1
|
Abstract
Presynaptic receptors are sites at which transmitters, locally formed mediators or hormones inhibit or facilitate the release of a given transmitter from its axon terminals. The interest in the identification of presynaptic receptors has faded in recent years and it may therefore be justified to give an overview of their occurrence in the autonomic and central nervous system; this review will focus on presynaptic receptors in human tissues. Autoreceptors are presynaptic receptors at which a given transmitter restrains its further release, though in some instances may also increase its release. Inhibitory autoreceptors represent a typical example of a negative feedback; they are tonically activated by the respective endogenous transmitter and/or are constitutively active. Autoreceptors also play a role under pathophysiological conditions, e.g. by limiting the massive noradrenaline release occurring during congestive heart failure. They can be used for therapeutic purposes; e.g., the α2-adrenoceptor antagonist mirtazapine is used as an antidepressant and the inverse histamine H3 receptor agonist pitolisant has been marketed as a new drug for the treatment of narcolepsy in 2016. Heteroreceptors are presynaptic receptors at which transmitters from adjacent neurons, locally formed mediators (e.g. endocannabinoids) or hormones (e.g. adrenaline) can inhibit or facilitate transmitter release; they may be subject to an endogenous tone. The constipating effect of the sympathetic nervous system or of the antihypertensive drug clonidine is related to the activation of inhibitory α2-adrenoceptors on postganglionic parasympathetic neurons. Part of the stimulating effect of adrenaline on the sympathetic nervous system during stress is related to its facilitatory effect on noradrenaline release via β2-adrenoceptors.
Collapse
Affiliation(s)
| | - Thomas Feuerstein
- Sektion Neuroelektronische Systeme, Klinik für Neurochirurgie, Universität Freiburg, Germany
| |
Collapse
|
2
|
Ennis RC, Asico LD, Armando I, Yang J, Feranil JB, Jurgens JA, Escano CS, Yu P, Wang X, Sibley DR, Jose PA, Villar VAM. Dopamine D₁-like receptors regulate the α₁A-adrenergic receptor in human renal proximal tubule cells and D₁-like dopamine receptor knockout mice. Am J Physiol Renal Physiol 2014; 307:F1238-48. [PMID: 25339698 DOI: 10.1152/ajprenal.00119.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The homeostatic control of blood pressure hinges upon the delicate balance between prohypertensinogenic and antihypertensinogenic systems. D₁-like dopamine receptors [dopamine D₁ and D₅ receptors (D₁Rs and D₅Rs, respectively)] and the α₁A-adrenergic receptor (α₁A-AR) are expressed in the renal proximal tubule and engender opposing effects on Na(+) transport, i.e., natriuresis (via D₁Rs and D5Rs) or antinatriuresis (via α₁A-ARs). We tested the hypothesis that the D₁R/D₅R regulates the α₁A-AR. D₁-like dopamine receptors coimmunoprecipitated, colocalized, and cofractionated with α₁A-ARs in lipid rafts in immortalized human renal proximal tubule cells. Long-term treatment with the D₁R/D₅R agonist fenoldopam resulted in decreased D₁R and D₅R expression but increased α₁A-AR abundance in the plasma membrane. Short-term fenoldopam treatment stimulated the translocation of Na(+)-K(+)-ATPase from the plasma membrane to the cytosol that was partially reversed by an α₁A-AR agonist, which by itself induced Na(+)-K(+)-ATPase translocation from the cytosol to the plasma membrane. The α₁A-AR-specific agonist A610603 also minimized the ability of fenoldopam to inhibit Na(+)-K(+)-ATPase activity. To determine the interaction among D₁Rs, D₅Rs, and α₁A-ARs in vivo, we used phenylephrine and A610603 to decrease Na(+) excretion in several D1-like dopamine receptor knockout mouse strains. Phenylephrine and A61603 treatment resulted in a partial reduction of urinary Na(+) excretion in wild-type mice and its abolition in D1R knockout, D₅R knockout, and D₁R-D₅R double-knockout mice. Our results demonstrate the ability of the D₁-like dopamine receptors to regulate the expression and activity of α₁A-AR. Elucidating the intricacies of the interaction among these receptors is crucial for a better understanding of the crosstalk between anti- and pro-hypertensive systems.
Collapse
Affiliation(s)
- Riley Charles Ennis
- Thomas Jefferson High School for Science and Technology, Alexandria, Virgina
| | - Laureano D Asico
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ines Armando
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jian Yang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jun B Feranil
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Julie A Jurgens
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Crisanto S Escano
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peiying Yu
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Xiaoyan Wang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - David R Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Pedro A Jose
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland; Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Van Anthony M Villar
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland;
| |
Collapse
|
3
|
Abstract
Neuroendocrine system plays an important role in modulating our body functions and emotions. At the same time, emotions implicate a pivotal role in the regulation of brain function and neuroendocrine system. Negative affective states such as depression and stress are associated with premature mortality and increase the risk of various fatal diseases. It has been suggested that positive affective states are protective and improve our health and productiveness. Several potential mechanisms have been posited to account for these associations including improved health behaviour, direct physiological benefits, enhanced resistance and recovery from stress among individuals with high versus low positive emotional resources. This review summarises information concerning the neuronal and hormonal systems in mood, impact of negative and positive affective states on the level of cortisol, epinephrine, serotonin, dopamine and endorphins. The functional correlation of neuronal and hormonal systems in the development of diseases and their ability to enhance health-relevant biological processes are also evaluated.
Collapse
Affiliation(s)
- Jobin Mathew
- .Department of Zoology, CMS College Kottayam, Kerala, India
| | - Cheramadathikudyl Scariya Paulose
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, India
| |
Collapse
|
4
|
Zeng C, Jose PA. Dopamine receptors: important antihypertensive counterbalance against hypertensive factors. Hypertension 2010; 57:11-7. [PMID: 21098313 DOI: 10.1161/hypertensionaha.110.157727] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing City 400042, China.
| | | |
Collapse
|
5
|
Li Z, Yu C, Han Y, Ren H, Shi W, Fu C, He D, Huang L, Yang C, Wang X, Zhou L, Asico LD, Zeng C, Jose PA. Inhibitory effect of D1-like and D3 dopamine receptors on norepinephrine-induced proliferation in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2008; 294:H2761-8. [PMID: 18441198 PMCID: PMC2772091 DOI: 10.1152/ajpheart.01344.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The sympathetic nervous system plays an important role in the regulation of blood pressure. There is increasing evidence for positive and negative interactions between dopamine and adrenergic receptors; the activation of the alpha-adrenergic receptor induces vasoconstriction, whereas the activation of dopamine receptor induces vasorelaxation. We hypothesize that the D1-like receptor and/or D3 receptor also inhibit alpha1-adrenergic receptor-mediated proliferation in vascular smooth muscle cells (VSMCs). In this study, VSMC proliferation was determined by measuring [3H]thymidine incorporation, cell number, and uptake of 3-(4,5-dimethylthiazol-2-yl)-diphenyltetrazolium bromide (MTT). Norepinephrine increased VSMC number and MTT uptake, as well as [3H]thymidine incorporation via the alpha1-adrenergic receptor in aortic VSMCs from Sprague-Dawley rats. The proliferative effects of norepinephrine were attenuated by the activation of D1-like receptors or D3 receptors, although a D1-like receptor agonist, fenoldopam, and a D3 receptor agonist, PD-128907, by themselves, at low concentrations, had no effect on VSMC proliferation. Simultaneous stimulation of both D1-like and D3 receptors had an additive inhibitory effect. The inhibitory effect of D3 receptor was via protein kinase A, whereas the D1-like receptor effect was via protein kinase C-zeta. The interaction between alpha1-adrenergic and dopamine receptors, especially D1-like and D3 receptors in VSMCs, could be involved in the pathogenesis of hypertension.
Collapse
MESH Headings
- Adrenergic alpha-1 Receptor Agonists
- Adrenergic alpha-Antagonists/pharmacology
- Animals
- Aorta/metabolism
- Benzopyrans/pharmacology
- Cell Proliferation/drug effects
- Cells, Cultured
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Dopamine Agonists/pharmacology
- Dose-Response Relationship, Drug
- Fenoldopam/pharmacology
- Molecular Chaperones/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/metabolism
- Norepinephrine/metabolism
- Oxazines/pharmacology
- Prazosin/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/metabolism
Collapse
Affiliation(s)
- Zhen Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Sanger GJ, Alpers DH. Development of drugs for gastrointestinal motor disorders: translating science to clinical need. Neurogastroenterol Motil 2008; 20:177-84. [PMID: 18257767 DOI: 10.1111/j.1365-2982.2008.01084.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Only a small number of new drugs have recently become available for gastrointestinal (GI) disorders. This is partly because we await outcomes of research into functional bowel disorder aetiology (e.g., role of microbiota) and of trials to control stress- related or painful GI symptoms (e.g., via CRF(1) receptors or beta(3) adrenoceptors). Nevertheless, only the ClC-2 channel activator lubiprostone has recently reached the clinic, joining the 5-HT(3) antagonist alosetron and the long-established 5-HT(4) agonist and D(2) antagonist metoclopramide; tegaserod, a non-selective ligand, was withdrawn. Interestingly, each has shortcomings, providing opportunities for molecules with 5-HT(4) or motilin receptor selectivity, and for new biology via guanylate cyclase C or ghrelin receptor activation. For translation into new drugs, the molecule must have appropriate efficacy, selectivity and pharmacodynamic properties. It is argued that the compound must then be evaluated in conditions where changes in motility are known to exist, before considering more difficult symptomatic conditions such as irritable bowel syndrome (IBS) or functional dyspepsia (FD), where relationships with disordered motility are unclear. Thus, it may be better to begin studying a gastric prokinetic in diabetics requiring improved glucose control, rather than in FD. Notably, new 5-HT(4) receptor agonists are being evaluated firstly as treatments of constipation, not IBS. New antidiarrhoeal agents should be developed similarly. Thus, progression of new drugs may require initial studies in smaller patient populations where clinical outcome is better defined. Only then can disease-related ideas be properly tested and drugs brought forward for these disorders (with high clinical need) and then, if successful for IBS and FD.
Collapse
Affiliation(s)
- G J Sanger
- Immuno-Inflammatory CEDD, GlaxoSmithKline, Stevenage, Hertfordshire, UK.
| | | |
Collapse
|
7
|
Abstract
Presynaptic receptors for dopamine, histamine and serotonin that are located on dopaminergic, histaminergic and sertonergic axon terminals, respectively, function as autoreceptors. Presynaptic receptors also occur as heteroreceptors on other axon terminals. Auto- and heteroreceptors mainly affect Ca(2+) -dependent exocytosis from the receptor-bearing nerve ending. Some additionally subserve other presynaptic functions.Presynaptic dopamine, histamine and serotonin receptors are involved in various (patho)physiological conditions. Examples are the following:Dopamine autoreceptors play a role in Parkinson's disease, schizophrenia and drug addiction. Dopamine heteroreceptors affecting the release of acetylcholine and of amino acid neurotransmitters in the basal ganglia are also relevant for Parkinson's disease. Peripheral dopamine heteroreceptors on postganglionic sympathetic terminals influence heart rate and vascular resistance through modulation of noradrenaline release. Blockade of histamine autoreceptors increases histamine synthesis and release and may support higher CNS functions such as arousal, cognition and learning. Peripheral histamine heteroreceptors on C fiber and on postganglionic sympathetic fiber terminals diminish neuropeptide and noradrenaline release, respectively. Both inhibititory effects are beneficial in myocardial ischemia. The inhibition of neuropeptide release also explains the antimigraine effects of some agonists of presynaptic histamine receptors. Upregulation of presynaptic serotonin autoreceptors is probably involved in the pathogenesis of major depression. Correspondingly, antidepressant treatments can be linked with a reduced density of 5-HT autoreceptors. 5-HT Heteroreceptor activation diminishes acetylcholine and GABA release and may therefore increase anxiety. In the periphery, presynaptic 5-HT heteroreceptor agonists shorten migraine attacks by inhibition of the release of neuropeptides from trigeminal afferents, apart from their constrictive action on meningeal vessels.
Collapse
MESH Headings
- Animals
- Dopamine/metabolism
- Dopamine Agents/pharmacology
- Dopamine Agents/therapeutic use
- Histamine Antagonists/pharmacology
- Histamine Antagonists/therapeutic use
- Humans
- Nervous System Diseases/drug therapy
- Receptors, Dopamine/drug effects
- Receptors, Dopamine/metabolism
- Receptors, Dopamine/physiology
- Receptors, Histamine/drug effects
- Receptors, Histamine/metabolism
- Receptors, Histamine/physiology
- Receptors, Presynaptic/drug effects
- Receptors, Presynaptic/metabolism
- Receptors, Presynaptic/physiology
- Receptors, Serotonin/drug effects
- Receptors, Serotonin/metabolism
- Receptors, Serotonin/physiology
- Serotonin Agents/pharmacology
- Serotonin Agents/therapeutic use
Collapse
Affiliation(s)
- Thomas J Feuerstein
- Neurochirurgische Universitätsklinik Breisacherstrasse, 64 D - 79106, Freiburg, Germany.
| |
Collapse
|
8
|
Leung FW, Chan CC. Involvement of alpha(2)-adrenoceptors in the gastric protective effect of nitroglycerin against acidified ethanol-induced mucosal injury. Dig Dis Sci 2007; 52:3070-4. [PMID: 17394070 DOI: 10.1007/s10620-006-9692-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 11/26/2006] [Indexed: 12/09/2022]
Abstract
Clinical observations reveal that alcohol intake is associated with an increase in upper gastrointestinal hemorrhage requiring hospitalization and that nitroglycerin or long-acting nitrates lower this risk. Nitroglycerin, a gastric vasodilator that can increase gastric fluid volume, protects the rodent stomach against damage, including that caused by 70% ethanol. Blockade of alpha(2)-adrenoceoptors attenuates gastric protection by intragastric nicotine against 40% ethanol. We tested the hypothesis that the protective effect of nitroglycerin is mediated by an increase in gastric fluid volume and alpha(2)-adrenoceoptors. Nitroglycerin, 5 mg/kg, vehicle, or acidified ethanol was administered intragastrically. In study 1 acidified ethanol-induced mucosal injury was measured. In study 2 the effect of increasing gastric volume (1 ml/kg) on mucosal injury was assessed. In study 3 the effect of yohimbine (alpha(2)-adrenoceoptor antagonist), 5 mg/kg subcutaneously, on the nitroglycerein-mediated protective effect was determined. Results showed that nitroglycerin significantly attenuated the number and length of mucosal lesions induced by acidified ethanol. Increase in gastric fluid volume by exogenously administered saline did not alter the protective effect. Yohimbine blocked the nitroglycerin-mediated protection. These experimental data are consistent with the observation that nitrates lower the risk of ethanol-induced gastrointestinal complications. alpha(2)-Adrenoceoptors are responsible in part for the protective effect of nitroglycerin.
Collapse
Affiliation(s)
- Felix W Leung
- 111G, Division of Gastroenterology, Sepulveda Ambulatory Care Center, 16111 Plummer Street, Sepulveda, CA 91343, USA.
| | | |
Collapse
|
9
|
Matsumoto K, Yoshida M, Andersson KE, Hedlund P. Effects in vitro and in vivo by apomorphine in the rat corpus cavernosum. Br J Pharmacol 2005; 146:259-67. [PMID: 16025145 PMCID: PMC1576267 DOI: 10.1038/sj.bjp.0706317] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 05/03/2005] [Accepted: 05/24/2005] [Indexed: 11/10/2022] Open
Abstract
The study was performed to clarify if apomorphine at the level of the rat corpus cavernosum can produce erectile responses or interfere with nerve-induced penile erection. Apomorphine (10(-9)-10(-4) M) exhibited a 10-fold higher potency to relax phenylephrine (Phe)- than endothelin-1 (ET-1)-induced contractions. Relaxant effects of apomorphine in Phe-activated corpus cavernosum did not change tissue levels of cyclic nucleotides, and were unaffected by inhibition of the synthesis of nitric oxide, or by inhibition of the soluble guanylate cyclase. Relaxations by apomorphine of ET-1-contracted rat corpus cavernosum were not influenced by alpha2-adrenoceptor blockade (yohimbine, 10(-7) M), or by the dopamine D1-like receptor antagonist SCH 23390 (10(-6) M). Clozapine (10(-6) M), a proposed dopamine D2-like receptor antagonist, partly reduced apomorphine-induced relaxations, and significantly altered the -log IC50 value for apomorphine. Nerve-induced contractions of the rat corpus cavernosum were attenuated by apomorphine in a concentration-dependent and biphasic manner. Yohimbine (10(-7) M) abolished the biphasic concentration-response pattern. SCH 23390 (10(-6) M) attenuated the inhibitory effects of apomorphine on contractions, and significantly altered the -log IC50 value for the compound. In anesthetized rats (50 mg kg(-1) pentobarbital sodium, 10 mg kg(-1) ketamine), intracavernous apomorphine (100, 300, or 1000 nmol) did not have effects on basal cavernous pressure under resting conditions, and did not affect filling or emptying rates, or peak pressures of the rat corpus cavernosum during submaximal activation of the cavernous nerve. In awake rats, apomorphine produced a maximal number of erections at 300 nmol kg(-1). In the rat isolated corpus cavernosum, pre- and postjunctional effects of apomorphine appear to involve dopamine D1- and D2-like receptors, as well as alpha-adrenoceptors. At relevant systemic doses of apomorphine, peripheral effects of the compound are unlikely to contribute to its proerectile effects in rats.
Collapse
Affiliation(s)
- Kenshi Matsumoto
- Department of Clinical and Experimental Pharmacology, Lund University Hospital, Lund S-221 85, Sweden
- Department of Urology, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Masaki Yoshida
- Department of Urology, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Karl-Erik Andersson
- Department of Clinical and Experimental Pharmacology, Lund University Hospital, Lund S-221 85, Sweden
| | - Petter Hedlund
- Department of Clinical and Experimental Pharmacology, Lund University Hospital, Lund S-221 85, Sweden
| |
Collapse
|
10
|
Eguchi S, Tezuka S, Hobara N, Akiyama S, Kurosaki Y, Kawasaki H. Vanilloid receptors mediate adrenergic nerve- and CGRP-containing nerve-dependent vasodilation induced by nicotine in rat mesenteric resistance arteries. Br J Pharmacol 2004; 142:1137-46. [PMID: 15249421 PMCID: PMC1575167 DOI: 10.1038/sj.bjp.0705773] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Previous studies showed that nicotine induces adrenergic nerve-dependent vasodilation that is mediated by endogenous calcitonin gene-related peptide (CGRP) released from CGRP-containing (CGRPergic) nerves. The mechanisms underlying the nicotine-induced vasodilation were further studied. Rat mesenteric vascular beds without endothelium were contracted by perfusion with Krebs solution containing methoxamine, and the perfusion pressure was measured with a pressure transducer. Perfusion of nicotine (1-100 microm) for 1 min caused concentration-dependent vasodilation. Capsazepine (vanilloid receptor-1 antagonist; 1-10 microm) and ruthenium red (inhibitor of vanilloid response; 1-30 microm) concentration-dependently inhibited the nicotine-induced vasodilation without affecting the vasodilator response to exogenous CGRP. Nicotine-induced vasodilation was not inhibited by treatment with 3,4-dihydroxyphenylalanine (DOPA) receptor antagonist (l-DOPA cyclohexyl ester; 0.001-10 microm), dopamine D1 receptor-selective antagonist (SCH23390; 1-10 microm), dopamine D2 receptor antagonist (haloperidol; 0.1-0.5 microm), ATP P2x receptor-desensitizing agonist (alpha,beta-methylene ATP; 1-10 microm), adenosine A2 receptor antagonist (8(p-sulfophenyl)theophylline; 10-50 microm) or neuropeptide Y (NPY)-Y1 receptor antagonist (BIBP3226; 0.1-0.5 microm). Immunohistochemical staining of the mesenteric artery showed dense innervation of CGRP- and vanilloid receptor-1-positive nerves, with both immunostainings appearing in the same neuron. The mesenteric artery was also densely innervated by NPY-positive nerves. Double immunostainings showed that both NPY and CGRP immunoreactivities appeared in the same neuron of the artery. These results suggest that nicotine acts on presynaptic nicotinic receptors to release adrenergic neurotransmitter(s) or related substance(s), which then stimulate vanilloid receptor-1 on CGRPergic nerves, resulting in CGRP release and vasodilation.
Collapse
MESH Headings
- Adrenergic Fibers/drug effects
- Adrenergic Fibers/physiology
- Animals
- Calcitonin Gene-Related Peptide/physiology
- Calcitonin Gene-Related Peptide Receptor Antagonists
- Dopamine Antagonists/pharmacology
- Dose-Response Relationship, Drug
- Electric Stimulation
- Male
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/innervation
- Mesenteric Arteries/physiology
- Microscopy, Confocal
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/innervation
- Muscle, Smooth, Vascular/physiology
- Nicotine/administration & dosage
- Nicotine/pharmacology
- Purinergic P1 Receptor Antagonists
- Purinergic P2 Receptor Antagonists
- Rats
- Rats, Wistar
- Receptors, Calcitonin Gene-Related Peptide/metabolism
- Receptors, Drug/antagonists & inhibitors
- Receptors, Drug/physiology
- Receptors, Neuropeptide Y/antagonists & inhibitors
- Receptors, Neuropeptide Y/metabolism
- Receptors, Purinergic P1/metabolism
- Receptors, Purinergic P2/metabolism
- Ruthenium Red/administration & dosage
- Ruthenium Red/pharmacology
- Vasodilation
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Shinji Eguchi
- Department of Clinical Pharmaceutical Science, Graduate School of Natural Science and Technology, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | - Satoko Tezuka
- Department of Clinical Pharmaceutical Science, Graduate School of Natural Science and Technology, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | - Narumi Hobara
- Department of Clinical Pharmaceutical Science, Graduate School of Natural Science and Technology, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | - Shinji Akiyama
- Department of Clinical Pharmaceutical Science, Graduate School of Natural Science and Technology, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | - Yuji Kurosaki
- Department of Clinical Pharmaceutical Science, Graduate School of Natural Science and Technology, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | - Hiromu Kawasaki
- Department of Clinical Pharmaceutical Science, Graduate School of Natural Science and Technology, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
- Author for correspondence:
| |
Collapse
|
11
|
Tian ZQ, Liu JF, Wang GY, Li BQ, Wang FS, Wang QZ, Cao FM, Zhang YF. Responses of human clasp and sling fibers to neuromimetics. J Gastroenterol Hepatol 2004; 19:440-7. [PMID: 15012783 DOI: 10.1111/j.1440-1746.2003.03307.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND AIMS It has previously been demonstrated that clasp and sling fibers at the human gastroesophageal junction respond differently to acetylcholine (Ach). The present study was undertaken to investigate the differences between the physiological and pharmacological properties of the two types of muscle fiber. METHODS Recordings were made of the isometric tension of human sling and clasp fibers in response to Ach, dopamine (DA), phenylephrine (Phe), and isoprenaline (Iso). These specimens were obtained from 18 patients who were operated on for esophageal cancer. RESULTS Both Ach and Phe increased the tension of the two types of muscle; the values in the Ach group being 3-4-fold greater than those in the Phe group, while Iso decreased the tension of both types of muscle strip. The tension of the sling fibers was reduced by DA at lower concentration, and then increased gradually as the concentration was increased. In contrast, the tension of the clasp fibers did not obviously change when the concentration of DA was lower, but a slow elevation of tension was seen with the increase in DA concentration. CONCLUSIONS The sensitivities and maximum responses to each agent differed between the clasp fibers and sling fibers. This suggests that the two kinds of fiber have different roles in establishing tension in the lower esophageal sphincter, with implications for the medical and surgical treatment of disorders in this region.
Collapse
Affiliation(s)
- Zi-Qiang Tian
- Department of Thoracic Surgery, Fourth Hospital, Hebei Medical University, Shijiazhuang, China.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Oliveira MT, Rego AC, Morgadinho MT, Macedo TRA, Oliveira CR. Toxic effects of opioid and stimulant drugs on undifferentiated PC12 cells. Ann N Y Acad Sci 2002; 965:487-96. [PMID: 12105124 DOI: 10.1111/j.1749-6632.2002.tb04190.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cell death and reactive oxygen species production have been suggested to be involved in neurodegeneration induced by the drugs of abuse. In this study we analyze the toxicity of the following drugs of abuse: heroin, morphine, d-amphetamine, and cocaine in undifferentiated PC12 cells, used as dopaminergic neuronal models. Our data show that opioid drugs (heroin and morphine) are more toxic than stimulant drugs (d-amphetamine and cocaine). Toxic effects induced by heroin are associated with a decrease in intracellular dopamine, an increase in DOPAC levels, and the formation of ROS, whereas toxic effects induced by amphetamine are associated with a decrease in intracellular dopamine and in ATP/ADP levels. In contrast with cocaine, both amphetamine and heroin induced features of apoptosis. The data suggest that the death of cultured PC12 cells induced by the drugs of abuse is correlated with a decrease in intracellular dopamine levels, which can be associated with an increased dopamine turnover and oxidative cell injury.
Collapse
Affiliation(s)
- M T Oliveira
- Institute of Biochemistry, Faculty of Medicine and Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal.
| | | | | | | | | |
Collapse
|