1
|
Borgonovo J, Allende-Castro C, Medinas DB, Cárdenas D, Cuevas MP, Hetz C, Concha ML. Immunohistochemical characterisation of the adult Nothobranchius furzeri intestine. Cell Tissue Res 2024; 395:21-38. [PMID: 38015266 DOI: 10.1007/s00441-023-03845-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Nothobranchius furzeri is emerging as an exciting vertebrate organism in the field of biomedicine, developmental biology and ecotoxicology research. Its short generation time, compressed lifespan and accelerated ageing make it a versatile model for longitudinal studies with high traceability. Although in recent years the use of this model has increased enormously, there is still little information on the anatomy, morphology and histology of its main organs. In this paper, we present a description of the digestive system of N. furzeri, with emphasis on the intestine. We note that the general architecture of the intestinal tissue is shared with other vertebrates, and includes a folding mucosa, an outer muscle layer and a myenteric plexus. By immunohistochemical analysis, we reveal that the mucosa harbours the same type of epithelial cells observed in mammals, including enterocytes, goblet cells and enteroendocrine cells, and that the myenteric neurons express neurotransmitters common to other species, such as serotonin, substance P and tyrosine hydroxylase. In addition, we detect the presence of a proliferative compartment at the base of the intestinal folds. The description of the normal intestinal morphology provided here constitutes a baseline information to contrast with tissue alterations in future lines of research assessing pathologies, ageing-related diseases or damage caused by toxic agents.
Collapse
Affiliation(s)
- Janina Borgonovo
- Integrative Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Biomedical Neuroscience Institute, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Camilo Allende-Castro
- Integrative Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Biomedical Neuroscience Institute, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Danilo B Medinas
- Biomedical Neuroscience Institute, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Cellular and Molecular Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Deyanira Cárdenas
- Integrative Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Medical Technology School, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - María Paz Cuevas
- Integrative Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Medical Technology School, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Cellular and Molecular Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Miguel L Concha
- Integrative Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
- Biomedical Neuroscience Institute, Santiago, Chile.
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.
| |
Collapse
|
2
|
Effect of partial substitution of fishmeal with insect meal (Hermetia illucens) on gut neuromuscular function in Gilthead sea bream (Sparus aurata). Sci Rep 2021; 11:21788. [PMID: 34750477 PMCID: PMC8575790 DOI: 10.1038/s41598-021-01242-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/20/2021] [Indexed: 01/26/2023] Open
Abstract
Alternative nutrient sources to fishmeal for fish feed, such as insect meals, represent a promising sustainable supply. However, the consequences for fish digestive function have not been exhaustively investigated. In the present study we evaluated the effect of partial fishmeal substitution with 10% Hermetia illucens (Hi10) larvae meal on the neuromuscular function of proximal and distal intestine in gilthead sea bream. In animals fed with insect meal, weight and growth parameters were similar to controls fed with conventional fishmeal. In addition, no anomalies in intestinal gross morphology and no overt signs of inflammation were observed. The gastrointestinal transit was significantly reduced in Hi10 fed animals. In the proximal and distal intestine longitudinal muscle, Hi10 feeding downregulated the excitatory cholinergic and serotoninergic transmission. Sodium nitroprusside-induced inhibitory relaxations increased in the proximal intestine and decreased in the distal intestine after Hi10 meal. Changes in the excitatory and inhibitory components of peristalsis were associated with adaptive changes in the chemical coding of both proximal and distal intestine myenteric plexus. However, these neuromuscular function alterations were not associated with considerable variations in morphometric growth parameters, suggesting that 10% Hi meal may represent a tolerable alternative protein source for gilthead sea bream diets.
Collapse
|
3
|
Ceccotti C, Giaroni C, Bistoletti M, Viola M, Crema F, Terova G. Neurochemical characterization of myenteric neurons in the juvenile gilthead sea bream (Sparus aurata) intestine. PLoS One 2018; 13:e0201760. [PMID: 30075006 PMCID: PMC6075763 DOI: 10.1371/journal.pone.0201760] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022] Open
Abstract
We evaluated the chemical coding of the myenteric plexus in the proximal and distal intestine of gilthead sea bream (Sparus aurata), which represents one of the most farmed fish in the Mediterranean area. The presence of nitric oxide (NO), acetylcholine (ACh), serotonin (5-HT), calcitonin-gene-related peptide (CGRP), substance P (SP) and vasoactive intestinal peptide (VIP) containing neurons, was investigated in intestinal whole mount preparations of the longitudinal muscle with attached the myenteric plexus (LMMP) by means of immunohistochemical fluorescence staining. The main excitatory and inhibitory neurochemicals identified in intestinal smooth muscle were ACh, SP, 5HT, and NO, VIP, CGRP. Some neurons displayed morphological features of ascending and descending interneurons and of putative sensory neurons. The expression of these pathways in the two intestinal regions is largely superimposable, although some differences emerged, which may be relevant to the morphological properties of each region. The most important variances are the higher neuronal density and soma size in the proximal intestine, which may depend on the volume of the target tissue. Since in the fish gut the submucosal plexus is less developed, myenteric neurons substantially innervate also the submucosal and epithelial layers, which display a major thickness and surface in the proximal intestine. In addition, myenteric neurons containing ACh and SP, which mainly represent excitatory motor neurons and interneurons innervating the smooth muscle were more numerous in the distal intestine, possibly to sustain motility in the thicker smooth muscle coat. Overall, this study expands our knowledge of the intrinsic innervation that regulates intestinal secretion, absorption and motility in gilthead sea bream and provides useful background information for rational design of functional feeds aimed at improving fish gut health.
Collapse
Affiliation(s)
- Chiara Ceccotti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Michela Bistoletti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Manuela Viola
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Francesca Crema
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Inter-University Centre for Research in Protein Biotechnologies "The Protein Factory"- Polytechnic University of Milan and University of Insubria, Varese, Italy
| |
Collapse
|
4
|
Olsson C, Holmgren S. Autonomic control of gut motility: a comparative view. Auton Neurosci 2010; 165:80-101. [PMID: 20724224 DOI: 10.1016/j.autneu.2010.07.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 06/24/2010] [Accepted: 07/06/2010] [Indexed: 12/16/2022]
Abstract
Gut motility is regulated to optimize food transport and processing. The autonomic innervation of the gut generally includes extrinsic cranial and spinal autonomic nerves. It also comprises the nerves contained entirely within the gut wall, i.e. the enteric nervous system. The extrinsic and enteric nervous control follows a similar pattern throughout the vertebrate groups. However, differences are common and may occur between groups and families as well as between closely related species. In this review, we give an overview of the distribution and effects of common neurotransmitters in the vertebrate gut. While the focus is on birds, reptiles, amphibians and fish, mammalian data are included to form the background for comparisons. While some transmitters, like acetylcholine and nitric oxide, show similar distribution patterns and effects in most species investigated, the role of others is more varying. The significance for these differences is not yet fully understood, emphasizing the need for continued comparative studies of autonomic control.
Collapse
Affiliation(s)
- Catharina Olsson
- Department of Zoology/Zoophysiology, University of Gothenburg, Sweden.
| | | |
Collapse
|
5
|
HE M, WANG KY, ZHANG Y. Immunocytochemical Identification and Localization of Diffuse Neuroendocrine System (DNES) Cells in Gastrointestinal Tract of Channel Catfish (Ictalurus punctatus). ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1671-2927(09)60032-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Olsson C, Holmberg A, Holmgren S. Development of enteric and vagal innervation of the zebrafish (Danio rerio) gut. J Comp Neurol 2008; 508:756-70. [PMID: 18393294 DOI: 10.1002/cne.21705] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The autonomic nervous system develops following migration and differentiation of precursor cells originating in the neural crest. Using immunohistochemistry on intact zebrafish embryos and larvae we followed the development of the intrinsic enteric and extrinsic vagal innervation of the gut. At 3 days postfertilization (dpf), enteric nerve cell bodies and fibers were seen mainly in the middle and distal intestine, while the innervation of the proximal intestine was scarcer. The number of fibers and cell bodies gradually increased, although a large intraindividual variation was seen in the timing (but not the order) of development. At 11-13 dpf most of the proximal intestine received a similar degree of innervation as the rest of the gut. The main intestinal branches of the vagus were similarly often already well developed at 3 dpf, entering the gut at the transition between the proximal and middle intestine and projecting posteriorly along the length of the gut. Subsequently, fibers branching off the vagus innervated all regions of the gut. The presence of several putative enteric neurotransmitters was suggested by using markers for neurokinin A (NKA), pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal polypeptide (VIP), nitric oxide, serotonin (5-hydroxytryptamine, 5-HT), and calcitonin gene-related peptide (CGRP). The present results corroborate the belief that the enteric innervation is well developed before the onset of feeding (normally occurring around 5-6 dpf). Further, the more detailed picture of how development proceeds at stages previously not examined suggests a correlation between increasing innervation and more regular and elaborated motility patterns.
Collapse
Affiliation(s)
- Catharina Olsson
- Department of Zoology/Zoophysiology, University of Gothenburg, Göteborg, Sweden.
| | | | | |
Collapse
|
7
|
Janković SM, Beleslin DB. Effects of nicotine, dimethylphenylpiperazinium and tetramethylammonium on smooth muscles from feline and human gastric corpus. Pharmacol Res 2000; 41:577-83. [PMID: 10753558 DOI: 10.1006/phrs.1999.0620] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both excitatory and inhibitory intrinsic neurons could be found within the gastric wall, both of them receiving innervation from vagal fibres and being sensitive to nicotine. The effects of three nicotine receptor agonists, nicotine, tetramethylammonium (TMA) and 1,1-dimethyl-4-phenylpiperazinium (DMPP), on contractile activity of preparations isolated from feline and human gastric corpus wall were investigated. While DMPP (3.5x10(-8) to 5.9x10(-4)m) did not affect either spontaneous contractions or basal tension of isolated preparations from both species, TMA produced concentration-dependent tonic contractions of both circular and longitudinal isolated preparations from human (3.66x10(-5) to 5.10x10(-3)m) and feline (6. 1x10(-7) to 2.1x10(-3)m) stomach. On the other hand, nicotine (4. 1x10(-8) to 7.0x10(-4)m) produced concentration-dependent relaxation of only circular isolated preparations from feline gastric corpus. The effect of nicotine was sensitive to mecamylamine, and not to pancuronium, while the effect of TMA was sensitive to both mecamylamine and pancuronium. Although in our experiments DMPP had no effect, its excitatory action on gastric intrinsic neurons through the hexamethonium-insensitive pathway had already been described. The results of our study suggest that two different types of ganglion nicotine receptor exist together within the wall of feline stomach: (1) type N(N1)which is involved in relaxation and is sensitive only to nicotine and mecamylamine, and not to DMPP, TMA and pancuronium; (2) and type N(N2)which is involved in contraction of gastric muscle and sensitive to DMPP, TMA, mecamylamine and pancuronium, and not to nicotine.
Collapse
Affiliation(s)
- S M Janković
- Department of Pharmacology, Center for Clinical and Experimental Pharmacology, Clinical Hospital Center, Kragujevac, Serbia, Yugoslavia
| | | |
Collapse
|
8
|
Burka JF, Briand HA, Wartman CA, Hogan JG, Ireland WP. Effects of modulatory agents on neurally-mediated responses of trout intestinal smooth musclein vitro. FISH PHYSIOLOGY AND BIOCHEMISTRY 1996; 15:95-104. [PMID: 24194083 DOI: 10.1007/bf01875589] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/21/1995] [Indexed: 06/02/2023]
Abstract
Mediators and mechanisms responsible for the inhibitory modulation of trout intestinal smooth muscle were examined using a series of putative mediators and substances known to modulate neurotransmission in mammalian systems. Frequency response relationships to transmural stimulation and concentration response relationships to 5-hydroxytryptamine, carbachol, and substance P were established on paired segments of rainbow trout intestinein vitro in the presence and absence of putative modulatory agents. Modulation of neurally-mediated contractions of trout intestine was achieved with dibutyryl cyclic AMP and forskolin, agents that increase intracellular levels of cyclic AMP. The effect appears to be at the level of the smooth muscle, since the adenylate cyclase activator, forskolin, inhibited muscarinic and serotoninergic contractions as well as transmurally stimulated contractions. Substance P-induced contractions were unaffected by forskolin. The endogenous agonists/neurotransmitters which would increase cyclic AMP levels in rainbow trout intestinal smooth muscle are as yet unknown. The effects do not appear to be modulated by vasoactive intestinal peptide (VIP), calcitonin, calcitonin gene-related peptide (CGRP), or agents that activate β-adrenoceptors. Prostaglandin E2 (PGE2) and α2-adrenergenic agonists are possible agents which will decrease contractility of the smooth muscle. They were only active in the proximal intestine and on transmurally stimulated contractions. The effects of both PGE2 and α2-agonists appear to be prejunctional, decreasing release of contractile neurotransmitters in the enteric nervous system.
Collapse
Affiliation(s)
- J F Burka
- Department of Anatomy and Physiology, Atlantic Veterinary College, University of Prince Edward Island, C1A 4P3, Charlottetown, P.E.I.,
| | | | | | | | | |
Collapse
|
9
|
Slánský J, Kadlec O, Sevcík J, Masek K. Further evidence on the interaction of muramyl dipeptide with the serotonergic system. INTERNATIONAL JOURNAL OF IMMUNOPHARMACOLOGY 1996; 18:23-9. [PMID: 8732429 DOI: 10.1016/0192-0561(95)00100-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The mode of interaction between muramyl dipeptide (MDP), a compound with immunopharmacological activities, and 5-hydroxtryptamine (5-HT, serotonin) was studied in isolated nerve-smooth muscle preparations of the carp stomach. Application of exogenous 5-HT evoked direct smooth muscle contractions; electric neurogenic stimulation evoked twitches due to release of 5-HT from nerve endings. Contractions evoked by a high concentration of 5-HT (3-30 microM) were resistant to atropine and potentiated in the presence of MDP. Isamoltan (5-HTID antagonist) decreased the amplitude of contractions, whereas ketanserin (5-HT2 antagonist) and MDL 72,222 (5-HT3 antagonist) had no effect. The addition of low concentrations (0.1-1.5 microM) of 5-HT did not contract the preparation but caused a decrease in the amplitude of neurogenic twitches, which might be due to the presynaptic inhibition of serotonin release. This effect of 5-HT was not changed by isamoltan or ketanserin, but it was largely reduced in the presence of 5-HT3 antagonists tropisetron and MDL 72,222. This inhibitory effect of 5-HT on twitch amplitude was potentiated by MDP. The interaction of MDP with the serotonergic system thus involved not only potentiation of the postsynaptic effect of higher 5-HT concentrations, which might have been mediated via the 5-HT1 subsystem, but also presynaptic inhibition. MDP enhancement of 5-HT's inhibitory effect, mediated via 5-HT3 receptors, might represent a new feature in mutual 5-HT-MDP interactions.
Collapse
Affiliation(s)
- J Slánský
- Institute of Pharmacology, Academy of Sciences of the Czech Republic, Prague
| | | | | | | |
Collapse
|
10
|
Burka JF, Briand HA, Purcell LM, Mitton GA, Hogan JG, Ireland WP. Changes in smooth muscle contractility of rainbow trout (Oncorhynchus mykiss Walbaum) intestine during acclimation to altered temperature. FISH PHYSIOLOGY AND BIOCHEMISTRY 1993; 12:347-355. [PMID: 24202876 DOI: 10.1007/bf00004419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/23/1993] [Indexed: 06/02/2023]
Abstract
The effects of altered water temperature in vivo on in vitro smooth muscle contractility of rainbow trout intestine were investigated. Temperature has a significant effect on receptor-mediated intestinal smooth muscle contractility in the rainbow trout. The efficacy of 5-HT, carbachol, and transmural stimulation increased with temperatures above 10°C, with an optimal increase at 15°C. There was also a modest increase in the potency of 5-HT and carbachol within 2 days of establishing trout at 20°C. By day 8, most of these changes had either stabilized or were returning to control values, suggesting that acclimation changes in membranes and enzyme activities were taking effect. However, the contractile responses to carbachol and transmural stimulation were still increasing at this time. This may imply that the muscarinic receptors are more resistant to membrane acclimation changes and may take longer to adapt. Because these experiments were controlled for handling stress and seasonal changes that affect contractility, we have been able to demonstrate some early changes in smooth muscle contractility that occur during acclimation to altered temperature.
Collapse
Affiliation(s)
- J F Burka
- Department of Anatomy and Physiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, P.E.I., CIA 4P3, Canada
| | | | | | | | | | | |
Collapse
|
11
|
Burka JF, Briand HA, Purcell LM, Ireland WP. The effects of acute temperature change on smooth muscle contractility of rainbow trout (Oncorhynchus mykiss Walbaum) intestine. FISH PHYSIOLOGY AND BIOCHEMISTRY 1993; 12:53-60. [PMID: 24202625 DOI: 10.1007/bf00004322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/11/1993] [Indexed: 06/02/2023]
Abstract
The effects of altered temperature in vivo on in vitro smooth muscle contractility of rainbow trout intestine were investigated. Initial analysis of the data revealed a seasonal variation in the maximal tension of intestinal smooth muscle attainable with 5-hydroxytryptamine (serotonin), carbachol, KCl, and transmural stimulation in vitro. Peaks occurred in spring and troughs in autumn. There was no seasonal cycling of the potency of the stimulants. All data regarding the efficacy of the stimulants were subsequently corrected for seasonal variation. The response of smooth muscle depends on the temperature of the water in which the fish are placed (2°C-20°C). There was a marked linear increase in efficacy and a slight increase in potency of the stimulants with increasing temperature. Changes in responsiveness of the intestinal smooth muscle occurred within 30 min of moving the fish between tanks. Smooth muscle reactivity returned to pretreatment values by 48h. Any changes in responsiveness with regards to time were unlikely to be as a consequence of water temperature, but may have been a result of handling stress.
Collapse
Affiliation(s)
- J F Burka
- Department of Anatomy and Physiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, P.E.I., C1A 4P3
| | | | | | | |
Collapse
|
12
|
Morphological and distributional changes in the eosinophilic granule cell (EGC) population of the rainbow trout (Oncorhynchus mykiss walbaum) intestine following systemic administration of capsaicin and substance P. ACTA ACUST UNITED AC 1993. [DOI: 10.1002/jez.1402660104] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Powell MD, Wright GM, Burka JF. Degranulation of eosinophilic granule cells induced by capsaicin and substance P in the intestine of the rainbow trout (Oncorhynchus mykiss Walbaum). Cell Tissue Res 1991; 266:469-74. [PMID: 1725861 DOI: 10.1007/bf00318587] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Adult rainbow trout (Oncorhynchus mykiss) were injected intraperitoneally with capsaicin, substance P, serotonin, or a control of saline vehicle or bovine serum albumin (0.5 microgram/g body weight). Fish were sacrificed 30 min and 1, 2, and 4 h post-injection, the gut was dissected out, and a small section of the upper intestine was processed for electron microscopy. A significant proportion of eosinophilic granule cells (EGCs) of the intestine were in close association with non-myelinated neuronal bundles in all fish (4 fish per treatment and time period), but there was no significant difference between treatment or time, suggesting that the association was unaffected by these factors. Close examination of EGC ultrastructure showed that fish treated with capsaicin and substance P exhibited limited degranulation of the EGCs in the stratum compactum and extensive crinophagic-like degranulation in the lamina propria. Cells of the lamina propria contained characteristic multivesicular-like bodies. The degranulation was reminiscent of both mast cell degranulation and endocrine cell crinophagy. EGCs of fish treated with serotonin or a control were unaffected, suggesting that the serotoninergic neurons, believed to be involved in gut motility, were not responsible for degranulation. It is apparent that EGCs of the trout intestine may be under nervous control, as has been demonstrated previously for mammalian mast cells.
Collapse
Affiliation(s)
- M D Powell
- Department of Anatomy and Physiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| | | | | |
Collapse
|
14
|
Bueno L, Fargeas MJ, Theodorou V, Fioramonti J. Involvement of 5-hydroxytryptamine in the intestinal motor disturbances induced by mast cell degranulation in rats. Eur J Pharmacol 1991; 192:263-9. [PMID: 2032558 DOI: 10.1016/0014-2999(91)90051-q] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fasted rats with chronically implanted electrodes were used for investigation of the effects of mast cell degranulation induced by compound 48/80 and BrX-537A and their antagonism by previous administration of 5-hydroxytryptamine (5-HT) antagonists on duodenal and jejunal myoelectric activity. Administered i.p., both 48/80 (1 mg/kg i.p.) and BrX-537A (2 mg/kg i.p.) abolished the intestinal spiking activity of duodeno-jejunum with a progressive recovery, BrX-537A being less active. These effects were dose-related. Injected prior to 48/80, methysergide (1 mg/kg) reduced by about 80% both duodenal and jejunal inhibition of spiking activity with early recovery of a normal pattern. In contrast, ketanserin (1 mg/kg) had selective reducing effects on the duration of the spiking inhibition induced by 48/80 and BrX-537A on the duodenum only. Zacopride (1 mg/kg) and ICS 205-930 (50 micrograms/kg) shortened and suppressed, respectively, the inhibition of intestinal spiking activity with early restoration of intestinal motility in both duodenum and jejunum. We conclude that, in fasted rats (i) the degranulation of peritoneal mast cells induces alterations in intestinal myoelectric activity through the release of 5-HT (ii) these effects are mainly mediated through both 5-HT1 and 5-HT3 receptors.
Collapse
Affiliation(s)
- L Bueno
- Department of Pharmacology, INRA, Toulouse, France
| | | | | | | |
Collapse
|
15
|
Barnes PJ, Belvisi MG, Rogers DF. Modulation of neurogenic inflammation: novel approaches to inflammatory disease. Trends Pharmacol Sci 1990; 11:185-9. [PMID: 2248639 DOI: 10.1016/0165-6147(90)90112-l] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neurogenic inflammation, which involves the release of neuropeptides from capsaicin-sensitive sensory nerves, may contribute to inflammatory diseases of the airways, joints, bladder, skin, eye and gut. Peter Barnes and colleagues review some of the therapeutic strategies that can be used to inhibit this neurogenic inflammation, with particular reference to the respiratory tract.
Collapse
Affiliation(s)
- P J Barnes
- Department of Thoracic Medicine, National Heart and Lung Institute, London, UK
| | | | | |
Collapse
|
16
|
Kitazawa T, Hoshi T, Chugun A. Effects of some autonomic drugs and neuropeptides on the mechanical activity of longitudinal and circular muscle strips isolated from the carp intestinal bulb (Cyprinus carpio). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. C, COMPARATIVE PHARMACOLOGY AND TOXICOLOGY 1990; 97:13-24. [PMID: 1981339 DOI: 10.1016/0742-8413(90)90165-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
1. The mechanical responses to some autonomic drugs and neuropeptides of longitudinal muscle (LM) and circular muscle (CM) strips isolated from the carp intestinal bulb were investigated in vitro. 2. Acetylcholine and carbamylcholine caused concentration-dependent transient contraction of both LM and CM strips. Tetrodotoxin had no effect, but atropine selectively decreased the contractile responses to acetylcholine and carbamylcholine. 3. Excitatory alpha-2 and inhibitory beta adrenoceptors were present in both LM and CM strips. 4. 5-Hydroxytryptamine (5-HT) caused concentration-dependent contraction of both LM and CM strips. Tetrodotoxin, atropine and methysergide decreased the contractile responses to 5-HT. 5. Some neuropeptides (angiotensin I, angiotensin II, bombesin, bradykinin, neurotensin, somatostatin and vasoactive intestinal polypeptide) did not cause any mechanical response (contraction or relaxation) in either smooth muscle strip. 6. Substance P (SP), neurokinin A (NKA) and neurokinin B (NKB) caused contraction of both LM and CM strips. However, the time course of the contraction in LM was different from that in CM. The order of potency was NKA greater than SP greater than NKB in LM strips and NKA greater than SP much greater than NKB in CM strips. In LM strips, the contractile responses to tachykinins were unaffected by spantide and methysergide, but partly decreased by tetrodotoxin and atropine. On the other hand, the contractile responses of CM strips were unaffected by tetrodotoxin, atropine, methysergide and spantide. 7. Dynorphin (1-13) (DYN), leucine-enkephalin (L-Enk) and methionine-enkephalin (M-Enk) caused concentration-dependent contraction of both LM and CM strips. The order of potency was DYN greater than M-Enk greater than L-Enk. Naloxone selectively decreased the responses to opiate peptides. 8. The present results indicate that acetylcholine, carbamylcholine, catecholamines, 5-HT, tachykinins (SP, NKA and NKB) and opiate peptides (DYN, L-Enk and M-Enk) affect the mechanical activity of LM and CM strips isolated from the carp intestinal bulb through their specific receptors.
Collapse
Affiliation(s)
- T Kitazawa
- Department of Veterinary Pharmacology, School of Veterinary Medicine and Animal Sciences, Kitasato University, Aomori, Japan
| | | | | |
Collapse
|