1
|
Genetic Deletion of Vasohibin-2 Exacerbates Ischemia-Reperfusion-Induced Acute Kidney Injury. Int J Mol Sci 2020; 21:ijms21124545. [PMID: 32604722 PMCID: PMC7352238 DOI: 10.3390/ijms21124545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury (AKI) has been increasingly recognized as a risk factor for transition to chronic kidney disease. Recent evidence suggests that endothelial damage in peritubular capillaries can accelerate the progression of renal injury. Vasohibin-2 (VASH2) is a novel proangiogenic factor that promotes tumor angiogenesis. However, the pathophysiological roles of VASH2 in kidney diseases remain unknown. In the present study, we examined the effects of VASH2 deficiency on the progression of ischemia–reperfusion (I/R) injury-induced AKI. I/R injury was induced by bilaterally clamping renal pedicles for 25 min in male wild-type (WT) and Vash2 homozygous knockout mice. Twenty-four hours later, I/R injury-induced renal dysfunction and tubular damage were more severe in VASH2-deficient mice than in WT mice, with more prominent neutrophil infiltration and peritubular capillary loss. After induction of I/R injury, VASH2 expression was markedly increased in injured renal tubules. These results suggest that VASH2 expression in renal tubular epithelial cells might be essential for alleviating I/R injury-induced AKI, probably through protecting peritubular capillaries and preventing inflammatory infiltration.
Collapse
|
2
|
Patil CN, Wallace K, LaMarca BD, Moulana M, Lopez-Ruiz A, Soljancic A, Juncos LA, Grande JP, Reckelhoff JF. Low-dose testosterone protects against renal ischemia-reperfusion injury by increasing renal IL-10-to-TNF-α ratio and attenuating T-cell infiltration. Am J Physiol Renal Physiol 2016; 311:F395-403. [PMID: 27252490 DOI: 10.1152/ajprenal.00454.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 05/24/2016] [Indexed: 02/08/2023] Open
Abstract
Renal ischemia-reperfusion (I/R) in male rats causes reductions in plasma testosterone, and infusion of testosterone 3 h postreperfusion is protective. We tested the hypotheses that acute high doses of testosterone promote renal injury after I/R, and that acute low-dose testosterone is protective by the following: 1) increasing renal IL-10 and reducing TNF-α; 2) its effects on nitric oxide; and 3) reducing intrarenal T-cell infiltration. Rats were subjected to renal I/R, followed by intravenous infusion of vehicle or testosterone (20, 50, or 100 μg/kg) 3 h postreperfusion. Low-dose testosterone (20 μg/kg) reduced plasma creatinine, increased nitrate/nitrite excretion, increased intrarenal IL-10, and reduced intrarenal TNF-α, whereas 50 μg/kg testosterone failed to reduce plasma creatinine, increased IL-10, but failed to reduce TNF-α. A higher dose of testosterone (100 mg/kg) not only failed to reduce plasma creatinine, but significantly increased both IL-10 and TNF-α compared with other groups. Low-dose nitro-l-arginine methyl ester (1 mg·kg(-1)·day(-1)), given 2 days before I/R, prevented low-dose testosterone (20 μg/kg) from protecting against I/R injury, and was associated with lack of increase in intrarenal IL-10. Intrarenal CD4(+) and CD8(+) T cells were significantly increased with I/R, but were attenuated with low-dose testosterone, as were effector T helper 17 cells. The present studies suggest that acute, low-dose testosterone is protective against I/R AKI in males due to its effects on inflammation by reducing renal T-cell infiltration and by shifting the balance to favor anti-inflammatory cytokine production rather than proinflammatory cytokines.
Collapse
Affiliation(s)
- Chetan N Patil
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi; The Women's Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Kedra Wallace
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, Mississippi; The Women's Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Babbette D LaMarca
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, Mississippi; The Women's Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Mohadetheh Moulana
- Department of Psychiatry, University of Mississippi Medical Center, Jackson, Mississippi; The Women's Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Arnaldo Lopez-Ruiz
- Department of Medicine (Nephrology), University of Mississippi Medical Center, Jackson, Mississippi
| | - Andrea Soljancic
- Department of Medicine (Nephrology), University of Mississippi Medical Center, Jackson, Mississippi
| | - Luis A Juncos
- Department of Medicine (Nephrology), University of Mississippi Medical Center, Jackson, Mississippi
| | - Joseph P Grande
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Jane F Reckelhoff
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi; The Women's Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi; and
| |
Collapse
|
3
|
Afyouni NE, Halili H, Moslemi F, Nematbakhsh M, Talebi A, Shirdavani S, Maleki M. Preventive Role of Endothelin Antagonist on Kidney Ischemia: Reperfusion Injury in Male and Female Rats. Int J Prev Med 2015; 6:128. [PMID: 26900442 PMCID: PMC4736059 DOI: 10.4103/2008-7802.172549] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/22/2015] [Indexed: 12/16/2022] Open
Abstract
Background: Renal ischemia/reperfusion injury (RIRI) is the most common cause of acute kidney injury. We tested the protective role of endothelin-1 receptor blocker; bosentan (BOS) in animal model of RIRI in two different genders. Methods: Male and female Wistar rats were assigned as sham operated (sham), control group (ischemia), and case group (ischemia + BOS) treated with BOS (50 mg/kg) 2 h before bilateral kidney ischemia induced by clamping renal vessels for 45 min followed by 24 h of renal reperfusion. Results: The RIRI significantly increased the serum levels of blood urea nitrogen and creatinine in both genders (P < 0.05). These values were significantly decreased by BOS in both genders. In male rats, the serum levels of malondialdehyde in the ischemia + BOS group were decreased significantly when compared with ischemia group (P < 0.05). Conclusions: BOS can be used in both genders to attenuate kidney ischemia injury possibly due to its effect in the renal vascular system.
Collapse
Affiliation(s)
- Nazgol Esmalian Afyouni
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hanieh Halili
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Moslemi
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Nematbakhsh
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Physiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ardeshir Talebi
- Department of Clinical Pathology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Soheila Shirdavani
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Maleki
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Basile DP, Yoder MC. Renal endothelial dysfunction in acute kidney ischemia reperfusion injury. Cardiovasc Hematol Disord Drug Targets 2015; 14:3-14. [PMID: 25088124 DOI: 10.2174/1871529x1401140724093505] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 05/15/2014] [Accepted: 05/30/2014] [Indexed: 01/11/2023]
Abstract
Acute kidney injury is associated with alterations in vascular tone that contribute to an overall reduction in GFR. Studies in animal models indicate that ischemia triggers alterations in endothelial function that contribute significantly to the overall degree and severity of a kidney injury. Putative mediators of vasoconstriction that may contribute to the initial loss of renal blood flow and GFR are highlighted. In addition, there is discussion of how intrinsic damage to the endothelium impairs homeostatic responses in vascular tone as well as promotes leukocyte adhesion and exacerbating the reduction in renal blood flow. The timing of potential therapies in animal models as they relate to the evolution of AKI, as well as the limitations of such approaches in the clinical setting are discussed. Finally, we discuss how acute kidney injury induces permanent alterations in renal vascular structure. We posit that the cause of the sustained impairment in kidney capillary density results from impaired endothelial growth responses and suggest that this limitation is a primary contributing feature underlying progression of chronic kidney disease.
Collapse
Affiliation(s)
| | - Mervin C Yoder
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Med Sci 334, Indianapolis, IN 46202, USA.
| |
Collapse
|
5
|
JBP485 improves gentamicin-induced acute renal failure by regulating the expression and function of Oat1 and Oat3 in rats. Toxicol Appl Pharmacol 2013; 271:285-95. [PMID: 23707770 DOI: 10.1016/j.taap.2013.04.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/10/2013] [Accepted: 04/16/2013] [Indexed: 11/18/2022]
|
6
|
Hammad FT, Al-Salam S, Lubbad L. Curcumin provides incomplete protection of the kidney in ischemia reperfusion injury. Physiol Res 2012; 61:503-11. [PMID: 22881234 DOI: 10.33549/physiolres.932376] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Curcumin, a component of the spice turmeric, was shown to have a protective effect on acute kidney injury markers following ischemia-reperfusion injury (IRI). However, its effect on glomerular and tubular renal functions following IRI is not known and this data is probably of more clinical relevance. In this study, curcumin was tested for its effect on renal functional parameters following two different periods of warm IRI in the rat. Groups V-30 (n=10) and C-30 (n=10) underwent ischemia for 30 minutes whereas groups V-45 (n=8) and C-45 (n=8) underwent ischemia for 45 minutes. C-30 and C-45 received oral curcumin (200 mg/kg/day) whereas V-30 and V-45 received a vehicle. The left renal artery blood flow was measured by a flowmeter before and 15 minutes after reperfusion. Serum TNF-alpha was measured before and 2 days after ischemia. The function of both kidneys was measured 2 days following ischemia using clearance technique. IRI caused significant increase in TNF-alpha in all groups. Curcumin significantly ameliorated the ischemia-induced alterations in serum TNF-alpha and associated histological changes but did not affect the alterations in renal artery blood flow, glomerular (glomerular filtration rate, renal blood flow) or tubular (urinary volume, urinary sodium and fractional excretion of sodium) functions following 30 or 45 min of IRI.
Collapse
Affiliation(s)
- F T Hammad
- Department of Surgery, Faculty of Medicine and Health Sciences, Al Ain, United Arab Emirates.
| | | | | |
Collapse
|
7
|
Role of medullary blood flow in the pathogenesis of renal ischemia-reperfusion injury. Curr Opin Nephrol Hypertens 2012; 21:33-8. [PMID: 22080855 DOI: 10.1097/mnh.0b013e32834d085a] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Renal ischemia-reperfusion injury (IRI) is a common cause of acute kidney injury (AKI). Alterations in renal medullary blood flow (MBF) contribute to the pathogenesis of renal IRI. Here we review recent insights into the mechanisms of altered MBF in the pathogenesis of IRI. RECENT FINDINGS Although cortical blood flow fully recovers following 30-45 min of bilateral IRI, recent studies have indicated that there is a prolonged secondary fall in MBF that is associated with a long-term decline in renal function. Recent findings indicate that angiopoietin-1, atrial natriuretic peptide, heme oxygenase-1, and the gasotransmitters CO and H(2)S, may limit the severity of IRI by preserving MBF. Additional studies have also suggested a role for cytochrome P450-derived 20-HETE in the postischemic fall in MBF. SUMMARY Impaired MBF contributes to the pathogenesis of renal IRI. Measurement of renal MBF provides valuable insight into the underlying mechanisms of many renoprotective pathways. Identification of molecules that preserve renal MBF in IRI may lead to new therapies for AKI.
Collapse
|
8
|
Siedlecki AM, Jin X, Thomas W, Hruska KA, Muslin AJ. RGS4, a GTPase activator, improves renal function in ischemia-reperfusion injury. Kidney Int 2011; 80:263-71. [PMID: 21412219 DOI: 10.1038/ki.2011.63] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acute kidney dysfunction after ischemia-reperfusion injury (IRI) may be a consequence of persistent intrarenal vasoconstriction. Regulators of G-protein signaling (RGSs) are GTPase activators of heterotrimeric G proteins that can regulate vascular tone. RGS4 is expressed in vascular smooth muscle cells in the kidney; however, its protein levels are low in many tissues due to N-end rule-mediated polyubiquitination and proteasomal degradation. Here, we define the role of RGS4 using a mouse model of IRI comparing wild-type (WT) with RGS4-knockout mice. These knockout mice were highly sensitized to the development of renal dysfunction following injury exhibiting reduced renal blood flow as measured by laser-Doppler flowmetry. The kidneys from knockout mice had increased renal vasoconstriction in response to endothelin-1 infusion ex vivo. The intrinsic renal activity of RGS4 was measured following syngeneic kidney transplantation, a model of cold renal IRI. The kidneys transplanted between knockout and WT mice had significantly reduced reperfusion blood flow and increased renal cell death. WT mice administered MG-132 (a proteasomal inhibitor of the N-end rule pathway) resulted in increased renal RGS4 protein and in an inhibition of renal dysfunction after IRI in WT but not in knockout mice. Thus, RGS4 antagonizes the development of renal dysfunction in response to IRI.
Collapse
Affiliation(s)
- Andrew M Siedlecki
- Nephrology Division, John Milliken Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri, USA.
| | | | | | | | | |
Collapse
|
9
|
García-Criado FJ, Rodriguez-Barca P, García-Cenador MB, Rivas-Elena JV, Grande MT, Lopez-Marcos JF, Mourelle M, López-Novoa JM. Protective effect of new nitrosothiols on the early inflammatory response to kidney ischemia/reperfusion and transplantation in rats. J Interferon Cytokine Res 2009; 29:441-50. [PMID: 19514843 DOI: 10.1089/jir.2008.0100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Renal ischemia/reperfusion (I/R) is characterized by severe inflammatory damage. We assessed the effect of administrating recently developed nitrosothiol compounds acting as nitric oxide (NO) donors on the production of cytokines and other markers of acute inflammatory reaction in an experimental model of warm (I/R), and in a model of cold ischemia and transplant in rats. Warm ischemia was achieved by ligation of left renal pedicle for 60 min, followed by contralateral nephrectomy. NO-donors LA-803, LA-807, LA-810 were administered i.v. (1.8 micromol/kg) during 30 min before reperfusion. Cold ischemia was achieved by preservating the kidney for 24 h in Euro Collins and grafting it in consanguineous Fisher 344/Ico rats. LA-803 was administered in the preservation fluid and in the recipient rat. Reperfusion time was 4 h in warm ischemia and 3 h in cold ischemia + transplantation. Administration of LA-803, LA-807 and, in a lower proportion, LA-810 prevented from the enhanced production of tumor necrosis factor (TNF), interferon-gamma (IFN-gamma), and interleukin-1beta (IL-1beta), the decrease in interleukin-6 (IL-6) and interleukin-10 (IL-10), the increase in tissue level of superoxide anion (SOA) and superoxide dismutase (SOD), and the increase in neutrophil infiltration induced by warm I/R. Treatment with LA-803 in animals with renal transplantation after cold ischemia was also associated with reduced plasma levels of TNF, IFN-gamma, and IL-1beta, increased plasma levels of IL-6 and IL-10, reduced renal levels of SOA and SOD, and reduced neutrophil infiltration. These data demonstrate that systemic administration of new NO-donors with nitrosothiol structure diminished inflammatory responses in a kidney subjected to warm I/R or cold ischemia and transplantation.
Collapse
Affiliation(s)
- F Javier García-Criado
- Departamento de Cirugía, Facultad de Medicina, Edificio Departamental, Campus Miguel de Unamuno, Universidad de Salamanca, Salamanca, Spain
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Hill-Kapturczak N, Kapturczak MH, Malinski T, Gross P. Nitric Oxide and Nitric Oxide Synthase in the Kidney: Potential Roles in Normal Renal Function and in Renal Dysfunction. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/10623329509024671] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Gandhi C, Zalawadia R, Balaraman R. Nebivolol reduces experimentally induced warm renal ischemia reperfusion injury in rats. Ren Fail 2009; 30:921-30. [PMID: 18925533 DOI: 10.1080/08860220802353900] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Ischemia/reperfusion injury, which is commonly seen in the field of renal surgery or transplantation, is a major cause of acute renal failure. The objective of the present study was to examine the role of nebivolol in modulating peroxynitrite species-induced inflammation and apoptosis after renal warm ischemia/reperfusion injury in rats. The present study was designed to investigate the effects of nebivolol on the renal warm ischemia/reperfusion injury in rats treated with the nitric oxide synthase inhibitor, N(omega)-nitro-L-arginine methyl ester. After right nephrectomy, nebivolol was administered for 15 days. On the 16(th) day, ischemia was induced in contra lateral kidney for 45 min, followed by reperfusion for 24 hr. Renal function, inflammation, and apoptosis were estimated at the end of 24 hr reperfusion. Nebivolol improved the renal dysfunction and reduced inflammation and apoptosis after renal ischemia/reperfusion injury. In conclusion, nebivolol shows potent anti-apoptotic and anti-inflammatory properties due to its NO-releasing property. These findings may have major implications in the treatment of human ischemic acute renal failure.
Collapse
Affiliation(s)
- Chintan Gandhi
- Pharmacy Department, Faculty of Technology and Engineering, M. S. University of Baroda, Kalabhavan, Baroda, Gujarat, India
| | | | | |
Collapse
|
12
|
Kwon O, Hong SM, Ramesh G. Diminished NO generation by injured endothelium and loss of macula densa nNOS may contribute to sustained acute kidney injury after ischemia-reperfusion. Am J Physiol Renal Physiol 2008; 296:F25-33. [PMID: 18971208 DOI: 10.1152/ajprenal.90531.2008] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In postischemic acute kidney injury (AKI) or acute renal failure, a dissipation of glomerular filtration pressure is associated with an altered renal vascular tone and reactivity, as well as a loss of vascular autoregulation. To test the hypothesis that renal nitric oxide (NO) generation reflects endothelial damage in the kidney after ischemia-reperfusion, we quantified the urinary NO levels and identified the site of its generation in postischemic AKI. Subjects were 50 recipients of cadaveric renal allografts: 15 with sustained AKI and 35 with recovering renal function. Urine and blood samples were obtained after transplant, and intraoperative allograft biopsies were performed to examine NO synthases (NOSs) in the kidney. In the sustained AKI group, urinary nitrite and nitrate excretion (in mumol/g urine creatinine) was lower (12.3 +/- 1.8 and 10.0 +/- 1.4 on postoperative days 0 and 3) than in the recovery group [20.0 +/- 3.6 and 35.1 +/- 5.3 (P < 0.005 vs. sustained AKI on days 0 and 3) on postoperative days 0 and 3]. Endothelial NOS expression diminished from the peritubular capillaries of 6 of 7 subjects in the sustained AKI group but from only 6 of 16 subjects in the recovery group. No differences were observed in the inducible NOS staining pattern between the two groups. Neuronal NOS staining was rarely observed in the macula densae of subjects but was prominent in control tissues. These findings suggest that a diminished NO generation by injured endothelium and loss of macula densa neuronal NOS could impair the vasodilatory ability of the renal vasculature and contribute to the reduction in the glomerular filtration rate in postischemic AKI.
Collapse
Affiliation(s)
- Osun Kwon
- Dept. of Medicine, Div. of Nephrology, Penn State Milton S. Hershey Medical Ctr., Penn State College of Medicine, 500 University Dr., Hershey, PA 17033-0850, USA.
| | | | | |
Collapse
|
13
|
Schneider R, Sauvant C, Betz B, Otremba M, Fischer D, Holzinger H, Wanner C, Galle J, Gekle M. Downregulation of organic anion transporters OAT1 and OAT3 correlates with impaired secretion ofpara-aminohippurate after ischemic acute renal failure in rats. Am J Physiol Renal Physiol 2007; 292:F1599-605. [PMID: 17244891 DOI: 10.1152/ajprenal.00473.2006] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ischemic acute renal failure (iARF) was described to reduce renal extraction of the organic anion para-aminohippurate (PAH) in humans. The rate-limiting step of renal organic anion secretion is its basolateral uptake into proximal tubular cells. This process is mediated by the organic anion transporters OAT1 and OAT3, which both have a broad spectrum of substrates including a variety of pharmaceutics and toxins. Using a rat model of iARF, we investigated whether impairing the secretion of the organic anion PAH might be associated with downregulation of OAT1 or OAT3. Inulin and PAH clearance was determined starting from 6 up to 336 h after ischemia-reperfusion (I/R) injury. Net secretion of PAH was calculated and OAT1 as well as OAT3 expression was analyzed by RT-PCR and Western blotting. Inulin and PAH clearance along with PAH net secretion were initially diminished after I/R injury with a gradual recovery during follow-up. This initial impairment after iARF was accompanied by decreased mRNA and protein levels of OAT1 and OAT3 in clamped animals compared with sham-operated controls. In correlation to the improvement of kidney function, both mRNA and protein levels of OAT1 and OAT3 were upregulated during the follow-up. Thus decreased expression of OAT1 and OAT3 is sufficient to explain the decline of PAH secretion after iARF. As a result, this may have substantial impact on excretion kinetics and half-life of organic anions. As a consequence, the biological effects of a variety of organic anions may be affected after iARF.
Collapse
Affiliation(s)
- R Schneider
- Institute of Physiology, Division of Nephrology, University of Wuerzburg, Wuerzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Myers SI, Wang L, Myers DJ. Loss of renal function and microvascular blood flow after suprarenal aortic clamping and reperfusion (SPACR) above the superior mesenteric artery is greatly augmented compared with SPACR above the renal arteries. J Vasc Surg 2007; 45:357-66. [PMID: 17264017 DOI: 10.1016/j.jvs.2006.10.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 10/18/2006] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Renal insufficiency continues to be a complication that can affect patients after treatment for suprarenal aneurysms and renal artery occlusive disease. To our knowledge, no data are available showing that suprarenal aortic clamping and reperfusion (SRACR) above the renal arteries (renal-SRACR) preserves renal function compared with SRACR above the superior mesenteric artery (SMA-SRACR). This study examined the hypothesis that SMA-SRACR-induced downregulation of renal blood flow and function is more severe than renal-SRACR owing to the addition of systemic oxygen-derived free radical (ODFR) release. METHODS Male Sprague-Dawley rats (about 350 g) were anesthetized and microdialysis probes or laser Doppler fibers were inserted into the renal cortex (depth of 2 mm) and into the renal medulla (depth of 4 mm). Laser Doppler blood flow was continuously monitored, and the microdialysis probes were connected to a syringe pump and perfused in vivo at 3 microL/min with lactated Ringer's solution. RESULTS SMA-SRACR and Renal-SRACR decreased medullary and cortical blood flow and nitric oxide (NO) synthesis. SMA-SRACR downregulated cortical inducible NO synthase, whereas renal-SRACR did not. The cortex and medulla responded to the decreased blood flow and NO synthesis by increasing in prostaglandin E2 synthesis, which was due to increased cyclooxygenase-2 content. Superoxide dismutase restored SMA-SRACR (but not renal-SRACR) cortical and medullary NO synthesis, suggesting that ODFRs generated during mesenteric ischemia-reperfusion were one of the systemic mechanisms contributing to decreased renal NO synthesis in the SMA-SRACR model. The 90% decrease in creatinine clearance after SMA-SRACR was greater than the 60% decrease after renal-SRACR. CONCLUSIONS These data show that NO is important in maintaining renal cortical and medullary blood flow and NO synthesis after renal and SMA-SRACR. These data also suggest that in addition to the renal ischemia-reperfusion caused by both models, SMA SRACR induces mesenteric ischemia-reperfusion, resulting in the generation of ODFRs, which contribute to decreased renal cortical and medullary NO synthesis. Maintaining splanchnic blood flow or attempting to keep SRACR below the SMA level may be helpful in developing strategies to minimize the renal injury after SRACR.
Collapse
Affiliation(s)
- Stuart I Myers
- McGuire Research Institute/McGuire VA Medical Center, Richmond, VA, USA.
| | | | | |
Collapse
|
15
|
Lee JI, Son HY, Kim MC. Attenuation of ischemia-reperfusion injury by ascorbic acid in the canine renal transplantation. J Vet Sci 2007; 7:375-9. [PMID: 17106230 PMCID: PMC3242147 DOI: 10.4142/jvs.2006.7.4.375] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study examined the effects of ascorbic acid on the attenuation of an ischemia-reperfusion (I/R) injury after a canine renal transplantation. Eight beagle dogs were subjected to a renal auto-transplantation followed by the administration of ascorbic acid (treatment group) and the same amount of vehicle (physiological saline, control group). Blood samples were collected from these dogs to perform the kidney function tests and the invasive blood pressure was measured in the renal artery at pre- and post- anastomosis. The antioxidant enzymes of level 72 h after the transplant were measured. The kidneys were taken for a histopathology evaluation at day 21. The kidney function tests showed a significant difference between the control and treatment group. The invasive blood pressure in the renal artery was similar in the groups. The activity of the antioxidant enzymes in the blood plasma was significant lower in the control group than in the treatment group. The histopathology findings revealed the treatment group to have less damage than the control group. The results of this study suggest that ascorbic acid alone might play a role in attenuating I/R injury and assist in the recovery of the renal function in a renal transplantation model.
Collapse
Affiliation(s)
- Jae-il Lee
- Laboratory of Veterinary Surgery, College of Veterinary Medicine, Chungnam National University, Daejeon 305-764, Korea.
| | | | | |
Collapse
|
16
|
Radovic M, Miloradovic Z, Popovic T, Mihailovic-Stanojevic N, Jovovic D, Tomovic M, Colak E, Simic-Ogrizovic S, Djukanovic L. Allopurinol and enalapril failed to conserve urinary NOx and sodium in ischemic acute renal failure in spontaneously hypertensive rats. Am J Nephrol 2006; 26:388-99. [PMID: 16900002 DOI: 10.1159/000094936] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 07/03/2006] [Indexed: 01/24/2023]
Abstract
BACKGROUND Ischemia-reperfusion-induced acute renal failure (ARF) is associated with a high mortality in patients with hypertension and with an unfavorable outcome of kidney transplants from marginal donors. AIM The influence of allopurinol and enalapril on urinary nitrate/nitrite (UNOx), glomerular filtration rate, plasma and urinary sodium, and hemodynamic parameters was examined in spontaneously hypertensive rats (SHR) with ARF. METHODS ARF was induced by right-kidney removal and clamping the left renal artery for 40 min in 50 male 26-week-old SHR weighing 300 +/- 23 g. The rats were randomly allocated to five groups: (1) sham operated; (2) ARF; (3) ARF after pretreatment with 40 mg/kg allopurinol; (4) ARF after pretreatment with 40 mg/kg enalapril, and (5) ARF after pretreatment with 40 mg/kg allopurinol and 40 mg/kg enalapril. Creatinine clearance, UNOx (Griess reaction), cardiac output (dye dilution technique), mean arterial blood pressure, and renal blood flow were measured 24 h after reperfusion. Total vascular resistance and renal vascular resistance were calculated and compared between the groups. RESULTS A nonsignificant decrease was found in both daily UNOx excretion and creatinine clearance when pretreated ARF groups and the ARF group without pretreatment were compared (p > 0.05). Significantly lower plasma sodium values (139.5 +/- 4.86 mmol/l) in the allopurinol-pretreated ARF group were found than in the ARF group without pretreatment, in the ARF group pretreated with enalapril, and in the sham SHR group (p = 0.029). The urinary sodium loss was greater in the enalapril-pretreated than in the allopurinol-pretreated ARF group (p = 0.047). Allopurinol and/or enalapril pretreatment decreased total vascular resistance (p = 0.003) in comparison with the sham SHR group. CONCLUSION Neither allopurinol nor enalapril nor both were protective against ischemia-reperfusion injury in SHR, nor altered glomerular filtration rate and UNOx in a favorable direction.
Collapse
|
17
|
Myers SI, Wang L, Liu F, Bartula LL. Iodinated contrast induced renal vasoconstriction is due in part to the downregulation of renal cortical and medullary nitric oxide synthesis. J Vasc Surg 2006; 44:383-91. [PMID: 16890873 DOI: 10.1016/j.jvs.2006.04.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 04/10/2006] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The loss of renal function continues to be a frequent complication of the iodinated contrast agents used to perform diagnostic angiography and endovascular procedures. This study examined the hypothesis that contrast-induced renal injury is partly due to a decrease in cortical and medullary microvascular blood flow after the downregulation of endogenous renal cortical and medullary nitric oxide (NO) synthesis. METHODS Anesthetized male Sprague-Dawley rats (300 g) had microdialysis probes or laser Doppler fibers inserted into the renal cortex to a depth of 2 mm and into the renal medulla to a depth of 4 mm. Laser Doppler blood flow was continuously monitored, and the microdialysis probes were connected to a syringe pump and perfused in vivo at 3 muL/min with lactated Ringer's solution. Dialysate fluid was collected at time zero (basal) and 60 minutes after infusion of either saline or Conray 400 (6 mL/kg). Both groups were treated with saline carrier, N(omega)-nitro-L-arginine methyl ester hydrochloride (L-NAME, 30 mg/kg), L-arginine (400 mg/kg), or superoxide dismutase (10,000 U/kg), an oxygen-derived free radical scavenger. Dialysate was analyzed for total NO and eicosanoid synthesis. The renal cortex and medulla were analyzed for inducible NO synthase (iNOS), cyclooxygenase-2 (COX2), prostacyclin synthase, and prostaglandin E(2) (PGE(2)) synthase content by Western blot analysis. RESULTS Conray caused a marked decrease in cortical and medullary blood flow with a concomitant decrease in endogenous cortical NO, PGE(2), and medullary NO synthesis. The addition of L-NAME to the Conray further decreased cortical and medullary blood flow and NO synthesis, which were restored toward control by L-arginine. Neither L-NAME nor L-arginine (added to the Conray) altered cortical or medullary eicosanoids release. Medullary PGE(2) synthesis decreased when superoxide dismutase was added to the Conray treatment, suggesting that oxygen-derived free radicals had a protective role in maintaining endogenous medullary PGE(2) synthesis after Conray treatment. Conray did not significantly alter iNOS, COX-2, prostacyclin synthase, or PGE(2) synthase content. CONCLUSIONS These findings suggest that the downregulation of renal cortical and medullary NO synthesis contributes to the contrast-induced loss of renal cortical and medullary microvascular blood flow. Preservation of normal levels of renal cortical and medullary NO synthesis may help prevent or lessen contrast-induced renal vasoconstriction and lessen contrast-induced renal injury found after diagnostic and therapeutic endovascular procedures.
Collapse
Affiliation(s)
- Stuart I Myers
- McGuire Research Institute/McGuire Veterans Administration Medical Center and Department of Surgery, Virginia Commonwealth University, Richmond, VA, USA.
| | | | | | | |
Collapse
|
18
|
Myers SI, Wang L, Liu F, Bartula LL. Oxygen-radical regulation of renal blood flow following suprarenal aortic clamping. J Vasc Surg 2006; 43:577-86. [PMID: 16520177 DOI: 10.1016/j.jvs.2005.10.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Accepted: 10/26/2005] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Renal insufficiency continues to be complication that can affect patients after treatment for suprarenal aneurysms and renal artery occlusive disease. One proposed mechanism of renal injury after suprarenal aortic clamping (above the superior mesenteric artery) and reperfusion (SMA-SRACR) is the loss of microvascular renal blood flow with subsequent loss of renal function. This study examines the hypothesis that the loss of medullary and cortical microvascular blood flow following SMA-SRACR is due to oxygen-derived free radical down-regulation of endogenous medullary and cortical nitric oxide synthesis. METHODS Anesthetized male Sprague-Dawley rats (about 350 g) either had microdialysis probes or laser Doppler fibers inserted into the renal cortex (depth of 2 mm) and into the renal medulla (depth of 4 mm). Laser Doppler blood flow was continuously monitored. The microdialysis probes were connected to a syringe pump and perfused in vivo at 3 microL/min with lactated Ringer's solution. The animals were subjected to SMA-SRACR (or sham) for 30 minutes, followed by 60 minutes of reperfusion. Laser Doppler blood flow after the 30 minutes of SMA-SRACR followed by 60 minutes of reperfusion was compared with the time zero (basal) and with the corresponding sham group and reported as percent change compared with the time zero baseline. The microdialysis fluid was collected at time zero (basal) and compared with the dialysis fluid collected after 30 minutes of SMA-SRACR followed by 60 minutes of reperfusion as well as the corresponding sham group. The microdialysis dialysate was analyzed for total nitric oxide (microM) and prostaglandin E2 (PGE2), 6-keto-PGF(1alpha) (PGI2 metabolite), and thromboxane B2 synthesis. The data are reported as percent change compared with the baseline time zero. The laser Doppler blood flow and microdialysis groups were treated with either saline carrier, N(omega)-nitro-L-arginine methyl ester hydrochloride (L-NAME) (30 mg/kg, nitric oxide synthesis inhibitor), L-arginine (400 mg/kg, nitric oxide precursor), superoxide dismutase (SOD, 10,000 U/kg, oxygen-derived free radical scavenger), L-NAME + SOD, or L-arginine + SOD. SOD was given 30 minutes before the reperfusion, and the other drugs were given 15 minutes before reperfusion. The renal cortex and medulla were separated and analyzed for inducible nitric oxide synthase (iNOS), cyclooxygenase-2, prostacyclin synthase, and PGE2 synthase content by Western blot. RESULTS Superior mesenteric artery-SRACR caused a marked decrease in medullary and cortical blood flow with a concomitant decrease in endogenous medullary and cortical nitric oxide synthesis. These changes were further accentuated by L-NAME treatment but restored toward sham levels by L-arginine treatment after SMA-SRACR. The kidney appeared to compensate for these changes by increasing cortical and medullary PGE2 synthesis and release. SOD treatment restored renal cortical and medullary nitric oxide synthesis and blood flow in the ischemia-reperfusion group and in the ischemia-reperfusion group treated with L-NAME. CONCLUSIONS These data show that nitric oxide is important in maintaining renal cortical and medullary blood flow and nitric oxide synthesis. These data also support the hypothesis that the loss of medullary and cortical microvascular blood flow following SRACR is due in part to oxygen-derived free radical downregulation of endogenous medullary and cortical nitric oxide synthesis.
Collapse
Affiliation(s)
- Stuart I Myers
- McGuire Research Institute/McGuire VA Medical Center and Department of Surgery, Virginia Commonwealth University, Richmond, VA 23298-0108, USA.
| | | | | | | |
Collapse
|
19
|
Morales AI, Vicente-Sánchez C, Jerkic M, Santiago JM, Sánchez-González PD, Pérez-Barriocanal F, López-Novoa JM. Effect of quercetin on metallothionein, nitric oxide synthases and cyclooxygenase-2 expression on experimental chronic cadmium nephrotoxicity in rats. Toxicol Appl Pharmacol 2006; 210:128-35. [PMID: 16226777 DOI: 10.1016/j.taap.2005.09.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 09/06/2005] [Accepted: 09/07/2005] [Indexed: 11/19/2022]
Abstract
Inflammation can play a key role in Cd-induced dysfunctions. Quercetin is a potent oxygen free radical scavenger and a metal chelator. Our aim was to study the effect of quercetin on Cd-induced kidney damage and metallothionein expression. The study was performed in Wistar rats that were administered during 9 weeks with either cadmium (1.2 mg Cd/kg/day, s.c.), quercetin (50 mg/kg/day, i.p.) or cadmium + quercetin. Renal toxicity was evaluated by measuring blood urea nitrogen concentration and urinary excretion of enzymes marker of tubular damage. Endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) renal expression were assessed by Western blot. Renal expression of metallothionein 1 and 2 (MT-1, MT-2) and eNOS mRNA was assessed by Northern blot. Our data demonstrated that Cd-induced renal toxicity was markedly reduced in rats that also received quercetin. MT-1 and MT-2 mRNA levels in kidney were substantially increased during treatment with Cd, being even higher when the animals received Cd and quercetin. Renal eNOS expression was significantly higher in rats receiving Cd and quercetin than in animals receiving Cd alone or in control rats. In the group that received Cd, COX-2 and iNOS expression was markedly higher than in control rats. In the group Cd+quercetin, no changes in COX-2 and iNOS expression were observed compared with the control group. Our results demonstrate that quercetin treatment prevents Cd-induced overexpression of iNOS and COX-2, and increases MT expression. These effects can explain the protection by quercetin of Cd-induced nephrotoxicity.
Collapse
Affiliation(s)
- Ana I Morales
- Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Chen YS, Tseng FY, Liu TC, Lin-Shiau SY, Hsu CJ. Involvement of nitric oxide generation in noise-induced temporary threshold shift in guinea pigs. Hear Res 2005; 203:94-100. [PMID: 15855034 DOI: 10.1016/j.heares.2004.12.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Accepted: 12/20/2004] [Indexed: 01/18/2023]
Abstract
The present study explored the role of endogenous nitric oxide (NO) in the temporary threshold shift caused by acoustic trauma. Guinea pigs were exposed to broadband white noise at a level of 105+/-2dB sound pressure level (SPL) for 10min, causing a temporary threshold shift (TTS). The guinea pigs were divided into six groups (N-1 to N-6) according to survival days after noise exposure (0, 1, 2, 3, 7, 28days). Auditory brainstem responses (ABR) were recorded before noise exposure, immediately after noise exposure and before sacrifice. Immediately after animals were sacrificed, the stria vascularis and the spiral ligament of the lateral wall of each individual cochlea were harvest as a unit and prepared for assay of NO. There was a significant correlation (P<0.001) between the NO concentration and final ABR threshold in the noise exposure groups. But the return of ABR threshold to pre-noise-exposed level is early than that of NO concentration. An average 16.2dB threshold shift was found immediately after noise exposure. The threshold returned to the pre-noise-exposed level on the second post-exposure day. Comparing to unexposed control animals, the NO concentration increased nearly threefold immediately following noise exposure and decreased to twofold when the hearing threshold had returned to the pre-noise-exposed level. On the seventh post-exposure day the NO concentration was not different from that in unexposed control animals. Those findings indicate that endogenous NO is generated in the noise-induced temporal threshold shift and its concentration is correlated with the hearing loss.
Collapse
Affiliation(s)
- Yuh-Shyang Chen
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan, ROC.
| | | | | | | | | |
Collapse
|
21
|
Myers SI, Wang L, Liu F, Bartula LL. Suprarenal aortic clamping and reperfusion decreases medullary and cortical blood flow by decreased endogenous renal nitric oxide and PGE2 synthesis. J Vasc Surg 2005; 42:524-31. [PMID: 16171601 DOI: 10.1016/j.jvs.2005.05.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Accepted: 05/14/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE This study examined the hypothesis that clamping the aorta above the superior mesenteric artery (SMA) followed by suprarenal aortic clamping and reperfusion (SRACR) decreases microvascular blood flow by loss of endogenous medullary and cortical nitric oxide (NO) and prostaglandin (PG) E(2) synthesis. STUDY DESIGN Anesthetized male Sprague-Dawley rats (350 g) had either microdialysis probes or laser Doppler fibers inserted into the renal cortex to a depth of 2 mm and into the renal medulla at 4 mm. Laser Doppler blood flow was continuously monitored (data reported as percentage of change compared to basal), and the microdialysis probes were connected to a syringe pump and perfused in vivo at 3 microL/min with lactated Ringer solution. Dialysate fluid was collected at basal time zero, following 30 minutes of suprarenal aortic clamping (ischemia) followed by 60 minutes of reperfusion and compared to a sham operation. Both groups were treated with saline carrier, indomethacin (INDO) (10 mg/kg, a cyclooxygenase [COX] inhibitor), N(G)-nitro-L-arginine methyl ester (L-NAME) (20 mg/kg, a NO synthase [NOS] inhibitor), or L-arginine (200 mg/kg, an NO precursor). Dialysate was analyzed for total NO (muM) and PGE(2) (pg/mL) synthesis. The renal cortex and medulla were analyzed for inducible NOS (iNOS) and COX-2 content by Western blot. All data are reported as mean +/- SEM, N > 5 and analyzed by analysis of variance. RESULTS SRACR caused a marked decrease in medullary and cortical blood flow with a concomitant decrease in endogenous medullary and cortical NO synthesis. Treatment with L-NAME further decreased blood flow and NO synthesis in the medulla and cortex. L-Arginine restored medullary and cortical NO synthesis and blood flow in the cortex but not the medulla. SRACR did not alter renal medullary or cortical PGE(2); however, addition of INDO, COX inhibitor, caused a concomitant decrease in medullary and cortical PGE(2) synthesis and blood flow. CONCLUSIONS NO is an important endogenous renal vasodilator that, when maintained can help preserve cortical blood flow following SRACR. These data also suggest that avoidance of COX-2 inhibitors can help maintain endogenous renal cortical and medullary PGE(2) synthesis and thus contribute to maintaining normal blood flow. CLINICAL RELEVANCE This study is the first to combine in vivo physiologic assays to simultaneously identify clinically relevant intrarenal vasodilators (cortical and medullary) that are required to maintain microvascular blood flow. Identification of endogenous renal cortical and medullary vasodilators responsible for maintaining renal microvascular blood flow will allow development of treatment strategies to preserve these vasodilators following SRACR. Successful preservation of endogenous intrarenal vasodilators will help maintain renal microvascular blood flow and renal function in the treatment of complex aortic pathology that requires SRACR.
Collapse
Affiliation(s)
- Stuart I Myers
- McGuire Research Institute/McGuire VA Medical Center and Department of Surgery, Virginia Commonwealth University, 23298, USA.
| | | | | | | |
Collapse
|
22
|
Versteilen AMG, Di Maggio F, Leemreis JR, Groeneveld ABJ, Musters RJP, Sipkema P. Molecular mechanisms of acute renal failure following ischemia/reperfusion. Int J Artif Organs 2005; 27:1019-29. [PMID: 15645611 DOI: 10.1177/039139880402701203] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Acute renal failure (ARF) necessitating renal replacement therapy is a common problem associated with high morbidity and mortality in the critically ill. Hypotension, followed by resuscitation, is the most common etiologic factor, mimicked by ischemia/reperfusion (I/R) in animal models. Although knowledge of the pathophysiology of ARF in the course of this condition is increasingly detailed, the intracellular and molecular mechanisms leading to ARF are still incompletely understood. This review aims at describing the role of cellular events and signals, including collapse of the cytoskeleton, mitochondrial and nuclear changes, in mediating cell dysfunction, programmed cell death (apoptosis), necrosis and others. Insight into the molecular pathways in the various elements of the kidney, such as vascular endothelium and smooth muscle and tubular epithelium leading to cell damage upon I/R will, hopefully, open new therapeutic modalities, to mitigate the development of ARF after hypotensive episodes and to promote repair and resumption of renal function once ARF has developed.
Collapse
Affiliation(s)
- A M G Versteilen
- Department of Physiology, Institute for Cardiovascular Research, Vrije Universiteit Medical Centre, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
23
|
Rodriguez-Peña A, Garcia-Criado FJ, Eleno N, Arevalo M, Lopez-Novoa JM. Intrarenal administration of molsidomine, a molecule releasing nitric oxide, reduces renal ischemia-reperfusion injury in rats. Am J Transplant 2004; 4:1605-13. [PMID: 15367215 DOI: 10.1111/j.1600-6143.2004.00560.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ischemia reperfusion (I-R)-induced renal damage is reduced by systemic administration of the NO-dependent vasodilator molsidomine. The aim of this study was to estimate the effect of direct intrarenal molsidomine administration on renal dysfunction and inflammatory reaction after experimental I-R in rats, in order to assess only renal NO effects and to obviate its systemic hemodynamic action. Ischemia was induced by renal pedicle ligation (60 min) followed by reperfusion and contralateral nephrectomy. Molsidomine (4 mg/kg) was infused into the renal artery 15 min before reperfusion and its effects were compared with those of the NO-independent vasodilator hydralazine (2 mg/kg). Survival rates after 7 days were 100% in the sham-operated group and 75% in the I-R rats. Molsidomine treatment almost completely prevented the I-R-induced renal dysfunction, and survival reached 100%. Molsidomine prevented an I-R-induced increase in superoxide anion and reduced plasma levels of pro-inflammatory cytokines (TNF-alpha, IL-1beta and IFN-gamma), whereas it enhanced anti-inflammatory cytokines (IL-6 and IL-10). Inflammatory cell infiltration and cell-adhesion molecules (ICAM-1, PECAM-1, VCAM-1 and P-selectin) were lower in the molsidomine-treated kidneys than in the untreated animals. All these protective effects were not observed after hydralazine administration. In conclusion, intrarenal administration of molsidomine before reperfusion improved renal function and decreased inflammatory responses after I-R.
Collapse
Affiliation(s)
- Ana Rodriguez-Peña
- Instituto Reina Sofía de Investigación Nefrológica, Universidad de Salamanca, Salamanca, Spain
| | | | | | | | | |
Collapse
|
24
|
Poon BY, Raharjo E, Patel KD, Tavener S, Kubes P. Complexity of inducible nitric oxide synthase: cellular source determines benefit versus toxicity. Circulation 2003; 108:1107-12. [PMID: 12925459 DOI: 10.1161/01.cir.0000086321.04702.ac] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Inducible nitric oxide synthase (iNOS) has been shown to have both beneficial and detrimental effects in sepsis. We focused on a single organ, the heart, and used 2 distinct cell types that express iNOS-the cardiac myocyte and the infiltrating neutrophil-to study the distinct functional effects of iNOS derived from heterogeneous cellular sources. METHODS AND RESULTS In the first series of experiments, extravascular neutrophils were exposed to isolated single endotoxemic cardiac myocytes. Adhesion of wild-type neutrophils caused a rapid decrease in myocyte shortening and a concomitant increase in neutrophil-derived intracellular oxidative stress within the myocytes that was not observed with neutrophils from iNOS-deficient animals. We previously demonstrated that neutrophil-derived superoxide was essential for myocyte dysfunction; however, superoxide production was not compromised in the iNOS-deficient neutrophils. Because both superoxide and NO were essential for the neutrophil dysfunction, we probed for but could not detect any peroxynitrite assessed by detection of nitrotyrosine. There was a significant increase in length shortening in response to beta-adrenergic stimulation of wild-type myocytes. Surprisingly, myocyte iNOS activity was essential rather than detrimental for the development of beta-adrenergic receptor-mediated increases in shortening in endotoxemic iNOS-deficient myocytes. CONCLUSIONS These results demonstrate that iNOS, when expressed in isolated cardiac myocytes, can regulate the response to beta-adrenergic stimulation during sepsis. However, as the neutrophils migrate in proximity to myocytes, iNOS now becomes essential for the ability of neutrophils to damage myocytes. These findings demonstrate that cellular source strongly modulates the beneficial and detrimental effect of iNOS.
Collapse
Affiliation(s)
- Betty Y Poon
- Department of Physiology and Biophysics, Cardiovascular, University of Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
25
|
Willgoss DA, Zhang B, Gobé GC, Kadkhodaee M, Endre ZH. Repetitive brief ischemia: intermittent reperfusion during ischemia ameliorates the extent of injury in the perfused kidney. Ren Fail 2003; 25:379-95. [PMID: 12803502 DOI: 10.1081/jdi-120021164] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Acute renal failure commonly follows reduced renal perfusion or ischemia. Reperfusion is essential for recovery but can itself cause functional and structural injury to the kidney. The separate contributions of ischemia and of reperfusion were examined in the isolated perfused rat kidney. Three groups were studied: brief (5 min) ischemia, 20 min ischemia, and repetitive brief ischemia (4 periods of 5 min) with repetitive intervening reperfusion of 5 min. A control group had no intervention, the three ischemia groups were given a baseline perfusion of 30 min before intervention and all groups were perfused for a total of 80 min. In addition, the effects of exogenous *NO from sodium nitroprusside and xanthine oxidase inhibition by allopurinol were assessed in the repetitive brief ischemia-reperfusion model. Brief ischemia produced minimal morphological injury with near normal functional recovery. Repetitive brief ischemia-reperfusion caused less functional and morphological injury than an equivalent single period of ischemia (20 min) suggesting that intermittent reperfusion is less injurious than ischemia alone over the time course of study. Pretreatment with allopurinol improved renal function after repetitive brief ischemia-reperfusion compared with the allopurinol-untreated repetitive brief ischemia-reperfusion group. Similarly, sodium nitroprusside reduced renal vascular resistance but did not improve the glomerular filtration rate or sodium reabsorption in the repetitive brief ischemia-reperfusion model. Thus, these studies show that the duration of uninterrupted ischemia is more critical than reperfusion in determining the extent of renal ischemia-reperfusion injury and that allopurinol, in particular, counteracts the oxidative stress of reperfusion.
Collapse
Affiliation(s)
- Desley A Willgoss
- Department of Medicine, School of Medicine, University of Queensland, Royal Brisbane Hospital, Brisbane, Australia
| | | | | | | | | |
Collapse
|
26
|
Chatterjee PK, Patel NSA, Sivarajah A, Kvale EO, Dugo L, Cuzzocrea S, Brown PAJ, Stewart KN, Mota-Filipe H, Britti D, Yaqoob MM, Thiemermann C. GW274150, a potent and highly selective inhibitor of iNOS, reduces experimental renal ischemia/reperfusion injury. Kidney Int 2003; 63:853-65. [PMID: 12631066 DOI: 10.1046/j.1523-1755.2003.00802.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Generation of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) may contribute to renal ischemia/reperfusion (I/R) injury. The aim of this study was to investigate the effects of GW274150, a novel, highly selective, potent and long-acting inhibitor of iNOS activity in rat and mouse models of renal I/R. METHODS Rats were administered GW274150 (5 mg/kg intravenous bolus administered 30 minutes prior to I/R) and subjected to bilateral renal ischemia (45 minutes) followed by reperfusion (6 hours). Serum and urinary indicators of renal dysfunction, tubular and reperfusion injury were measured, specifically, serum urea, creatinine, aspartate aminotransferase (AST) and N-acetyl-beta-d-glucosaminidase (NAG) enzymuria. In addition, renal sections were used for histologic scoring of renal injury and for immunologic evidence of nitrotyrosine formation and poly [adenosine diphosphate (ADP)-ribose] (PAR). Nitrate levels were measured in rat plasma using the Griess assay. Mice (wild-type, administered 5 mg/kg GW274150, and iNOS-/-) were subjected to bilateral renal ischemia (30 minutes) followed by reperfusion (24 hours) after which renal dysfunction (serum urea, creatinine), renal myeloperoxidase (MPO) activity and malondialdehyde (MDA) levels were measured. RESULTS GW274150, administered prior to I/R, significantly reduced serum urea, serum creatinine, AST, and NAG indicating reduction of renal dysfunction and injury caused by I/R. GW274150 reduced histologic evidence of tubular injury and markedly reduced immunohistochemical evidence of nitrotyrosine and PAR formation, indicating reduced peroxynitrite formation and poly (ADP-ribose) polymerase (PARP) activation, respectively. GW274150 abolished the rise in the plasma levels of nitrate (indicating reduced NO production). GW274150 also reduced the renal dysfunction in wild-type mice to levels similar to that observed in iNOS-/- mice subjected to I/R. Renal MPO activity and MDA levels were significantly reduced in wild-type mice administered GW274150 and iNOS-/- mice subjected to renal I/R, indicating reduced polymorphonuclear leukocyte (PMN) infiltration and lipid peroxidation. CONCLUSIONS These results suggest that (1). an enhanced formation of NO by iNOS contributes to the pathophysiology of renal I/R injury and (2). GW274150 reduces I/R injury of the kidney. We propose that selective inhibitors of iNOS activity may be useful against renal dysfunction and injury associated with I/R of the kidney.
Collapse
Affiliation(s)
- Prabal K Chatterjee
- Department of Experimental Medicine and Nephrology, The William Harvey Research Institute, Queen Mary, University of London, Charterhouse Square, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Nephrotoxicity is a major side effect in clinical practice, frequently leading to acute renal failure (ARF). Many physiological mechanisms have been implicated in drug-induced renal injury. Currently, nitric oxide (NO) is considered to be an important regulator of renal vascular tone and a modulator of glomerular function under both basal and physiopathological conditions. Historically, NO has been implicated in ARF and, after its discovery, several publications have suggested that changes in NO production could play an important role in the hemodynamic alterations observed in ARF. In this review, we evaluate the participation of NO in ARF and summarize many of the findings in this research area in an attempt to elucidate the role of NO in ARF.
Collapse
Affiliation(s)
- José M Valdivielso
- Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego and Veteran Affairs Medical Center, 92161 San Diego, CA, USA.
| | | |
Collapse
|
28
|
Casanova D, Correas M, Moran JL, Salas E, Amado JA, Garcia Unzueta MT, Berrazueta JR. Nitric oxide in cold and warm ischemia reperfusion renal transplantation. Transplant Proc 2002; 34:45-46. [PMID: 11959178 DOI: 10.1016/s0041-1345(01)02659-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- D Casanova
- Department of Surgery, Hospital Valdecilla, University of Cantabria, Santander, Spain
| | | | | | | | | | | | | |
Collapse
|
29
|
Nijveldt RJ, Prins HA, van Kemenade FJ, Teerlink T, van Lambalgen AA, Boelens PG, Rauwerda JA, van Leeuwen PA. Low arginine plasma levels do not aggravate renal blood flow after experimental renal ischaemia/reperfusion. Eur J Vasc Endovasc Surg 2001; 22:232-9. [PMID: 11506516 DOI: 10.1053/ejvs.2001.1444] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Ischaemic renal dysfunction is present in many clinical settings, including cardiovascular surgery. Renal hypoperfusion seems to be the most important pathophysiologic mechanism. Arginine plasma levels are rate limiting for NO synthesis, and low arginine plasma levels are seen after major vascular surgery. OBJECTIVE to establish the effects of low arginine plasma levels on renal blood flow after renal ischaemia/reperfusion. DESIGN Wistar rats were used in this unilateral renal ischaemia/reperfusion model. After 70 min of ischaemia, the kidney was reperfused for 150 min. Arginase infusion was used to lower arginine plasma levels. Blood flow measurement was performed at the end of the experiment using radiolabelled microspheres. Additional experiments were performed for histopathology. RESULTS Arginase efficiently decreased arginine plasma levels to about 50% of normal. There was a lower blood flow in the ischaemic kidney than the contralateral (non-ischaemic) kidney. Lowering arginine plasma levels did not reduce renal blood flow in the ischaemic kidney. Renal histopathology was not influenced by lowered arginine plasma levels. CONCLUSIONS Lowering arginine plasma levels did not affect blood flow or histology following renal ischaemia and reperfusion.
Collapse
Affiliation(s)
- R J Nijveldt
- Department of Surgery, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Weight SC, Waller JR, Bradley V, Whiting PH, Nicholson ML. Interaction of eicosanoids and nitric oxide in renal reperfusion injury. Transplantation 2001; 72:614-9. [PMID: 11544419 DOI: 10.1097/00007890-200108270-00009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Both the eicosanoids and nitric oxide are known to play an important role in the pathogenesis of postischemic injury. Recent evidence has suggested that the generation of each may affect the other via a feedback loop. This was investigated in an experimental model of renal warm ischemia reperfusion injury. METHODS Rats underwent bilateral renal warm ischemia (15-60 min) then reperfusion (20 or 80 min) followed by a unilateral nephrectomy to measure renal nitric oxide (as nitroxides) and eicosanoids. Renal function was measured on days 2 and 7 prior to terminal nephrectomy for tissue analysis. RESULTS Vasodilator eicosanoids (6-KPGF1alpha and PGE2) fell on reperfusion in line with the duration of warm ischemia with a concomitant rise in the vasoconstrictor TxA2. The ratio of vasodilator to vasoconstrictor eicosanoids fell from 8.22 (2.3) in the control to 0.82 (0.1) in the 60-min warm ischemia group (P<0.01). Renal levels of nitroxides rose on reperfusion demonstrating an inverse correlation with the eicosanoid ratio (r2=0.86). Renal function was impaired at both day 2 and day 7 and showed a positive correlation with the eicosanoid ratio (r2=0.67 and 0.62, respectively). CONCLUSIONS Renal warm ischemic injury is associated with a progressive fall in the ratio of vasodilator-to-vasoconstrictor eicosanoids from early in reperfusion through to day seven although nitric oxide was elevated throughout the same period. There was no evidence of coinduction of nitric oxide synthase and cyclooxygenase in this model.
Collapse
Affiliation(s)
- S C Weight
- University Department of Surgery, Leicester General Hospital, UK
| | | | | | | | | |
Collapse
|
31
|
Valdivielso JM, Crespo C, Alonso JR, Martínez-Salgado C, Eleno N, Arévalo M, Pérez-Barriocanal F, López-Novoa JM. Renal ischemia in the rat stimulates glomerular nitric oxide synthesis. Am J Physiol Regul Integr Comp Physiol 2001; 280:R771-9. [PMID: 11171657 DOI: 10.1152/ajpregu.2001.280.3.r771] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Renal ischemia in humans and in experimental animals is associated with a complex and possibly interrelated series of events. In this study, we have investigated the glomerular nitric oxide (NO) production after renal ischemia. Unilateral or bilateral renal ischemia was induced in Wistar rats by clamping one or both renal arteries. NO production was assessed by measuring glomerular production of nitrite, a stable end product of NO catabolism, and NO-dependent glomerular cGMP production and by assessing the glomerular NADPH diaphorase (ND) activity, an enzymatic activity that colocalizes with NO-synthesis activity. Furthermore, we determined the isoform of NO synthase (NOS) implicated in NO synthesis by Western blot and immunohistochemistry. Glomeruli from rats with bilateral ischemia showed elevated glomerular nitrite and cGMP production. Besides, glomeruli from this group of rats showed an increased ND activity, whereas glomeruli from the ischemic and nonischemic rats with unilateral ischemia did not show this increase in nitrite, cGMP, and ND activity. In addition, glomeruli from ischemic kidneys showed an increased expression of endothelial NOS without changes in the inducible isoform. Addition of L-NAME in the drinking water induced a higher increase in the severity of the functional and structural damage in rats with bilateral ischemia than in rats with unilateral ischemia and in sham-operated animals. We can conclude that after renal ischemia, there is an increased glomerular NO synthesis subsequent to an activation of endothelial NOS that plays a protective role in the renal damage induced by ischemia and reperfusion.
Collapse
Affiliation(s)
- J M Valdivielso
- Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, 37007 Salamanca, Spain
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Nagura M, Iwasaki S, Mizuta K, Mineta H, Umemura K, Hoshino T. Role of nitric oxide in focal microcirculation disorder of guinea pig cochlea. Hear Res 2001; 153:7-13. [PMID: 11223292 DOI: 10.1016/s0378-5955(00)00250-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This study was designed to evaluate the role of endogenous nitric oxide (NO) in focal microcirculation disorder of the guinea pig cochlea. Focal microcirculation disorder was induced by a photochemical reaction at the lateral wall of the second cochlear turn. Saline or N omega-nitro-L-arginine methyl ester (L-NAME) was administered before the onset of photochemical reaction. Cochlear blood flow (CBF) was measured at the focal lesion (ischemic core), 1 mm from the lesion in the apical and basal direction (ischemic border zone) by using a novel non-contact laser blood flowmeter. NO synthase activities were measured by radioenzymeassay. In the saline pretreatment group, CBF was significantly decreased to 58.8+/-4.4% of the baseline at the ischemic core 30 min after the onset of photochemical reaction (P<0.01), while CBF showed no significant change at the ischemic border zone. In the L-NAME pretreatment group, CBF was significantly decreased not only at the focal lesion (48.3+/-6.5%, P<0.01), but also at the ischemic border zone (apical, 49.3+/-2.3%, P<0.05; basal, 58.7+/-7.1%, P<0.05, respectively). NO synthase III activity of cochlea was increased significantly (P<0.01) 15 min after microcirculation disorder. These findings suggest that formation of endogenous NO plays a key role in the maintenance of CBF in acute focal cochlear microcirculation disorder.
Collapse
Affiliation(s)
- M Nagura
- Department of Otolaryngology, Hamamatsu University School of Medicine, Japan.
| | | | | | | | | | | |
Collapse
|
33
|
Martinez-Mier G, Toledo-Pereyra LH, Bussell S, Gauvin J, Vercruysse G, Arab A, Harkema JR, Jordan JA, Ward PA. Nitric oxide diminishes apoptosis and p53 gene expression after renal ischemia and reperfusion injury. Transplantation 2000; 70:1431-7. [PMID: 11118085 DOI: 10.1097/00007890-200011270-00006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND The role of nitric oxide in the ischemic injury of the kidney is still controversial. The aim of this study was to reevaluate the beneficial effect of exogenous nitric oxide and define its effects as regulator of gene p53 expression and apoptosis in the ischemic renal injury. METHODS Sprague-Dawley rats were subjected to 75 min of renal warm ischemia and contralateral nephrectomy. The animals were divided into six groups (n=6 per group): Two sham groups at 4 and 24 hr, two ischemic control (IC) at same times and two treated groups (Na-NP), studied at same intervals, where sodium nitroprusside (5 mg/kg) was given 15 min before reperfusion. The parameters evaluated included: serum creatinine, blood urea nitrogen, neutrophil infiltration determined by myeloperoxidase, gene p53 expression determined by reverse transcriptase polymerase chain reaction, apoptosis determined by peroxidase in situ technique and light histology. RESULTS There were significant improvements in serum creatinine and blood urea nitrogen at 24 hr in the NA-NP group when compared with the IC group (P<0.05). Myeloperoxidase levels were higher in the IC when evaluated against the Na-NP groups. Na-NP exhibited a downregulating effect in the expression of gene p53 when compared to the IC group. Apoptosis was more evident in the IC group and had moderately increased histological damage when compared to the Na-NP group. CONCLUSIONS Nitric oxide demonstrated a protective effect in the ischemic injury of the kidney and exerted an antiapoptotic action dowregulating the expression of gene p53.
Collapse
Affiliation(s)
- G Martinez-Mier
- Department of Surgery Research Sciences and Molecular Biology, Borgess Research Institute, Kalamazoo, MI 49001, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Jefayri MK, Grace PA, Mathie RT. Attenuation of reperfusion injury by renal ischaemic preconditioning: the role of nitric oxide. BJU Int 2000; 85:1007-13. [PMID: 10848685 DOI: 10.1046/j.1464-410x.2000.00678.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE To determine the effect on nitric oxide (NO) release and renal NO synthase (endothelial, eNOS and inducible, iNOS) activity of renal ischaemia-reperfusion (I/R) in vivo in an animal model, and to examine the possible involvement of NO in ischaemic preconditioning (IP) of the kidney. MATERIALS AND METHODS In a right-nephrectomized rat model, 42 animals were randomized in four groups: controls; IP-only (4 min of ischaemia followed by 11 min of reperfusion, total of four cycles); renal warm ischaemia (45 min) and 6 h reperfusion; ischaemia (45 min) preceded by IP pretreatment. Serum NO metabolites were assayed 2 and 6 h after ischaemia or the control equivalent. NOS expression in the kidney was detected immuno-histochemically, and damage assessed morphologically in sections stained with haematoxylin and eosin. Kidney function was assessed by the levels of serum creatinine, urea and electrolytes. RESULTS Compared with before ischaemia, the concentration of serum NO metabolites at 6 h was increased in the IP-only animals (P = 0. 016) and in the IP + I/R group (P = 0.002). There was greater eNOS expression in the IP-only group (P = 0.009) and in the IP + I/R group than in controls (P = 0.050). iNOS expression was greater in the IP-only animals than in the control group (P = 0.050). Histological assessment showed less evidence of cellular damage in IP + I/R animals than in the I/R-alone group (P = 0.020). Serum creatinine level was not significantly different between the IP-only group and the control. There were no differences after 2 h of reperfusion. CONCLUSION Ischaemic preconditioning has a protective effect on renal structure and function, which may be produced by increased NO release arising from increased NOS expression by 6 h after reperfusion.
Collapse
Affiliation(s)
- M K Jefayri
- Division of Surgery, Anaesthetics and Intensive Care, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | | | | |
Collapse
|
35
|
Weight SC, Furness PN, Nicholson ML. Biphasic role for nitric oxide in experimental renal warm ischaemia-reperfusion injury. Br J Surg 1999; 86:1039-46. [PMID: 10460640 DOI: 10.1046/j.1365-2168.1999.01162.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Whilst nitric oxide has a clearly defined role in renal haemostasis, debate continues over its pathophysiology. This study investigated the function of nitric oxide in a model of renal warm ischaemia-reperfusion injury. METHODS Rats underwent bilateral renal warm ischaemia (45 min) after pretreatment with nitric oxide donors, nitric oxide synthase (NOS) inhibitors or saline (control). Following reperfusion (20 min) a unilateral nephrectomy was performed to measure renal nitric oxide (as nitroxides) and oxidative DNA and protein damage. Renal function was measured on days 2 and 7 before terminal nephrectomy for analysis and morphology. RESULTS The increase in renal nitric oxide level seen early in reperfusion (20 min) (P < 0.01) was prevented by inhibition of constitutive (cNOS) but not inducible (iNOS) NOS. The increase in oxidative damage (P < 0.01) was exacerbated by nitric oxide donors (P < 0.01) but ameliorated by NOS inhibition (P < 0.01). Control nitric oxide remained increased through to day 7 (P < 0.01) but was reduced by nitric oxide donors and cNOS inhibitors (P < 0.05). Oxidative damage returned towards normal in the control group, whereas both DNA and protein damage persisted following NOS inhibition (P < 0.01). CONCLUSION Inhibition of the postischaemic increase in the level of nitric oxide was associated with an early decrease in, but eventual exacerbation of, oxidative damage. This suggests the prolonged increase in renal nitric oxide concentration was cytoprotective overall.
Collapse
Affiliation(s)
- S C Weight
- University Department of Surgery, Leicester General Hospital, Leicester LE5 4PW, UK
| | | | | |
Collapse
|
36
|
Pararajasingam R, Weight SC, Bell PR, Nicholson ML, Sayers RD. Endogenous renal nitric oxide metabolism following experimental infrarenal aortic cross-clamp-induced ischaemia-reperfusion injury. Br J Surg 1999; 86:795-9. [PMID: 10383581 DOI: 10.1046/j.1365-2168.1999.01130.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Abdominal aortic surgery is associated with marked changes in renal haemodynamics. The aim of this study was to investigate the influence of infrarenal cross-clamping on glomerular filtration rate and endogenous renal nitric oxide metabolism. METHODS Groups of male Wistar rats were subjected to infrarenal aortic cross-clamping followed by reperfusion. Animals were allowed to recover after a left nephrectomy. The glomerular filtration rate of the remaining kidney was measured on the second and seventh day after the procedure before the animal was killed and the remaining kidney harvested. Total nitric oxide synthase (NOS) activity and expression of inducible NOS (iNOS) was determined in renal tissue following 1 h and 7 days of reperfusion. RESULTS Glomerular filtration rate was impaired on the second and seventh day after operation in all animals subjected to lower torso ischaemia compared with controls (P < 0.05). Renal NOS activity was increased at 1 h and 7 days in animals subjected to infrarenal cross-clamping compared to controls (P < 0.01). iNOS was detected in renal tissue of animals subjected to infrarenal aortic cross-clamping on the seventh day after operation. CONCLUSION Infrarenal aortic cross-clamping is associated with impairment of renal function in the early postoperative period. There is an increase in endogenous renal nitric oxide metabolism with iNOS expression. Presented in part to the Surgical Research Society, Dublin, Ireland, July 1998
Collapse
Affiliation(s)
- R Pararajasingam
- University Department of Surgery, Leicester General Hospital, UK
| | | | | | | | | |
Collapse
|
37
|
Weight SC, Furness PN, Nicholson ML. Nitric oxide generation is increased in experimental renal warm ischaemia-reperfusion injury. Br J Surg 1998; 85:1663-8. [PMID: 9876071 DOI: 10.1046/j.1365-2168.1998.00960.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Nitric oxide has a clearly defined place in normal renal homoeostasis while there is a continuing debate as to its role under pathophysiological conditions. This study investigated the role of nitric oxide in a model of renal warm ischaemia-reperfusion injury. METHODS Groups of rats underwent bilateral renal warm ischaemia (for 15-60 min) followed by reperfusion (20 or 80 min) before unilateral nephrectomy for measurement of renal nitric oxide (as nitroxides) and oxidative damage. Renal function was measured on days 2 and 7 before killing and nephrectomy. A further group received the nitric oxide synthase inhibitor N(G)-nitro L-arginine methyl ester (L-NAME; 50 mg per kg body-weight) before induction of warm ischaemia. RESULTS In early reperfusion there was a correlation between the duration of warm ischaemia (15-45 min) and renal nitrate (r2=0.97) which increased from a mean(s.e.m.) baseline value of 95(5.9) to 208(17.3) nmol per mg protein following 45 min of warm ischaemia. Levels were further raised at 80 min and maintained through to day 7 (241(12.5) nmol per mg protein in 45-min group). This rise was attenuated by L-NAME (P< 0.01) as was the early rise in oxidative damage seen otherwise. By day 7, however, oxidative damage was increased (all P< or = 0.01). CONCLUSION Renal nitric oxide increased early in recoverable warm ischaemia-reperfusion injury and remained raised to day 7. Nitric oxide synthase inhibition ameliorated early but exacerbated late damage suggesting that the early burst of nitric oxide is cytotoxic but that overall nitric oxide may exert a cytoprotective effect.
Collapse
Affiliation(s)
- S C Weight
- University Department of Surgery, Leicester General Hospital, UK
| | | | | |
Collapse
|
38
|
Garcia-Criado FJ, Eleno N, Santos-Benito F, Valdunciel JJ, Reverte M, Lozano-Sánchez FS, Ludeña MD, Gomez-Alonso A, López-Novoa JM. Protective effect of exogenous nitric oxide on the renal function and inflammatory response in a model of ischemia-reperfusion. Transplantation 1998; 66:982-90. [PMID: 9808479 DOI: 10.1097/00007890-199810270-00003] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Tissue subjected to a period of ischemia undergoes morphological and functional damage that increases during the reperfusion phase. The aim of the present work was to assess the possible improvement induced by exogenous administration of nitric oxide (NO) on renal injury and inflammatory reaction in an experimental animal model of renal ischemia-reperfusion (I-R). METHODS Ischemia was achieved by ligation of the left arteria and vein for 60 min, followed first by contralateral nephrectomy and then reestablishment of blood flow. Molsidomine, used as an NO donor, was administered by systemic injection 30 min before reperfusion. The effect of molsidomine was compared with the effect of hydralazine, a non-NO donor hypotensive agent. RESULTS Treatment with molsidomine improved the renal dysfunction (increase in plasma creatinine and urea levels) caused by I-R. Moreover, molsidomine blunted the enhanced production of proinflammatory cytokines (tumor necrosis factor [TNF]-alpha and interleukin [IL] 1alpha), the increase in tissular levels of superoxide anions and oxygen free radical scavengers, and the neutrophilic infiltration observed in the ischemic kidney. One hundred percent survival was achieved in the group of animals treated with the NO donor, whereas the groups of animals undergoing I-R that did not receive molsidomine showed a 40% mortality from the second day after reperfusion. CONCLUSIONS The present work demonstrated that systemic treatment with an NO donor before reperfusion improved renal function and diminished inflammatory responses in a kidney subjected to an I-R process.
Collapse
|
39
|
Abstract
BACKGROUND Nitric oxide (NO) is a ubiquitous molecule with a role in both normal homeostasis and pathophysiological processes. However, the role it plays in renal ischaemia reperfusion injury is matter of some contention. METHOD AND RESULTS This paper précis the biology and biosynthesis of NO before concentrating on the function of NO in renal ischaemia reperfusion injury. What emerges is a picture of some clarity about the normal physiological role of NO but some discord regarding the generation and function of postischaemic nitric oxide. Some of the reasons for this are explored in more detail. CONCLUSIONS Clarity on the precise effect of postischaemic NO will remain elusive without the in vivo measurement of NO in experimental models.
Collapse
Affiliation(s)
- S C Weight
- University Department of Surgery, Leicester General Hospital, U.K
| | | |
Collapse
|
40
|
Salom MG, Ramírez P, Carbonell LF, López Conesa E, Cartagena J, Quesada T, Parrilla P, Fenoy FJ. Protective effect of N-acetyl-L-cysteine on the renal failure induced by inferior vena cava occlusion. Transplantation 1998; 65:1315-21. [PMID: 9625012 DOI: 10.1097/00007890-199805270-00006] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Renal ischemia is produced during orthotopic liver transplantation when the inferior vena cava is clamped above the renal veins (inferior vena cava occlusion [IVCO]), and it often leads to postoperative renal failure. Although free radicals and nitric oxide (NO) have been implicated in the pathogenesis of ischemic renal failure, the effect of free radical scavengers in this model is unknown. METHODS The effects of N-acetyl-L-cysteine (NAC), a free radical scavenger, on the acute renal failure that follows IVCO were evaluated in pentobarbital-anesthetized dogs. The effect of NO synthesis inhibition with NG-nitro-L-arginine methyl ester (NAME) was also studied. Renal vascular endothelial function was tested by infusing acetylcholine (Ach) into the renal artery before the ischemia and during reperfusion. RESULTS Renal failure developed during IVCO and persisted during reperfusion in all groups. However, in NAC-pretreated dogs, the glomerular filtration rate recovered progressively, reaching 31% of basal preischemic values 150 min after reperfusion. During reperfusion, fractional excretion of sodium increased above preischemic values only in the control group, which indicates a beneficial effect of NAC and NAME on the tubular dysfunction observed during reperfusion. The renal response to Ach was abolished in control dogs and in animals given NAME during reperfusion, which indicates endothelial dysfunction. However, in NAC-pretreated dogs, the renal response to Ach was preserved during reperfusion. CONCLUSIONS These results demonstrate that NAC ameliorates the renal failure and renal endothelial dysfunction induced by IVCO. This protective effect was abolished by NAME, which suggests that NO is involved in the beneficial effects of NAC. These data also suggest that the use of NAC could be beneficial in ameliorating the acute renal failure observed after orthotopic liver transplantation.
Collapse
Affiliation(s)
- M G Salom
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Murcia, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Paller MS, Weber K, Patten M. Nitric oxide-mediated renal epithelial cell injury during hypoxia and reoxygenation. Ren Fail 1998; 20:459-69. [PMID: 9606734 DOI: 10.3109/08860229809045135] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The potent endothelial-derived vasodilator nitric oxide (NO) has been identified as a protective agent in acute renal failure. However, some recent studies have suggested a detrimental effect of NO on rat proximal tubules exposed to hypoxia and reoxygenation. We determined whether NO metabolites cause intracellular oxidation during hypoxia and reoxygenation and whether this oxidative stress is linked to irreversible cell injury. Primary cultures of rat proximal tubular epithelial cells were studied in a subconfluent stage and subjected to 60 min hypoxia and 30 min reoxygenation. Intracellular oxidation was assessed by monitoring the conversion of nonfluorescent dihydrorhodamine 123 (DHR) to fluorescent rhodamine 123 as a probe for the long-lived oxidant peroxynitrite. Hypoxia and reoxygenation produced a marked increase in cellular generation of oxidant species. Intracellular oxidation of DHR was reduced by approximately 40% when cells were also exposed to the NO synthase inhibitor L-NAME. Oxidation of DHR following hypoxia and reoxygenation was not affected by SOD or DMTU. A combination of SOD and L-NAME was no more effective than L-NAME alone. Hypoxia and reoxygenation produced substantial injury (as LDH release). There was a 40% reduction in LDH release when cells were pretreated with a NO synthase inhibitor. In summary, increased generation of NO capable of inducing intracellular oxidizing reactions and cell death occurred during renal hypoxia and reoxygenation.
Collapse
Affiliation(s)
- M S Paller
- Department of Medicine, University of Minnesota, Minneapolis 55455, USA.
| | | | | |
Collapse
|
42
|
Hansen TN, D'Alessandro A, Southard JH. Long-term cold ischemia reduces nitric oxide metabolism in reperfused rabbit kidneys. Transplant Proc 1997; 29:3417-9. [PMID: 9414771 DOI: 10.1016/s0041-1345(97)00961-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- T N Hansen
- Department of Surgery, University of Wisconsin, Madison 53792, USA
| | | | | |
Collapse
|
43
|
Abstract
Shock can be defined as the failure of the circulatory system to provide necessary cellular nutrients, including oxygen, and to remove metabolic wastes. Although it is now recognized that more than 100 different forms of shock exist, this recognition is more a reflection of the widespread use of the term to describe a variety of disease states. For the purpose of this monograph, we concentrate on various forms of cardiovascular shock, in particular, shock that may be linked to inappropriate vasodilation from overproduction of the endogenous vasodilator, nitric oxide. Some forms of shock have been extensively studied, and convincing evidence exists for the role of nitric oxide. Other disease states have been less well characterized in terms of their association with excess nitric oxide production. Available evidence of a role for nitric oxide is discussed in the hope of stimulating the interest of investigators to explore these areas more thoroughly.
Collapse
Affiliation(s)
- R G Kilbourn
- Department of Oncology/Hematology, Rush-Presbyterian-St. Luke's Medical Center, Chicago, Illinois, USA
| | | | | |
Collapse
|
44
|
Shoskes DA, Xie Y, Gonzalez-Cadavid NF. Nitric oxide synthase activity in renal ischemia-reperfusion injury in the rat: implications for renal transplantation. Transplantation 1997; 63:495-500. [PMID: 9047140 DOI: 10.1097/00007890-199702270-00002] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cadaveric kidney transplants with delayed graft function have poorer graft survival by an unknown mechanism. Nitric oxide, produced by nitric oxide synthase (NOS), has a proven role in both recovery of ischemia and promotion of rejection. We therefore wished to study the patterns of NOS activity in a model of renal ischemia. The left renal pedicle of Fisher rats was occluded for 1 hr. Both kidneys were removed at various times and frozen. Renal NOS activity was measured by conversion of [3H]arginine to [3H]citrulline and the content of endothelial NOS isoenzyme (eNOS) was compared by Western blot. NOS activity increased significantly in the left ischemic kidney over the first 24 hr, from a control of 33.8 pmol/min/mg to 79.8 at 2 hr and 56.8 at 24 hr. NOS activity then dropped below baseline, returning to near normal levels at day 21. eNOS content was stimulated over the entire time course, consistent with the presence of an eNOS inhibitor. Oral treatment with the NOS substrate L-arginine at 5 g/L significantly hastened the return of serum creatinine to baseline, if simultaneous contralateral nephrectomy was performed. The lazaroid U74389G given perioperatively also improved renal function and hastened recovery of NOS activity. Because nitric oxide plays an important role in maintaining blood flow during recovery from renal ischemia, the observed decrease in NOS activity may be prevented by perioperative treatment with oral L-arginine and corticosteroids. In addition, U74389G may provide a clinically useful method of minimizing and/or shortening DGF, thereby improving graft function and survival.
Collapse
Affiliation(s)
- D A Shoskes
- Department of Surgery, Harbor-UCLA Medical Center, UCLA School of Medicine, Torrance, California 90509, USA
| | | | | |
Collapse
|
45
|
Caramelo C, Espinosa G, Manzarbeitia F, Cernadas MR, Pérez Tejerizo G, Tan D, Mosquera JR, Digiuni E, Montón M, Millás I, Hernando L, Casado S, López-Farré A. Role of endothelium-related mechanisms in the pathophysiology of renal ischemia/reperfusion in normal rabbits. Circ Res 1996; 79:1031-8. [PMID: 8888696 DOI: 10.1161/01.res.79.5.1031] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The present study addressed the effect of interventions aimed to increase NO in the setting of acute renal ischemia/reperfusion (I/R) in uninephrectomized rabbits. In the 60-minute post-I/R period, L-arginine+superoxide (O2.-) dismutase (SOD) synergistically improved the renal functional (69.4% versus 10.4% of the pre-I/R glomerular filtration rate with or without L-arginine+SOD, respectively; p < .01) and histological parameters (82.9% decrease of medullary congestion in L-arginine+SOD, P < .01 versus vehicle) and blocked the I/R-dependent neutrophil accumulation (89.3% reduction). In spite of these results over the short term, a second set of experiments disclosed that the protection by L-arginine+SOD was no longer present at 24 and 48 hours (plasma creatinine in vehicle-treated versus L-arginine+SOD-treated animals [mg/100 mL]: 24 hours after I/R, 9.4 +/- 1.9 versus 8.07 +/- 0.65; 48 hours after I/R, 11.6 +/- 3.6 versus 9.7 +/- 0.9; P = NS in all the cases). Additional experiments were conducted using a milder 30-minute ischemic model, which showed no significant functional or histological protection by using L-arginine+SOD. In conclusion, our experiments disclosed the following: (1) the critical importance of the interaction between NO and O2.- in the acute protective effect of L-arginine (this effect not only improved renal function and histology but also reduced neutrophil accumulation) and (2) the discordance existing between the immediate protection afforded by L-arginine+SOD and the lack of protection observed at 24 and 48 hours. This finding suggests that a punctual intervention on the NO system at the time of I/R is not sufficient to reduce renal damage over the long term.
Collapse
Affiliation(s)
- C Caramelo
- Laboratorio de Nefrología e Hipertensión, Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Goor Y, Peer G, Iaina A, Blum M, Wollman Y, Chernihovsky T, Silverberg D, Cabili S. Nitric oxide in ischaemic acute renal failure of streptozotocin diabetic rats. Diabetologia 1996; 39:1036-40. [PMID: 8877286 DOI: 10.1007/bf00400651] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Changes in nitric oxide (NO) levels were determined in ischaemic acute renal failure in streptozotocin-induced diabetes mellitus rats. Two weeks after streptozotocin administration and immediately after right nephrectomy, the left renal artery was occluded for 60 min. Similar procedures were carried out in non-diabetic rats. The nitrite (NO2) + nitrate (NO3) levels were measured in plasma and urine. The effects of chronic oral supplementation with L-arginine and an NO synthase inhibitor (N-omega-nitro-L-arginine) were also studied in both diabetic and non-diabetic rats before and after renal artery clamping. The rats with diabetic acute renal failure had a much lower creatinine clearance (90 +/- 22 microliters.min-1. 100g body weight-1, p < 0.005), and higher fractional excretion of sodium (FENa)% (10.90 +/- 4.2, p < 0.001) and protein excretion (2078 +/- 69 micrograms/ml creatinine clearance, p < 0.001) compared with the respective values in the non-diabetic groups (163 +/- 30; 1.46 +/- 86; 453.3 +/- 31). The plasma and urine NO2 + NO3 levels were significantly higher in the untreated diabetic rats compared with the untreated normal rats before ischaemia (p < 0.001). The ischaemic acute renal failure in non-diabetic rats increased the plasma and urinary NO2 + NO3 excretion after ischaemia. The urinary excretion of these metabolites decreased significantly and their plasma levels remained unchanged in the ischaemic diabetic rats. The L-arginine administration resulted in a small but significantly higher creatinine clearance after clamping in the non-diabetic rats. The NO synthase inhibitor caused deterioration in renal function in all ischaemic and non-ischaemic groups. In summary, the greater vulnerability to ischaemia of the diabetic kidney seems to be associated with both impaired response to and impaired production of NO.
Collapse
Affiliation(s)
- Y Goor
- Department of Internal Medicine, Tel Aviv Medical Center, Israel
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Ischaemia-reperfusion injury is a complex interrelated sequence of events that classically involves the vascular endothelium and activated leucocytes. During the ischaemic phase the endothelium is primed both to produce free radicals and to secrete chemoattractants. The resultant neutrophil sequestration serves to amplify the injury, but damage is not confined to the postischaemic area and more generalized effects typically follow. The situation in the kidney is complex for, while ischaemia primes the tissue for reperfusion damage, it also causes early and irreversible tubular injury. Furthermore, it appears that relatively less importance should be attached to the involvement of neutrophils than at other sites, and relatively more to a local postischaemic imbalance in the levels of nitric oxide and endothelin. Despite a greater understanding of the pathogenesis of ischaemia-reperfusion injury, effective treatment remains elusive and research is hampered by apparent species and organ-specific differences.
Collapse
Affiliation(s)
- S C Weight
- Department of Surgery, Leicester General Hospital, UK
| | | | | |
Collapse
|
48
|
Myers SI, Tumage RH, Kadesky KM, Seelig AR, Bartula L. Endotoxic shock after long-term resuscitation of hemorrhage/reperfusion injury decreased splanchnic blood flow and eicosanoid release. Ann Surg 1996; 224:213-8. [PMID: 8757386 PMCID: PMC1235344 DOI: 10.1097/00000658-199608000-00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The authors examine the hypothesis that hemorrhage/reperfusion injury predisposes the splanchnic bed to decreased prostacyclin (PGl2) release and blood flow after subsequent endotoxin challenge. SUMMARY BACKGROUND DATA Prostacyclin is a potent vasodilator that has been demonstrated to be an important regulator of splanchnic blood flow. Previous studies have demonstrated that during resuscitation from severe hemorrhage, there is a marked reduction in intestinal PGl2 levels, which is associated with reduced splanchnic perfusion. METHODS Anesthetized Sprague-Dawley rats underwent hemorrhage to a mean arterial pressure of 30 mmHg for 30 minutes followed by the reinfusion of shed blood. Then the animals were maintained on total parenteral nutrition (TPN) for 10 days, after which time they received 20 mg/kg Escherichia coli endotoxin intraperitoneally. Aortic and superior mesenteric artery (SMA) blood flow was monitored with a Doppler flow probe. The splanchnic bed was excised and perfused in vitro for measurement of venous effluent eicosanoid concentrations. Controls consisted of animals that received TPN and endotoxin but did not undergo hemorrhage and resuscitation (sham). RESULTS Total parenteral nutrition support of sham animals followed by endotoxin challenge did not alter splanchnic eicosanoid release or blood flow. Hemorrhage/reperfusion animals supported by long-term TPN and challenged with endotoxin demonstrated a threefold decrease in splanchnic prostacyclin metabolite (6-keto-PGF1 alpha) release and a 50% decrease in SMA blood flow. CONCLUSIONS Hemorrhage/reperfusion injury predisposes the splanchnic bed from rats sustained with long-term TPN to decreased release of PGl2 and SMA blood flow when challenged with endotoxin as a second injury.
Collapse
Affiliation(s)
- S I Myers
- Department of Surgery, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
49
|
Myers SI, Seelig AR, Turnage RH. Long-term resuscitation of hemorrhage/reperfusion injury (H/R) stimulates renal PGE2 release. Prostaglandins Leukot Essent Fatty Acids 1996; 54:335-9. [PMID: 8832762 DOI: 10.1016/s0952-3278(96)90047-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study examines the hypothesis that long-term resuscitation with hyperalimentation (TPN) following acute hemorrhage/reperfusion (H/R) injury stimulates renal release of PGE2. Male Sprague-Dawley rats were anesthetized and subjected to sham or hemorrhage to 30 mmHg for 30 min followed by reperfusion. All rats were placed on TPN for 5 days, then underwent laparotomy for in vivo renal artery and aortic blood flow for 60 min. The kidney was perfused in vitro with Krebs-Henseleit buffer at 3 ml/min (pH 7.4, 37 degrees C) and venous effluent was collected for analysis of PGE2, 6-keto-PGF1 alpha and thromboxane B2 by EIA. Hemorrhage/reperfusion followed by TPN for 5 days increased renal PGE2 2-fold and decreased in vivo renal artery blood flow by 50% compared to the sham group. Hemorrhage/reperfusion followed by TPN did not alter release of the other eicosanoids measured. These data suggest that the kidney has a limited capacity to maintain renal blood flow by increasing release of PGE2 when the animal is subjected to long-term resuscitation with TPN following mild hemorrhage/reperfusion injury.
Collapse
Affiliation(s)
- S I Myers
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, USA
| | | | | |
Collapse
|
50
|
|