1
|
Lichlyter DA, Krumm ZA, Golde TA, Doré S. Role of CRF and the hypothalamic-pituitary-adrenal axis in stroke: revisiting temporal considerations and targeting a new generation of therapeutics. FEBS J 2022; 290:1986-2010. [PMID: 35108458 DOI: 10.1111/febs.16380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022]
Abstract
Ischaemic neurovascular stroke represents a leading cause of death in the developed world. Preclinical and human epidemiological evidence implicates the corticotropin-releasing factor (CRF) family of neuropeptides as mediators of acute neurovascular injury pathology. Preclinical investigations of the role of CRF, CRF receptors and CRF-dependent activation of the hypothalamic-pituitary-adrenal (HPA) axis have pointed toward a tissue-specific and temporal relationship between activation of these pathways and physiological outcomes. Based on the literature, the major phases of ischaemic stroke aetiology may be separated into an acute phase in which CRF and anti-inflammatory stress signalling are beneficial and a chronic phase in which these contribute to neural degeneration, toxicity and apoptotic signalling. Significant gaps in knowledge remain regarding the pathway, temporality and systemic impact of CRF signalling and stress biology in neurovascular injury progression. Heterogeneity among experimental designs poses a challenge to defining the apparent reciprocal relationship between neurological injury and stress metabolism. Despite these challenges, it is our opinion that the elucidated temporality may be best matched with an antibody against CRF with a half-life of days to weeks as opposed to minutes to hours as with small-molecule CRF receptor antagonists. This state-of-the-art review will take a multipronged approach to explore the expected potential benefit of a CRF antibody by modulating CRF and corticotropin-releasing factor receptor 1 signalling, glucocorticoids and autonomic nervous system activity. Additionally, this review compares the modulation of CRF and HPA axis activity in neuropsychiatric diseases and their counterpart outcomes post-stroke and assess lessons learned from antibody therapies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniel A Lichlyter
- Department of Anesthesiology, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Zachary A Krumm
- Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Todd A Golde
- Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,Departments of Neurology, Psychiatry, Pharmaceutics, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
2
|
Insulin and α-Tocopherol Enhance the Protective Effect of Each Other on Brain Cortical Neurons under Oxidative Stress Conditions and in Rat Two-Vessel Forebrain Ischemia/Reperfusion Injury. Int J Mol Sci 2021; 22:ijms222111768. [PMID: 34769198 PMCID: PMC8584186 DOI: 10.3390/ijms222111768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/15/2021] [Accepted: 10/27/2021] [Indexed: 12/18/2022] Open
Abstract
Clinical trials show that insulin administered intranasally is a promising drug to treat neurodegenerative diseases, but at high doses its use may result in cerebral insulin resistance. Identifying compounds which could enhance the protective effects of insulin, may be helpful to reduce its effective dose. Our aim was thus to study the efficiency of combined use of insulin and α-tocopherol (α-T) to increase the viability of cultured cortical neurons under oxidative stress conditions and to normalize the metabolic disturbances caused by free radical reaction activation in brain cortex of rats with two-vessel forebrain ischemia/reperfusion injury. Immunoblotting, flow cytometry, colorimetric, and fluorometric techniques were used. α-T enhanced the protective and antioxidative effects of insulin on neurons in oxidative stress, their effects were additive. At the late stages of oxidative stress, the combined action of insulin and α-T increased Akt-kinase activity, inactivated GSK-3beta and normalized ERK1/2 activity in cortical neurons, it was more effective than either drug action. In the brain cortex, ischemia/reperfusion increased the lipid peroxidation product content and caused Na+,K+-ATPase oxidative inactivation. Co-administration of insulin (intranasally, 0.25 IU/rat) and α-T (orally, 50 mg/kg) led to a more pronounced normalization of the levels of Schiff bases, conjugated dienes and trienes and Na+,K+-ATPase activity than administration of each drug alone. Thus, α-T enhances the protective effects of insulin on cultured cortical neurons in oxidative stress and in the brain cortex of rats with cerebral ischemia/reperfusion injury.
Collapse
|
3
|
ERK: A Double-Edged Sword in Cancer. ERK-Dependent Apoptosis as a Potential Therapeutic Strategy for Cancer. Cells 2021; 10:cells10102509. [PMID: 34685488 PMCID: PMC8533760 DOI: 10.3390/cells10102509] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
The RAF/MEK/ERK signaling pathway regulates diverse cellular processes as exemplified by cell proliferation, differentiation, motility, and survival. Activation of ERK1/2 generally promotes cell proliferation, and its deregulated activity is a hallmark of many cancers. Therefore, components and regulators of the ERK pathway are considered potential therapeutic targets for cancer, and inhibitors of this pathway, including some MEK and BRAF inhibitors, are already being used in the clinic. Notably, ERK1/2 kinases also have pro-apoptotic functions under certain conditions and enhanced ERK1/2 signaling can cause tumor cell death. Although the repertoire of the compounds which mediate ERK activation and apoptosis is expanding, and various anti-cancer compounds induce ERK activation while exerting their anti-proliferative effects, the mechanisms underlying ERK1/2-mediated cell death are still vague. Recent studies highlight the importance of dual-specificity phosphatases (DUSPs) in determining the pro- versus anti-apoptotic function of ERK in cancer. In this review, we will summarize the recent major findings in understanding the role of ERK in apoptosis, focusing on the major compounds mediating ERK-dependent apoptosis. Studies that further define the molecular targets of these compounds relevant to cell death will be essential to harnessing these compounds for developing effective cancer treatments.
Collapse
|
4
|
Activation of Adenosine A 1 Receptor in Ischemic Stroke: Neuroprotection by Tetrahydroxy Stilbene Glycoside as an Agonist. Antioxidants (Basel) 2021; 10:antiox10071112. [PMID: 34356346 PMCID: PMC8301086 DOI: 10.3390/antiox10071112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 01/26/2023] Open
Abstract
Ischemic stroke is the main cause of death/disability, posing a great menace to human health. Though efforts to search for therapeutic drugs are ongoing, few of them have succeeded. Adenosine A1 receptor (A1R) activation could ameliorate ischemic injury, representing a very tempting target for stroke treatment. Tetrahydroxy stilbene glycoside (TSG), a potent antioxidant from the well-known Chinese herb Polygonum multiflorum Thunb., has been reported to have notable neuroprotective activities but the underlying mechanisms are elusive. This study investigated the mechanism of TSG focusing on A1R. TSG markedly decreased mortality, neurological deficit score, cerebral infarct size and brain water content of MCAO rats, and ameliorated the disorders in purine metabolism, energy metabolism and antioxidative defense system. TSG helped the survival of SH-SY5Y cells in OGD/R by alleviating oxidative stress and glutamate release, and by maintaining calcium homeostasis. TSG effects were abolished by A1R antagonist DPCPX. Docking and binding assays confirmed the binding of TSG with A1R. In addition, TSG upregulated the A1R level lowered by MCAO and OGD/R. The downstream signals of A1R activation, ERK1/2, HIF-1α and NF-κB contributed to the neuroprotection of TSG. Moreover, void of “well-known” cardiovascular side effects of classical A1R agonists, TSG showcased its great potential for stroke treatment.
Collapse
|
5
|
Wang D, Wang L, Han J, Zhang Z, Fang B, Chen F. Bioinformatics-Based Analysis of the lncRNA-miRNA-mRNA Network and TF Regulatory Network to Explore the Regulation Mechanism in Spinal Cord Ischemia/Reperfusion Injury. Front Genet 2021; 12:650180. [PMID: 33986769 PMCID: PMC8110913 DOI: 10.3389/fgene.2021.650180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/29/2021] [Indexed: 11/28/2022] Open
Abstract
Background Spinal cord ischemia/reperfusion injury (SCII) is a catastrophic complication involved with cardiovascular, spine, and thoracic surgeries and can lead to paraplegia. Nevertheless, the molecular mechanism of SCII remain ill-defined. Methods Expression profiling (GSE138966) data were obtained from GEO database. Then, differentially expressed (DE) lncRNAs and DEmRNAs were screened out with p < 0.05, and | fold change| > 1.5. Aberrant miRNAs expression in SCII was obtained from PubMed. Functional enrichment analysis of overlapping DEmRNAs between predicted mRNAs in miRDB database and DEmRNAs obtained from GSE138966 was performed using cluster Profiler R package. The lncRNA-miRNA-mRNA competitive endogenous RNA (ceRNA) network was established in light of ceRNA theory. The key lncRNAs in the ceRNA network were identified by topological analysis. Subsequently, key lncRNAs related ceRNA-pathway network and transcription factors (TFs)-mRNAs network were constructed. Simultaneously, the expression levels of hub genes were measured via qRT-PCR. Results The results in this study indicated that 76 miRNAs, 1373 lncRNAs, and 4813 mRNAs were differentially expressed in SCII. A SCII-related ceRNA network was constructed with 154 ncRNAs, 139 mRNAs, and 51 miRNAs. According topological analysis, six lncRNAs (NONRATT019236.2, NONRATT009530.2, NONRATT026999.2, TCONS_00032391, NONRATT023112.2, and NONRATT021956.2) were selected to establish the ceRNA-pathway network, and then two candidate hub lncRNAs (NONRATT009530.2 and NONRATT026999.2) were identified. Subsequently, two lncRNA-miRNA-mRNA regulatory axes were identified. NONRATT026999.2 and NONRATT009530.2 might involve SCII via miR-20b-5p/Map3k8 axis based on the complex ceRNA network. SP1 and Hnf4a acting as important TFs might regulate Map3k8. Furthermore, qRT-PCR results showed that the NONRATT009530.2, NONRATT026999.2, Map3k8, Hfn4a, and SP1 were significantly upregulated in SCII of rats, while the miR-20b-5p was downregulated. Conclusion Our results offer a new insight to understand the ceRNA regulation mechanism in SCII and identify highlighted lncRNA-miRNA-mRNA axes and two key TFs as potential targets for prevention and treatment of SCII.
Collapse
Affiliation(s)
- Dan Wang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Limei Wang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Jie Han
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Zaili Zhang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Bo Fang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Fengshou Chen
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Fiani B, Arshad MA, Shaikh ES, Baig A, Farooqui M, Ayub MA, Zafar A, Quadri SA. Current updates on various treatment approaches in the early management of acute spinal cord injury. Rev Neurosci 2021; 32:513-530. [PMID: 33565738 DOI: 10.1515/revneuro-2020-0148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/18/2020] [Indexed: 01/02/2023]
Abstract
Spinal cord injury (SCI) is a debilitating condition which often leads to a severe disability and ultimately impact patient's physical, psychological, and social well-being. The management of acute SCI has evolved over the couple of decades due to improved understanding of injury mechanisms and increasing knowledge of disease. Currently, the early management of acute SCI patient includes pharmacological agents, surgical intervention and newly experimental neuroprotective strategies. However, many controversial areas are still surrounding in the current treatment strategies for acute SCI, including the optimal timing of surgical intervention, early versus delayed decompression outcome benefits, the use of methylprednisolone. Due to the lack of consensus, the optimal standard of care has been varied across treatment centres. The authors have shed a light on the current updates on early treatment approaches and neuroprotective strategies in the initial management of acute SCI in order to protect the early neurologic injury and reduce the future disability.
Collapse
Affiliation(s)
- Brian Fiani
- Department of Neurosurgery, Desert Regional Medical Center, 1150 N. Indian Canyon Drive, Palm Springs, CA92262, USA
| | - Mohammad Arsal Arshad
- Department of Neurosurgery, Desert Regional Medical Center, 1150 N. Indian Canyon Drive, Palm Springs, CA92262, USA
| | - Emad Salman Shaikh
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Aqsa Baig
- Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Mudassir Farooqui
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Muhammed Abubakar Ayub
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Atif Zafar
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Syed A Quadri
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Liu ZG, Li Y, Jiao JH, Long H, Xin ZY, Yang XY. MicroRNA regulatory pattern in spinal cord ischemia-reperfusion injury. Neural Regen Res 2020; 15:2123-2130. [PMID: 32394971 PMCID: PMC7716024 DOI: 10.4103/1673-5374.280323] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
After spinal cord injury, dysregulated miRNAs appear and can participate in inflammatory responses, as well as the inhibition of apoptosis and axon regeneration through multiple pathways. However, the functions of miRNAs in spinal cord ischemia-reperfusion injury progression remain unclear. miRCURY LNATM Arrays were used to analyze miRNA expression profiles of rats after 90 minutes of ischemia followed by reperfusion for 24 and 48 hours. Furthermore, subsequent construction of aberrantly expressed miRNA regulatory patterns involved cell survival, proliferation, and apoptosis. Remarkably, the mitogen-activated protein kinase (MAPK) signaling pathway was the most significantly enriched pathway among 24- and 48-hour groups. Bioinformatics analysis and quantitative reverse transcription polymerase chain reaction confirmed the persistent overexpression of miR-22-3p in both groups. These results suggest that the aberrant miRNA regulatory network is possibly regulated MAPK signaling and continuously affects the physiological and biochemical status of cells, thus participating in the regulation of spinal cord ischemia-reperfusion injury. As such, miR-22-3p may play sustained regulatory roles in spinal cord ischemia-reperfusion injury. All experimental procedures were approved by the Animal Ethics Committee of Jilin University, China [approval No. 2020 (Research) 01].
Collapse
Affiliation(s)
- Zhi-Gang Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yin Li
- School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Jian-Hang Jiao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Hao Long
- Pain Clinic, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Zhuo-Yuan Xin
- The Key Laboratory of Zoonosis Search, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin Province, China
| | - Xiao-Yu Yang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
8
|
Chen J, Wang Q, Zhou W, Zhou Z, Tang PY, Xu T, Liu W, Li LW, Cheng L, Zhou ZM, Fan J, Yin GY. GPCR kinase 2-interacting protein-1 protects against ischemia-reperfusion injury of the spinal cord by modulating ASK1/JNK/p38 signaling. FASEB J 2018; 32:fj201800548. [PMID: 29912587 DOI: 10.1096/fj.201800548] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
GPCR kinase 2-interacting protein-1 (GIT1) is a scaffold protein that plays an important role in cell adaptation, proliferation, migration, and differentiation; however, the role of GIT1 in the regulation of neuronal death after spinal cord injury remains obscure. Here, we demonstrate that GIT1 deficiency remarkably increased neuronal apoptosis and enhanced JNK/p38 signaling, which resulted in stronger motor deficits by ischemia-reperfusion in vivo, consistent with the finding of oxygen-glucose deprivation/reoxygenation-induced neuronal injury in vitro. After treatment with JNK and p38 inhibitors, abnormally necroptotic cell death caused by GIT1 knockdown could be partially rescued, with the recovery of neuronal viability, which was still poorer than that in control neurons. Meanwhile, overactivation of JNK/p38 after GIT1 depletion was concomitant with excessive activity of apoptosis signal-regulating kinase-1 (ASK1) that could be abolished by ASK1 silencing in HEK293T cells. Finally, GIT1 could disrupt the oligomerization of ASK1 via interaction between the synaptic localization domain that contains the coiled-coil (CC)-2 domain of GIT1 and the C-terminal CC domain of ASK1. It suppressed the autophosphorylation of ASK1 and led to decreasing activity of the ASK1/JNK/p38 pathway. These data reveal a protective role for GIT1 in neuronal damage by modulating ASK1/JNK/p38 signaling.-Chen, J., Wang, Q., Zhou, W., Zhou, Z., Tang, P.-Y., Xu, T., Liu, W., Li, L.-W., Cheng, L., Zhou, Z.-M., Fan, J., Yin, G.-Y. GPCR kinase 2-interacting protein-1 protects against ischemia-reperfusion injury of the spinal cord by modulating ASK1/JNK/p38 signaling.
Collapse
Affiliation(s)
- Jian Chen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peng-Yu Tang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lin-Wei Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Cheng
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhi-Min Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guo-Yong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Edogawa S, Peters SA, Jenkins GD, Gurunathan SV, Sundt WJ, Johnson S, Lennon RJ, Dyer RB, Camilleri M, Kashyap PC, Farrugia G, Chen J, Singh RJ, Grover M. Sex differences in NSAID-induced perturbation of human intestinal barrier function and microbiota. FASEB J 2018; 32:fj201800560R. [PMID: 29897814 PMCID: PMC6219825 DOI: 10.1096/fj.201800560r] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022]
Abstract
Intestinal barrier function and microbiota are integrally related and play critical roles in maintenance of host physiology. Sex is a key biologic variable for several disorders. Our aim was to determine sex-based differences in response to perturbation and subsequent recovery of intestinal barrier function and microbiota in healthy humans. Twenty-three volunteers underwent duodenal biopsies, mucosal impedance, and in vivo permeability measurement. Permeability testing was repeated after administration of indomethacin, then 4 to 6 wk after its discontinuation. Duodenal and fecal microbiota composition was determined using 16S rRNA amplicon sequencing. Healthy women had lower intestinal permeability and higher duodenal and fecal microbial diversity than healthy men. Intestinal permeability increases after indomethacin administration in both sexes. However, only women demonstrated decreased fecal microbial diversity, including an increase in Prevotella abundance, after indomethacin administration. Duodenal microbiota composition did not show sex-specific changes. The increase in permeability and microbiota changes normalized after discontinuation of indomethacin. In summary, women have lower intestinal permeability and higher microbial diversity. Intestinal permeability is sensitive to perturbation but recovers to baseline. Gut microbiota in women is sensitive to perturbation but appears to be more stable in men. Sex-based differences in intestinal barrier function and microbiome should be considered in future studies.-Edogawa, S., Peters, S. A., Jenkins, G. D., Gurunathan, S. V., Sundt, W. J., Johnson, S., Lennon, R. J., Dyer, R. B., Camilleri, M., Kashyap, P. C., Farrugia, G., Chen, J., Singh, R. J., Grover, M. Sex differences in NSAID-induced perturbation of human intestinal barrier function and microbiota.
Collapse
Affiliation(s)
- Shoko Edogawa
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephanie A. Peters
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Gregory D. Jenkins
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Wendy J. Sundt
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen Johnson
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ryan J. Lennon
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Roy B. Dyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael Camilleri
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Purna C. Kashyap
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Gianrico Farrugia
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, USA
| | - Jun Chen
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Ravinder J. Singh
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Madhusudan Grover
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
10
|
Grainyhead-like 2 (GRHL2) knockout abolishes oral cancer development through reciprocal regulation of the MAP kinase and TGF-β signaling pathways. Oncogenesis 2018; 7:38. [PMID: 29735981 PMCID: PMC5938237 DOI: 10.1038/s41389-018-0047-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/25/2018] [Accepted: 04/05/2018] [Indexed: 01/01/2023] Open
Abstract
Grainyhead-Like 2 (GRHL2) is an epithelial-specific transcription factor that regulates epithelial morphogenesis and differentiation. Prior studies suggested inverse regulation between GRHL2 and TGF-β in epithelial plasticity and potential carcinogenesis. Here, we report the role of GRHL2 in oral carcinogenesis in vivo using a novel Grhl2 knockout (KO) mouse model and the underlying mechanism involving its functional interaction with TGF-β signaling. We developed epithelial-specific Grhl2 conditional KO mice by crossing Grhl2 floxed mice with those expressing CreER driven by the K14 promoter. After induction of Grhl2 KO, we confirmed the loss of GRHL2 and its target proteins, while Grhl2 KO strongly induced TGF-β signaling molecules. When exposed to 4-nitroquinoline 1-oxide (4-NQO), a strong chemical carcinogen, Grhl2 wild-type (WT) mice developed rampant oral tongue tumors, while Grhl2 KO mice completely abolished tumor development. In cultured oral squamous cell carcinoma (OSCC) cell lines, TGF-β signaling was notably induced by GRHL2 knockdown while being suppressed by GRHL2 overexpression. GRHL2 knockdown or KO in vitro and in vivo, respectively, led to loss of active p-Erk1/2 and p-JNK MAP kinase levels; moreover, ectopic overexpression of GRHL2 strongly induced the MAP kinase activation. Furthermore, the suppressive effect of GRHL2 on TGF-β signaling was diminished in cells exposed to Erk and JNK inhibitors. These data indicate that GRHL2 activates the Erk and JNK MAP kinases, which in turn suppresses the TGF -β signaling. This novel signaling represents an alternative pathway by which GRHL2 regulates carcinogenesis, and is distinct from the direct transcriptional regulation by GRHL2 binding at its target gene promoters, e.g., E-cadherin, hTERT, p63, and miR-200 family genes. Taken together, the current study provides the first genetic evidence to support the role of GRHL2 in carcinogenesis and the underlying novel mechanism that involves the functional interaction between GRHL2 and TGF-β signaling through the MAPK pathways.
Collapse
|
11
|
Zakharova IO, Sokolova TV, Vlasova YA, Bayunova LV, Rychkova MP, Avrova NF. α-Tocopherol at Nanomolar Concentration Protects Cortical Neurons against Oxidative Stress. Int J Mol Sci 2017; 18:ijms18010216. [PMID: 28117722 PMCID: PMC5297845 DOI: 10.3390/ijms18010216] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/08/2017] [Accepted: 01/14/2017] [Indexed: 12/14/2022] Open
Abstract
The aim of the present work is to study the mechanism of the α-tocopherol (α-T) protective action at nanomolar and micromolar concentrations against H2O2-induced brain cortical neuron death. The mechanism of α-T action on neurons at its nanomolar concentrations characteristic for brain extracellular space has not been practically studied yet. Preincubation with nanomolar and micromolar α-T for 18 h was found to increase the viability of cortical neurons exposed to H2O2; α-T effect was concentration-dependent in the nanomolar range. However, preincubation with nanomolar α-T for 30 min was not effective. Nanomolar and micromolar α-T decreased the reactive oxygen species accumulation induced in cortical neurons by the prooxidant. Using immunoblotting it was shown that preincubation with α-T at nanomolar and micromolar concentrations for 18 h prevented Akt inactivation and decreased PKCδ activation induced in cortical neurons by H2O2. α-T prevented the ERK1/2 sustained activation during 24 h caused by H2O2. α-T at nanomolar and micromolar concentrations prevented a great increase of the proapoptotic to antiapoptotic proteins (Bax/Bcl-2) ratio, elicited by neuron exposure to H2O2. The similar neuron protection mechanism by nanomolar and micromolar α-T suggests that a “more is better” approach to patients’ supplementation with vitamin E or α-T is not reasonable.
Collapse
Affiliation(s)
- Irina O Zakharova
- Department of Molecular Endocrinology and Neurochemistry, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Thorez avenue, 44, Saint-Petersburg 194223, Russia.
| | - Tatiana V Sokolova
- Department of Molecular Endocrinology and Neurochemistry, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Thorez avenue, 44, Saint-Petersburg 194223, Russia.
| | - Yulia A Vlasova
- Department of Molecular Endocrinology and Neurochemistry, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Thorez avenue, 44, Saint-Petersburg 194223, Russia.
- Preventive Medicine Department, Mechnikov North-West StateMedical University, Saint-Petersburg, Kirochnaya ul. 41, Saint-Petersburg 191015, Russia.
| | - Liubov V Bayunova
- Department of Molecular Endocrinology and Neurochemistry, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Thorez avenue, 44, Saint-Petersburg 194223, Russia.
| | - Maria P Rychkova
- Department of Molecular Endocrinology and Neurochemistry, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Thorez avenue, 44, Saint-Petersburg 194223, Russia.
| | - Natalia F Avrova
- Department of Molecular Endocrinology and Neurochemistry, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Thorez avenue, 44, Saint-Petersburg 194223, Russia.
| |
Collapse
|
12
|
Impact of Heat Shock Protein A 12B Overexpression on Spinal Astrocyte Survival Against Oxygen-Glucose-Serum Deprivation/Restoration in Primary Cultured Astrocytes. J Mol Neurosci 2016; 59:511-20. [PMID: 27179807 DOI: 10.1007/s12031-016-0768-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/21/2015] [Indexed: 12/12/2022]
Abstract
Heat shock protein A 12B (HSPA12B) is a newly discovered member of the heat shock protein 70 family. Preclinical evidence indicates that HSPA12B helps protect the brain from ischemic injury, although its specific function remains unclear. The aim of this study is to investigate whether HSPA12B overexpression can protect astrocytes from oxygen-glucose-serum deprivation/restoration (OGD/R) injury. We analyzed the effects of HSPA12B overexpression on spinal cord ischemia-reperfusion injury and spinal astrocyte survival. After ischemia-reperfusion injury, we found that HSPA12B overexpression decreased spinal cord water content and infarct volume. MTT assay showed that HSPA12B overexpression increased astrocyte survival after OGD/R treatment. Flow cytometry results showed a marked inhibition of OGD/R-induced astrocyte apoptosis. Western blot assay showed that HSPA12B overexpression significantly increased regulatory protein B-cell lymphocyte 2 (Bcl-2) levels, whereas it decreased expression of the Bax protein, which forms a heterodimer with Bcl-2. Measurements of the level of activation of caspase-3 by Caspase-Glo®3/7 Assay kit showed that HSPA12B overexpression markedly inhibited caspase-3 activation. Notably, we demonstrated that the effects of HSPA12B on spinal astrocyte survival depended on activation of the PI3K/Akt signal pathway. These findings indicate that HSPA12B protects against spinal cord ischemia-reperfusion injury and may represent a potential treatment target.
Collapse
|
13
|
Tian X, An L, Gao LY, Bai JP, Wang J, Meng WH, Ren TS, Zhao QC. Compound MQA, a Caffeoylquinic Acid Derivative, Protects Against NMDA-Induced Neurotoxicity and Potential Mechanisms In Vitro. CNS Neurosci Ther 2016; 21:575-84. [PMID: 26096046 DOI: 10.1111/cns.12408] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/16/2015] [Accepted: 04/22/2015] [Indexed: 11/27/2022] Open
Abstract
AIMS Compound MQA (1,5-O-dicaffeoyl-3-O-[4-malic acid methyl ester]-quinic acid) is a natural derivative of caffeoylquinic acid isolated from Arctium lappa L. roots. However, we know little about the effects of MQA on the central nervous system. This study aims to investigate the neuroprotective effects and underlying mechanisms of MQA against the neurotoxicity of N-methyl-d-aspartate (NMDA). METHODS AND RESULTS Pretreatment with MQA attenuated the loss of cell viability after SH-SY5Y cells treated with 1 mM NMDA for 30 min by MTT assay. Hoechst 33342 and Annexin V-PI double staining showed that MQA inhibited NMDA-induced apoptosis. In addition to preventing Ca(2+) influx, the potential mechanisms are associated with increases in the Bcl-2/Bax ratio, attenuation of cytochrome c release, caspase-3, caspase-9 activities, and expressions. Also, MQA inhibited NMDA-induced phosphorylation of ERK1/2, p38, and JNK1/2. Furthermore, deactivation of CREB, AKT, and GSK-3β, upregulation of GluN2B-containing NMDA receptors (NMDARs), and downregulation of GluN2A-containing NMDARs were significantly reversed by MQA treatment. Computational docking simulation indicates that MQA possesses a well affinity for NMDARs. CONCLUSION The protective effects of MQA against NMDA-induced cell injury may be mediated by blocking NMDARs. The potential mechanisms are related with mitochondrial apoptosis, ERK-CREB, AKT/GSK-3β, p38, and JNK1/2 pathway.
Collapse
Affiliation(s)
- Xing Tian
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang, China.,Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Li An
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Ling-Yue Gao
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Jun-Peng Bai
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Jian Wang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Wei-Hong Meng
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang, China
| | - Tian-Shu Ren
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang, China
| | - Qing-Chun Zhao
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang, China
| |
Collapse
|
14
|
do Vale Ramos RC, Alegrete N. The role of pharmacotherapy in modifying the neurological status of patients with spinal and spinal cord injuries. Rev Bras Ortop 2015; 50:617-24. [PMID: 27218071 PMCID: PMC4866940 DOI: 10.1016/j.rboe.2015.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/02/2014] [Indexed: 01/03/2023] Open
Abstract
The aim here was to conduct a review of the literature on pharmacological therapies for modifying the neurological status of patients with spinal cord injuries. The PubMed database was searched for articles with the terms "spinal cord injury AND methylprednisolone/GM1/apoptosis inhibitor/calpain inhibitor/naloxone/tempol/tirilazad", in Portuguese or in English, published over the last five years. Older studies were included because of their historical importance. The pharmacological groups were divided according to their capacity to interfere with the physiopathological mechanisms of secondary injuries. Use of methylprednisolone needs to be carefully weighed up: other anti-inflammatory agents have shown benefits in humans or in animals. GM1 does not seem to have greater efficacy than methylprednisolone, but longer-term studies are needed. Many inhibitors of apoptosis have shown benefits in in vitro studies or in animals. Naloxone has not shown benefits. Tempol inhibits the main consequences of oxidation at the level of the spinal cord and other antioxidant drugs seem to have an effect superior to that of methylprednisolone. There is an urgent need to find new treatments that improve the neurological status of patients with spinal cord injuries. The benefits from treatment with methylprednisolone have been questioned, with concerns regarding its safety. Other drugs have been studied, and some of these may provide promising alternatives. Additional studies are needed in order to reach conclusions regarding the benefits of these agents in clinical practice.
Collapse
|
15
|
Radulovic M, Yoon H, Wu J, Mustafa K, Fehlings MG, Scarisbrick IA. Genetic targeting of protease activated receptor 2 reduces inflammatory astrogliosis and improves recovery of function after spinal cord injury. Neurobiol Dis 2015; 83:75-89. [PMID: 26316358 DOI: 10.1016/j.nbd.2015.08.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 08/01/2015] [Accepted: 08/19/2015] [Indexed: 11/25/2022] Open
Abstract
Inflammatory-astrogliosis exacerbates damage in the injured spinal cord and limits repair. Here we identify Protease Activated Receptor 2 (PAR2) as an essential regulator of these events with mice lacking the PAR2 gene showing greater improvements in motor coordination and strength after compression-spinal cord injury (SCI) compared to wild type littermates. Molecular profiling of the injury epicenter, and spinal segments above and below, demonstrated that mice lacking PAR2 had significantly attenuated elevations in key hallmarks of astrogliosis (glial fibrillary acidic protein (GFAP), vimentin and neurocan) and in expression of pro-inflammatory cytokines (interleukin-6 (IL-6), tumor necrosis factor (TNF) and interleukin-1 beta (IL-1β)). SCI in PAR2-/- mice was also accompanied by improved preservation of protein kinase C gamma (PKCγ)-immunopositive corticospinal axons and reductions in GFAP-immunoreactivity, expression of the pro-apoptotic marker BCL2-interacting mediator of cell death (BIM), and in signal transducer and activator of transcription 3 (STAT3). The potential mechanistic link between PAR2, STAT3 and astrogliosis was further investigated in primary astrocytes to reveal that the SCI-related serine protease, neurosin (kallikrein 6) promotes IL-6 secretion in a PAR2 and STAT3-dependent manner. Data point to a signaling circuit in primary astrocytes in which neurosin signaling at PAR2 promotes IL-6 secretion and canonical STAT3 signaling. IL-6 promotes expression of GFAP, vimentin, additional IL-6 and robust increases in both neurosin and PAR2, thereby driving the PAR2-signaling circuit forward. Given the significant reductions in astrogliosis and inflammation as well as superior neuromotor recovery observed in PAR2 knockout mice after SCI, we suggest that this receptor and its agonists represent new drug targets to foster neuromotor recovery.
Collapse
Affiliation(s)
- Maja Radulovic
- Neurobiology of Disease Program, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester, MN 55905, United States
| | - Hyesook Yoon
- Department of Physical Medicine and Rehabilitation, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester, MN 55905, United States; Department of Physiology and Biomedical Engineering, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester, MN 55905, United States
| | - Jianmin Wu
- Department of Physical Medicine and Rehabilitation, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester, MN 55905, United States
| | - Karim Mustafa
- Neurobiology of Disease Program, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester, MN 55905, United States
| | - Michael G Fehlings
- Department of Surgery, Toronto Western Research Institute, Toronto, ON M5T 2S8, Canada
| | - Isobel A Scarisbrick
- Neurobiology of Disease Program, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester, MN 55905, United States; Department of Physical Medicine and Rehabilitation, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester, MN 55905, United States; Department of Physiology and Biomedical Engineering, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester, MN 55905, United States.
| |
Collapse
|
16
|
Tsumagari K, Abd Elmageed ZY, Sholl AB, Friedlander P, Abdraboh M, Xing M, Boulares AH, Kandil E. Simultaneous suppression of the MAP kinase and NF-κB pathways provides a robust therapeutic potential for thyroid cancer. Cancer Lett 2015. [PMID: 26208433 DOI: 10.1016/j.canlet.2015.07.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The MAP kinase and NF-κB signaling pathways play an important role in thyroid cancer tumorigenesis. We aimed to examine the therapeutic potential of dually targeting the two pathways using AZD6244 and Bortezomib in combination. We evaluated their effects on cell proliferation, cell-cycle progression, apoptosis, cell migration assay, and the activation of the MAPK pathway in vitro and the in vivo using tumor size and immunohistochemical changes of Ki67 and ppRB. We found inhibition of cell growth rate by 10%, 20%, and 56% (p <0.05), migration to 55%, 61%, and 29% (p <0.05), and induction of apoptosis to 10%, 15%, and 38% (p <0.05) with AZD6244, Bortezomib, or combination, respectively. Induction of cell cycle arrest occurred only with drug combination. Dual drug treatment in the xenograft model caused a 94% reduction in tumor size (p <0.05) versus 15% with AZD6244 and 34% with Bortezomib (p < 0.05) and also reduced proliferative marker Ki67, and increased pRb dephosphorylation. Our results demonstrate a robust therapeutic potential of combining AZD6244 and Bortezomib as an effective strategy to overcome drug resistance encountered in monotherapy in the treatment of thyroid cancer, strongly supporting clinical trials to further test this strategy.
Collapse
Affiliation(s)
- Koji Tsumagari
- Departments of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Zakaria Y Abd Elmageed
- Departments of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Andrew B Sholl
- Departments of Pathology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Paul Friedlander
- Departments of Otolaryngology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Mohamed Abdraboh
- Departments of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Mingzhao Xing
- Division of Endocrinology and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - A Hamid Boulares
- The Stanley Scott Cancer Center, Department of Pharmacology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| | - Emad Kandil
- Departments of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
17
|
Chen CM, Tseng CN, Cho JJ, Lee YZ, Kao CL, Cheng YB, Hong YR, Cho CL. Heat shock induces expression of OSTC/DC2, a novel subunit of oligosaccharyltransferase, in vitro and in vivo. Kaohsiung J Med Sci 2014; 30:219-23. [PMID: 24751383 DOI: 10.1016/j.kjms.2014.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/13/2013] [Indexed: 11/24/2022] Open
Abstract
Mammalian oligosaccharyltransferase complex subunit OSTC/DC2 protein has recently been shown to be a new subunit of the oligosaccharyltransferase; however, its physiological role is still unclear. Here, we report the expression pattern of OSTC/DC2 protein in the context of heat shock stress. Its upregulation was detected both in cells treated with heat shock in vitro and in an animal model of heat shock in vivo. Northern blot analysis indicated that OSTC/DC2 mRNA is ubiquitously expressed in various human tissues, with abundant expression in the placenta and liver. The temporal changes of OSTC/DC2 protein expression following acute heat shock in human malignant glioblastoma cell line U87MG and mice were analyzed by Western blot assay. In general, expression of OSTC/DC2 protein was elevated after heat shock; however, the time courses of the change of OSTC/DC2 protein expression varied in different tissues. In the cerebellum, heat shock induction of OSTC/DC2 protein and activation of AKT, a key regulator of stress response, followed a similar time course. These results suggest that the upregulation of OSTC/DC2, a novel component of the oligosaccharyltransferase complex, is part of the mammalian heat shock response.
Collapse
Affiliation(s)
- Chien-Ming Chen
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chao-Neng Tseng
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jonathan J Cho
- Center for Immunology and Microbial Diseases, Albany Medical College, Albany, NY, USA
| | - Ya-Zhe Lee
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chiu-Li Kao
- Tzu Hui Institute of Technology, Pingtung County, Taiwan
| | - Yuan-Bin Cheng
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ren Hong
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Lung Cho
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
18
|
Jackson TC, Verrier JD, Drabek T, Janesko-Feldman K, Gillespie DG, Uray T, Dezfulian C, Clark RS, Bayir H, Jackson EK, Kochanek PM. Pharmacological inhibition of pleckstrin homology domain leucine-rich repeat protein phosphatase is neuroprotective: differential effects on astrocytes. J Pharmacol Exp Ther 2013; 347:516-528. [PMID: 24023368 PMCID: PMC3807060 DOI: 10.1124/jpet.113.206888] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 09/10/2013] [Indexed: 02/06/2023] Open
Abstract
Pleckstrin homology domain and leucine-rich repeat protein phosphatase 1 (PHLPP1) inhibits protein kinase B (AKT) survival signaling in neurons. Small molecule pan-PHLPP inhibitors (selective for PHLPP1 and PHLPP2) may offer a translatable method to induce AKT neuroprotection. We tested several recently discovered PHLPP inhibitors (NSC117079 and NSC45586; benzoic acid, 5-[2-[4-[2-(2,4-diamino-5-methylphenyl)diazenyl]phenyl]diazenyl]-2-hydroxy-,sodium salt.) in rat cortical neurons and astrocytes and compared the biochemical response of these agents with short hairpin RNA (shRNA)-mediated PHLPP1 knockdown (KD). In neurons, both PHLPP1 KD and experimental PHLPP inhibitors activated AKT and ameliorated staurosporine (STS)-induced cell death. Unexpectedly, in astrocytes, both inhibitors blocked AKT activation, and NSC117079 reduced viability. Only PHLPP2 KD mimicked PHLPP inhibitors on astrocyte biochemistry. This suggests that these inhibitors could have possible detrimental effects on astrocytes by blocking novel PHLPP2-mediated prosurvival signaling mechanisms. Finally, because PHLPP1 levels are reportedly high in the hippocampus (a region prone to ischemic death), we characterized hippocampal changes in PHLPP and several AKT targeting prodeath phosphatases after cardiac arrest (CA)-induced brain injury. PHLPP1 levels increased in rat brains subjected to CA. None of the other AKT inhibitory phosphatases increased after global ischemia (i.e., PHLPP2, PTEN, PP2A, and PP1). Selective PHLPP1 inhibition (such as by shRNA KD) activates AKT survival signaling in neurons and astrocytes. Nonspecific PHLPP inhibition (by NSC117079 and NSC45586) only activates AKT in neurons. Taken together, these results suggest that selective PHLPP1 inhibitors should be developed and may yield optimal strategies to protect injured hippocampal neurons and astrocytes-namely from global brain ischemia.
Collapse
Affiliation(s)
- Travis C Jackson
- University of Pittsburgh School of Medicine, Department of Critical Care Medicine, Safar Center for Resuscitation Research (T.C.J., P.M.K., H.B., R.S.C, K.J.F., C.D., T.U.) and Department of Pharmacology and Chemical Biology (J.D.V., D.G.G., E.K.J.),University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and Department of Anesthesiology, Presbyterian Hospital (T.D.), Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lin B, Xu Y, Zhang B, He Y, Yan Y, He MC. MEK inhibition reduces glial scar formation and promotes the recovery of sensorimotor function in rats following spinal cord injury. Exp Ther Med 2013; 7:66-72. [PMID: 24348766 PMCID: PMC3861407 DOI: 10.3892/etm.2013.1371] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/03/2013] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to investigate the effect of U0126 on the formation of glial scars following spinal cord injury (SCI) in a rat model. Ninety adult female Sprague-Dawley rats were divided randomly into sham injury (group I), SCI (group II) and U0126 treatment (group III) groups, and functional outcome was observed during the 4 weeks following the injury. The P1 and N1 latencies and P1-N1 amplitudes of somatosensory-evoked potentials (SEPs) were collected one day prior to surgery, on the day of surgery and 14 and 28 days postoperatively. The expression levels of glial fibrillary acidic protein (GFAP) and vimentin (Vim) were assessed 14 and 28 days post-injury. Treatment with U0126 significantly increased locomotor function from the second week until 4 weeks post-SCI. At 14 and 28 days subsequent to the injury, the number of cells that were positive for GFAP expression in the U0126-treated group was significantly reduced and the GFAP-positive cells were observed to be smaller, with a reduced prominence and pale staining. Moreover, the area of glial scarring was smaller compared with that of the SCI controls. Inhibitors of MEK may reduce glial scar formation by suppressing the proliferation of astrocytes, and may improve hindlimb motor function.
Collapse
Affiliation(s)
- Bin Lin
- Department of Orthopaedics, The 175th Hospital of PLA, Southeast Hospital of Xiamen University, Zhangzhou, Fujian 363000, P.R. China
| | - Yang Xu
- Department of Orthopaedics, The 175th Hospital of PLA, Southeast Hospital of Xiamen University, Zhangzhou, Fujian 363000, P.R. China
| | - Bi Zhang
- Department of Orthopaedics, The 175th Hospital of PLA, Southeast Hospital of Xiamen University, Zhangzhou, Fujian 363000, P.R. China
| | - Yong He
- Department of Orthopaedics, The 175th Hospital of PLA, Southeast Hospital of Xiamen University, Zhangzhou, Fujian 363000, P.R. China
| | - Yun Yan
- Department of Orthopaedics, The 175th Hospital of PLA, Southeast Hospital of Xiamen University, Zhangzhou, Fujian 363000, P.R. China
| | - Ming-Chang He
- Department of Orthopaedics, The 175th Hospital of PLA, Southeast Hospital of Xiamen University, Zhangzhou, Fujian 363000, P.R. China
| |
Collapse
|
20
|
Ban K, Peng Z, Kozar RA. Inhibition of ERK1/2 worsens intestinal ischemia/reperfusion injury. PLoS One 2013; 8:e76790. [PMID: 24073294 PMCID: PMC3779170 DOI: 10.1371/journal.pone.0076790] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 09/03/2013] [Indexed: 01/09/2023] Open
Abstract
Background The role of extracellular signal-regulated protein kinase (ERK) in intestinal ischemia/reperfusion (I/R) injury has not been well investigated. The aim of the current study was to examine the effect of inhibition of the ERK pathway in an in vitro and in vivo model of intestinal I/R injury. Methods ERK1/2 activity was inhibited using the specific inhibitor, U0126, in intestinal epithelial cells under hypoxia/reoxygenation conditions and in mice subjected to 1 hour of intestinal ischemia followed by 6 hours reperfusion. In vitro, cell proliferation was assessed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay, apoptosis by DNA fragmentation, and migration using an in vitro model of intestinal wound healing. Cells were also transfected with a p70S6K plasmid and the effects of overexpression similarly analyzed. In vivo, the effects of U0126 on intestinal cell proliferation and apoptosis, intestinal permeability, lung and intestinal neutrophil infiltration and injury, and plasma cytokine levels were measured. Survival was also assessed after U0126. Activity of p70S6 kinase (p70S6K) was measured by Western blot. Results In vitro, inhibition of ERK1/2 by U0126 significantly decreased cell proliferation and migration but enhanced cell apoptosis. Overexpression of p70S6K promoted cell proliferation and decreased cell apoptosis. In vivo, U0126 significantly increased cell apoptosis and decreased cell proliferation in the intestine, increased intestinal permeability, intestinal and lung neutrophil infiltration, and injury, as well as systemic pro-inflammatory cytokines, TNF-α, IL-6 and IL-1β. Mortality was also significantly increased by U0126. Inhibition of ERK1/2 by U0126 also abolished activity of p70S6K both in vitro and in vivo models. Conclusion Pharmacologic inhibition of ERK1/2 by U0126 worsens intestinal IR injury. The detrimental effects are mediated, at least in part, by inhibition of p70S6K, the major effector of mammalian target of rapamycin pathway.
Collapse
Affiliation(s)
- Kechen Ban
- Department of Surgery, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- * E-mail:
| | - Zhanglong Peng
- Department of Surgery, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Rosemary A. Kozar
- Department of Surgery, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| |
Collapse
|
21
|
Development and treatments of inflammatory cells and cytokines in spinal cord ischemia-reperfusion injury. Mediators Inflamm 2013; 2013:701970. [PMID: 23956505 PMCID: PMC3728531 DOI: 10.1155/2013/701970] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/24/2013] [Indexed: 01/22/2023] Open
Abstract
During aortic surgery, interruption of spinal cord blood flow might cause spinal cord ischemia-reperfusion injury (IRI). The incidence of spinal cord IRI after aortic surgery is up to 28%, and patients with spinal cord IRI might suffer from postoperative paraplegia or paraparesis. Spinal cord IRI includes two phases. The immediate spinal cord injury is related to acute ischemia. And the delayed spinal cord injury involves both ischemic cellular death and reperfusion injury. Inflammation is a subsequent event of spinal cord ischemia and possibly a major contributor to spinal cord IRI. However, the development of inflammatory mediators is incompletely demonstrated. And treatments available for inflammation in spinal cord IRI are insufficient. Improved understanding about spinal cord IRI and the development of inflammatory cells and cytokines in this process will provide novel therapeutic strategies for spinal cord IRI. Inflammatory cytokines (e.g., TNF-α and IL-1) may play an important role in spinal cord IRI. For treatment of several intractable autoimmune diseases (e.g., rheumatoid arthritis), where inflammatory cytokines are involved in disease progression, anti-inflammatory cytokine antagonist is now available. Hence, there is great potential of anti-inflammatory cytokine antagonist for therapeutic use of spinal cord IRI. We here review the mediators and several possibilities of treatment in spinal cord IRI.
Collapse
|
22
|
Seth A, Chung YG, Kim D, Ramachandran A, Cristofaro V, Gomez P, Tu D, Huang L, Benowitz LI, Di Vizio D, Sullivan MP, Adam RM. The impact of discrete modes of spinal cord injury on bladder muscle contractility. BMC Urol 2013; 13:24. [PMID: 23668225 PMCID: PMC3667057 DOI: 10.1186/1471-2490-13-24] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 05/08/2013] [Indexed: 11/26/2022] Open
Abstract
Background Prior studies have compared the effect of spinal cord injury elicited using distinct approaches on motor and visceral function. However, the impact of such discrete modes of injury specifically on bladder muscle contractility has not been explored in detail. The goal of this study is to compare the impact of complete spinal cord transection versus clip compression at thoracic vertebra eight (T8) on bladder muscle contractility. Methods Rats underwent no treatment (Control), laminectomy (Sham, SH); complete extradural transection (TX); or cord compression with an aneurysm clip (CX). Bladders and spinal cords were harvested at 6 wk for contractility studies or histological analysis. Results Detrusor strips from TX and CX rats showed higher spontaneous activity than those from SH rats. Furthermore, the duration of the neurally-mediated contractile response was longer in TX and CX rats compared to controls and showed attenuated relaxation. No significant differences were observed between muscle strips from SH, TX or CX rats in response to KCl, ATP or phenylephrine. However, tissues from TX and CX rats showed a higher sensitivity to carbachol compared to that from SH animals. Conclusions Complete SCI in rats either by cord transection or compression elicits qualitatively similar changes in bladder muscle contractility. Whereas cord transection is arguably easier to perform experimentally, cord compression better models the situation observed clinically, such that each approach has clear advantages and limitations.
Collapse
Affiliation(s)
- Abhishek Seth
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
α-Tocopherol at nanomolar concentration protects PC12 cells from hydrogen peroxide-induced death and modulates protein kinase activities. Int J Mol Sci 2012; 13:11543-11568. [PMID: 23109870 PMCID: PMC3472762 DOI: 10.3390/ijms130911543] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/23/2012] [Accepted: 09/04/2012] [Indexed: 12/14/2022] Open
Abstract
The aim of this work was to compare protective and anti-apoptotic effects of α-tocopherol at nanomolar and micromolar concentrations against 0.2 mM H(2)O(2)-induced toxicity in the PC12 neuronal cell line and to reveal protein kinases that contribute to α-tocopherol protective action. The protection by 100 nM α-tocopherol against H(2)O(2)-induced PC12 cell death was pronounced if the time of pre-incubation with α-tocopherol was 3-18 h. For the first time, the protective effect of α-tocopherol was shown to depend on its concentration in the nanomolar range (1 nM < 10 nM < 100 nM), if the pre-incubation time was 18 h. Nanomolar and micromolar α-tocopherol decreased the number of PC12 cells in late apoptosis induced by H(2)O(2) to the same extent if pre-incubation time was 18 h. Immunoblotting data showed that α-tocopherol markedly diminished the time of maximal activation of extracellular signal-regulated kinase 1/2 (ERK 1/2) and protein kinase B (Akt)-induced in PC12 cells by H(2)O(2). Inhibitors of MEK 1/2, PI 3-kinase and protein kinase C (PKC) diminished the protective effect of α-tocopherol against H(2)O(2)-initiated toxicity if the pre-incubation time was long. The modulation of ERK 1/2, Akt and PKC activities appears to participate in the protection by α-tocopherol against H(2)O(2)-induced death of PC12 cells. The data obtained suggest that inhibition by α-tocopherol in late stage ERK 1/2 and Akt activation induced by H(2)O(2) in PC12 cells makes contribution to its protective effect, while total inhibition of these enzymes is not protective.
Collapse
|
24
|
Yang ZJ, Carter EL, Kibler KK, Kwansa H, Crafa DA, Martin LJ, Roman RJ, Harder DR, Koehler RC. Attenuation of neonatal ischemic brain damage using a 20-HETE synthesis inhibitor. J Neurochem 2012; 121:168-79. [PMID: 22251169 PMCID: PMC3303996 DOI: 10.1111/j.1471-4159.2012.07666.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
20-Hydroxyeicosatetraenoic acid (20-HETE) is a cytochrome P450 metabolite of arachidonic acid that that contributes to infarct size following focal cerebral ischemia. However, little is known about the role of 20-HETE in global cerebral ischemia or neonatal hypoxia-ischemia (H-I). The present study examined the effects of blockade of the synthesis of 20-HETE with N-hydroxy-N'-(4-n-butyl-2-methylphenyl) formamidine (HET0016) in neonatal piglets after H-I to determine if it protects highly vulnerable striatal neurons. Administration of HET0016 after H-I improved early neurological recovery and protected neurons in putamen after 4 days of recovery. HET0016 had no significant effect on cerebral blood flow. cytochrome P450 4A immunoreactivity was detected in putamen neurons, and direct infusion of 20-HETE in the putamen increased phosphorylation of Na(+), K(+) -ATPase and NMDA receptor NR1 subunit selectively at protein kinase C-sensitive sites but not at protein kinase A-sensitive sites. HET0016 selectively inhibited the H-I induced phosphorylation at these same sites at 3 h of recovery and improved Na(+), K(+) -ATPase activity. At 3 h, HET0016 also suppressed H-I induced extracellular signal-regulated kinase 1/2 activation and protein markers of nitrosative and oxidative stress. Thus, 20-HETE can exert direct effects on key proteins involved in neuronal excitotoxicity in vivo and contributes to neurodegeneration after global cerebral ischemia in immature brain.
Collapse
Affiliation(s)
- Zeng-Jin Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Systemic bisperoxovanadium activates Akt/mTOR, reduces autophagy, and enhances recovery following cervical spinal cord injury. PLoS One 2012; 7:e30012. [PMID: 22253859 PMCID: PMC3254642 DOI: 10.1371/journal.pone.0030012] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 12/11/2011] [Indexed: 12/29/2022] Open
Abstract
Secondary damage following primary spinal cord injury extends pathology beyond the site of initial trauma, and effective management is imperative for maximizing anatomical and functional recovery. Bisperoxovanadium compounds have proven neuroprotective effects in several central nervous system injury/disease models, however, no mechanism has been linked to such neuroprotection from bisperoxovanadium treatment following spinal trauma. The goal of this study was to assess acute bisperoxovanadium treatment effects on neuroprotection and functional recovery following cervical unilateral contusive spinal cord injury, and investigate a potential mechanism of the compound's action. Two experimental groups of rats were established to 1) assess twice-daily 7 day treatment of the compound, potassium bisperoxo (picolinato) vanadium, on long-term recovery of skilled forelimb activity using a novel food manipulation test, and neuroprotection 6 weeks following injury and 2) elucidate an acute mechanistic link for the action of the drug post-injury. Immunofluorescence and Western blotting were performed to assess cellular signaling 1 day following SCI, and histochemistry and forelimb functional analysis were utilized to assess neuroprotection and recovery 6 weeks after injury. Bisperoxovanadium promoted significant neuroprotection through reduced motorneuron death, increased tissue sparing, and minimized cavity formation in rats. Enhanced forelimb functional ability during a treat-eating assessment was also observed. Additionally, bisperoxovanadium significantly enhanced downstream Akt and mammalian target of rapamycin signaling and reduced autophagic activity, suggesting inhibition of the phosphatase and tensin homologue deleted on chromosome ten as a potential mechanism of bisperoxovanadium action following traumatic spinal cord injury. Overall, this study demonstrates the efficacy of a clinically applicable pharmacological therapy for rapid initiation of neuroprotection post-spinal cord injury, and sheds light on the signaling involved in its action.
Collapse
|
26
|
Kuzhandaivel A, Nistri A, Mazzone GL, Mladinic M. Molecular Mechanisms Underlying Cell Death in Spinal Networks in Relation to Locomotor Activity After Acute Injury in vitro. Front Cell Neurosci 2011; 5:9. [PMID: 21734866 PMCID: PMC3119860 DOI: 10.3389/fncel.2011.00009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 06/08/2011] [Indexed: 12/12/2022] Open
Abstract
Understanding the pathophysiological changes triggered by an acute spinal cord injury is a primary goal to prevent and treat chronic disability with a mechanism-based approach. After the primary phase of rapid cell death at the injury site, secondary damage occurs via autodestruction of unscathed tissue through complex cell-death mechanisms that comprise caspase-dependent and caspase-independent pathways. To devise novel neuroprotective strategies to restore locomotion, it is, therefore, necessary to focus on the death mechanisms of neurons and glia within spinal locomotor networks. To this end, the availability of in vitro preparations of the rodent spinal cord capable of expressing locomotor-like oscillatory patterns recorded electrophysiologically from motoneuron pools offers the novel opportunity to correlate locomotor network function with molecular and histological changes long after an acute experimental lesion. Distinct forms of damage to the in vitro spinal cord, namely excitotoxic stimulation or severe metabolic perturbation (with oxidative stress, hypoxia/aglycemia), can be applied with differential outcome in terms of cell types and functional loss. In either case, cell death is a delayed phenomenon developing over several hours. Neurons are more vulnerable to excitotoxicity and more resistant to metabolic perturbation, while the opposite holds true for glia. Neurons mainly die because of hyperactivation of poly(ADP-ribose) polymerase-1 (PARP-1) with subsequent DNA damage and mitochondrial energy collapse. Conversely, glial cells die predominantly by apoptosis. It is likely that early neuroprotection against acute spinal injury may require tailor-made drugs targeted to specific cell-death processes of certain cell types within the locomotor circuitry. Furthermore, comparison of network size and function before and after graded injury provides an estimate of the minimal network membership to express the locomotor program.
Collapse
|
27
|
Li XF, Lui CNP, Jiang ZH, Ken YKL. Neuroprotective effects of ginsenosides Rh1 and Rg2 on neuronal cells. Chin Med 2011; 6:19. [PMID: 21592408 PMCID: PMC3121663 DOI: 10.1186/1749-8546-6-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 05/19/2011] [Indexed: 12/26/2022] Open
Abstract
Background The present study investigates the effects of ginsenosides Rh1 and Rg2 against 6-hydroxydopamine (6-OHDA), a neurotoxin on SH-SY5Y cells and PC-12 cells. The effects of these two ginsenosides on neuronal differentiation are also examined. Methods LDH assay was used to measure cell viability after exposure to 6-OHDA and ginsenosides. Neuronal differentiation was evaluated by changes in cell morphology and density of neurite outgrowths. Western blotting was used to determine the ginsenosides' effects on activation of extracellular signal-regulated protein kinases (ERKs). Results Rh1 and Rg2 attenuated 6-OHDA toxicity in SH-SY5Y cells and induced neurite outgrowths in PC-12 cells. 6-OHDA-induced ERK phosphorylation was decreased by Rh1 and Rg2. 20(R)-form and 20(S)-form of the ginsenosides exerted similar effects in inducing neurite outgrowths in PC-12 cells. Conclusion The present study demonstrates neuroprotective effects of ginsenosides Rh1 and Rg2 on neuronal cell lines. These results suggest potential Chinese medicine treatment for neurodegenerative disorders (eg Parkinson's disease).
Collapse
Affiliation(s)
- Xiao-Fan Li
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| | | | | | | |
Collapse
|