct and functional target of miR-30a-5p, which was validated by the dual luciferase reporter assay. qRT-PCR and western blot analysis further validated that miR-30a-5p negatively regulated the expression of Neurod 1. Mechanistically, overexpression of miR-30a-5p or silencing of the Neurod 1 gene prevented the MAPK/ERK signalling and inhibited inflammatory responses, meanwhile activated SEPN1, TXNL1 and GPX1. These findings indicate that miR-30a-5p ameliorates inflammatory responses and oxidative stress by targeting Neurod 1 through MAPK/ERK signalling.
Collapse
Affiliation(s)
- Xiaodong Fu
- Department of Orthopedics, School of Medicine, South Campus, Renji Hospital, Shanghai JiaoTong University, Shanghai, China
| | - Yi Shen
- Department of Orthopedics, School of Medicine, South Campus, Renji Hospital, Shanghai JiaoTong University, Shanghai, China
| | - Weili Wang
- Department of Orthopedics, School of Medicine, South Campus, Renji Hospital, Shanghai JiaoTong University, Shanghai, China
| | - Xiaomiao Li
- Department of Orthopedics, School of Medicine, South Campus, Renji Hospital, Shanghai JiaoTong University, Shanghai, China
| |
Collapse
|
36
|
Chen D, Pan D, Tang S, Tan Z, Zhang Y, Fu Y, Lü G, Huang Q. Administration of chlorogenic acid alleviates spinal cord injury via TLR4/NF‑κB and p38 signaling pathway anti‑inflammatory activity. Mol Med Rep 2017; 17:1340-1346. [PMID: 29115619 DOI: 10.3892/mmr.2017.7987] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 07/25/2017] [Indexed: 11/06/2022] Open
Abstract
Chlorogenic acid, as a secondary metabolite of plants, exhibits a variety of effects including free radical scavenging, antiseptic, anti‑inflammatory and anti‑viral, in addition to its ability to reduce blood glucose, protect the liver and act as an anti‑hyperlipidemic agent and cholagogue. The present study demonstrated that administration of chlorogenic acid alleviated spinal cord injury (SCI) via anti‑inflammatory activity mediated by nuclear factor (NF)‑κB and p38 signaling pathways. Wistar rats were used to structure a SCI model rat to explore the effects of administration of chlorogenic acid on SCI. The Basso, Beattie and Bresnahan test was executed for assessment of neuronal functional recovery and then spinal cord tissue wet/dry weight ratio was recorded. The present study demonstrated that chlorogenic acid increased SCI‑inhibition of BBB scores and decreased SCI‑induction of spinal cord wet/dry weight ratio in rats. In addition, chlorogenic acid suppressed SCI‑induced inflammatory activity, inducible nitric oxide synthase activity and cyclooxygenase‑2 protein expression in the SCI rat. Furthermore, chlorogenic acid suppressed Toll like receptor (TLR)‑4/myeloid differentiation primary response 88 (MyD88)/NF‑κB/IκB signaling pathways and downregulated p38 mitogen activated protein kinase protein expression in SCI rats. The findings suggest that administration of chlorogenic acid alleviates SCI via anti‑inflammatory activity mediated by TLR4/MyD88/NF‑κB and p38 signaling pathways.
Collapse
Affiliation(s)
- Dayong Chen
- Department of Spine Surgery, The Central Hospital of Zhuzhou City, Zhuzhou, Hunan 412000, P.R. China
| | - Dan Pan
- Department of Spine Surgery, The Central Hospital of Zhuzhou City, Zhuzhou, Hunan 412000, P.R. China
| | - Shaolong Tang
- Department of Spine Surgery, The Central Hospital of Zhuzhou City, Zhuzhou, Hunan 412000, P.R. China
| | - Zhihong Tan
- Department of Spine Surgery, The Central Hospital of Zhuzhou City, Zhuzhou, Hunan 412000, P.R. China
| | - Yanan Zhang
- Department of Spine Surgery, The Central Hospital of Zhuzhou City, Zhuzhou, Hunan 412000, P.R. China
| | - Yunfeng Fu
- Department of Spine Surgery, The Central Hospital of Zhuzhou City, Zhuzhou, Hunan 412000, P.R. China
| | - Guohua Lü
- Department of Spine Surgery, The Central Hospital of Zhuzhou City, Zhuzhou, Hunan 412000, P.R. China
| | - Qinghua Huang
- Department of Spine Surgery, The Central Hospital of Zhuzhou City, Zhuzhou, Hunan 412000, P.R. China
| |
Collapse
|
37
|
Ellman DG, Isaksen TJ, Lund MC, Dursun S, Wirenfeldt M, Jørgensen LH, Lykke-Hartmann K, Lambertsen KL. The loss-of-function disease-mutation G301R in the Na +/K +-ATPase α 2 isoform decreases lesion volume and improves functional outcome after acute spinal cord injury in mice. BMC Neurosci 2017; 18:66. [PMID: 28886701 PMCID: PMC5590116 DOI: 10.1186/s12868-017-0385-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022] Open
Abstract
Background The Na+/K+-ATPases are transmembrane ion pumps important for maintenance of ion gradients across the plasma membrane that serve to support multiple cellular functions, such as membrane potentials, regulation of cellular volume and pH, and co-transport of signaling transmitters in all animal cells. The α2Na+/K+-ATPase subunit isoform is predominantly expressed in astrocytes, which us the sharp Na+-gradient maintained by the sodium pump necessary for astroglial metabolism. Prolonged ischemia induces an elevation of [Na+]i, decreased ATP levels and intracellular pH owing to anaerobic metabolism and lactate accumulation. During ischemia, Na+/K+-ATPase-related functions will naturally increase the energy demand of the Na+/K+-ATPase ion pump. However, the role of the α2Na+/K+-ATPase in contusion injury to the spinal cord remains unknown. We used mice heterozygous mice for the loss-of-function disease-mutation G301R in the Atp1a2 gene (α2+/G301R) to study the effect of reduced α2Na+/K+-ATPase expression in a moderate contusion spinal cord injury (SCI) model. Results We found that α2+/G301R mice display significantly improved functional recovery and decreased lesion volume compared to littermate controls (α2+/+) 7 days after SCI. The protein level of the α1 isoform was significantly increased, in contrast to the α3 isoform that significantly decreased 3 days after SCI in both α2+/G301R and α2+/+ mice. The level of the α2 isoform was significantly decreased in α2+/G301R mice both under naïve conditions and 3 days after SCI compared to α2+/+ mice. We found no differences in astroglial aquaporin 4 levels and no changes in the expression of chemokines (CCL2, CCL5 and CXCL1) and cytokines (TNF, IL-6, IL-1β, IL-10 and IL-5) between genotypes, just as no apparent differences were observed in location and activation of CD45 and F4/80 positive microglia and infiltrating leukocytes. Conclusion Our proof of concept study demonstrates that reduced expression of the α2 isoform in the spinal cord is protective following SCI. Importantly, the BMS and lesion volume were assessed at 7 days after SCI, and longer time points after SCI were not evaluated. However, the α2 isoform is a potential possible target of therapeutic strategies for the treatment of SCI.
Collapse
Affiliation(s)
- Ditte Gry Ellman
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000, Odense C, Denmark
| | - Toke Jost Isaksen
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark.,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, 8000, Aarhus C, Denmark
| | - Minna Christiansen Lund
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000, Odense C, Denmark
| | - Safinaz Dursun
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000, Odense C, Denmark
| | - Martin Wirenfeldt
- Department of Pathology, University of Southern Denmark/Odense University Hospital, Odense, 5000, Odense C, Denmark.,Department of Clinical Research, University of Southern Denmark/Odense University Hospital, Odense, 5000, Odense C, Denmark
| | - Louise Helskov Jørgensen
- Department of Pathology, University of Southern Denmark/Odense University Hospital, Odense, 5000, Odense C, Denmark.,Department of Clinical Research, University of Southern Denmark/Odense University Hospital, Odense, 5000, Odense C, Denmark
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark. .,Department of Clinical Medicine, Aarhus University, 8000, Aarhus C, Denmark. .,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, 8000, Aarhus C, Denmark. .,Department of Clinical Genetics, Aarhus University Hospital, 8000, Aarhus C, Denmark.
| | - Kate Lykke Lambertsen
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000, Odense C, Denmark. .,Department of Neurology, Odense University Hospital, 5000, Odense C, Denmark. .,BRIDGE, Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5000, Odense C, Denmark.
| |
Collapse
|
38
|
Shi J, Wang S, Ke Q, Lin J, Zheng Y, Wu S, Huang Z, Lin W. T1R1/T1R3 Taste Receptor Suppresses Granulocyte-Mediated Neuroinflammation after Spinal Cord Injury. J Neurotrauma 2017; 34:2353-2363. [PMID: 28474538 DOI: 10.1089/neu.2016.4952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As an active and predominant blood leukocyte population, granulocytes infiltrate into injured spinal cord and produce pro-inflammatory mediators to aggravate neuroinflammation. In the current study, we identify the role of the T1R1/T1R3 receptor in granulocyte-mediated neuroinflammation in a rat spinal cord injury (SCI) model. We found that T1R1 and T1R3 were substantially expressed in both circulating and infiltrating granulocytes. In vitro stimulation of T1R1/T1R3 receptor with L-serine notably reduced production of reactive oxygen species (ROS) and several pro-inflammatory cytokines. To evaluate the role of T1R1/T1R3 receptor in vivo, gurmarin, a selective T1R3 inhibitor, was injected into rats before and after SCI. Gurmarin administration significantly upregulated expression of interleukin (IL)-1β, IL-6, myeloperoxidase, and matrix metallopeptidase 9, as well as production of ROS in infiltrating granulocytes. Signal pathway analysis revealed that gurmarin promoted nuclear factor (NF)-κβ signaling in infiltrating granulocytes. Consistently, cell apoptosis and inflammatory mediator levels at the injury sites were increased by gurmarin, together with higher T lymphocyte recruitment. Our research indicates that the T1R1/T1R3 receptor is an anti-inflammatory receptor for infiltrating granulocytes after SCI. Simulation of T1R1/T1R3 receptor might be a prospective, or at least a supplemental, therapeutic approach to controlling neuroinflammation to promote functional recovery.
Collapse
Affiliation(s)
- Jinxing Shi
- 1 Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University , Quanzhou, China
| | - Siyuan Wang
- 1 Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University , Quanzhou, China
| | - Qingfeng Ke
- 1 Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University , Quanzhou, China
| | - Jianhua Lin
- 2 Department of Orthopedic Surgery, the First Affiliated Hospital, Fujian Medical University , Fuzhou, China
| | - Yuhui Zheng
- 1 Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University , Quanzhou, China
| | - Shiqiang Wu
- 1 Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University , Quanzhou, China
| | - Zida Huang
- 2 Department of Orthopedic Surgery, the First Affiliated Hospital, Fujian Medical University , Fuzhou, China
| | - Wenping Lin
- 1 Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University , Quanzhou, China
| |
Collapse
|
39
|
Genetic Ablation of Soluble TNF Does Not Affect Lesion Size and Functional Recovery after Moderate Spinal Cord Injury in Mice. Mediators Inflamm 2016; 2016:2684098. [PMID: 28070141 PMCID: PMC5192339 DOI: 10.1155/2016/2684098] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/24/2016] [Accepted: 11/03/2016] [Indexed: 11/23/2022] Open
Abstract
Traumatic spinal cord injury (SCI) is followed by an instant increase in expression of the microglial-derived proinflammatory cytokine tumor necrosis factor (TNF) within the lesioned cord. TNF exists both as membrane-anchored TNF (mTNF) and as cleaved soluble TNF (solTNF). We previously demonstrated that epidural administration of a dominant-negative inhibitor of solTNF, XPro1595, to the contused spinal cord resulted in changes in Iba1 protein expression in microglia/macrophages, decreased lesion volume, and improved locomotor function. Here, we extend our studies using mice expressing mTNF, but no solTNF (mTNFΔ/Δ), to study the effect of genetic ablation of solTNF on SCI. We demonstrate that TNF levels were significantly decreased within the lesioned spinal cord 3 days after SCI in mTNFΔ/Δ mice compared to littermates. This decrease did, however, not translate into significant changes in other pro- and anti-inflammatory cytokines (IL-10, IL-1β, IL-6, IL-5, IL-2, CXCL1, CCL2, or CCL5), despite a tendency towards increased IL-10 and decreased IL-1β, TNFR1, and TNFR2 levels in mTNFΔ/Δ mice. In addition, microglial and leukocyte infiltration, activation state (Iba1, CD11b, CD11c, CD45, and MHCII), lesion size, and functional outcome after moderate SCI were comparable between genotypes. Collectively, our data demonstrate that genetic ablation of solTNF does not significantly modulate postlesion outcome after SCI.
Collapse
|
40
|
Recombinant Human Annexin A5 Can Repair the Disrupted Cardiomyocyte Adherens Junctions in Endotoxemia. Shock 2016; 44:83-9. [PMID: 25799159 DOI: 10.1097/shk.0000000000000370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recombinant human annexin A5 (Anx5) is known to protect cardiac function during endotoxemia, although the underlying mechanisms have yet to be elucidated. In this study, we demonstrated that Anx5 could repair the disrupted cardiomyocyte adherens junctions and improve the myocardial contractile function in lipopolysaccharide (LPS)-induced endotoxemia. Mechanistic studies revealed that Anx5 could antagonize the disassociation between p120-catenin (p120) and N-cadherin as well as the dephosphorylation of p120 in LPS-treated cardiomyocytes. Small interference RNA and specific inhibitors experiment demonstrated that Anx5 regulated p120 functions by inhibition of p21-activated kinase 5 in a protein kinase Cα-dependent way. Moreover, Anx5 could inhibit nuclear factor κB activation and downregulate the level of inflammatory cytokines, such as tumor necrosis factor α and interleukin 1β, which contributed to improving tissue pathological damage in LPS-induced mouse endotoxemia model. Taken together, Anx5 could protect cardiomyocytes adherens junctions and improve myocardial contractile function via regulation of p120 and anti-inflammation in LPS-induced endotoxemia. This study provided novel insights in the prevention and treatment of septic shock.
Collapse
|
41
|
Krishnan S, Karg PE, Boninger ML, Vodovotz Y, Constantine G, Sowa GA, Brienza DM. Early Detection of Pressure Ulcer Development Following Traumatic Spinal Cord Injury Using Inflammatory Mediators. Arch Phys Med Rehabil 2016; 97:1656-62. [PMID: 26820323 DOI: 10.1016/j.apmr.2016.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/30/2015] [Accepted: 01/01/2016] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To identify changes in concentrations of inflammatory mediators in plasma and urine after traumatic spinal cord injury (SCI) and before the occurrence of a first pressure ulcer. DESIGN Retrospective; secondary analysis of existing data. SETTING Acute hospitalization and inpatient rehabilitation sites at a university medical center. PARTICIPANTS Individuals with a pressure ulcer and plasma samples (n=17) and individuals with a pressure ulcer and urine samples (n=15) were matched by age and plasma/urine sample days to individuals with SCI and no pressure ulcer (N=35). INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Plasma and urine samples were assayed in patients with SCI, capturing samples within 4 days after the SCI to a week before the formation of the first pressure ulcer. The Wilcoxon signed-rank test was performed to identify changes in the inflammatory mediators between the 2 time points. RESULTS An increase in concentration of the chemokine interferon-γ-induced protein of 10kd/CXCL10 in plasma (P<.01) and a decrease in concentration of the cytokine interferon-α in urine (P=.01) were observed before occurrence of a first pressure ulcer (∼4d) compared with matched controls. CONCLUSIONS Altered levels of inflammatory mediators in plasma and urine may be associated with pressure ulcer development after traumatic SCI. These inflammatory mediators should be explored as possible biomarkers for identifying individuals at risk for pressure ulcer formation.
Collapse
Affiliation(s)
- Shilpa Krishnan
- Department of Rehabilitation Science and Technology, School of Health and Rehabilitation Science, University of Pittsburgh, Pittsburgh, PA.
| | - Patricia E Karg
- Department of Rehabilitation Science and Technology, School of Health and Rehabilitation Science, University of Pittsburgh, Pittsburgh, PA
| | - Michael L Boninger
- Department of Rehabilitation Science and Technology, School of Health and Rehabilitation Science, University of Pittsburgh, Pittsburgh, PA; Department of Physical Medicine and Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, PA; Human Engineering Research Laboratories, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Yoram Vodovotz
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Greg Constantine
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA; Department of Mathematics, University of Pittsburgh, Pittsburgh, PA
| | - Gwendolyn A Sowa
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, PA; Ferguson Laboratory for Orthopaedic Research, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - David M Brienza
- Department of Rehabilitation Science and Technology, School of Health and Rehabilitation Science, University of Pittsburgh, Pittsburgh, PA; Human Engineering Research Laboratories, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA; Department of Mathematics, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
42
|
Kanninen KM, Pomeshchik Y, Leinonen H, Malm T, Koistinaho J, Levonen AL. Applications of the Keap1-Nrf2 system for gene and cell therapy. Free Radic Biol Med 2015; 88:350-361. [PMID: 26164630 DOI: 10.1016/j.freeradbiomed.2015.06.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/23/2015] [Accepted: 06/27/2015] [Indexed: 01/15/2023]
Abstract
Oxidative stress has been implicated to play a role in a number of acute and chronic diseases including acute injuries of the central nervous system, neurodegenerative and cardiovascular diseases, and cancer. The redox-activated transcription factor Nrf2 has been shown to protect many different cell types and organs from a variety of toxic insults, whereas in many cancers, unchecked Nrf2 activity increases the expression of cytoprotective genes and, consequently, provides growth advantage to cancerous cells. Herein, we discuss current preclinical gene therapy approaches to either increase or decrease Nrf2 activity with a special reference to neurological diseases and cancer. In addition, we discuss the role of Nrf2 in stem cell therapy for neurological disorders.
Collapse
Affiliation(s)
- Katja M Kanninen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Yuriy Pomeshchik
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Hanna Leinonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Tarja Malm
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Jari Koistinaho
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland.
| | - Anna-Liisa Levonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland.
| |
Collapse
|
43
|
Zhang B, Bailey WM, Braun KJ, Gensel JC. Age decreases macrophage IL-10 expression: Implications for functional recovery and tissue repair in spinal cord injury. Exp Neurol 2015; 273:83-91. [PMID: 26263843 DOI: 10.1016/j.expneurol.2015.08.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 12/14/2022]
Abstract
Macrophages with different activation states are present after spinal cord injury (SCI). M1 macrophages purportedly promote secondary injury processes while M2 cells support axon growth. The average age at the time of SCI has increased in recent decades, however, little is known about how different physiological factors contribute to macrophage activation states after SCI. Here we investigate the effect of age on IL-10, a key indicator of M2 macrophage activation. Following mild-moderate SCI in 4 and 14 month old (MO) mice we detected significantly reduced IL-10 expression with age in the injured spinal cord. Specifically, CD86/IL-10 positive macrophages, also known as M2b or regulatory macrophages, were reduced in 14 vs. 4 MO SCI animals. This age-dependent shift in macrophage phenotype was associated with impaired functional recovery and enhanced tissue damage in 14-month-old SCI mice. In vitro, M2b macrophages release anti-inflammatory cytokines without causing neurotoxicity, suggesting that imbalances in the M2b response in 14-month-old mice may be contributing to secondary injury processes. Our data indicate that age is an important factor that regulates SCI inflammation and recovery even to mild-moderate injury. Further, alterations in macrophage activation states may contribute to recovery and we have identified the M2b phenotype as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Bei Zhang
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY 40536, United States
| | - William M Bailey
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY 40536, United States
| | - Kaitlyn J Braun
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY 40536, United States
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY 40536, United States.
| |
Collapse
|
44
|
Wang ZH, Xie YX, Zhang JW, Qiu XH, Cheng AB, Tian L, Ma BY, Hou YB. Carnosol protects against spinal cord injury through Nrf-2 upregulation. J Recept Signal Transduct Res 2015; 36:72-8. [PMID: 26791582 DOI: 10.3109/10799893.2015.1049358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Carnosol is an ortho-diphenolic diterpene with excellent antioxidant potential. The present study was designed to identify the protective role of carnosol against spinal cord injury (SCI)-induced oxidative stress and inflammation in Wistar rats. METHODS In the present study, oxidative stress status was determined through estimating total antioxidant capacity, total oxidant status, lipid peroxide content, protein carbonyl and sulfhydryl levels, reactive oxygen species (ROS), antioxidant status (superoxide-dismutase, catalase, glutathione, glutathione peroxidase, glutathione-S-transferase). Inflammatory effects were determined by analyzing the expression of NF-κB and COX-2 through Western blot analysis. Further, carnosol-mediated redox homeostasis was analyzed by determining p-AKT and Nrf-2 levels. RESULTS SCI resulted in a significant increase in oxidative stress status through increased ROS generation, total oxidant levels, lipid peroxide content, protein carbonyl and sulfhydryl levels. The antioxidant status in SCI rats was significantly reduced, indicating imbalance in redox status. In addition, the expression of NF-κB and COX-2 was significantly upregulated, while p-AKT and Nrf-2 levels were downregulated in SCI rats. However, treatment with carnosol showed a significant enhancement in the antioxidant status with concomitant decline in oxidative stress parameters. Further, carnosol treatment regulated the key proteins in inflammation and redox status through significant downregulation of NF-κB and COX-2 levels and upregulation of p-AKT and Nrf-2 expression. CONCLUSION Thus, the present study shows for the first time on the protective role of carnosol against SCI-induced oxidative stress and inflammation through modulating NF-κB, COX-2 and Nrf-2 levels in Wistar rats.
Collapse
Affiliation(s)
- Zhi-Hui Wang
- a Department of Orthopedics , The Hospital of Yu Tian , Tangshan , P.R. China and
| | - Yu-Xi Xie
- b Department of Intensive Care Unit , Hebei United University Affiliated Hospital , Tangshan , P.R. China
| | - Jun-Wei Zhang
- b Department of Intensive Care Unit , Hebei United University Affiliated Hospital , Tangshan , P.R. China
| | - Xiao-Hua Qiu
- a Department of Orthopedics , The Hospital of Yu Tian , Tangshan , P.R. China and
| | - Ai-Bin Cheng
- b Department of Intensive Care Unit , Hebei United University Affiliated Hospital , Tangshan , P.R. China
| | - Li Tian
- a Department of Orthopedics , The Hospital of Yu Tian , Tangshan , P.R. China and
| | - Bao-Yin Ma
- a Department of Orthopedics , The Hospital of Yu Tian , Tangshan , P.R. China and
| | - Yu-Bo Hou
- a Department of Orthopedics , The Hospital of Yu Tian , Tangshan , P.R. China and
| |
Collapse
|
45
|
Role of Microglial Activation in the Pathophysiology of Bacterial Meningitis. Mol Neurobiol 2015; 53:1770-1781. [DOI: 10.1007/s12035-015-9107-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/20/2015] [Indexed: 12/18/2022]
|
46
|
Papastefanaki F, Matsas R. From demyelination to remyelination: the road toward therapies for spinal cord injury. Glia 2015; 63:1101-25. [PMID: 25731941 DOI: 10.1002/glia.22809] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/14/2022]
Abstract
Myelin integrity is crucial for central nervous system (CNS) physiology while its preservation and regeneration after spinal cord injury (SCI) is key to functional restoration. Disturbance of nodal organization acutely after SCI exposes the axon and triggers conduction block in the absence of overt demyelination. Oligodendrocyte (OL) loss and myelin degradation follow as a consequence of secondary damage. Here, we provide an overview of the major biological events and underlying mechanisms leading to OL death and demyelination and discuss strategies to restrain these processes. Another aspect which is critical for SCI repair is the enhancement of endogenously occurring spontaneous remyelination. Recent findings have unveiled the complex roles of innate and adaptive immune responses in remyelination and the immunoregulatory potential of the glial scar. Moreover, the intimate crosstalk between neuronal activity, oligodendrogenesis and myelination emphasizes the contribution of rehabilitation to functional recovery. With a view toward clinical applications, several therapeutic strategies have been devised to target SCI pathology, including genetic manipulation, administration of small therapeutic molecules, immunomodulation, manipulation of the glial scar and cell transplantation. The implementation of new tools such as cellular reprogramming for conversion of one somatic cell type to another or the use of nanotechnology and tissue engineering products provides additional opportunities for SCI repair. Given the complexity of the spinal cord tissue after injury, it is becoming apparent that combinatorial strategies are needed to rescue OLs and myelin at early stages after SCI and support remyelination, paving the way toward clinical translation.
Collapse
Affiliation(s)
- Florentia Papastefanaki
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, 11521, Greece
| | | |
Collapse
|
47
|
Koushki D, Latifi S, Norouzi Javidan A, Matin M. Efficacy of some non-conventional herbal medications (sulforaphane, tanshinone IIA, and tetramethylpyrazine) in inducing neuroprotection in comparison with interleukin-10 after spinal cord injury: A meta-analysis. J Spinal Cord Med 2015; 38:13-22. [PMID: 24969510 PMCID: PMC4293529 DOI: 10.1179/2045772314y.0000000215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
CONTEXT Inflammation after spinal cord injury (SCI) may be responsible for further neural damages and therefore inhibition of inflammatory processes may exert a neuroprotection effect. OBJECTIVES To assess the efficacy of some non-conventional herbal medications including sulforaphane, tanshinone IIA, and tetramethylpyrazine in reducing inflammation and compare them with a known effective anti-inflammatory agent (interleukin-10 (IL-10)). METHODS We searched relevant articles in Ovid database, Medline (PubMed) EMBASE, Google Scholar, Cochrane, and Scopus up to June 2013. The efficacy of each treatment and study powers were compared using random effects model of meta-analysis. To our knowledge, no conflict of interest exists. RESULTS Eighteen articles entered into the study. The meta-analysis revealed that exogenous IL-10 was more effective in comparison with the mentioned herbal extracts. The proposed pathways for each medication's effect on reducing the inflammation process are complex and many overlaps may exist. CONCLUSION IL-10 has a strong effect in the induction of neuroprotection and neurorecovery after SCI by multiple pathways. Tetramethylpyrazine has an acceptable influence in reducing inflammation through the up-regulation of IL-10. Outcomes of sulforaphane and tanshinone IIA administration are acceptable but still weaker than IL-10.
Collapse
Affiliation(s)
| | - Sahar Latifi
- Brain and Spinal Injury Research Center (BASIR), Tehran University of Medical Sciences, Tehran, Iran,Correspondence to: Sahar Latifi, Brain and Spinal Injury Research Center (BASIR), Tehran University of Medical Sciences, Imam Khomeini Medical Center, Keshavarz Avenue, Tehran, Iran, PO Box: 6114185. or
| | - Abbas Norouzi Javidan
- Brain and Spinal Injury Research Center (BASIR), Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Matin
- Brain and Spinal Injury Research Center (BASIR), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Bastien D, Lacroix S. Cytokine pathways regulating glial and leukocyte function after spinal cord and peripheral nerve injury. Exp Neurol 2014; 258:62-77. [PMID: 25017888 DOI: 10.1016/j.expneurol.2014.04.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 02/20/2014] [Accepted: 04/08/2014] [Indexed: 01/13/2023]
Abstract
Injury to the nervous system causes the almost immediate release of cytokines by glial cells and neurons. These cytokines orchestrate a complex array of responses leading to microgliosis, immune cell recruitment, astrogliosis, scarring, and the clearance of cellular debris, all steps that affect neuronal survival and repair. This review will focus on cytokines released after spinal cord and peripheral nerve injury and the primary signalling pathways triggered by these inflammatory mediators. Notably, the following cytokine families will be covered: IL-1, TNF, IL-6-like, TGF-β, and IL-10. Whether interfering with cytokine signalling could lead to novel therapies will also be discussed. Finally, the review will address whether manipulating the above-mentioned cytokine families and signalling pathways could exert distinct effects in the injured spinal cord versus peripheral nerve.
Collapse
Affiliation(s)
- Dominic Bastien
- Centre de recherche du Centre hospitalier universitaire de Québec-CHUL, Département de médecine moléculaire, Université Laval, Québec, QC, Canada
| | - Steve Lacroix
- Centre de recherche du Centre hospitalier universitaire de Québec-CHUL, Département de médecine moléculaire, Université Laval, Québec, QC, Canada..
| |
Collapse
|
49
|
Song J, Lee WT, Park KA, Lee JE. Receptor for advanced glycation end products (RAGE) and its ligands: focus on spinal cord injury. Int J Mol Sci 2014; 15:13172-13191. [PMID: 25068700 PMCID: PMC4159787 DOI: 10.3390/ijms150813172] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/07/2014] [Accepted: 07/21/2014] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) results in neuronal and glial death and the loss of axons at the injury site. Inflammation after SCI leads to the inhibition of tissue regeneration and reduced neuronal survival. In addition, the loss of axons after SCI results in functional loss below the site of injury accompanied by neuronal cell body's damage. Consequently, reducing inflammation and promoting axonal regeneration after SCI is a worthy therapeutic goal. The receptor for advanced glycation end products (RAGE) is a transmembrane protein and receptor of the immunoglobulin superfamily. RAGE is implicated in inflammation and neurodegeneration. Several recent studies demonstrated an association between RAGE and central nervous system disorders through various mechanisms. However, the relationship between RAGE and SCI has not been shown. It is imperative to elucidate the association between RAGE and SCI, considering that RAGE relates to inflammation and axonal degeneration following SCI. Hence, the present review highlights recent research regarding RAGE as a compelling target for the treatment of SCI.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea.
| | - Won Taek Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea.
| | - Kyung Ah Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea.
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea.
| |
Collapse
|
50
|
Inducible protein-10, a potential driver of neurally controlled interleukin-10 and morbidity in human blunt trauma. Crit Care Med 2014; 42:1487-97. [PMID: 24584064 DOI: 10.1097/ccm.0000000000000248] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Blunt trauma and traumatic spinal cord injury induce systemic inflammation that contributes to morbidity. Dysregulated neural control of systemic inflammation postinjury is likely exaggerated in patients with traumatic spinal cord injury. We used in silico methods to discern dynamic inflammatory networks that could distinguish systemic inflammation in traumatic spinal cord injury from blunt trauma. DESIGN Retrospective study. SETTINGS Tertiary care institution. PATIENTS Twenty-one severely injured thoracocervical traumatic spinal cord injury patients and matched 21 severely injured blunt trauma patients without spinal cord injury. INTERVENTION None. MEASUREMENTS AND MAIN RESULTS Serial blood samples were obtained from days 1 to 14 postinjury. Twenty-four plasma inflammatory mediators were quantified. Statistical significance between the two groups was determined by two-way analysis of variance. Dynamic Bayesian network inference was used to suggest dynamic connectivity and central inflammatory mediators. Circulating interleukin-10 was significantly elevated in thoracocervical traumatic spinal cord injury group versus non-spinal cord injury group, whereas interleukin-1β, soluble interleukin-2 receptor-α, interleukin-4, interleukin-5, interleukin-7, interleukin-13, interleukin-17, macrophage inflammatory protein 1α and 1β, granulocyte-macrophage colony-stimulating factor, and interferon-γ were significantly reduced in traumatic spinal cord injury group versus non-spinal cord injury group. Dynamic Bayesian network suggested that post-spinal cord injury interleukin-10 is driven by inducible protein-10, whereas monocyte chemotactic protein-1 was central in non-spinal cord injury dynamic networks. In a separate validation cohorts of 356 patients without spinal cord injury and 85 traumatic spinal cord injury patients, individuals with plasma inducible protein-10 levels more than or equal to 730 pg/mL had significantly prolonged hospital and ICU stay and days on mechanical ventilator versus patients with plasma inducible protein-10 level less than 730 pg/mL. CONCLUSION This is the first study to compare the dynamic systemic inflammatory responses of traumatic spinal cord injury patients versus patients without spinal cord injury, suggesting a key role for inducible protein-10 in driving systemic interleukin-10 and morbidity and highlighting the potential utility of in silico tools to identify key inflammatory drivers.
Collapse
|