1
|
MacDonald M, Fonseca PAS, Johnson KR, Murray EM, Kember RL, Kranzler HR, Mayfield RD, da Silva D. Divergent gene expression patterns in alcohol and opioid use disorders lead to consistent alterations in functional networks within the dorsolateral prefrontal cortex. Transl Psychiatry 2024; 14:437. [PMID: 39402051 PMCID: PMC11473550 DOI: 10.1038/s41398-024-03143-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/17/2024] Open
Abstract
Substance Use Disorders (SUDs) manifest as persistent drug-seeking behavior despite adverse consequences, with Alcohol Use Disorder (AUD) and Opioid Use Disorder (OUD) representing prevalent forms associated with significant mortality rates and economic burdens. The co-occurrence of AUD and OUD is common, necessitating a deeper comprehension of their intricate interactions. While the causal link between these disorders remains elusive, shared genetic factors are hypothesized. Leveraging public datasets, we employed genomic and transcriptomic analyses to explore conserved and distinct molecular pathways within the dorsolateral prefrontal cortex associated with AUD and OUD. Our findings unveil modest transcriptomic overlap at the gene level between the two disorders but substantial convergence on shared biological pathways. Notably, these pathways predominantly involve inflammatory processes, synaptic plasticity, and key intracellular signaling regulators. Integration of transcriptomic data with the latest genome-wide association studies (GWAS) for problematic alcohol use (PAU) and OUD not only corroborated our transcriptomic findings but also confirmed the limited shared heritability between the disorders. Overall, our study indicates that while alcohol and opioids induce diverse transcriptional alterations at the gene level, they converge on select biological pathways, offering promising avenues for novel therapeutic targets aimed at addressing both disorders simultaneously.
Collapse
Affiliation(s)
- Martha MacDonald
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pablo A S Fonseca
- Dpto. Producción Animal, Facultad de Veterinaria, Universidad de León. Campus de Vegazana s/n, Leon, Spain
| | - Kory R Johnson
- Bioinformatics Section, Intramural Information Technology & Bioinformatics Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Erin M Murray
- Department of Neuroscience, University of Rochester School of Medicine, Rochester, NY, USA
| | - Rachel L Kember
- Center for Studies of Addiction, University of Pennsylvania, Perelman School of Medicine and Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
| | - Henry R Kranzler
- Center for Studies of Addiction, University of Pennsylvania, Perelman School of Medicine and Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
| | - R Dayne Mayfield
- Department of Neuroscience Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA
| | - Daniel da Silva
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Sanchez GA, Smrcka AV, Jutkiewicz EM. Biasing G βγ Downstream Signaling with Gallein Inhibits Development of Morphine Tolerance and Potentiates Morphine-Induced Nociception in a Tolerant State. Mol Pharmacol 2024; 106:47-55. [PMID: 38769020 PMCID: PMC11187686 DOI: 10.1124/molpharm.124.000875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
Opioid analgesics are widely used as a treatment option for pain management and relief. However, the misuse of opioid analgesics has contributed to the current opioid epidemic in the United States. Prescribed opioids such as morphine, codeine, oxycodone, and fentanyl are mu-opioid receptor (MOR) agonists primarily used in the clinic to treat pain or during medical procedures, but development of tolerance limits their utility for treatment of chronic pain. Here we explored the effects of biasing Gβγ signaling on tolerance development after chronic morphine treatment in vivo. We hypothesized that biasing Gβγ signaling with gallein could prevent activation of regulatory signaling pathways that result in tolerance to antinociceptive effects of MOR agonists. Gallein has been shown to bind to Gβγ and inhibit interactions of Gβγ with phospholipase-Cβ3 (PLCβ3) or G-protein-coupled receptor kinase 2 (GRK2) but not G-protein inwardly rectifying potassium (GIRK) channels. In mice, morphine-induced antinociception was evaluated in the 55°C warm water tail withdrawal assay. We used two paradigms for gallein treatment: administration during and after three times-daily morphine administration. Our results show that gallein cotreatment during repeated administration of morphine decreased opioid tolerance development and that gallein treatment in an opioid-tolerant state enhanced the potency of morphine. Mechanistically, our data suggest that PLCβ3 is necessary for potentiating effects of gallein in an opioid-tolerant state but not in preventing the development of tolerance. These studies demonstrate that small molecules that target Gβγ signaling could reduce the need for large doses of opioid analgesics to treat pain by producing an opioid-sparing effect. SIGNIFICANCE STATEMENT: Biasing Gβγ signaling prevents tolerance to repeated morphine administration in vivo and potentiates the antinociceptive effects of morphine in an opioid-tolerant state. Mechanistically, phospholipase-Cβ is necessary for potentiating effects of gallein in an opioid-tolerant state but not in preventing the development of tolerance. This study identifies a novel treatment strategy to decrease the development of tolerance to the analgesic effects of mu-opioid receptor agonists, which are necessary to improve pain treatment and decrease the incidence of opioid use disorder.
Collapse
Affiliation(s)
- Gissell A Sanchez
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Alan V Smrcka
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
3
|
MacDonald M, Fonseca PAS, Johnson K, Murray EM, Kember RL, Kranzler H, Mayfield D, da Silva D. Divergent gene expression patterns in alcohol and opioid use disorders lead to consistent alterations in functional networks within the Dorsolateral Prefrontal Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591734. [PMID: 38746311 PMCID: PMC11092658 DOI: 10.1101/2024.04.29.591734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Substance Use Disorders (SUDs) manifest as persistent drug-seeking behavior despite adverse consequences, with Alcohol Use Disorder (AUD) and Opioid Use Disorder (OUD) representing prevalent forms associated with significant mortality rates and economic burdens. The co-occurrence of AUD and OUD is common, necessitating a deeper comprehension of their intricate interactions. While the causal link between these disorders remains elusive, shared genetic factors are hypothesized. Leveraging public datasets, we employed genomic and transcriptomic analyses to explore conserved and distinct molecular pathways within the dorsolateral prefrontal cortex associated with AUD and OUD. Our findings unveil modest transcriptomic overlap at the gene level between the two disorders but substantial convergence on shared biological pathways. Notably, these pathways predominantly involve inflammatory processes, synaptic plasticity, and key intracellular signaling regulators. Integration of transcriptomic data with the latest genome-wide association studies (GWAS) for problematic alcohol use (PAU) and OUD not only corroborated our transcriptomic findings but also confirmed the limited shared heritability between the disorders. Overall, our study indicates that while alcohol and opioids induce diverse transcriptional alterations at the gene level, they converge on select biological pathways, offering promising avenues for novel therapeutic targets aimed at addressing both disorders simultaneously.
Collapse
Affiliation(s)
- Martha MacDonald
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Pablo A. S. Fonseca
- Dpto. Producción Animal, Facultad de Veterinaria, Universidad de León. Campus de Vegazana s/n, 24007 Leon, Spain
| | - Kory Johnson
- Bioinformatics Section, Intramural Information Technology & Bioinformatics Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Erin M Murray
- Department of Neuroscience, University of Rochester School of Medicine, Rochester NY
| | - Rachel L Kember
- Center for Studies of Addiction, University of Pennsylvania, Perelman School of Medicine and Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
| | - Henry Kranzler
- Center for Studies of Addiction, University of Pennsylvania, Perelman School of Medicine and Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
| | - Dayne Mayfield
- Department of Neuroscience Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX
| | - Daniel da Silva
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
4
|
Sanchez GA, Jutkiewicz EM, Ingram S, Smrcka AV. Coincident Regulation of PLC β Signaling by Gq-Coupled and μ-Opioid Receptors Opposes Opioid-Mediated Antinociception. Mol Pharmacol 2022; 102:269-279. [PMID: 36116788 PMCID: PMC11033930 DOI: 10.1124/molpharm.122.000541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022] Open
Abstract
Pain management is an important problem worldwide. The current frontline approach for pain management is the use of opioid analgesics. The primary analgesic target of opioids is the μ-opioid receptor (MOR). Deletion of phospholipase Cβ3 (PLCβ3) or selective inhibition of Gβγ regulation of PLCβ3 enhances the potency of the antinociceptive effects of morphine suggesting a novel strategy for achieving opioid-sparing effects. Here we investigated a potential mechanism for regulation of PLC signaling downstream of MOR in human embryonic kidney 293 cells and found that MOR alone could not stimulate PLC but rather required a coincident signal from a Gq-coupled receptor. Knockout of PLCβ3 or pharmacological inhibition of its upstream regulators, Gβγ or Gq, ex vivo in periaqueductal gray slices increased the potency of the selective MOR agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin acetate salt in inhibiting presynaptic GABA release. Finally, inhibition of Gq- G protein-coupled receptor coupling in mice enhanced the antinociceptive effects of morphine. These data support a model where Gq and Gβγ-dependent signaling cooperatively regulate PLC activation to decrease MOR-dependent antinociceptive potency. Ultimately, this could lead to identification of new non-MOR targets that would allow for lower-dose utilization of opioid analgesics. SIGNIFICANCE STATEMENT: Previous work demonstrated that deletion of phospholipase Cβ3 (PLCβ3) in mice potentiates μ-opioid receptor (MOR)-dependent antinociception. How PLCβ3 is regulated downstream of MOR had not been clearly defined. We show that PLC-dependent diacylglycerol generation is cooperatively regulated by MOR-Gβγ and Gq-coupled receptor signaling through PLCβ3 and that blockade of either Gq-signaling or Gβγ signaling enhances the potency of opioids in ex vivo brain slices and in vivo. These results reveal potential novel strategies for improving opioid analgesic potency and safety.
Collapse
Affiliation(s)
- Gissell A Sanchez
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (G.A.S., E.M.J., A.V.S.) and Department of Neurologic Surgery, Oregon Health Sciences University, Portland, Oregon (S.I.)
| | - Emily M Jutkiewicz
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (G.A.S., E.M.J., A.V.S.) and Department of Neurologic Surgery, Oregon Health Sciences University, Portland, Oregon (S.I.)
| | - Susan Ingram
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (G.A.S., E.M.J., A.V.S.) and Department of Neurologic Surgery, Oregon Health Sciences University, Portland, Oregon (S.I.)
| | - Alan V Smrcka
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (G.A.S., E.M.J., A.V.S.) and Department of Neurologic Surgery, Oregon Health Sciences University, Portland, Oregon (S.I.)
| |
Collapse
|
5
|
Katan M, Cockcroft S. Phospholipase C families: Common themes and versatility in physiology and pathology. Prog Lipid Res 2020; 80:101065. [PMID: 32966869 DOI: 10.1016/j.plipres.2020.101065] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/14/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022]
Abstract
Phosphoinositide-specific phospholipase Cs (PLCs) are expressed in all mammalian cells and play critical roles in signal transduction. To obtain a comprehensive understanding of these enzymes in physiology and pathology, a detailed structural, biochemical, cell biological and genetic information is required. In this review, we cover all these aspects to summarize current knowledge of the entire superfamily. The families of PLCs have expanded from 13 enzymes to 16 with the identification of the atypical PLCs in the human genome. Recent structural insights highlight the common themes that cover not only the substrate catalysis but also the mechanisms of activation. This involves the release of autoinhibitory interactions that, in the absence of stimulation, maintain classical PLC enzymes in their inactive forms. Studies of individual PLCs provide a rich repertoire of PLC function in different physiologies. Furthermore, the genetic studies discovered numerous mutated and rare variants of PLC enzymes and their link to human disease development, greatly expanding our understanding of their roles in diverse pathologies. Notably, substantial evidence now supports involvement of different PLC isoforms in the development of specific cancer types, immune disorders and neurodegeneration. These advances will stimulate the generation of new drugs that target PLC enzymes, and will therefore open new possibilities for treatment of a number of diseases where current therapies remain ineffective.
Collapse
Affiliation(s)
- Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Shamshad Cockcroft
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, 21 University Street, London WC1E 6JJ, UK.
| |
Collapse
|
6
|
Activation of Phospholipase C β by Gβγ and Gα q Involves C-Terminal Rearrangement to Release Autoinhibition. Structure 2020; 28:810-819.e5. [PMID: 32402248 DOI: 10.1016/j.str.2020.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/13/2020] [Accepted: 04/15/2020] [Indexed: 01/15/2023]
Abstract
Phospholipase C (PLC) enzymes hydrolyze phosphoinositide lipids to inositol phosphates and diacylglycerol. Direct activation of PLCβ by Gαq and/or Gβγ subunits mediates signaling by Gq and some Gi coupled G-protein-coupled receptors (GPCRs), respectively. PLCβ isoforms contain a unique C-terminal extension, consisting of proximal and distal C-terminal domains (CTDs) separated by a flexible linker. The structure of PLCβ3 bound to Gαq is known, however, for both Gαq and Gβγ; the mechanism for PLCβ activation on membranes is unknown. We examined PLCβ2 dynamics on membranes using hydrogen-deuterium exchange mass spectrometry (HDX-MS). Gβγ caused a robust increase in dynamics of the distal C-terminal domain (CTD). Gαq showed decreased deuterium incorporation at the Gαq binding site on PLCβ. In vitro Gβγ-dependent activation of PLC is inhibited by the distal CTD. The results suggest that disruption of autoinhibitory interactions with the CTD leads to increased PLCβ hydrolase activity.
Collapse
|
7
|
Busserolles J, Lolignier S, Kerckhove N, Bertin C, Authier N, Eschalier A. Replacement of current opioid drugs focusing on MOR-related strategies. Pharmacol Ther 2020; 210:107519. [PMID: 32165137 DOI: 10.1016/j.pharmthera.2020.107519] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
Abstract
The scarcity and limited risk/benefit ratio of painkillers available on the market, in addition to the opioid crisis, warrant reflection on new innovation strategies. The pharmacopoeia of analgesics is based on products that are often old and derived from clinical empiricism, with limited efficacy or spectrum of action, or resulting in an unsatisfactory tolerability profile. Although they are reference analgesics for nociceptive pain, opioids are subject to the same criticism. The use of opium as an analgesic is historical. Morphine was synthesized at the beginning of the 19th century. The efficacy of opioids is limited in certain painful contexts and these drugs can induce potentially serious and fatal adverse effects. The current North American opioid crisis, with an ever-rising number of deaths by opioid overdose, is a tragic illustration of this. It is therefore legitimate to develop research into molecules likely to maintain or increase opioid efficacy while improving their tolerability. Several avenues are being explored including targeting of the mu opioid receptor (MOR) splice variants, developing biased agonists or targeting of other receptors such as heteromers with MOR. Ion channels acting as MOR effectors, are also targeted in order to offer compounds without MOR-dependent adverse effects. Another route is to develop opioid analgesics with peripheral action or limited central nervous system (CNS) access. Finally, endogenous opioids used as drugs or compounds that modify the metabolism of endogenous opioids (Dual ENKephalinase Inhibitors) are being developed. The aim of the present review is to present these various targets/strategies with reference to current indications for opioids, concerns about their widespread use, particularly in chronic non-cancer pains, and ways of limiting the risk of opioid abuse and misuse.
Collapse
Affiliation(s)
- Jérôme Busserolles
- Université Clermont Auvergne, INSERM, CHU, NEURO-DOL Pharmacologie Fondamentale et Clinique de la douleur, F-63000 Clermont-Ferrand, France; Institut ANALGESIA, Faculté de Médecine, F-63000 Clermont-Ferrand, France
| | - Stéphane Lolignier
- Université Clermont Auvergne, INSERM, CHU, NEURO-DOL Pharmacologie Fondamentale et Clinique de la douleur, F-63000 Clermont-Ferrand, France; Institut ANALGESIA, Faculté de Médecine, F-63000 Clermont-Ferrand, France
| | - Nicolas Kerckhove
- Université Clermont Auvergne, INSERM, CHU, NEURO-DOL Pharmacologie Fondamentale et Clinique de la douleur, F-63000 Clermont-Ferrand, France; Institut ANALGESIA, Faculté de Médecine, F-63000 Clermont-Ferrand, France; Observatoire Français des Médicaments Antalgiques (OFMA), French monitoring centre for analgesic drugs, CHU, F-63000 Clermont-Ferrand, France
| | - Célian Bertin
- Université Clermont Auvergne, INSERM, CHU, NEURO-DOL Pharmacologie Fondamentale et Clinique de la douleur, F-63000 Clermont-Ferrand, France; Institut ANALGESIA, Faculté de Médecine, F-63000 Clermont-Ferrand, France; Observatoire Français des Médicaments Antalgiques (OFMA), French monitoring centre for analgesic drugs, CHU, F-63000 Clermont-Ferrand, France
| | - Nicolas Authier
- Université Clermont Auvergne, INSERM, CHU, NEURO-DOL Pharmacologie Fondamentale et Clinique de la douleur, F-63000 Clermont-Ferrand, France; Institut ANALGESIA, Faculté de Médecine, F-63000 Clermont-Ferrand, France; Observatoire Français des Médicaments Antalgiques (OFMA), French monitoring centre for analgesic drugs, CHU, F-63000 Clermont-Ferrand, France
| | - Alain Eschalier
- Université Clermont Auvergne, INSERM, CHU, NEURO-DOL Pharmacologie Fondamentale et Clinique de la douleur, F-63000 Clermont-Ferrand, France; Institut ANALGESIA, Faculté de Médecine, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
8
|
Li J, Ge Y, Huang JX, Strømgaard K, Zhang X, Xiong XF. Heterotrimeric G Proteins as Therapeutic Targets in Drug Discovery. J Med Chem 2019; 63:5013-5030. [PMID: 31841625 DOI: 10.1021/acs.jmedchem.9b01452] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heterotrimeric G proteins are molecular switches in GPCR signaling pathways and regulate a plethora of physiological and pathological processes. GPCRs are efficient drug targets, and more than 30% of the drugs in use target them. However, selectively targeting an individual GPCR may be undesirable in various multifactorial diseases in which multiple receptors are involved. In addition, abnormal activation or expression of G proteins is frequently associated with diseases. Furthermore, G proteins harboring mutations often result in malignant diseases. Thus, targeting G proteins instead of GPCRs might provide alternative approaches for combating these diseases. In this review, we discuss the biochemistry of heterotrimeric G proteins, describe the G protein-associated diseases, and summarize the currently known modulators that can regulate the activities of G proteins. The outlook for targeting G proteins to treat diverse diseases is also included in this manuscript.
Collapse
Affiliation(s)
- Jian Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Yang Ge
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Jun-Xiang Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Xiaolei Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Xiao-Feng Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| |
Collapse
|
9
|
Emery MA, Eitan S. Members of the same pharmacological family are not alike: Different opioids, different consequences, hope for the opioid crisis? Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:428-449. [PMID: 30790677 DOI: 10.1016/j.pnpbp.2019.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 01/14/2023]
Abstract
Pain management is the specialized medical practice of modulating pain perception and thus easing the suffering and improving the life quality of individuals suffering from painful conditions. Since this requires the modulation of the activity of endogenous systems involved in pain perception, and given the large role that the opioidergic system plays in pain perception, opioids are currently the most effective pain treatment available and are likely to remain relevant for the foreseeable future. This contributes to the rise in opioid use, misuse, and overdose death, which is currently characterized by public health officials in the United States as an epidemic. Historically, the majority of preclinical rodent studies were focused on morphine. This has resulted in our understanding of opioids in general being highly biased by our knowledge of morphine specifically. However, recent in vitro studies suggest that direct extrapolation of research findings from morphine to other opioids is likely to be flawed. Notably, these studies suggest that different opioid analgesics (opioid agonists) engage different downstream signaling effects within the cell, despite binding to and activating the same receptors. This recognition implies that, in contrast to the historical status quo, different opioids cannot be made equivalent by merely dose adjustment. Notably, even at equianalgesic doses, different opioids could result in different beneficial and risk outcomes. In order to foster further translational research regarding drug-specific differences among opioids, here we review basic research elucidating differences among opioids in pharmacokinetics, pharmacodynamics, their capacity for second messenger pathway activation, and their interactions with the immune system and the dopamine D2 receptors.
Collapse
Affiliation(s)
- Michael A Emery
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, USA
| | - Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, USA.
| |
Collapse
|
10
|
Ruan J, Chen L, Ma Z. Activation of spinal Extacellular Signal‐Regulated Kinases and c‐jun N‐terminal kinase signaling pathways contributes to morphine‐induced acute and chronic hyperalgesia in mice. J Cell Biochem 2019; 120:15045-15056. [PMID: 31016764 DOI: 10.1002/jcb.28766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/27/2019] [Accepted: 01/30/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Jia‐Ping Ruan
- Department of Anesthesiology Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University Nanjing Jiangsu China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine Nanjing University of Chinese Medicine Nanjing Jiangsu China
| | - Ling Chen
- Laboratory of Reproductive Medicine Nanjing Medical University Nanjing Jiangsu China
| | - Zheng‐liang Ma
- Department of Anesthesiology Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University Nanjing Jiangsu China
| |
Collapse
|
11
|
Abstract
G protein-coupled receptors (GPCRs) are the largest class of drug targets, largely owing to their druggability, diversity and physiological efficacy. Many drugs selectively target specific subtypes of GPCRs, but high specificity for individual GPCRs may not be desirable in complex multifactorial disease states in which multiple receptors may be involved. One approach is to target G protein subunits rather than the GPCRs directly. This approach has the potential to achieve broad efficacy by blocking pathways shared by multiple GPCRs. Additionally, because many GPCRs couple to multiple G protein signalling pathways, blocking specific G protein subunits can 'bias' GPCR signals by inhibiting only a subset of these signals. Molecules that target G protein α or βγ-subunits have been developed and show strong efficacy in multiple preclinical disease models and biased inhibition of G protein signalling. In this Review, we discuss the development and characterization of G protein α and βγ-subunit ligands and the preclinical evidence that this exciting new approach has potential for therapeutic efficacy in a number of indications, such as pain, thrombosis, asthma and heart failure.
Collapse
|
12
|
Campbell AP, Smrcka AV. Biasing μ Opioid Receptors with G Protein Inhibitors to Improve Opioid Analgesics. FASEB J 2018. [DOI: 10.1096/fasebj.2018.32.1_supplement.689.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Alan V. Smrcka
- Pharmacology DepartmentUniversity of MichiganAnn ArborMI
| |
Collapse
|
13
|
Senarath K, Kankanamge D, Samaradivakara S, Ratnayake K, Tennakoon M, Karunarathne A. Regulation of G Protein βγ Signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 339:133-191. [PMID: 29776603 DOI: 10.1016/bs.ircmb.2018.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins) deliver external signals to the cell interior, upon activation by the external signal stimulated G protein-coupled receptors (GPCRs).While the activated GPCRs control several pathways independently, activated G proteins control the vast majority of cellular and physiological functions, ranging from vision to cardiovascular homeostasis. Activated GPCRs dissociate GαGDPβγ heterotrimer into GαGTP and free Gβγ. Earlier, GαGTP was recognized as the primary signal transducer of the pathway and Gβγ as a passive signaling modality that facilitates the activity of Gα. However, Gβγ later found to regulate more number of pathways than GαGTP does. Once liberated from the heterotrimer, free Gβγ interacts and activates a diverse range of signaling regulators including kinases, lipases, GTPases, and ion channels, and it does not require any posttranslation modifications. Gβγ family consists of 48 members, which show cell- and tissue-specific expressions, and recent reports show that cells employ the subtype diversity in Gβγ to achieve desired signaling outcomes. In addition to activated GPCRs, which induce free Gβγ generation and the rate of GTP hydrolysis in Gα, which sequester Gβγ in the heterotrimer, terminating Gβγ signaling, additional regulatory mechanisms exist to regulate Gβγ activity. In this chapter, we discuss structure and function, subtype diversity and its significance in signaling regulation, effector activation, regulatory mechanisms as well as the disease relevance of Gβγ in eukaryotes.
Collapse
|
14
|
Guerrero-Alba R, Valdez-Morales EE, Jimenez-Vargas NN, Lopez-Lopez C, Jaramillo-Polanco J, Okamoto T, Nasser Y, Bunnett NW, Lomax AE, Vanner SJ. Stress activates pronociceptive endogenous opioid signalling in DRG neurons during chronic colitis. Gut 2017; 66:2121-2131. [PMID: 27590998 DOI: 10.1136/gutjnl-2016-311456] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 07/18/2016] [Accepted: 08/11/2016] [Indexed: 12/20/2022]
Abstract
AIMS AND BACKGROUND Psychological stress accompanies chronic inflammatory diseases such as IBD, and stress hormones can exacerbate pain signalling. In contrast, the endogenous opioid system has an important analgesic action during chronic inflammation. This study examined the interaction of these pathways. METHODS Mouse nociceptive dorsal root ganglia (DRG) neurons were incubated with supernatants from segments of inflamed colon collected from patients with chronic UC and mice with dextran sodium sulfate (cDSS)-induced chronic colitis. Stress effects were studied by adding stress hormones (epinephrine and corticosterone) to dissociated neurons or by exposing cDSS mice to water avoidance stress. Changes in excitability of colonic DRG nociceptors were measured using patch clamp and Ca2+ imaging techniques. RESULTS Supernatants from patients with chronic UC and from colons of mice with chronic colitis caused a naloxone-sensitive inhibition of neuronal excitability and capsaicin-evoked Ca2+ responses. Stress hormones decreased signalling induced by human and mouse supernatants. This effect resulted from stress hormones signalling directly to DRG neurons and indirectly through signalling to the immune system, leading to decreased opioid levels and increased acute inflammation. The net effect of stress was a change endogenous opioid signalling in DRG neurons from an inhibitory to an excitatory effect. This switch was associated with a change in G protein-coupled receptor excitatory signalling to a pathway sensitive to inhibitors of protein kinase A-protein, phospholipase C-protein and G protein βϒ subunits. CONCLUSIONS Stress hormones block the inhibitory actions of endogenous opioids and can change the effect of opioid signalling in DRG neurons to excitation. Targeting these pathways may prevent heavy opioid use in IBD.
Collapse
Affiliation(s)
- Raquel Guerrero-Alba
- GI Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada.,Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, México
| | - Eduardo E Valdez-Morales
- GI Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada.,Departamento de Cirugía, Centro de Ciencias Biomédicas, Universidad Autónoma de Aguascalientes, Cátedras CONACYT, Aguascalientes México
| | - Nestor N Jimenez-Vargas
- GI Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Cintya Lopez-Lopez
- GI Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Josue Jaramillo-Polanco
- GI Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Takanobu Okamoto
- GI Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Yasmin Nasser
- GI Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada.,Division of Gastroenterology and Hepatology, Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nigel W Bunnett
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Australia.,Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Alan E Lomax
- GI Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Stephen J Vanner
- GI Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
15
|
Hudson BN, Hyun SH, Thompson DH, Lyon AM. Phospholipase Cβ3 Membrane Adsorption and Activation Are Regulated by Its C-Terminal Domains and Phosphatidylinositol 4,5-Bisphosphate. Biochemistry 2017; 56:5604-5614. [PMID: 28945350 DOI: 10.1021/acs.biochem.7b00547] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Phospholipase Cβ (PLCβ) enzymes hydrolyze phosphatidylinositol 4,5-bisphosphate to produce second messengers that regulate intracellular Ca2+, cell proliferation, and survival. Their activity is dependent upon interfacial activation that occurs upon localization to cell membranes. However, the molecular basis for how these enzymes productively interact with the membrane is poorly understood. Herein, atomic force microscopy demonstrates that the ∼300-residue C-terminal domain promotes adsorption to monolayers and is required for spatial organization of the protein on the monolayer surface. PLCβ variants lacking this C-terminal domain display differences in their distribution on the surface. In addition, a previously identified autoinhibitory helix that binds to the PLCβ catalytic core negatively impacts membrane binding, providing an additional level of regulation for membrane adsorption. Lastly, defects in phosphatidylinositol 4,5-bisphosphate hydrolysis also alter monolayer adsorption, reflecting a role for the active site in this process. Together, these findings support a model in which multiple elements of PLCβ modulate adsorption, distribution, and catalysis at the cell membrane.
Collapse
Affiliation(s)
- Brianna N Hudson
- Department of Chemistry and ‡Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| | - Seok-Hee Hyun
- Department of Chemistry and ‡Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| | - David H Thompson
- Department of Chemistry and ‡Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| | - Angeline M Lyon
- Department of Chemistry and ‡Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| |
Collapse
|
16
|
Bianchi E, Di Cesare Mannelli L, Micheli L, Farzad M, Aglianò M, Ghelardini C. Apoptotic Process Induced by Oxaliplatin in Rat Hippocampus Causes Memory Impairment. Basic Clin Pharmacol Toxicol 2016; 120:14-21. [DOI: 10.1111/bcpt.12629] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/02/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Enrica Bianchi
- Department of Medicine, Surgery and Neuroscience; University of Siena; Siena Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health; Neurofarba, Pharmacology and Toxicology Unit; University of Florence; Florence Italy
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health; Neurofarba, Pharmacology and Toxicology Unit; University of Florence; Florence Italy
| | - Mersedez Farzad
- Oncology Unit; Healthcare Institution Tuscan Southeast; Siena Italy
| | - Margherita Aglianò
- Department of Medicine, Surgery and Neuroscience; University of Siena; Siena Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health; Neurofarba, Pharmacology and Toxicology Unit; University of Florence; Florence Italy
| |
Collapse
|
17
|
Bhalla S, Andurkar SV, Gulati A. Neurobiology of opioid withdrawal: Role of the endothelin system. Life Sci 2016; 159:34-42. [DOI: 10.1016/j.lfs.2016.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/06/2016] [Accepted: 01/11/2016] [Indexed: 02/04/2023]
|
18
|
Roeckel LA, Le Coz GM, Gavériaux-Ruff C, Simonin F. Opioid-induced hyperalgesia: Cellular and molecular mechanisms. Neuroscience 2016; 338:160-182. [PMID: 27346146 DOI: 10.1016/j.neuroscience.2016.06.029] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/10/2016] [Accepted: 06/16/2016] [Indexed: 12/18/2022]
Abstract
Opioids produce strong analgesia but their use is limited by a paradoxical hypersensitivity named opioid-induced hyperalgesia (OIH) that may be associated to analgesic tolerance. In the last decades, a significant number of preclinical studies have investigated the factors that modulate OIH development as well as the cellular and molecular mechanisms underlying OIH. Several factors have been shown to influence OIH including the genetic background and sex differences of experimental animals as well as the opioid regimen. Mu opioid receptor (MOR) variants and interactions of MOR with different proteins were shown important. Furthermore, at the cellular level, both neurons and glia play a major role in OIH development. Several neuronal processes contribute to OIH, like activation of neuroexcitatory mechanisms, long-term potentiation (LTP) and descending pain facilitation. Increased nociception is also mediated by neuroinflammation induced by the activation of microglia and astrocytes. Neurons and glial cells exert synergistic effects, which contribute to OIH. The molecular actors identified include the Toll-like receptor 4 and the anti-opioid systems as well as some other excitatory molecules, receptors, channels, chemokines, pro-inflammatory cytokines or lipids. This review summarizes the intracellular and intercellular pathways involved in OIH and highlights some mechanisms that may be challenged to limit OIH in the future.
Collapse
Affiliation(s)
- Laurie-Anne Roeckel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Université de Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Glenn-Marie Le Coz
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Claire Gavériaux-Ruff
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Université de Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Ecole Supérieure de Biotechnologie de Strasbourg, Université de Strasbourg, France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
19
|
Lyon AM, Begley JA, Manett TD, Tesmer JJG. Molecular mechanisms of phospholipase C β3 autoinhibition. Structure 2015; 22:1844-1854. [PMID: 25435326 DOI: 10.1016/j.str.2014.10.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 09/29/2014] [Accepted: 10/04/2014] [Indexed: 01/01/2023]
Abstract
Phospholipase C β (PLCβ) enzymes are dramatically activated by heterotrimeric G proteins. Central to this response is the robust autoinhibition of PLCβ by the X-Y linker region within its catalytic core and by the Hα2' helix in the C-terminal extension of the enzyme. The molecular mechanism of each and their mutual dependence are poorly understood. Herein, it is shown that distinct regions within the X-Y linker have specific roles in regulating activity. Most important,an acidic stretch within the linker stabilizes a lid that occludes the active site, consistent with crystal structures of variants lacking this region. Inhibition by the Hα2' helix is independent of the X-Y linker and likely regulates activity by limiting membrane interaction of the catalytic core. Full activation of PLCβ thus requires multiple independent molecular events induced by membrane association of the catalytic core and by the binding of regulatory proteins.
Collapse
Affiliation(s)
- Angeline M Lyon
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216, USA; Department of Pharmacology, University of Michigan, 1150 W. Medical Center Drive, 1301 MSRB III, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, 1150 W. Medical Center Drive, RM 5301 MSRB III, Ann Arbor, MI 48109-0600, USA
| | - Jessica A Begley
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216, USA; Department of Pharmacology, University of Michigan, 1150 W. Medical Center Drive, 1301 MSRB III, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, 1150 W. Medical Center Drive, RM 5301 MSRB III, Ann Arbor, MI 48109-0600, USA
| | - Taylor D Manett
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216, USA; Department of Pharmacology, University of Michigan, 1150 W. Medical Center Drive, 1301 MSRB III, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, 1150 W. Medical Center Drive, RM 5301 MSRB III, Ann Arbor, MI 48109-0600, USA
| | - John J G Tesmer
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216, USA; Department of Pharmacology, University of Michigan, 1150 W. Medical Center Drive, 1301 MSRB III, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, 1150 W. Medical Center Drive, RM 5301 MSRB III, Ann Arbor, MI 48109-0600, USA.
| |
Collapse
|
20
|
Sanna MD, Ghelardini C, Galeotti N. Regionally selective activation of ERK and JNK in morphine paradoxical hyperalgesia: A step toward improving opioid pain therapy. Neuropharmacology 2014; 86:67-77. [DOI: 10.1016/j.neuropharm.2014.06.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/03/2014] [Accepted: 06/05/2014] [Indexed: 12/30/2022]
|
21
|
Lyon AM, Tesmer JJG. Structural insights into phospholipase C-β function. Mol Pharmacol 2013; 84:488-500. [PMID: 23880553 PMCID: PMC3781385 DOI: 10.1124/mol.113.087403] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/23/2013] [Indexed: 01/31/2023] Open
Abstract
Phospholipase C (PLC) enzymes convert phosphatidylinositol-4,5-bisphosphate into the second messengers diacylglycerol and inositol-1,4,5-triphosphate. The production of these molecules promotes the release of intracellular calcium and activation of protein kinase C, which results in profound cellular changes. The PLCβ subfamily is of particular interest given its prominent role in cardiovascular and neuronal signaling and its regulation by G protein-coupled receptors, as PLCβ is the canonical downstream target of the heterotrimeric G protein Gαq. However, this is not the only mechanism regulating PLCβ activity. Extensive structural and biochemical evidence has revealed regulatory roles for autoinhibitory elements within PLCβ, Gβγ, small molecular weight G proteins, and the lipid membrane itself. Such complex regulation highlights the central role that this enzyme plays in cell signaling. A better understanding of the molecular mechanisms underlying the control of its activity will greatly facilitate the search for selective small molecule modulators of PLCβ.
Collapse
Affiliation(s)
- Angeline M Lyon
- Life Sciences Institute and the Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
22
|
Khan SM, Sleno R, Gora S, Zylbergold P, Laverdure JP, Labbé JC, Miller GJ, Hébert TE. The expanding roles of Gβγ subunits in G protein-coupled receptor signaling and drug action. Pharmacol Rev 2013; 65:545-77. [PMID: 23406670 DOI: 10.1124/pr.111.005603] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gβγ subunits from heterotrimeric G proteins perform a vast array of functions in cells with respect to signaling, often independently as well as in concert with Gα subunits. However, the eponymous term "Gβγ" does not do justice to the fact that 5 Gβ and 12 Gγ isoforms have evolved in mammals to serve much broader roles beyond their canonical roles in cellular signaling. We explore the phylogenetic diversity of Gβγ subunits with a view toward understanding these expanded roles in different cellular organelles. We suggest that the particular content of distinct Gβγ subunits regulates cellular activity, and that the granularity of individual Gβ and Gγ action is only beginning to be understood. Given the therapeutic potential of targeting Gβγ action, this larger view serves as a prelude to more specific development of drugs aimed at individual isoforms.
Collapse
Affiliation(s)
- Shahriar M Khan
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1303, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Intrathecal PLC(β3) oligodeoxynucleotides antisense potentiates acute morphine efficacy and attenuates chronic morphine tolerance. Brain Res 2012; 1472:38-44. [PMID: 22771399 DOI: 10.1016/j.brainres.2012.06.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 03/21/2012] [Accepted: 06/24/2012] [Indexed: 11/20/2022]
Abstract
Morphine is a mainstay for chronic pain treatment, but its efficacy has been hampered by physical tolerance. The underlying mechanism for chronic morphine induced tolerance is complicated and not well understood. PLC(β3) is regarded as an important factor in the morphine tolerance signal pathway. In this study, we determined intrathecal (i.t.) administration of an antisense oligodeoxynucleotide (ODN) of PLC(β3) could quicken the on-set antinociceptive efficacy of acute morphine treatment and prolong the maximum effect up to 4h. The antisense could also attenuate the development of morphine-induced tolerance and left shift the ED50 after 7 day of coadministration with morphine. These results probably were contributed by the PLC(β3) antisense ODN as they successfully knocked down protein expression levels and reduced activity of PLC(β3) in spinal cord in rats. The mismatch group had no such effects. The results confirmed the important involvement of PLC(β3) in both acute morphine efficacy and chronic morphine tolerance at spinal level in rats. This study may provide an idea for producing a novel adjuvant for morphine treatment.
Collapse
|
24
|
Bianchi E, Galeotti N, Menicacci C, Ghelardini C. Contribution of G inhibitory protein alpha subunits in paradoxical hyperalgesia elicited by exceedingly low doses of morphine in mice. Life Sci 2011; 89:918-25. [PMID: 22008476 DOI: 10.1016/j.lfs.2011.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 08/26/2011] [Accepted: 09/15/2011] [Indexed: 11/30/2022]
Abstract
AIMS Although morphine, at higher doses, induces analgesia, it may also enhance sensitivity to pain at extremely low doses as shown in studies for testing an animal's sensitivity to pain. We used an antisense approach capable of selectively down-regulating in vivo G(i)(G inhibitory protein),G(o) and G(s) members of the G(α) sub-family protein subunits in order to establish if these proteins might be implicated in the effects induced by extremely low morphine doses on acute thermonociception. MAIN METHODS Mice pretreated with a morphine hyperalgesic dose (1μg/kg) were submitted to hot plate test after pre-treatment with antisense oligodeoxynucleotides (aODNs) targeting G(iα), G(oα) and G(sα) regulatory proteins. The association of G-protein (guanine nucleotide-binding regulatory protein) coupled receptors with G protein was investigated using co-immunoprecipitation procedure. KEY FINDINGS The downregulation of the G(iα1-3) and G(oα1) proteins reversed the licking latency responses induced by 1μg/kg morphine administration toward the basal value whereas downregulation of the G(oα2) and G(sα) proteins did not significantly modify the hyperalgesic response. SIGNIFICANCE These results suggest that G inhibitory proteins play a role in the production of low dose evoked morphine hyperalgesia in mouse. Immunoprecipitation studies revealed that both μ opioid receptor (μOR) and α(2) adrenoreceptor (α(2) AR) are bound to G inhibitory proteins in hyperalgesic response to morphine extremely low dose. Both μOR and α(2) AR appear to be necessary for low morphine dose induced hyperalgesic response through G inhibitory proteins.
Collapse
Affiliation(s)
- Enrica Bianchi
- Department of Neuroscience, University of Siena, Siena, Italy.
| | | | | | | |
Collapse
|
25
|
Lin Y, Smrcka AV. Understanding molecular recognition by G protein βγ subunits on the path to pharmacological targeting. Mol Pharmacol 2011; 80:551-7. [PMID: 21737569 PMCID: PMC3187535 DOI: 10.1124/mol.111.073072] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 07/06/2011] [Indexed: 01/01/2023] Open
Abstract
Heterotrimeric G proteins, composed of Gα and Gβγ subunits, transduce extracellular signals via G-protein-coupled receptors to modulate many important intracellular responses. The Gβγ subunits hold a central position in this signaling system and have been implicated in multiple aspects of physiology and the pathophysiology of disease. The Gβ subunit belongs to a large family of WD40 repeat proteins with a circular β-bladed propeller structure. This structure allows Gβγ to interact with a broad range of proteins to play diverse roles. How Gβγ interacts with and regulates such a wide variety of partners yet maintains specificity is an interesting problem in protein-protein molecular recognition in signal transduction, where signal transfer by proteins is often driven by modular conserved recognition motifs. Evidence has accumulated that one mechanism for Gβγ multitarget recognition is through an intrinsically flexible protein surface or "hot spot" that accommodates multiple modes of binding. Because each target has a unique recognition mode for Gβγ subunits, it suggests that these interactions could be selectively manipulated with small molecules, which could have significant therapeutic potential.
Collapse
Affiliation(s)
- Yuan Lin
- Department of Pharmacology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | |
Collapse
|
26
|
Seneviratne AMPB, Burroughs M, Giralt E, Smrcka AV. Direct-reversible binding of small molecules to G protein βγ subunits. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1210-8. [PMID: 21621014 DOI: 10.1016/j.bbapap.2011.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 05/10/2011] [Accepted: 05/11/2011] [Indexed: 02/08/2023]
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins) composed of three subunits α, β, γ mediate activation of multiple intracellular signaling cascades initiated by G protein-coupled receptors (GPCRs). Previously our laboratory identified small molecules that bind to Gβγ and interfere with or enhance binding of select effectors with Gβγ. To understand the molecular mechanisms of selectivity and assess binding of compounds to Gβγ, we used biophysical and biochemical approaches to directly monitor small molecule binding to Gβγ. Surface plasmon resonance (SPR) analysis indicated that multiple compounds bound directly to Gβγ with affinities in the high nanomolar to low micromolar range but with surprisingly slow on and off rate kinetics. While the k(off) was slow for most of the compounds in physiological buffers, they could be removed from Gβγ with mild chaotropic salts or mildly dissociating collision energy in a mass-spectrometer indicating that compound-Gβγ interactions were non-covalent. Finally, at concentrations used to observe maximal biological effects the stoichiometry of binding was 1:1. The results from this study show that small molecule modulation of Gβγ-effector interactions is by specific direct non-covalent and reversible binding of small molecules to Gβγ. This is highly relevant to development of Gβγ targeting as a therapeutic approach since reversible, direct binding is a prerequisite for drug development and important for specificity.
Collapse
|
27
|
TRPA1 is required for histamine-independent, Mas-related G protein-coupled receptor-mediated itch. Nat Neurosci 2011; 14:595-602. [PMID: 21460831 PMCID: PMC3181150 DOI: 10.1038/nn.2789] [Citation(s) in RCA: 447] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 02/28/2011] [Indexed: 12/28/2022]
Abstract
Itch, the unpleasant sensation that evokes a desire to scratch, accompanies numerous skin and nervous system disorders. In many cases, pathological itch is insensitive to antihistamine treatment. Recent studies have identified members of the Mas-related G protein-coupled receptor (Mrgpr) family that are activated by mast cell mediators and promote histamine-independent itch. MrgprA3 and MrgprC11 act as receptors for the pruritogens chloroquine and BAM8-22, respectively. However, the signaling pathways and transduction channels activated downstream of these pruritogens are largely unknown. We found that TRPA1 is the downstream target of both MrgprA3 and MrgprC11 in cultured sensory neurons and heterologous cells. TRPA1 is required for Mrgpr-mediated signaling, as sensory neurons from TRPA1-deficient mice exhibited markedly diminished responses to chloroquine and BAM8-22. Similarly, TRPA1-deficient mice displayed little to no scratching in response to these pruritogens. Our findings indicate that TRPA1 is an essential component of the signaling pathways that promote histamine-independent itch.
Collapse
|
28
|
Rehni AK, Singh TG, Chand P. Amisulpride-Induced Seizurogenic Effect: A Potential Role of Opioid Receptor-Linked Transduction Systems. Basic Clin Pharmacol Toxicol 2010; 108:310-7. [DOI: 10.1111/j.1742-7843.2010.00655.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Lee FA, Baiamonte BA, Spano D, Lahoste GJ, Soignier RD, Harrison LM. Mice lacking rhes show altered morphine analgesia, tolerance, and dependence. Neurosci Lett 2010; 489:182-6. [PMID: 21163334 DOI: 10.1016/j.neulet.2010.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/12/2010] [Accepted: 12/07/2010] [Indexed: 02/05/2023]
Abstract
Rhes, the Ras Homolog Enriched in Striatum, is an intermediate-size GTP binding protein. Although its full functions are not yet known, it has been shown to affect signaling and behaviors mediated by G protein-coupled receptors. Here we have tested whether Rhes affects behaviors mediated by opioid receptors. Wild type and rhes-deficient mice were administered morphine and tested for analgesia in formalin and tail flick tests. Rhes⁻/⁻ mice showed significantly enhanced analgesia in both tests relative to rhes+/+ mice. Furthermore, rhes⁻/⁻ mice did not display tolerance to repeated morphine administration and displayed significantly less withdrawal than rhes+/+ mice. These findings indicate that Rhes is involved in behaviors mediated by mu opioid receptors and in the adaptive response to repeated morphine administration.
Collapse
Affiliation(s)
- Franklin A Lee
- Department of Psychology, University of New Orleans, New Orleans, LA 70148, USA
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
This paper is the 32nd consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2009 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
31
|
Tramadol-induced seizurogenic effect: a possible role of opioid-dependent histamine H1 receptor activation-linked mechanism. Naunyn Schmiedebergs Arch Pharmacol 2009; 381:11-9. [PMID: 20012267 DOI: 10.1007/s00210-009-0476-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 11/13/2009] [Indexed: 12/17/2022]
Abstract
The present study has been designed to investigate the role of opioid receptors, mast cells, and histamine receptors (H(1) subtype) in the seizurogenic effect of tramadol on pentylenetetrazole-treated mice. A single injection of pentylenetetrazole (80 mg kg(-1)) was used to elicit seizure activity in mice. Seizures were assessed in terms of the time latency of the onset of Straub-like tail, onset of jerky movements of whole body, convulsions, and death. Tramadol administration (50 mg kg (-1)) caused a marked increase in seizurogenic activity of pentylenetetrazole as measured in terms of a significant decrease in the time latency of the onset of Straub-like tail, jerky movements of whole body, convulsions, and death. Moreover, prior administration of naloxone (2 mg kg(-1)), fexofenadine (100 mg kg(-1)), cetrizine, sodium cromoglycate, and ketotifen (10 mg kg(-1)), respectively, attenuated the seizurogenic activity that tramadol exerted on pentylenetetrazole-treated mice. Therefore, it may be suggested that tramadol exerts a seizurogenic effect on mice via an H(1) receptor activation-linked pathway possibly through an opioid receptor-dependent release of histamine from the mast cells.
Collapse
|