1
|
Mohammadi S, Yang L, Bulbert M, Rowland HM. Defence mitigation by predators of chemically defended prey integrated over the predation sequence and across biological levels with a focus on cardiotonic steroids. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220363. [PMID: 36133149 PMCID: PMC9449480 DOI: 10.1098/rsos.220363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/17/2022] [Indexed: 05/10/2023]
Abstract
Predator-prey interactions have long served as models for the investigation of adaptation and fitness in natural environments. Anti-predator defences such as mimicry and camouflage provide some of the best examples of evolution. Predators, in turn, have evolved sensory systems, cognitive abilities and physiological resistance to prey defences. In contrast to prey defences which have been reviewed extensively, the evolution of predator counter-strategies has received less attention. To gain a comprehensive view of how prey defences can influence the evolution of predator counter-strategies, it is essential to investigate how and when selection can operate. In this review we evaluate how predators overcome prey defences during (i) encounter, (ii) detection, (iii) identification, (iv) approach, (v) subjugation, and (vi) consumption. We focus on prey that are protected by cardiotonic steroids (CTS)-defensive compounds that are found in a wide range of taxa, and that have a specific physiological target. In this system, coevolution is well characterized between specialist insect herbivores and their host plants but evidence for coevolution between CTS-defended prey and their predators has received less attention. Using the predation sequence framework, we organize 574 studies reporting predators overcoming CTS defences, integrate these counter-strategies across biological levels of organization, and discuss the costs and benefits of attacking CTS-defended prey. We show that distinct lineages of predators have evolved dissecting behaviour, changes in perception of risk and of taste perception, and target-site insensitivity. We draw attention to biochemical, hormonal and microbiological strategies that have yet to be investigated as predator counter-adaptations to CTS defences. We show that the predation sequence framework will be useful for organizing future studies of chemically mediated systems and coevolution.
Collapse
Affiliation(s)
- Shabnam Mohammadi
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
- Institut für Zell- und Systembiologie der Tiere, Universität Hamburg, Hamburg, Germany
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Lu Yang
- Wellcome Sanger Institute, Cambridge, UK
| | - Matthew Bulbert
- Department of Biological Sciences, Macquarie University North Ryde, New South Wales, Australia
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, University of Oxford Brookes, Oxford, UK
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | |
Collapse
|
2
|
Mohammadi S, Yang L, Bulbert M, Rowland HM. Defence mitigation by predators of chemically defended prey integrated over the predation sequence and across biological levels with a focus on cardiotonic steroids. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220363. [PMID: 36133149 DOI: 10.6084/m9.figshare.c.6168216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/17/2022] [Indexed: 05/25/2023]
Abstract
Predator-prey interactions have long served as models for the investigation of adaptation and fitness in natural environments. Anti-predator defences such as mimicry and camouflage provide some of the best examples of evolution. Predators, in turn, have evolved sensory systems, cognitive abilities and physiological resistance to prey defences. In contrast to prey defences which have been reviewed extensively, the evolution of predator counter-strategies has received less attention. To gain a comprehensive view of how prey defences can influence the evolution of predator counter-strategies, it is essential to investigate how and when selection can operate. In this review we evaluate how predators overcome prey defences during (i) encounter, (ii) detection, (iii) identification, (iv) approach, (v) subjugation, and (vi) consumption. We focus on prey that are protected by cardiotonic steroids (CTS)-defensive compounds that are found in a wide range of taxa, and that have a specific physiological target. In this system, coevolution is well characterized between specialist insect herbivores and their host plants but evidence for coevolution between CTS-defended prey and their predators has received less attention. Using the predation sequence framework, we organize 574 studies reporting predators overcoming CTS defences, integrate these counter-strategies across biological levels of organization, and discuss the costs and benefits of attacking CTS-defended prey. We show that distinct lineages of predators have evolved dissecting behaviour, changes in perception of risk and of taste perception, and target-site insensitivity. We draw attention to biochemical, hormonal and microbiological strategies that have yet to be investigated as predator counter-adaptations to CTS defences. We show that the predation sequence framework will be useful for organizing future studies of chemically mediated systems and coevolution.
Collapse
Affiliation(s)
- Shabnam Mohammadi
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
- Institut für Zell- und Systembiologie der Tiere, Universität Hamburg, Hamburg, Germany
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Lu Yang
- Wellcome Sanger Institute, Cambridge, UK
| | - Matthew Bulbert
- Department of Biological Sciences, Macquarie University North Ryde, New South Wales, Australia
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, University of Oxford Brookes, Oxford, UK
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | |
Collapse
|
3
|
Huličiak M, Vokřál I, Holas O, Martinec O, Štaud F, Červený L. Evaluation of the Potency of Anti-HIV and Anti-HCV Drugs to Inhibit P-Glycoprotein Mediated Efflux of Digoxin in Caco-2 Cell Line and Human Precision-Cut Intestinal Slices. Pharmaceuticals (Basel) 2022; 15:ph15020242. [PMID: 35215354 PMCID: PMC8875242 DOI: 10.3390/ph15020242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/23/2022] Open
Abstract
The inhibition of P-glycoprotein (ABCB1) could lead to increased drug plasma concentrations and hence increase drug toxicity. The evaluation of a drug’s ability to inhibit ABCB1 is complicated by the presence of several transport-competent sites within the ABCB1 binding pocket, making it difficult to select appropriate substrates. Here, we investigate the capacity of antiretrovirals and direct-acting antivirals to inhibit the ABCB1-mediated intestinal efflux of [3H]-digoxin and compare it with our previous rhodamine123 study. At concentrations of up to 100 µM, asunaprevir, atazanavir, daclatasvir, darunavir, elbasvir, etravirine, grazoprevir, ledipasvir, lopinavir, rilpivirine, ritonavir, saquinavir, and velpatasvir inhibited [3H]-digoxin transport in Caco-2 cells and/or in precision-cut intestinal slices prepared from the human jejunum (hPCIS). However, abacavir, dolutegravir, maraviroc, sofosbuvir, tenofovir disoproxil fumarate, and zidovudine had no inhibitory effect. We thus found that most of the tested antivirals have a high potential to cause drug–drug interactions on intestinal ABCB1. Comparing the Caco-2 and hPCIS experimental models, we conclude that the Caco-2 transport assay is more sensitive, but the results obtained using hPCIS agree better with reported in vivo observations. More inhibitors were identified when using digoxin as the ABCB1 probe substrate than when using rhodamine123. However, both approaches had limitations, indicating that inhibitory potency should be tested with at least these two ABCB1 probes.
Collapse
Affiliation(s)
- Martin Huličiak
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Králové, Czech Republic; (M.H.); (O.M.); (F.Š.); (L.Č.)
| | - Ivan Vokřál
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Králové, Czech Republic; (M.H.); (O.M.); (F.Š.); (L.Č.)
- Correspondence:
| | - Ondřej Holas
- Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Králové, Czech Republic;
| | - Ondřej Martinec
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Králové, Czech Republic; (M.H.); (O.M.); (F.Š.); (L.Č.)
| | - František Štaud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Králové, Czech Republic; (M.H.); (O.M.); (F.Š.); (L.Č.)
| | - Lukáš Červený
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Králové, Czech Republic; (M.H.); (O.M.); (F.Š.); (L.Č.)
| |
Collapse
|
4
|
Tozatto E, Benzi JRDL, Rocha A, Coelho EB, Lanchote VL. Nifedipine Does Not Alter the Pharmacokinetics of Venlafaxine Enantiomers in Healthy Subjects Phenotyped for CYP2D6, CYP2C19, and CYP3A. J Clin Pharmacol 2020; 61:319-327. [PMID: 32974907 DOI: 10.1002/jcph.1745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/24/2020] [Indexed: 01/16/2023]
Abstract
Venlafaxine (VEN) is a P-glycoprotein (P-gp) substrate, and nifedipine has been described by in vitro and experimental studies as a P-gp inhibitor. The present study aimed to investigate whether nifedipine alters the kinetic disposition of VEN enantiomers and their metabolites in healthy subjects. A crossover study was conducted in 10 healthy subjects phenotyped as extensive metabolizers for cytochrome P450 (CYP) 2D6, CYP2C19, and CYP3A. In phase 1, the subjects received a single oral dose of 150 mg racemic VEN, and in phase 2, a single oral dose of 40 mg nifedipine was administered with the VEN treatment. Plasma concentrations of VEN enantiomers and their metabolites O-desmethylvenlafaxine and N, O- didesmethylvenlafaxine (ODV and DDV, respectively) were evaluated by liquid chromatography with tandem mass spectrometry up to 72 hours after drug administration. Phase 2 was compared with phase 1 using the 90% confidence interval (CI) of the ratio of geometric means for Cmax and area under the curve (AUC). AUC enantiomeric ratios S-(+)/R-(-) were evaluated within each and between phases using the Wilcoxon test (P ≤ .05). The kinetic disposition of VEN was enantioselective (phase 1) with VEN S-(+)/R-(-) AUC ratio median of 2.83 (AUC0-∞ , 526 vs 195 ng·h/mL). However, AUC median did not differ between enantiomers for the metabolites ODV (1971 vs 2226 ng·h/mL) and DDV (199 vs 151 ng·h/mL). The 90%CI of the ratio of geometric means showed that the phases are bioequivalent. A single oral dose of 40 mg nifedipine did not alter VEN enantiomer pharmacokinetics in healthy subjects.
Collapse
Affiliation(s)
- Eduardo Tozatto
- Department of Clinical, Toxicological and Bromatological Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jhohann Richard de Lima Benzi
- Department of Clinical, Toxicological and Bromatological Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Adriana Rocha
- Department of Clinical, Toxicological and Bromatological Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Vera Lucia Lanchote
- Department of Clinical, Toxicological and Bromatological Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
5
|
Ozgür B, Saaby L, Langthaler K, Brodin B. Characterization of the IPEC-J2 MDR1 (iP-gp) cell line as a tool for identification of P-gp substrates. Eur J Pharm Sci 2017; 112:112-121. [PMID: 29146563 DOI: 10.1016/j.ejps.2017.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 10/18/2022]
Abstract
Recently, we transfected the porcine intestinal cell line IPEC-J2, with human P-glycoprotein (P-gp, ABCB1). The resulting cell line, iP-gp, has a high expression of functional human P-gp in the apical membrane, and a low expression of nonhuman ATP-binding cassette (ABC) transporters. The aim of the present work was to investigate the usability of iP-gp cell line for determining transepithelial transport kinetics of the prototypical P-gp substrates digoxin and rhodamine 123. The cell line generated tight monolayers after 16days of culture, reflected by high transepithelial electrical resistance values (TEER>15,000Ω·cm2), immunocytochemistry and low fluxes of the paracellular flux marker [14C]-mannitol. Monolayer integrity was not affected the common solvents dimethyl sulfoxide (DMSO), methanol and ethanol in concentrations up to 2% (v/v). Transepithelial fluxes of [3H]-labeled digoxin and rhodamine 123 were measured at varying donor concentrations, and kinetic parameters were estimated. Km and Vmax of P-gp mediated basolateral-to-apical (B-A) flux of rhodamine 123 were estimated to 332±124μM and 111±16pmol·cm-2·min-1 (n=3, total N=6), respectively. Vmax and Km of digoxin B-A flux could not be estimated due to the low aqueous solubility of digoxin. The half maximal inhibitory concentrations (IC50) of the selective P-gp inhibitor, zosuquidar (LY-335979), were estimated to 0.05±0.01μM (n=3, total N=6) and 0.04±0.01μM (n=3, total N=6) in transport experiments with digoxin and rhodamine 123 as substrates, respectively. Bidirectional fluxes of digoxin and rhodamine 123 were measured in transfected Madin Darby canine kidney cells (MDCK II MDR1) and compared with the fluxes obtained with the iP-gp cell monolayers. Efflux ratios were highest in the iP-gp cells, due to a tighter paracellular pathway. In conclusion, both digoxin and rhodamine 123 could be used to obtain IC50 values of inhibition, Ki values were only possible to obtain using rhodamine 123. The observed tightness, robustness towards solvents and the high efflux ratios confirmed that the iP-gp cell line may serve as a useful screening tool for investigations of substrate-P-gp interactions and modulation of P-gp function.
Collapse
Affiliation(s)
- Burak Ozgür
- Section of Pharmaceutical Design and Drug Delivery, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Lasse Saaby
- Section of Pharmaceutical Design and Drug Delivery, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Bioneer-FARMA, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | - Birger Brodin
- Section of Pharmaceutical Design and Drug Delivery, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
6
|
Wang X, Zhang ZY, Arora S, Hughes L, Wang J, Powers D, Christensen J, Lu S, Kansra V. Effects of Rolapitant Administered Intravenously or Orally on the Pharmacokinetics of Digoxin (P-glycoprotein Substrate) and Sulfasalazine (Breast Cancer Resistance Protein Substrate) in Healthy Volunteers. J Clin Pharmacol 2017; 58:202-211. [PMID: 28906558 DOI: 10.1002/jcph.1005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/26/2017] [Indexed: 12/19/2022]
Abstract
Rolapitant is a selective and long-acting neurokinin-1 receptor antagonist approved in an oral formulation in combination with other antiemetic agents for the prevention of delayed chemotherapy-induced nausea and vomiting in adults. Four open-label phase 1 studies evaluated the safety and drug-drug interactions of a single dose of rolapitant given intravenously (166.5 mg) or orally (180 mg) with oral digoxin (0.5 mg) or sulfasalazine (500 mg), probe substrates for the P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), respectively. Administration of intravenous rolapitant with the substrates did not result in clinically significant effects on digoxin and sulfasalazine pharmacokinetics. In contrast, peak concentration and area under the curve for last quantifiable plasma concentrations increased by 71% (geometric mean ratio [GMR], 1.71; 90% confidence interval [CI], 1.49-1.95) and 30% (GMR, 1.30; 90%CI, 1.19-1.42), respectively, when rolapitant was coadministered orally with digoxin compared with digoxin alone; they increased by 140% (GMR, 2.40; 90%CI, 2.02-2.86) and 127% (GMR, 2.27; 90%CI, 1.94-2.65), respectively, when rolapitant was given orally with sulfasalazine compared with sulfasalazine alone. Adverse events were mild to moderate in severity in the absence or presence of rolapitant. There were no abnormal clinical laboratory or electrocardiogram findings. Thus, whether administered orally or intravenously, rolapitant was safe and well tolerated. Patients taking oral rolapitant with P-gp and BCRP substrates with a narrow therapeutic index should be monitored for potential adverse events; although increased plasma concentrations of these substrates may raise the risk of toxicity, they are not contraindicated.
Collapse
|
7
|
Li Y, Revalde J, Paxton JW. The effects of dietary and herbal phytochemicals on drug transporters. Adv Drug Deliv Rev 2017; 116:45-62. [PMID: 27637455 DOI: 10.1016/j.addr.2016.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/10/2016] [Accepted: 09/05/2016] [Indexed: 12/22/2022]
Abstract
Membrane transporter proteins (the ABC transporters and SLC transporters) play pivotal roles in drug absorption and disposition, and thus determine their efficacy and safety. Accumulating evidence suggests that the expression and activity of these transporters may be modulated by various phytochemicals (PCs) found in diets rich in plants and herbs. PC absorption and disposition are also subject to the function of membrane transporter and drug metabolizing enzymes. PC-drug interactions may involve multiple major drug transporters (and metabolizing enzymes) in the body, leading to alterations in the pharmacokinetics of substrate drugs, and thus their efficacy and toxicity. This review summarizes the reported in vitro and in vivo interactions between common dietary PCs and the major drug transporters. The oral absorption, distribution into pharmacological sanctuaries and excretion of substrate drugs and PCs are considered, along with their possible interactions with the ABC and SLC transporters which influence these processes.
Collapse
|
8
|
Mohammadi S, French SS, Neuman-Lee LA, Durham SL, Kojima Y, Mori A, Brodie ED, Savitzky AH. Corticosteroid responses of snakes to toxins from toads (bufadienolides) and plants (cardenolides) reflect differences in dietary specializations. Gen Comp Endocrinol 2017; 247:16-25. [PMID: 28347742 DOI: 10.1016/j.ygcen.2017.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/07/2017] [Accepted: 03/22/2017] [Indexed: 01/24/2023]
Abstract
Toads are chemically defended by cardiotonic steroids known as bufadienolides. Resistance to the acute effects of bufadienolides in snakes that prey on toads is conferred by target-site insensitivity of the toxin's target enzyme, the Na+/K+-ATPase. Previous studies have focused largely on the molecular mechanisms of resistance but have not investigated the physiological mechanisms or consequences of exposure to the toxins. Adrenal enlargement in snakes often is associated with specialization on a diet of toads. These endocrine glands are partly composed of interrenal tissue, which produces the corticosteroids corticosterone and aldosterone. Corticosterone is the main hormone released in response to stress in reptiles, and aldosterone plays an important role in maintaining ion balance through upregulation of Na+/K+-ATPase. We tested the endocrine response of select species of snakes to acute cardiotonic steroid exposure by measuring circulating aldosterone and corticosterone concentrations. We found that Rhabdophis tigrinus, which specializes on a diet of toads, responds with lower corticosterone and higher aldosterone compared to other species that exhibit target-site resistance to the toxins but do not specialize on toads. We also found differences between sexes in R. tigrinus, with males generally responding with higher corticosterone and aldosterone than females. This study provides evidence of physiological adaptations, beyond target-site resistance, associated with tolerance of bufadienolides in a specialized toad-eating snake.
Collapse
Affiliation(s)
- Shabnam Mohammadi
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, United States; Ecology Center, Utah State University, 5205 Old Main Hill, Logan, UT 84322-5205, United States.
| | - Susannah S French
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, United States; Ecology Center, Utah State University, 5205 Old Main Hill, Logan, UT 84322-5205, United States
| | - Lorin A Neuman-Lee
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, United States
| | - Susan L Durham
- Ecology Center, Utah State University, 5205 Old Main Hill, Logan, UT 84322-5205, United States
| | - Yosuke Kojima
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Akira Mori
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Edmund D Brodie
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, United States; Ecology Center, Utah State University, 5205 Old Main Hill, Logan, UT 84322-5205, United States
| | - Alan H Savitzky
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, United States; Ecology Center, Utah State University, 5205 Old Main Hill, Logan, UT 84322-5205, United States
| |
Collapse
|
9
|
Ledwitch KV, Roberts AG. Cardiovascular Ion Channel Inhibitor Drug-Drug Interactions with P-glycoprotein. AAPS JOURNAL 2016; 19:409-420. [PMID: 28028729 DOI: 10.1208/s12248-016-0023-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/19/2016] [Indexed: 12/31/2022]
Abstract
P-glycoprotein (Pgp) is an ATP-binding cassette (ABC) transporter that plays a major role in cardiovascular drug disposition by effluxing a chemically and structurally diverse range of cardiovascular therapeutics. Unfortunately, drug-drug interactions (DDIs) with the transporter have become a major roadblock to effective cardiovascular drug administration because they can cause adverse drug reactions (ADRs) or reduce the efficacy of drugs. Cardiovascular ion channel inhibitors are particularly susceptible to DDIs and ADRs with Pgp because they often have low therapeutic indexes and are commonly coadministered with other drugs that are also Pgp substrates. DDIs from cardiovascular ion channel inhibitors with the transporter occur because of inhibition or induction of the transporter and the transporter's tissue and cellular localization. Inhibiting Pgp can increase absorption and reduce excretion of drugs, leading to elevated drug plasma concentrations and drug toxicity. In contrast, inducing Pgp can have the opposite effect by reducing the drug plasma concentration and its efficacy. A number of in vitro and in vivo studies have already demonstrated DDIs from several cardiovascular ion channel inhibitors with human Pgp and its animal analogs, including verapamil, digoxin, and amiodarone. In this review, Pgp-mediated DDIs and their effects on pharmacokinetics for different categories of cardiovascular ion channel inhibitors are discussed. This information is essential for improving pharmacokinetic predictions of cardiovascular therapeutics, for safer cardiovascular drug administration and for mitigating ADRs emanating from Pgp.
Collapse
Affiliation(s)
- Kaitlyn V Ledwitch
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W. Green St., Athens, Georgia, 30602, USA
| | - Arthur G Roberts
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W. Green St., Athens, Georgia, 30602, USA.
| |
Collapse
|
10
|
Matsson P, Doak BC, Over B, Kihlberg J. Cell permeability beyond the rule of 5. Adv Drug Deliv Rev 2016; 101:42-61. [PMID: 27067608 DOI: 10.1016/j.addr.2016.03.013] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/25/2016] [Accepted: 03/31/2016] [Indexed: 11/17/2022]
Abstract
Drug discovery for difficult targets that have large and flat binding sites is often better suited to compounds beyond the "rule of 5" (bRo5). However, such compounds carry higher pharmacokinetic risks, such as low solubility and permeability, and increased efflux and metabolism. Interestingly, recent drug approvals and studies suggest that cell permeable and orally bioavailable drugs can be discovered far into bRo5 space. Tactics such as reduction or shielding of polarity by N-methylation, bulky side chains and intramolecular hydrogen bonds may be used to increase cell permeability in this space, but often results in decreased solubility. Conformationally flexible compounds can, however, combine high permeability and solubility, properties that are keys for cell permeability and intestinal absorption. Recent developments in computational conformational analysis will aid design of such compounds and hence prediction of cell permeability. Transporter mediated efflux occurs for most investigated drugs in bRo5 space, however it is commonly overcome by high local intestinal concentrations on oral administration. In contrast, there is little data to support significant impact of transporter-mediated intestinal absorption in bRo5 space. Current knowledge of compound properties that govern transporter effects of bRo5 drugs is limited and requires further fundamental and comprehensive studies.
Collapse
Affiliation(s)
- Pär Matsson
- Department of Pharmacy, BMC, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
| | - Bradley C Doak
- Department of Medicinal Chemistry, MIPS, Monash University, 381 Royal Parade, Parkville, Victoria, Australia
| | - Björn Over
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Jan Kihlberg
- Department of Chemistry - BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
11
|
Gozalpour E, Wilmer MJ, Bilos A, Masereeuw R, Russel FGM, Koenderink JB. Heterogeneous transport of digitalis-like compounds by P-glycoprotein in vesicular and cellular assays. Toxicol In Vitro 2015; 32:138-45. [PMID: 26708294 DOI: 10.1016/j.tiv.2015.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 01/28/2023]
Abstract
Digitalis-like compounds (DLCs), the ancient medication of heart failure and Na,K-ATPase inhibitors, are characterized by their toxicity. Drug-drug interactions (DDIs) at absorption and excretion levels play a key role in their toxicity, hence, knowledge about the transporters involved might prevent these unwanted interactions. In the present study, the transport of fourteen DLCs with human P-glycoprotein (P-gp; ABCB1) was studied using a liquid chromatography-mass spectrometry (LC-MS) quantification method. DLC transport by P-gp overexpressing Madin-Darby canine kidney (MDCK) and immortalized human renal cells (ciPTEC) was compared to vesicular DLC transport. Previously, we identified convallatoxin as a substrate using membrane vesicles overexpressing P-gp; however, we could not measure transport of other DLCs in this assay (Gozalpour et al., 2014a). Here, we showed that lipophilic digitoxin, digoxigenin, strophanthidin and proscillaridin A are P-gp substrates in cellular accumulation assays, whereas the less lipophilic convallatoxin was not. P-gp function in the cellular accumulation assays depends on the entrance of lipophilic compounds by passive diffusion, whereas the vesicular transport assay is more appropriate for hydrophilic substrates. In conclusion, we identified digitoxin, digoxigenin, strophanthidin and proscillaridin A as P-gp substrates using cellular accumulation assays and recognized lipophilicity as an important factor in selecting a suitable transport assay.
Collapse
Affiliation(s)
- Elnaz Gozalpour
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, The Netherlands
| | - Martijn J Wilmer
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, The Netherlands
| | - Albert Bilos
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, The Netherlands
| | - Rosalinde Masereeuw
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, The Netherlands
| | - Jan B Koenderink
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, The Netherlands.
| |
Collapse
|
12
|
|
13
|
ITC commentary on the prediction of digoxin clinical drug-drug interactions from in vitro transporter assays. Clin Pharmacol Ther 2014; 96:298-301. [PMID: 25141954 DOI: 10.1038/clpt.2014.94] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The "P-glycoprotein" IC50 working group reported an 18- to 796-fold interlaboratory range in digoxin transport IC50 (inhibitor concentration achieving 50% of maximal inhibition), raising concerns about the predictability of clinical transporter-based drug-drug interactions (DDIs) from in vitro data. This Commentary describes complexities of digoxin transport, which involve both uptake and efflux processes. We caution against attributing digoxin transport IC50 specifically to P-glycoprotein (P-gp) or extending this composite uptake/efflux IC50 variability to individual transporters. Clinical digoxin interaction studies should be interpreted as evaluation of digoxin safety, not P-gp DDIs.
Collapse
|
14
|
Doak B, Over B, Giordanetto F, Kihlberg J. Oral Druggable Space beyond the Rule of 5: Insights from Drugs and Clinical Candidates. ACTA ACUST UNITED AC 2014; 21:1115-42. [DOI: 10.1016/j.chembiol.2014.08.013] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Gozalpour E, Greupink R, Wortelboer HM, Bilos A, Schreurs M, Russel FGM, Koenderink JB. Interaction of digitalis-like compounds with liver uptake transporters NTCP, OATP1B1, and OATP1B3. Mol Pharm 2014; 11:1844-55. [PMID: 24754247 DOI: 10.1021/mp400699p] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Digitalis-like compounds (DLCs) such as digoxin, digitoxin, and ouabain, also known as cardiac glycosides, are among the oldest pharmacological treatments for heart failure. The compounds have a narrow therapeutic window, while at the same time, DLC pharmacokinetics is prone to drug-drug interactions at the transport level. Hepatic transporters organic anion transporting polypeptide (OATP) 1B1, OATP1B3, and Na(+)-dependent taurocholate co-transporting polypeptide (NTCP) influence the disposition of a variety of drugs by mediating their uptake from blood into hepatocytes. The interaction of digoxin, digitoxin, and ouabain with hepatic uptake transporters has been studied before. However, here, we systematically investigated a much wider range of structurally related DLCs for their capability to inhibit or to be transported by these transporters in order to better understand the relation between the activity and chemical structure of this compound type. We studied the uptake and inhibitory potency of a series of 14 structurally related DLCs in Chinese hamster ovary cells expressing NTCP (CHO-NTCP) and human embryonic kidney cells expressing OATP1B1 and OATP1B3 (HEK-OATP1B1 and HEK-OATP1B3). The inhibitory effect of the DLCs was measured against taurocholic acid (TCA) uptake in CHO-NTCP cells and against uptake of β-estradiol 17-β-d-glucuronide (E217βG) in HEK-OATP1B1 and HEK-OATP1B3 cells. Proscillaridin A was the most effective inhibitor of NTCP-mediated TCA transport (IC50 = 22 μM), whereas digitoxin and digitoxigenin were the most potent inhibitors of OATP1B1 and OAPTP1B3, with IC50 values of 14.2 and 36 μM, respectively. Additionally, we found that the sugar moiety and hydroxyl groups of the DLCs play different roles in their interaction with NTCP, OATP1B1, and OATP1B3. The sugar moiety decreases the inhibition of NTCP and OATP1B3 transport activity, whereas it enhances the inhibitory potency against OATP1B1. Moreover, the hydroxyl group at position 12 reinforces the inhibition of NTCP but decreases the inhibition of OATP1B1 and OATP1B3. To investigate whether DLCs can be translocated, we quantified their uptake in transporter-expressing cells by LC-MS. We demonstrated that convallatoxin, ouabain, dihydroouabain, and ouabagenin are substrates of OATP1B3. No transport was observed for the other compounds in any of the studied transporters. In summary, this work provides a step toward an improved understanding of the interaction of DLCs with three major hepatic uptake transporters. Ultimately, this can be of use in the development of DLCs that are less prone to transporter-mediated drug-drug interactions.
Collapse
Affiliation(s)
- Elnaz Gozalpour
- Department of Pharmacology and Toxicology, Radboud University Medical Centre, Nijmegen Centre for Molecular Life Sciences , 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Nader AM, Foster DR. Suitability of digoxin as a P-glycoprotein probe: Implications of other transporters on sensitivity and specificity. J Clin Pharmacol 2013; 54:3-13. [DOI: 10.1002/jcph.200] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 09/30/2013] [Indexed: 02/05/2023]
Affiliation(s)
- Ahmed M. Nader
- Pharmaceutical Sciences Section; College of Pharmacy; Qatar University; Doha Qatar
| | - David R. Foster
- Department of Pharmacy Practice; College of Pharmacy; Purdue University; Indianapolis and West Lafayette IN USA
- Department of Medicine; School of Medicine; Indiana University; Indianapolis IN USA
| |
Collapse
|
18
|
Wessler JD, Grip LT, Mendell J, Giugliano RP. The P-glycoprotein transport system and cardiovascular drugs. J Am Coll Cardiol 2013; 61:2495-502. [PMID: 23563132 DOI: 10.1016/j.jacc.2013.02.058] [Citation(s) in RCA: 252] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 02/13/2013] [Accepted: 02/26/2013] [Indexed: 02/06/2023]
Abstract
Permeability glycoprotein (P-gp) mediates the export of drugs from cells located in the small intestine, blood-brain barrier, hepatocytes, and kidney proximal tubule, serving a protective function for the body against foreign substances. Intestinal absorption, biliary excretion, and urinary excretion of P-gp substrates can therefore be altered by either the inhibition or induction of P-gp. A wide spectrum of drugs, such as anticancer agents and steroids, are known P-gp substrates and/or inhibitors, and many cardiovascular drugs have recently been observed to have clinically relevant interactions as well. We review the interactions among commonly prescribed cardiovascular drugs that are P-gp substrates and observe interactions involving P-gp that may be relevant to clinical practice. Cardiovascular drugs with narrow therapeutic indexes (e.g., antiarrhythmic agents, anticoagulant agents) have demonstrated large increases in concentrations when coadministered with potent P-gp inhibitors, thus increasing the risk for drug toxicity. Therefore, dose adjustment or use of alternative agents should be considered when strong P-gp-mediated drug-drug interactions are present. Finally, interactions between novel drugs and known P-gp inhibitors are now being systematically evaluated during drug development, and recommended guidelines for the administration of P-gp substrate drugs will be expanded.
Collapse
|
19
|
Hou G, Niu J, Song F, Liu Z, Liu S. Studies on the interactions between ginsenosides and liposome by equilibrium dialysis combined with ultrahigh performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 923-924:1-7. [PMID: 23454302 DOI: 10.1016/j.jchromb.2013.01.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 01/27/2013] [Accepted: 01/31/2013] [Indexed: 10/27/2022]
Abstract
To study the interactions between components of Panax Ginseng and liposome biomembrane, we applied the equilibrium dialysis system combined with ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) approach to analyze and identify the bioactive components of ginseng. Moreover, the effect of pH value has also been investigated on their interactions between the ginsenosides of ginseng extract and biomembrane. The result shows that seven kinds of ginsenosides have obvious interactions with biomembrane in comparison with the standards in terms of tandem mass spectrometry (MS/MS) data along with retention time, including four panaxadiol ginsenosides (Rb1, Rb2, Rc, Rd) and three panaxatriol ginsenosides (Re, Rf, Rg2). The value of binding degree decreased with the increase of molecular weight. The sugar moieties which are attached to C-20 were the main factor affecting the binding degree of panaxadiol ginsenosides. The interactions between panaxadiol ginsenosides and biomembrane correlate to the type and number of sugar moieties in ginsenosides. The sugar moieties which are at C-6 and C-20 have been shown to influence the value of binding degree for panaxatriol ginsenosides. In addition, the pH value has been shown to have an impact on the interactions. Overall, ginsenoside Rd has a better absorption character among the seven ginsenosides. In the study, we have screened the potential bioactive components of ginseng in vitro using the equilibrium dialysis-UPLC-MS/MS method, and then predicted the potential bioactivities of ginseng, which contribute to the investigation of the efficacy of ginseng.
Collapse
Affiliation(s)
- Guangyue Hou
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | | | | | | | | |
Collapse
|
20
|
Eid SY, El-Readi MZ, Wink M. Digitonin synergistically enhances the cytotoxicity of plant secondary metabolites in cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 19:1307-1314. [PMID: 23062361 DOI: 10.1016/j.phymed.2012.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 07/18/2012] [Accepted: 09/06/2012] [Indexed: 06/01/2023]
Abstract
In phytotherapy, extracts from medicinal plants are employed which contain mixtures of secondary metabolites. Their modes of action are complex because the secondary metabolites can react with single or multiple targets. The components in a mixture can exert additive or even synergistic activities. In this study, the cytotoxicity of some phytochemicals, including phenolics (EGCG and thymol), terpenoids (menthol, aromadendrene, β-sitosterol-O-glucoside, and β-carotene) and alkaloids (glaucine, harmine, and sanguinarine) were investigated alone or in combination with the cytotoxic monodesmosidic steroidal saponin digitonin in Caco-2, MCF-7, CEM/ADR5000, and CCRF-CEM cells. Digitonin was combined in non-toxic concentrations (5μM in each cell line; except in MCF-7 the concentration was 2μM), together with a selection of phenolics, terpenoids, and alkaloids to evaluate potential synergistic or additive effects. An enhanced cytotoxicity was observed in most combinations. Even multi-drug resistant (MDR) cells (such as CEM/ADR5000 cells), with a high expression of P-glycoprotein, were responsive to combinations. Sanguinarine was the most cytotoxic alkaloid against CEM/ADR5000, MCF-7, and CCRF-CEM cells alone and in combination with digitonin. As compared to sanguinarine alone, the combination was 44.53-, 15.38-, and 6.65-fold more toxic in each cell line, respectively. Most combinations synergistically increased the cytotoxicity, stressing the importance of synergy when using multi-target drugs and mixtures in phytotherapy.
Collapse
Affiliation(s)
- Safaa Yehia Eid
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| | | | | |
Collapse
|
21
|
Gozalpour E, Wittgen HGM, van den Heuvel JJMW, Greupink R, Russel FGM, Koenderink JB. Interaction of digitalis-like compounds with p-glycoprotein. Toxicol Sci 2012; 131:502-11. [PMID: 23104431 DOI: 10.1093/toxsci/kfs307] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Digitalis-like compounds (DLCs), or cardiac glycosides, are produced and sequestered by certain plants and animals as a protective mechanism against herbivores or predators. Currently, the DLCs digoxin and digitoxin are used in the treatment of cardiac congestion and some types of cardiac arrhythmia, despite a very narrow therapeutic index. P-glycoprotein (P-gp; ABCB1) is the only known ATP-dependent efflux transporter that handles digoxin as a substrate. Ten alanine mutants of human P-gp drug-binding amino acids-Leu(65), Ile(306), Phe(336), Ile(340), Phe(343), Phe(728), Phe(942), Thr(945), Leu(975), and Val(982)-were generated and expressed in HEK293 cells with a mammalian baculovirus system. The uptake of [(3)H]-N-methyl-quinidine (NMQ), the P-gp substrate in vesicular transport assays, was determined. The mutations I306A, F343A, F728A, T945A, and L975A abolished NMQ transport activity of P-gp. For the other mutants, the apparent affinities for six DLCs (cymarin, digitoxin, digoxin, peruvoside, proscillaridin A, and strophanthidol) were determined. The affinities of digoxin, proscillaridin A, peruvoside, and cymarin for mutants F336A and I340A were decreased two- to fourfold compared with wild type, whereas that of digitoxin and strophanthidol did not change. In addition, the presence of a hydroxyl group at position 12β seems to reduce the apparent affinity when the side chain of Phe(336) and Phe(942) is absent. Our results showed that a δ-lactone ring and a sugar moiety at 3β of the steroid body are favorable for DLC binding to P-gp. Moreover, DLC inhibition is increased by hydroxyl groups at positions 5β and 19, whereas inhibition is decreased by those at positions 1β, 11α, 12β, and 16β. The understanding of the P-gp-DLC interaction improves our insight into DLCs toxicity and might enhance the replacement of digoxin with other DLCs that have less adverse drug effects.
Collapse
Affiliation(s)
- Elnaz Gozalpour
- Department of Pharmacology and Toxicology, 149, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
22
|
Harati R, Benech H, Villégier AS, Mabondzo A. P-glycoprotein, breast cancer resistance protein, Organic Anion Transporter 3, and Transporting Peptide 1a4 during blood-brain barrier maturation: involvement of Wnt/β-catenin and endothelin-1 signaling. Mol Pharm 2012; 10:1566-80. [PMID: 22998451 DOI: 10.1021/mp300334r] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Our current knowledge about drug transporters in the maturational brain is very limited. In this study, we provide a comprehensive overview of the expression and activity profile of P-glycoprotein (P-gp), Breast Cancer Resistance Protein (bcrp), Organic Anion Transporter 3 (oat3), and Transporting Peptide 1a4 (oatp1a4) transporters during blood-brain barrier (BBB) maturation. Gene and protein expressions of the analyzed transporters increase as the brain matures, with no variation in their activity for P-gp and bcrp, while the transport activity of oat3 and oatp1a4 increases during brain maturation from preterm up to adulthood. For the first time, we illustrate a downregulation of nuclear β-catenin expression in brain capillaries when bcrp, P-gp, oat3, and oatp1a4 transporters are at their highest expression levels. In vivo activation of β-catenin in rat brains, by intracerebroventricular (ICV) injection of a GSK-3 inhibitor, enhances the activity of P-gp, bcrp, oat3, and oatp1a4. Interestingly, in an in vitro BBB model consisting of a coculture of primary endothelial brain cells with astrocytes or in vivo, activation of β-catenin enhances the mRNA expression of ET-1. Interestingly, blocking the ETA receptor for endothelin-1 in vivo by ICV injection of a ETA antagonist decreases transporter activity mediated by the activation of β-catenin. These findings shed light on the role of an interaction between β-catenin and endothelin-1 signaling in the regulation of these transporters at the BBB.
Collapse
Affiliation(s)
- Rania Harati
- CEA, Direction des Sciences du Vivant, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, 91191 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
23
|
Oga EF, Sekine S, Shitara Y, Horie T. Potential P-glycoprotein-mediated drug-drug interactions of antimalarial agents in Caco-2 cells. Am J Trop Med Hyg 2012; 87:64-9. [PMID: 22764293 DOI: 10.4269/ajtmh.2012.11-0817] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Antimalarials are widely used in African and Southeast Asian countries, where they are combined with other drugs for the treatment of concurrent ailments. The potential for P-glycoprotein (P-gp)-mediated drug-drug interactions (DDIs) between antimalarials and P-gp substrates was examined using a Caco-2 cell-based model. Selected antimalarials were initially screened for their interaction with P-gp based on the inhibition of rhodamine-123 (Rho-123) transport in Caco-2 cells. Verapamil (100 μM) and quinidine (1 μM) were used as positive inhibition controls. Lumefantrine, amodiaquin, and artesunate all showed blockade of Rho-123 transport. Subsequently, the inhibitory effect of these antimalarials on the bi-directional passage of digoxin (DIG) was examined. All of the drugs decreased basal-to-apical (B-A) P-gp-mediated DIG transport at concentrations of 100 μM and 1 mM. These concentrations may reflect therapeutic doses for amodiaquin and artesunate. Therefore, clinically relevant DDIs may occur between certain antimalarials and P-gp substrates in general.
Collapse
Affiliation(s)
- Enoche F Oga
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba, Japan.
| | | | | | | |
Collapse
|
24
|
Wink M, Ashour ML, El-Readi MZ. Secondary Metabolites from Plants Inhibiting ABC Transporters and Reversing Resistance of Cancer Cells and Microbes to Cytotoxic and Antimicrobial Agents. Front Microbiol 2012; 3:130. [PMID: 22536197 PMCID: PMC3332394 DOI: 10.3389/fmicb.2012.00130] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/19/2012] [Indexed: 12/14/2022] Open
Abstract
Fungal, bacterial, and cancer cells can develop resistance against antifungal, antibacterial, or anticancer agents. Mechanisms of resistance are complex and often multifactorial. Mechanisms include: (1) Activation of ATP-binding cassette (ABC) transporters, such as P-gp, which pump out lipophilic compounds that have entered a cell, (2) Activation of cytochrome p450 oxidases which can oxidize lipophilic agents to make them more hydrophilic and accessible for conjugation reaction with glucuronic acid, sulfate, or amino acids, and (3) Activation of glutathione transferase, which can conjugate xenobiotics. This review summarizes the evidence that secondary metabolites (SM) of plants, such as alkaloids, phenolics, and terpenoids can interfere with ABC transporters in cancer cells, parasites, bacteria, and fungi. Among the active natural products several lipophilic terpenoids [monoterpenes, diterpenes, triterpenes (including saponins), steroids (including cardiac glycosides), and tetraterpenes] but also some alkaloids (isoquinoline, protoberberine, quinoline, indole, monoterpene indole, and steroidal alkaloids) function probably as competitive inhibitors of P-gp, multiple resistance-associated protein 1, and Breast cancer resistance protein in cancer cells, or efflux pumps in bacteria (NorA) and fungi. More polar phenolics (phenolic acids, flavonoids, catechins, chalcones, xanthones, stilbenes, anthocyanins, tannins, anthraquinones, and naphthoquinones) directly inhibit proteins forming several hydrogen and ionic bonds and thus disturbing the 3D structure of the transporters. The natural products may be interesting in medicine or agriculture as they can enhance the activity of active chemotherapeutics or pesticides or even reverse multidrug resistance, at least partially, of adapted and resistant cells. If these SM are applied in combination with a cytotoxic or antimicrobial agent, they may reverse resistance in a synergistic fashion.
Collapse
Affiliation(s)
- Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University Heidelberg, Germany
| | | | | |
Collapse
|
25
|
Taub ME, Mease K, Sane RS, Watson CA, Chen L, Ellens H, Hirakawa B, Reyner EL, Jani M, Lee CA. Digoxin is not a substrate for organic anion-transporting polypeptide transporters OATP1A2, OATP1B1, OATP1B3, and OATP2B1 but is a substrate for a sodium-dependent transporter expressed in HEK293 cells. Drug Metab Dispos 2011; 39:2093-102. [PMID: 21849517 DOI: 10.1124/dmd.111.040816] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Digoxin, an orally administered cardiac glycoside cardiovascular drug, has a narrow therapeutic window. Circulating digoxin levels (maximal concentration of ∼1.5 ng/ml) require careful monitoring, and the potential for drug-drug interactions (DDI) is a concern. Increases in digoxin plasma exposure caused by inhibition of P-glycoprotein (P-gp) have been reported. Digoxin has also been described as a substrate of various organic anion-transporting polypeptide (OATP) transporters, posing a risk that inhibition of OATPs may result in a clinically relevant DDI similar to what has been observed for P-gp. Although studies in rats have shown that Oatps contribute to the disposition of digoxin, the role of OATPs in the disposition of digoxin in humans has not been clearly defined. Using two methods, Boehringer Ingelheim, GlaxoSmithKline, Pfizer, and Solvo observed that digoxin is not a substrate of OATP1A2, OATP1B1, OATP1B3, and OATP2B1. However, digoxin inhibited the uptake of probe substrates of OATP1B1 (IC(50) of 47 μM), OATP1B3 (IC(50) > 8.1 μM), and OATP2B1 (IC(50) > 300 μM), but not OATP1A2 in transfected cell lines. It is interesting to note that digoxin is a substrate of a sodium-dependent transporter endogenously expressed in HEK293 cells because uptake of digoxin was significantly greater in cells incubated with sodium-fortified media compared with incubations conducted in media in which sodium was absent. Thus, although digoxin is not a substrate for the human OATP transporters evaluated in this study, in addition to P-gp-mediated efflux, its uptake and pharmacokinetic disposition may be partially facilitated by a sodium-dependent transporter.
Collapse
Affiliation(s)
- Mitchell E Taub
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Li Y, Revalde JL, Reid G, Paxton JW. Interactions of dietary phytochemicals with ABC transporters: possible implications for drug disposition and multidrug resistance in cancer. Drug Metab Rev 2011; 42:590-611. [PMID: 20433315 DOI: 10.3109/03602531003758690] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Common foods, such as fruits and vegetables, contain a large variety of secondary metabolites known as phytochemicals, many of which have been associated with health benefits. However, there is a limited knowledge of the processes by which these, mainly charged, phytochemicals (and/or their metabolites) are absorbed into the body, reach their biological target, and how they are eliminated. Recent studies have indicated that some of these phytochemicals are substrates and modulators of specific members of the superfamily of ABC transporting proteins. In this review, we present the reported interactions between the different classes of phytochemicals and ABC transporters and the mechanism by which they modulate the activity of these transporters. We also discuss the implications that such interactions may have on the pharmacokinetics of xenobiotics and the possible role of phytochemicals in the reversal of multidrug resistance in cancer chemotherapy.
Collapse
Affiliation(s)
- Yan Li
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
27
|
Srirangam P, Vidya SJ. Modulation of the p-glycoproein-mediated intestinal secretion of glibenclamide: in vitro and in vivo assessments. J Young Pharm 2011; 2:379-83. [PMID: 21264098 PMCID: PMC3019377 DOI: 10.4103/0975-1483.71632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The everted gut sac method was used to assess the role of the P-glycoprotein (P-gp) on the intestinal secretion of glibenclamide, a prototype of drug used to treat diabetic mellitus. The study included the evaluation of a P-gp modulator carbamazepine used at equimolar doses in the rat. Furthermore, the influence of carbamazepine on the disposition kinetics of glibenclamide in plasma was characterized. For the in vitro experiments, ileal sacs were incubated with glibenclamide in the presence or absence of carbamazepine. In the in vivo experiments, albino rats of either sex were randomly allocated to two groups (n = 6) and oral treatment with glibenclamide (3.6 mg/kg), alone and coadministration with carbamazepine (90 mg/kg). Blood samples were collected at an interval of 1, 2, 4, 6, and 8 h, respectively. Glibenclamide concentrations in both in vitro and in vivo samples were estimated by a sensitive RP-HPLC method. The rate of glibenclamide accumulation in the intestine wall of everted sacs was significantly lower after its incubation with carbamazepine when compared to glibenclamide alone treated. In the agreement with the in vivo and in vitro experiments, the presence of carbamazepine induced an enhancement in the concentrations of glibenclamide in plasma and gastrointestinal tract. The results obtained in this study, both under in vivo and in vitro conditions confirm the relevance of P-gp-mediated transport to the intestinal secretion of glibenclamide.
Collapse
Affiliation(s)
- P Srirangam
- Department of Pharmacology, Vaagdevi College of Pharmacy, Warangal, AP, India
| | | |
Collapse
|
28
|
Elsby R, Gillen M, Butters C, Imisson G, Sharma P, Smith V, Surry DD. The utility of in vitro data in making accurate predictions of human P-glycoprotein-mediated drug-drug interactions: a case study for AZD5672. Drug Metab Dispos 2011; 39:275-82. [PMID: 21075975 DOI: 10.1124/dmd.110.035881] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
To support drug development and registration, Caco-2 cell monolayer assays have previously been set up and validated to determine whether candidate drugs are substrates or inhibitors of human P-glycoprotein (P-gp). In this study, the drug-drug interaction (DDI) potential of N-(1-{(3R)-3-(3,5-difluorophenyl)-3-[4-methanesulfonylphenyl]propyl}piperidin-4-yl)-N-ethyl-2-[4-methanesulfonylphenyl]acetamide (AZD5672) was assessed accordingly, and a subsequent clinical digoxin interaction study was performed. AZD5672 (1-500 μM) demonstrated concentration-dependent efflux across cell monolayers, which was abolished in the presence of ketoconazole and quinidine, identifying AZD5672 as a P-gp substrate. In addition, P-gp-mediated digoxin transport was inhibited in a concentration-dependent manner by AZD5672 (IC(50) = 32 μM). Assessment of the calculated theoretical gastrointestinal inhibitor concentration ([I(2)]) and predicted steady-state maximum total plasma inhibitor concentration ([I(1)]) indicated the potential for a DDI at the intestinal but not the systemic level after the predicted therapeutic dose of AZD5672 (100 mg). A clinical study was performed and the plasma pharmacokinetics [observed maximum plasma drug concentration (C(max)) and area under the plasma concentration versus time curve from 0 to 72 h postdose (AUC(0-72 h))] of orally dosed digoxin (0.5 mg) were found to be unaffected by coadministration of AZD5672 (50 mg) at steady state. In contrast, a 150-mg dose of AZD5672 significantly increased digoxin C(max) and AUC(0-72 h) by 1.82- and 1.33-fold, respectively. Concentration-time profile comparisons indicated that digoxin elimination was unchanged by AZD5672, and the interaction was most likely to have resulted from inhibition of intestinal P-gp leading to increased digoxin absorption. The observed dose-dependent clinically significant interaction was accurately predicted using calculated [I(2)] and in vitro P-gp inhibition data, confirming AZD5672 to be a P-gp inhibitor in vivo.
Collapse
Affiliation(s)
- Robert Elsby
- Clinical Pharmacology and DMPK, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough, Leicestershire, LE11 5RH, UK.
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
P-glycoprotein (ABCB1) is one of the most extensively studied transporters regarding drug resistance and drug-drug interactions. P-glycoprotein is expressed in multiple key organs in drug disposition such as small intestine, blood-brain barrier, kidney, and liver. Therefore, P-glycoprotein mediated drug-drug interactions can occur at various organs and tissues. This chapter will mainly focus on drug-drug interactions that are mediated by the intestinal P-glycoprotein.During the last decade, many in vitro and in vivo studies reported that the induction or inhibition of P-glycoprotein can lead to drug-drug interactions. For instance, induction of the intestinal P-glycoprotein activity can cause reduced bioavailability of orally administered drugs and decreased therapeutic efficacy. On the other hand, the inhibition of the intestinal P-glycoprotein activity can lead to increased bioavailability, thus leading to an increased risk of adverse side effects.
Collapse
Affiliation(s)
- Hartmut Glaeser
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-University Erlangen-Nurember, Erlangen, Germany.
| |
Collapse
|
30
|
The Effects of Pregnenolone 16α-Carbonitrile Dosing on Digoxin Pharmacokinetics and Intestinal Absorption in the Rat. Pharmaceutics 2010; 2:61-77. [PMID: 27721343 PMCID: PMC3968349 DOI: 10.3390/pharmaceutics2010061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 03/05/2010] [Accepted: 03/11/2010] [Indexed: 11/20/2022] Open
Abstract
The effect of Pgp induction in rats by pregnenolone 16α-carbonitrile (PCN) (3 days, 35 mg/kg/d, p.o.) on digoxin pharmacokinetics and intestinal transport has been assessed. After intravenous or oral digoxin dosing the arterial and hepatic portal vein (oral) AUC(0-24h) were significantly reduced by PCN pre-treatment. Biliary digoxin clearance increased 2-fold following PCN treatment. PCN significantly increased net digoxin secretion (2.05- and 4.5-fold respectively) in ileum and colon but not in duodenum or jejunum. This increased secretion correlated with increased Pgp protein expression in ileum and colon. Both intestinal and biliary excretion therefore contribute to altered digoxin disposition following PCN.
Collapse
|
31
|
Fan J, Liu S, Du Y, Morrison J, Shipman R, Pang KS. Up-regulation of transporters and enzymes by the vitamin D receptor ligands, 1alpha,25-dihydroxyvitamin D3 and vitamin D analogs, in the Caco-2 cell monolayer. J Pharmacol Exp Ther 2009; 330:389-402. [PMID: 19414624 DOI: 10.1124/jpet.108.149815] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The effects of 1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] on gene expression and function were studied in Caco-2 cells. Microarray analyses, real-time quantitative polymerase chain reactions, and Western blotting were used to determine the mRNA and protein expression of transporters and enzymes after 1,25(OH)(2)D(3) or vehicle (0.1% ethanol) treatment for 1, 3, 6, and 10 days. The mRNA and protein expressions of the apical sodium-dependent bile acid transporter, oligopeptide transporter 1, multidrug resistance-associated protein (MRP) 3, and sulfotransferase 1E1 remained unchanged with 1,25(OH)(2)D(3) treatment, whereas those for CYP3A4, multidrug resistance protein 1, and MRP2 were significantly increased (P < 0.05). 1,25(OH)(2)D(3) treatment significantly enhanced MRP4 protein expression by increasing protein stability without affecting mRNA expression, as confirmed in cycloheximide experiments. Marked increase in 6beta-hydroxylation of testosterone by CYP3A4 was also observed in the 6-day 1,25(OH)(2)D(3)-treated (100 nM) cell lysate. The transport of [(3)H]digoxin, the P-glycoprotein (P-gp) substrate, after treatment with 100 nM 1,25(OH)(2)D(3) for 3 days revealed a higher apparent permeability (P(app)) value in the basal (B)-to-apical (A) direction over that of vehicle treatment (15.1 +/- 0.53 x 10(-6) versus 11.8 +/- 0.58 x 10(-6) cm/s; P < 0.05), whereas the P(app) in the A-to-B direction was unchanged; the efflux ratio was increased (from 5.8 to 8.0). Reduced cellular retention of 5-(and-6)-carboxy-2',7'-dichlorofluorescein, suggestive of higher MRP2 activity, was observed in the 3-day 100 nM 1,25(OH)(2)D(3)-treated cells over controls. Higher protein expression of CYP3A4, MRP2, P-gp, and MRP4 was also observed after a 6-day treatment with other vitamin D analogs (100 nM 1alpha-hydroxyvitamin D(3),1alpha-hydroxyvitamin D(2) or Hectorol, and 25-hydroxyvitamin D(3)) in Caco-2 cells, suggesting a role of 1,25(OH)(2)D(3) and analogs in the activation of enzymes and transporters via the vitamin D receptor.
Collapse
Affiliation(s)
- Jianghong Fan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Fan L, Tao GY, Wang G, Chen Y, Zhang W, He YJ, Li Q, Lei HP, Jiang F, Hu DL, Huang YF, Zhou HH. Effects of Ginkgo biloba Extract Ingestion on the Pharmacokinetics of Talinolol in Healthy Chinese Volunteers. Ann Pharmacother 2009; 43:944-9. [DOI: 10.1345/aph.1l656] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background Ginkgo biloba extract (GBE), the best selling herbal medicine in the world, has been reported to inhibit P-glycoprotein in vitro. However, the effects of GBE on P-glycoprotein activity in humans have not been clarified. Objective To investigate the effects of single and repeated GBE ingestion on the oral pharmacokinetics of talinolol, a substrate drug for P-glycoprotein in humans. Methods Ten unrelated healthy male volunteers were selected to participate in a 3-stage sequential study. Plasma concentrations of talinolol from 0 to 24 hours were measured by high-performance liquid chromatography after talinolol 100 mg was administrated alone, with a single oral dose of GBE (120 mg), and after 14 days of repeated GBE ingestion (360 mg/day). Results A single oral dose of GBE did not affect the pharmacokinetics of talinolol. Repeated ingestion of GBE increased the talinolol maximum plasma concentration (Cmax) by 36% (90% CI 10 to 68; p = 0.025), the area under the concentration-time curve (AUC)0-24 by 26% (90% CI 11 to 43; p = 0.008) and AUC0-∞ by 22% (90% CI 8 to 37; p = 0.014), respectively, without significant changes in elimination half-life and the time to Cmax. Conclusions Our results suggest that long-term use of GBE significantly influenced talinolol disposition in humans, likely by affecting the activity of P-glycoprotein and/or other drug transporters.
Collapse
Affiliation(s)
- Lan Fan
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - Gong-You Tao
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Central South University
| | - Guo Wang
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Central South University
| | - Yao Chen
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Central South University
| | - Wei Zhang
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Central South University
| | - Yi-Jing He
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Central South University
| | - Qing Li
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Central South University
| | - He-Ping Lei
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Central South University
| | - Feng Jiang
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Central South University
| | - Dong-Li Hu
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Central South University
| | - Yuan-Fei Huang
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Central South University
| | - Hong-Hao Zhou
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Central South University
| |
Collapse
|
33
|
Wu JW, Lin LC, Tsai TH. Drug-drug interactions of silymarin on the perspective of pharmacokinetics. JOURNAL OF ETHNOPHARMACOLOGY 2009; 121:185-93. [PMID: 19041708 DOI: 10.1016/j.jep.2008.10.036] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 10/21/2008] [Accepted: 10/30/2008] [Indexed: 05/27/2023]
Abstract
Silymarin, which is extracted from the milk thistle (Silybum marianum), has been used for centuries for treating hepatic disorders and its hepatoprotective effects have been known for hundreds of years. Silymarin is a mixture of polyphenoic flavonoids, which include silibinin (silybin A and silybin B), isosilyin A and B, silychristin A and B, silydianin and other phenol compounds. The pharmacokinetics of silibinin shows fast absorption and elimination. Silymarin undergoes phase I and phase II metabolism, especially phase II conjugation reactions, it undergoes multiple conjugation reactions, and is primarily excreted into bile and urine. Silymarin has a good safety profile, but little is known regarding its potential for drug interaction. Silymarin has limited effect on the pharmacokinetics of several drugs in vivo; despite silymarin decreasing the activity of cytochrome P-450 (CYPs) enzymes, UDP-glucuronosyltransferase (UGT) enzyme, and reducing P-glycoprotein (P-gp) transport. Health-care practitioners should caution patients against co-administration of silymarin and pharmaceutical drugs.
Collapse
Affiliation(s)
- Jhy-Wen Wu
- Centers for Disease Control, Department of Health, Taipei, Taiwan
| | | | | |
Collapse
|
34
|
|
35
|
Drug-drug interactions mediated through P-glycoprotein: clinical relevance and in vitro-in vivo correlation using digoxin as a probe drug. Clin Pharmacol Ther 2008; 85:173-81. [PMID: 18987624 DOI: 10.1038/clpt.2008.195] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The clinical pharmacokinetics and in vitro inhibition of digoxin were examined to predict the P-glycoprotein (P-gp) component of drug-drug interactions. Coadministered drugs (co-meds) in clinical trials (N = 123) resulted in a small, <or=100% increase in digoxin pharmacokinetics. Digoxin is likely to show the highest perturbation, via inhibition of P-gp, because of the absence of metabolic clearance. In vitro inhibitory potency data (concentration of inhibitor to inhibit 50% P-gp activity; IC(50)) were generated using Caco-2 cells for 19 P-gp inhibitors. Maximum steady-state inhibitor systemic concentration [I], [I]/IC(50) ratios, hypothetical gut concentration ([I(2)], dose/250 ml), and [I(2)]/IC(50) ratios were calculated to simulate systemic and gut-based interactions and were compared with peak plasma concentration (C(max))(,i,ss)/C(max,ss) and area under the curve (AUC)(i)/AUC ratios from the clinical trials. [I]/IC(50) < 0.1 shows high false-negative rates (24% AUC, 41% C(max)); however, to a limited extent, [I(2)]/IC(50) < 10 is predictive of negative digoxin interaction for AUC, and [I]/IC(50) > 0.1 is predictive of clinical digoxin interactions (AUC and C(max)).
Collapse
|
36
|
Chan LMS, Cooper AE, Dudley ALJ, Ford D, Hirst BH. P-glycoprotein Potentiates CYP3A4-mediated Drug Disappearance during Caco-2 Intestinal Secretory Detoxification. J Drug Target 2008; 12:405-13. [PMID: 15621665 DOI: 10.1080/10611860412331285224] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Human intestinal Caco-2 cell monolayers grown in the presence of 1alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3) were used to test the hypothesis that drugs which interact with the apical efflux pump P-glycoprotein (Pgp) may enhance CYP3A4-mediated disappearance of substrates. 6beta-hydroxytestosterone production, a marker of CYP3A4 activity, was approximately 3- and 7-fold greater in 1,25(OH)2D3-treated cells compared to untreated cells when incubated with 50 and 500 microM testosterone, respectively, and was unaffected by the addition of digoxin to reduce Pgp activity. In the presence of digoxin, secretory transport of vinblastine and erythromycin, substrates for both Pgp and cytochrome P450 3A4 (CYP3A4), was significantly reduced, whereas absorptive transport was unaffected. In contrast, no directional transport of testosterone, a substrate for CYP3A4 only, was observed, either in the presence or absence of digoxin. Over 2 h, disappearance of erythromycin and vinblastine from the incubation medium was significantly greater from the basolateral than from the apical compartments. In the presence of digoxin, disappearance of both compounds from the basolateral, but not from the apical compartments, was significantly reduced. In contrast, disappearance of testosterone was unaffected by the addition of digoxin, demonstrating that the effect of digoxin on erythromycin and vinblastine disappearance was via inhibition of Pgp function, rather than on CYP3A4 activity. Thus, evidence is provided for Pgp/CYP3A4 co-substrates, Pgp potentiates CYP3A4-mediated drug disappearance during intestinal secretory detoxification.
Collapse
Affiliation(s)
- Lauretta M S Chan
- Institute for Cell and Molecular Biosciences, University of Newcastle Medical School, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | |
Collapse
|
37
|
Rodriguez-Proteau R, Mata JE, Miranda CL, Fan Y, Brown JJ, Buhler DR. Plant polyphenols and multidrug resistance: Effects of dietary flavonoids on drug transporters in Caco-2 and MDCKII-MDR1 cell transport models. Xenobiotica 2008; 36:41-58. [PMID: 16507512 DOI: 10.1080/00498250500433545] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The hypothesis tested was that specific flavonoids such as epicatechin gallate, epigallocatechin gallate, genistein, genistin, naringenin, naringin, quercetin and xanthohumol will modulate cellular uptake and permeability (P(e)) of multidrug-resistant substrates, cyclosporin A (CSA) and digoxin, across Caco-2 and MDCKII-MDR1 cell transport models. (3)H-CSA/(3)H-digoxin transport and uptake experiments were performed with and without co-exposure of the flavonoids. Aglycone flavonoids reduced the P(e) of CSA to a greater extent than glycosylated flavonoids with 30 microM xanthohumol producing the greatest effect (7.2 x 10(-6) to 6.6 x 10(-7) and 17.9 x 10(-6) to 4.02 x 10(-6) cm s(-1) in Caco-2 and MDCKII-MDR1 cells, respectively); while no measurable effects were seen with digoxin. Xanthohumol significantly demonstrated (1) saturable efflux, (2) increased uptake of (3)H-digoxin and (3) decreased uptake of (3)H-CSA in the Caco-2 cells. The transport data suggests that xanthohumol effects transport of CSA in a manner that is distinct from the digoxin efflux pathway and suggests that intestinal transport of these MDR1 substrates is more complex than previously reported.
Collapse
Affiliation(s)
- R Rodriguez-Proteau
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, 97331-3507, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Lack of a pharmacokinetic interaction between a new smoking cessation therapy, varenicline, and digoxin in adult smokers. Eur J Clin Pharmacol 2008; 64:1101-9. [DOI: 10.1007/s00228-008-0530-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Accepted: 06/19/2008] [Indexed: 10/21/2022]
|
39
|
Haslam IS, Jones K, Coleman T, Simmons NL. Induction of P-glycoprotein expression and function in human intestinal epithelial cells (T84). Biochem Pharmacol 2008; 76:850-61. [PMID: 18703021 DOI: 10.1016/j.bcp.2008.07.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 07/14/2008] [Accepted: 07/15/2008] [Indexed: 11/28/2022]
Abstract
Intestinal induction of Pgp is known to limit the oral availability of certain drug compounds and give rise to detrimental drug-drug interactions. We have investigated the induction of P-glycoprotein (Pgp; MDR1) activity in a human intestinal epithelial cell line (T84) following pre-exposure to a panel of drug compounds, reported to be Pgp substrates, inhibitors or inducers. Human MDR1-transfected MDCKII epithelial monolayers were used to assess Pgp substrate interactions and inhibition of digoxin secretion by the selected drug compounds. The T84 cell line was used to assess induction of Pgp-mediated digoxin secretion following pre-exposure to the same compounds. Changes in gene expression (MDR1, MRP2, PXR and CAR) were determined by quantitative RT-PCR. Net transepithelial digoxin secretion was increased (1.3 fold, n=6, P<0.05) following pre-exposure to the PXR activator hyperforin (100nM, 72h), as was MDR1 mRNA expression (3.0 fold, n=4, P<0.05). A number of Pgp substrates (quinidine, amprenavir, irinotecan, topotecan, atorvastatin and erythromycin) induced net digoxin secretion, as did the non-Pgp substrate artemisinin. Various non-Pgp substrates demonstrated inhibition of digoxin secretion (verapamil, mifepristone, clotrimazole, mevastatin, diltiazem and isradipine) but did not induce Pgp-mediated digoxin secretion. Of the compounds that increased Pgp secretion, quinidine, topotecan, atorvastatin and amprenavir pre-exposure also elevated MDR1 mRNA levels, whereas erythromycin, irinotecan and artemisinin displayed no change in transcript levels. This indicates possible post-translational regulation of digoxin secretion. Finally, a strong correlation between drug modulation of MRP2 and PXR mRNA expression levels was evident.
Collapse
Affiliation(s)
- I S Haslam
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, University of Newcastle Upon Tyne, Medical School, Newcastle Upon Tyne NE24HH, UK
| | | | | | | |
Collapse
|
40
|
Zhang W, Lim LY. Effects of spice constituents on P-glycoprotein-mediated transport and CYP3A4-mediated metabolism in vitro. Drug Metab Dispos 2008; 36:1283-90. [PMID: 18385293 DOI: 10.1124/dmd.107.019737] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
The effects of eight components from six commonly consumed spices on P-glycoprotein (P-gp) transport and CYP3A4 metabolism were evaluated in vitro. P-gp-mediated [(3)H]digoxin fluxes across the L-MDR1 (LLC-PK1 cells transfected with human MDR1 gene) and Caco-2 (human colon carcinoma) cell monolayers showed a marked asymmetry compared with that in the LLC-PK1 (porcine kidney epithelial cells) cell monolayers. Curcumin (from turmeric) at 30 to 60 microM and 6-gingerol (from ginger) at 100 to 500 microM were observed to inhibit P-gp-mediated [(3)H]digoxin transport in L-MDR1 and Caco-2 cells. Effects of spices on midazolam (MDZ) 1'-hydroxylation and 4-hydroxylation of CYP3A4 activity were determined in pooled human liver microsomes (HLM). The following IC(50) values for effects of spices on MDZ 1'-hydroxylation in HLM were obtained: 29 microM for curcumin, 1.17 mM for allyl methyl disulfide (AMD) (from Chinese chive), 1.02 mM for 1,8-cineole (from coriander), and 1.28 mM for beta-caryophyllene (from curry leaf). CYP3A4-mediated 4-hydroxylation of MDZ was inhibited by curcumin at 30, 45, and 60 microM (4-hydroxy-MDZ formation was decreased to 52, 30, and 29%, respectively, compared with control), by 6-gingerol at 60, 100, and 500 microM (71, 68, and 38%), by AMD at 1 and 4 mM (29 and 14%), by d-limonene (from coriander) at 4 mM (65%), by 1,8-cineole at 0.5, 1, and 4 mM (74, 64, and 59%), and by citral (from lemongrass) at 1 mM (59%). Among the spices that showed inhibitory effect on MDZ metabolism in HLM, only AMD showed a preincubation time-dependent inhibitory effect on MDZ metabolism in HLM, suggesting the AMD as an irreversible CYP3A4 inhibitor.
Collapse
Affiliation(s)
- Wenxia Zhang
- Department of Pharmacy, National University of Singapore, Singapore
| | | |
Collapse
|
41
|
Haslam IS, Jones K, Coleman T, Simmons NL. Rifampin and digoxin induction of MDR1 expression and function in human intestinal (T84) epithelial cells. Br J Pharmacol 2008; 154:246-55. [PMID: 18332862 DOI: 10.1038/bjp.2008.69] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Oral drug bioavailability is limited by intestinal expression of P-glycoprotein (MDR1, Pgp, ABCB1) whose capacity is regulated via nuclear receptors e.g. the pregnane X receptor (PXR, SXR, NR1I2). In order to study dynamic regulation of MDR1 transport capacity we have identified the T84 epithelial cell-line as a model for human intestine co-expressing MDR1 with PXR. The ability of rifampin, a known PXR agonist and digoxin, a model MDR1 substrate, to regulate MDR1 expression and transport activity has been tested, in these T84 cells. EXPERIMENTAL APPROACH Transport was assayed by bi-directional [(3)H]-digoxin transepithelial fluxes across epithelial layers of T84 cells seeded onto permeable filter supports following pre-exposure to rifampin and digoxin. Quantitative real-time PCR, Western blotting and immunocytochemistry were used to correlate induction of MDR1 transcript and protein levels with transport activity. KEY RESULTS Rifampin exposure (10 microM, 72 hours) increased MDR1 transcript levels (3.4 fold), MDR1 total protein levels (4.4 fold), apical MDR1 protein (2.7 fold) and functional activity of MDR1 (1.2 fold). Pre-incubation with digoxin (1 microM, 72 hours) potently induced MDR1 transcript levels (92 fold), total protein (7 fold), apical MDR1 protein (4.7 fold) and functional activity (1.75 fold). Whereas PXR expression was increased by rifampin incubation (2 fold), digoxin reduced PXR expression (0.3 fold). CONCLUSIONS AND IMPLICATIONS Chronic digoxin pre-treatment markedly upregulates MDR1 expression and secretory capacity of T84 epithelia. Digoxin-induced changes in MDR1 levels are distinct from PXR-mediated changes resulting from rifampin exposure.
Collapse
Affiliation(s)
- I S Haslam
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, University of Newcastle Upon Tyne, Medical School, Newcastle Upon Tyne, UK
| | | | | | | |
Collapse
|
42
|
Dvela M, Rosen H, Feldmann T, Nesher M, Lichtstein D. Diverse biological responses to different cardiotonic steroids. ACTA ACUST UNITED AC 2007; 14:159-66. [PMID: 17964766 DOI: 10.1016/j.pathophys.2007.09.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cardiotonic steroids (CS) such as ouabain, digoxin and bufalin, are steroidal drugs prepared from the seeds and dried leaves of the genus Digitalis, and the skin and parotid gland of amphibians, are used as a cardiac stimulant. Steroids similar or identical to the cardiotonic steroids were identified in human tissues. The available literature unequivocally supports the notion that these endogenous CS function as hormones in mammals. Recent studies show that although similar in structure, the different CS exhibit diverse biological responses. This was shown at the molecular, cellular, tissue and whole animal levels. This review summarizes these diversities, raises a possible explanation for their presence and discusses their implication on the physiological role of the different steroids.
Collapse
Affiliation(s)
- Moran Dvela
- Department of Physiology and Institute of Microbiology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
43
|
Kimoto E, Seki S, Itagaki S, Matsuura M, Kobayashi M, Hirano T, Goto Y, Tadano K, Iseki K. Efflux transport of N-monodesethylamiodarone by the human intestinal cell-line Caco-2 cells. Drug Metab Pharmacokinet 2007; 22:307-12. [PMID: 17827785 DOI: 10.2133/dmpk.22.307] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amiodarone (AMD) is a benzofurane derivative with class III antiarrhythmic activity that is effective in controlling intractable cardiac arrhythmias. One of the most common and serious drug interactions in clinical practice is the interaction between digoxin and an antiarrhythmic agent. It has been reported that AMD and N-monodesethylamiodarone (DEA), the active metabolite of AMD, inhibit the P-glycoprotein (P-gp/MDR1)-mediated digoxin transport. However, the intestinal transport processes of AMD and DEA have not been fully revealed. In this study, we focused on the intestinal transport mechanism of DEA and characterized the intestinal transport of DEA using Caco-2 cells. Basal-to-apical transport of DEA by Caco-2 cells was greater than apical-to-basal transport. The relationship between concentration and basal-to-apical flux rate appeared to approach saturation. The uptake of DEA by Caco-2 cells was increased in the presence of typical ATP-depletion compounds and thyroid hormones. On the other hand, substrates for P-gp, multidrug resistance-associated proteins (MRPs/ABCCs) and breast cancer resistance protein (BCRP/ABCG2) had no effect on the efflux of DEA. These results suggest that an ATP-binding cassette (ABC) transporter, which is different from P-gp, MRPs and BCRP, mediates the efflux of DEA across the apical membrane in Caco-2 cells and that thyroid hormone inhibits this transporter.
Collapse
Affiliation(s)
- Emi Kimoto
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, and Department of Pharmacy, Sapporo City General Hospital, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Steimer A, Franke H, Haltner-Ukomado E, Laue M, Ehrhardt C, Lehr CM. Monolayers of porcine alveolar epithelial cells in primary culture as an in vitro model for drug absorption studies. Eur J Pharm Biopharm 2007; 66:372-82. [PMID: 17267190 DOI: 10.1016/j.ejpb.2006.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 10/29/2006] [Accepted: 11/09/2006] [Indexed: 11/16/2022]
Abstract
Filter-grown monolayers of porcine alveolar epithelial cells (pAEpC) in primary culture have been characterized as an in vitro model for pulmonary absorption screening of xenobiotics, including substrates of efflux systems. Experimental conditions and a protocol for transport experiments were optimized using transepithelial electrical resistances (TEER) and permeability of marker compounds as acceptance criteria. Since new drugs often feature poor water solubility, monolayer integrity in the presence of a solubilizer (dimethyl sulfoxide) was tested. Transport studies were carried out with budesonide and triamcinolone acetonide, i.e., two drugs commonly administered to the lungs. Furthermore, expression of P-glycoprotein (P-gp) was assessed by immunofluorescence microscopy and transport studies employing the substrates rhodamine 123 and digoxin. Hydrocortisone-supplemented (0.5 microg/ml) small airway basal medium as transport buffer and a maximal solubilizer concentration of 1.5% dimethyl sulfoxide were found to provide suitable conditions for drug transport studies across pAEpC, as reflected, e.g., by a minimum TEER of 600 Omega cm(2). Permeation of marker compounds was reproducible throughout several cell preparations and proved the model successful in distinguishing between low- and high-permeable drugs. P-gp expression was confirmed by immunocytochemistry, even though transport studies revealed no polarity in transepithelial marker transport. In conclusion, our results demonstrate that filter-grown monolayers of pAEpC can be used to study drug transport across alveolar epithelial barrier and thus, may represent a suitable in vitro model for pulmonary drug absorption and delivery.
Collapse
Affiliation(s)
- Anne Steimer
- Across Barriers GmbH, Science Park Saar, Saarbrücken, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Takaai M, Suzuki H, Ishida K, Tahara K, Hashimoto Y. Pharmacokinetic Analysis of Transcellular Transport of Levofloxacin across LLC-PK1 and Caco-2 Cell Monolayers. Biol Pharm Bull 2007; 30:2167-72. [DOI: 10.1248/bpb.30.2167] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Mari Takaai
- Graduate School of Pharmaceutical Sciences, University of Toyama
| | - Hisaki Suzuki
- Graduate School of Pharmaceutical Sciences, University of Toyama
| | - Kazuya Ishida
- Graduate School of Pharmaceutical Sciences, University of Toyama
| | | | - Yukiya Hashimoto
- Graduate School of Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
46
|
Thomas VH, Bhattachar S, Hitchingham L, Zocharski P, Naath M, Surendran N, Stoner CL, El-Kattan A. The road map to oral bioavailability: an industrial perspective. Expert Opin Drug Metab Toxicol 2006; 2:591-608. [PMID: 16859407 DOI: 10.1517/17425255.2.4.591] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Optimisation of oral bioavailability is a continuing challenge for the pharmaceutical and biotechnology industries. The number of potential drug candidates requiring in vivo evaluation has significantly increased with the advent of combinatorial chemistry. In addition, drug discovery programmes are increasingly forced into more lipophilic and lower solubility chemical space. To aid in the use of in vitro and in silico tools as well as reduce the number of in vivo studies required, a team-based discussion tool is proposed that provides a 'road map' to guide the selection of profiling assays that should be considered when optimising oral bioavailability. This road map divides the factors that contribute to poor oral bioavailability into two interrelated categories: absorption and metabolism. This road map provides an interface for cross discipline discussions and a systematic approach to the experimentation that drives the drug discovery process towards a common goal - acceptable oral bioavailability using minimal resources in an acceptable time frame.
Collapse
Affiliation(s)
- V Hayden Thomas
- Pfizer Global Research and Development, Department of Pharmaceutical Sciences, Ann Arbor, MI 48105, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Yao HM, Chiou WL. The complexity of intestinal absorption and exsorption of digoxin in rats. Int J Pharm 2006; 322:79-86. [PMID: 16781832 DOI: 10.1016/j.ijpharm.2006.05.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 05/15/2006] [Accepted: 05/16/2006] [Indexed: 12/31/2022]
Abstract
The potential multiple carrier-mediated mechanisms involved in the transport of digoxin in rat intestine were investigated by the rapid filtration method in rat intestinal brush-border vesicles (BBMV) and in vitro Ussing chambers. The uptake of digoxin showed a typical overshoot phenomenon in the presence of an inward proton gradient and an outward bicarbonate gradient, or an outward glutathione gradient in BBMV. Good fitting to an equation consisting of both saturable and linear terms was obtained using non-linear regression analysis. GF120918, a specific P-gp inhibitor, significantly increased the absorptive permeability of digoxin in rat ileum (7.02 x 10(-7) cm/s versus 2.11 x 10(-6) cm/s with GF120918) but the addition of DIDS (0.5 mM), an anionic transporter inhibitor, or bromosulfophthalein (0.1 mM), an Oatp inhibitor, in the presence of GF120918 decreased the absorptive permeability compared with GF120918 alone (2.11 x 10(-6) cm/s versus 1.46 x 10(-6) cm/s, p<0.01 and 2.11 x 10(-6) cm/s versus 1.60 x 10(-6) cm/s, p<0.05, respectively). The above results suggest the involvement of carrier-mediated uptake mechanism, possibly Oatp, in digoxin absorption. Interestingly, GF120918 (1 microM) did not abolish the polarized transport of digoxin in rat jejunum and ileum, and DIDS (0.5 mM), not a P-gp inhibitor, and MK571 (50 microM), an MRP-selective inhibitor, can also significantly decrease the exsorptive permeability of digoxin. This result indicates the involvement of non-P-gp efflux transporter in digoxin secretion and this transporter is DIDS and MK571-sensitive. Contrary to conventional concept, our studies show that intestinal absorption of digoxin may involve both active uptake and efflux transporters. Our study may have clinical implications in drug-drug or drug-food interactions involving transporters.
Collapse
Affiliation(s)
- Hsuan-Ming Yao
- Department of Biopharmaceutical Sciences (M/C 865), College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, IL 60612, USA.
| | | |
Collapse
|
48
|
Vullo D, Steffansen B, Brodin B, Supuran CT, Scozzafava A, Nielsen CU. Carbonic anhydrase inhibitors: Transepithelial transport of thioureido sulfonamide inhibitors of the cancer-associated isozyme IX is dependent on efflux transporters. Bioorg Med Chem 2006; 14:2418-27. [PMID: 16321542 DOI: 10.1016/j.bmc.2005.11.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 11/07/2005] [Accepted: 11/11/2005] [Indexed: 10/25/2022]
Abstract
Sulfonamides and their derivatives inhibit the catalytic activity of carbonic anhydrases (CA, EC 4.2.1.1). Isozyme IX (CA IX) is a transmembrane isoform with the active site oriented toward the extracellular space. CA IX was recently shown to be a drug target, and it is highly overexpressed in hypoxic tumors with limited distribution in normal tissues. The present report deals with the drug design, synthesis, and biological investigation of a group of thioureido sulfonamides, which have been obtained by reaction of isothiocyanate-substituted aromatic sulfonamides with amines. These compounds have potent inhibitory properties against CA IX with K(I) values in the range of 10-37 nM and P(app)values > 0.34 x 10(-6) cm/s for the absorptive transepithelial transport in Caco-2 cells. In Caco-2 cells, one of these compounds (A6) was shown to be a substrate for efflux transporters such as P-glycoprotein (P-gp). P-gp activity is not likely to be rate-limiting for intestinal absorption, but might be useful when targeting hypoxic tumors expressing both P-gp and CA IX.
Collapse
Affiliation(s)
- Daniela Vullo
- Molecular Biopharmaceutics, Department of Pharmaceutics and Analytical Chemistry, The Danish University of Pharmaceutical Sciences, 2-Universitetsparken, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
49
|
Ballent M, Lifschitz A, Virkel G, Sallovitz J, Lanusse C. Modulation of the P-glycoprotein-mediated intestinal secretion of ivermectin: in vitro and in vivo assessments. Drug Metab Dispos 2006; 34:457-63. [PMID: 16381664 DOI: 10.1124/dmd.105.007757] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The everted gut sac method was used to assess the role of the P-glycoprotein (P-gp) on the intestinal secretion of ivermectin (IVM), an antiparasitic widely used in human and veterinary medicine. The work included the evaluation of two different P-gp modulators [itraconazole (ITZ) and valspodar (PSC833)] used at equimolar doses in the rat. Furthermore, the influence of both P-gp modulator agents on the disposition kinetics of IVM in plasma, liver, and gastrointestinal tissues was characterized. For the in vitro experiments, ileal sacs were incubated with IVM (3 microM) in the presence or absence of either ITZ (10 microM) or PSC833 (10 microM). In the in vivo experiments, male Wistar rats were randomly allocated to three groups (n=18) and subcutaneously treated with IVM (200 microg/kg-1), alone and coadministered with ITZ (5 mg, two doses) or PSC833 (8.6 mg, two doses). Animals were sacrificed between 6 and 96 h. Blood, liver, and gastrointestinal samples were collected. IVM concentrations were determined by high performance liquid chromatography. The rate of IVM accumulation in the intestinal wall of everted sacs was significantly higher after its incubation with ITZ (0.115 nmol/g/min) and PSC833 (0.238 nmol/g/min) than that obtained after the incubation without the P-gp modulators (0.016 nmol/g/min). In agreement with the in vitro experiment, the presence of ITZ and PSC833 induced an enhancement in the concentrations of IVM in plasma and gastrointestinal tissues. The results obtained in the current work, both under in vivo and in vitro conditions, confirm the relevance of P-gp-mediated transport to the intestinal secretion of IVM.
Collapse
Affiliation(s)
- M Ballent
- Laboratorio de Farmacología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, UNCPBA, Campus Universitario, (7000), Tandil, Argentina
| | | | | | | | | |
Collapse
|
50
|
Fearn RA, Hirst BH. Predicting oral drug absorption and hepatobiliary clearance: Human intestinal and hepatic in vitro cell models. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2006; 21:168-178. [PMID: 21783654 DOI: 10.1016/j.etap.2005.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Membrane transport proteins control the uptake and efflux of many drugs in tissues including the intestine, liver and kidneys and thus play important roles in drug absorption, distribution and excretion. With the development of high throughput screening in an industrial environment, the importance of having appropriate in vitro systems to study drug transporter function, regulation, and interactions are invaluable. Cell lines are efficient tools in screening individual transport processes. In this review, we focus on the processes involved in the absorption and hepatobiliary clearance of drugs and the potential of cell lines to model such process, paying particular attention to the use of Caco-2 and HepG2 cells.
Collapse
Affiliation(s)
- Richard A Fearn
- Institute for Cell and Molecular Biosciences, University of Newcastle, Medical School, Newcastle upon Tyne NE2 4HH, UK
| | | |
Collapse
|