1
|
Park KS. Impact of myenteric plexus alterations on diabetes related gastrointestinal dysmotility. J Neurogastroenterol Motil 2013; 19:121-3. [PMID: 23667742 PMCID: PMC3644647 DOI: 10.5056/jnm.2013.19.2.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 02/06/2013] [Accepted: 02/06/2013] [Indexed: 01/27/2023] Open
Affiliation(s)
- Kyung Sik Park
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| |
Collapse
|
2
|
Abstract
Muscarinic agonists and antagonists are used to treat a handful of gastrointestinal (GI) conditions associated with impaired salivary secretion or altered motility of GI smooth muscle. With regard to exocrine secretion, the major muscarinic receptor expressed in salivary, gastric, and pancreatic glands is the M₃ with a small contribution of the M₁ receptor. In GI smooth muscle, the major muscarinic receptors expressed are the M₂ and M₃ with the M₂ outnumbering the M₃ by a ratio of at least four to one. The antagonism of both smooth muscle contraction and exocrine secretion is usually consistent with an M₃ receptor mechanism despite the major presence of the M₂ receptor in smooth muscle. These results are consistent with the conditional role of the M₂ receptor in smooth muscle. That is, the contractile role of the M₂ receptor depends on that of the M₃ so that antagonism of the M₃ receptor eliminates the response of the M₂. The physiological roles of muscarinic receptors in the GI tract are consistent with their known signaling mechanisms. Some so-called tissue-selective M₃ antagonists may owe their selectivity to a highly potent interaction with a nonmuscarinic receptor target.
Collapse
|
3
|
Ehlert FJ. Pharmacological Analysis of the Contractile Role of M 2 and M 3 Muscarinic Receptors in Smooth Muscle. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820308265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Kim SJ, Park JH, Song DK, Park KS, Lee JE, Kim ES, Cho KB, Jang BK, Chung WJ, Hwang JS, Kwon JG, Kim TW. Alterations of colonic contractility in long-term diabetic rat model. J Neurogastroenterol Motil 2011; 17:372-80. [PMID: 22148106 PMCID: PMC3228977 DOI: 10.5056/jnm.2011.17.4.372] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 07/28/2011] [Accepted: 08/06/2011] [Indexed: 12/28/2022] Open
Abstract
Background/Aims Dysfunction of the gastrointestinal tract occurs in about 76% of patients who are diabetic for more than 10 years. Although diabetes-related dysfunctions of the stomach such as gastroparesis have been extensively studied over the recent years, studies about the mechanism underlying colonic symptoms in long-term diabetes models are rare. Therefore, the goal of our study was to clarify the nature of colonic dysfunction in a long-term diabetic rat model. Methods The characteristics of colonic smooth muscle were investigated in Otsuka Long-Evans Tokushima Fatty (OLETF) rats, an animal model of type 2 diabetes. These results were compared to those obtained from Long-Evans Tokushima Otsuka (LETO) control rats. Results Spontaneous contractility of the proximal colon was significantly decreased in the diabetic rats compared to the controls, while the spontaneous contractility of the distal colon was not. The number of interstitial cells of Cajal networks in the proximal colon was greatly decreased in diabetic rats compared to the controls. Contractility of the proximal colon in response to carbachol, an acetylcholine receptor agonist, was significantly weaker in the diabetic rats. In addition, the degree of relaxation in response to nitric oxide in the proximal colon of diabetic rats also appeared to be attenuated. Conclusions The results from our study suggest that the decrease of interstitial cells of Cajal network, cholinergic receptors, and neuronal nitric oxide synthase in the proximal colon plays important roles in diabetes-related dysfunction of colon.
Collapse
Affiliation(s)
- Sun Joo Kim
- Department of Physiology, Keimyung University School of Medicine, Daegu, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Heppner TJ, Layne JJ, Pearson JM, Sarkissian H, Nelson MT. Unique properties of muscularis mucosae smooth muscle in guinea pig urinary bladder. Am J Physiol Regul Integr Comp Physiol 2011; 301:R351-62. [PMID: 21632849 PMCID: PMC3154705 DOI: 10.1152/ajpregu.00656.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 05/27/2011] [Indexed: 11/22/2022]
Abstract
The muscularis mucosae, a type of smooth muscle located between the urothelium and the urinary bladder detrusor, has been described, although its properties and role in bladder function have not been characterized. Here, using mucosal tissue strips isolated from guinea pig urinary bladders, we identified spontaneous phasic contractions (SPCs) that appear to originate in the muscularis mucosae. This smooth muscle layer exhibited Ca(2+) waves and flashes, but localized Ca(2+) events (Ca(2+) sparks, purinergic receptor-mediated transients) were not detected. Ca(2+) flashes, often in bursts, occurred with a frequency (∼5.7/min) similar to that of SPCs (∼4/min), suggesting that SPCs are triggered by bursts of Ca(2+) flashes. The force generated by a single mucosal SPC represented the maximal force of the strip, whereas a single detrusor SPC was ∼3% of maximal force of the detrusor strip. Electrical field stimulation (0.5-50 Hz) evoked force transients in isolated detrusor and mucosal strips. Inhibition of cholinergic receptors significantly decreased force in detrusor and mucosal strips (at higher frequencies). Concurrent inhibition of purinergic and cholinergic receptors nearly abolished evoked responses in detrusor and mucosae. Mucosal SPCs were unaffected by blocking small-conductance Ca(2+)-activated K(+) (SK) channels with apamin and were unchanged by blocking large-conductance Ca(2+)-activated K(+) (BK) channels with iberiotoxin (IbTX), indicating that SK and BK channels play a much smaller role in regulating muscularis mucosae SPCs than they do in regulating detrusor SPCs. Consistent with this, BK channel current density in myocytes from muscularis mucosae was ∼20% of that in detrusor myocytes. These findings indicate that the muscularis mucosae in guinea pig represents a second smooth muscle compartment that is physiologically and pharmacologically distinct from the detrusor and may contribute to the overall contractile properties of the urinary bladder.
Collapse
Affiliation(s)
- Thomas J Heppner
- Department of Pharmacology, University of Vermont, Burlington, Vermont 05405, USA.
| | | | | | | | | |
Collapse
|
6
|
Kitazawa T, Hashiba K, Cao J, Unno T, Komori SI, Yamada M, Wess J, Taneike T. Functional roles of muscarinic M2 and M3 receptors in mouse stomach motility: Studies with muscarinic receptor knockout mice. Eur J Pharmacol 2007; 554:212-22. [PMID: 17113073 DOI: 10.1016/j.ejphar.2006.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 09/27/2006] [Accepted: 10/02/2006] [Indexed: 10/24/2022]
Abstract
Functional roles of muscarinic acetylcholine receptors in the regulation of mouse stomach motility were examined using mice genetically lacking muscarinic M(2) receptor and/or M(3) receptor and their corresponding wild-type (WT) mice. Single application of carbachol (1 nM-30 microM) produced concentration-dependent contraction in antral and fundus strips from muscarinic M(2) receptor knockout (M(2)R-KO) and M(3) receptor knockout (M(3)R-KO) mice but not in those from M(2) and M(3) receptors double knockout (M(2)/M(3)R-KO) mice. A comparison of the concentration-response curves with those for WT mice showed a significant decrease in the negative logarithm of EC(50) (pEC(50)) value (M(2)R-KO) or amplitude of maximum contraction (M(3)R-KO) in the muscarinic receptor-deficient mice. The tonic phase of carbachol-induced contraction was decreased in gastric strips from M(3)R-KO mice. Antagonistic affinity for 4-diphenylacetoxy-N-methyl-piperidine (4-DAMP) or 11-([2-[(diethylamino)methyl]-1-piperdinyl]acetyl)-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepine-6-one (AF-DX116) indicated that the contractile responses in M(2)R-KO and M(3)R-KO mice were mediated by muscarinic M(3) and M(2) receptors, respectively. Electrical field stimulation (EFS, 0.5-32 Hz) elicited frequency-dependent contraction in physostigmine- and N(omega)-nitro-L-arginine methylester (l-NAME)-treated fundic and antral strips from M(2)R-KO and M(3)R-KO mice, but the cholinergic contractile components decreased significantly compared with those in WT mice. In gastric strips from M(2)/M(3)R-KO mice, cholinergic contractions elicited by EFS were not observed but atropine-resistant contractions were more conspicuous than those in gastric strips from WT mice. Gastric emptying in WT mice and that in M(2)/M(3)R-KO mice were comparable, suggesting that motor function of the stomach in the KO mice did not differ from that in the WT mice. The results indicate that both muscarinic M(2) and M(3) receptors but not other subtypes mediate carbachol- or EFS-induced contraction in the mouse stomach but that the contribution of each receptor to concentration-response relationships is distinguishable. Although there was impairment of nerve-mediated cholinergic responses in the stomach of KO mice, gastric emptying in KO mice was the same as that in WT mice probably due to the compensatory enhancement of the non-cholinergic contraction pathway.
Collapse
Affiliation(s)
- Takio Kitazawa
- Department of Pharmacology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Uchiyama T, Chess-Williams R. Muscarinic receptor subtypes of the bladder and gastrointestinal tract. J Smooth Muscle Res 2005; 40:237-47. [PMID: 15725706 DOI: 10.1540/jsmr.40.237] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The parasympathetic nervous system is responsible for maintaining normal intestinal and bladder function, contracting the smooth muscle by releasing the neurotransmitters acetylcholine (ACh) and ATP and relaxing sphincters by releasing nitric oxide. ACh is the main transmitter released and smooth muscle contraction is mediated via a mixed M2/M3 receptor population; M3 receptors acting via phospholipase C and M2 receptors acting via inhibition of adenylate cyclase. In ileal, colonic, gastric and bladder (detrusor) smooth muscle the density of M2 receptors is far greater than the density of M3 receptors, the M2:M3 ratio being 3:1 in most species including man. Despite the predominance of M2-receptors, direct contraction of intestinal and detrusor smooth muscle is mediated via the M3-receptor subtype and only this subtype is involved in contraction in vitro. Furthermore, knocking out the M3-receptor gene can have severe consequences on intestinal and bladder responses. In some tissues however M2-receptors may mediate an indirect "re-contraction" whereby a reduction in adenylate cyclase activity reverses the relaxation induced by beta-adrenoceptor stimulation. Thus, intestinal and bladder responses to muscarinic agonists are slightly depressed in M2 receptor knockout mice. The role of receptor subtypes in disease is unclear, but an enhancement of M2 receptor mediated responses has been reported to occur in diabetes. Animal models suggest that M2 receptors may play a greater role in some situations such as in the denervated bladder and intestine. In human disease the mechanisms operating are not so clear. Detrusor sensitivity to muscarinic agonists is enhanced in the neurogenic overactive bladder, but there is controversy surrounding the role of M2 receptors and conflicting results have been reported. Thus, the main muscarinic receptor mediating contraction in normal smooth muscle is the M3 receptor, but M2 receptors are also present and possibly may have an enhanced role in disease.
Collapse
Affiliation(s)
- Toshimitsu Uchiyama
- Department of Pharmacology, Faculty of Medicine, Toho University, Ohta-ku, Tokyo 143-8580, Japan
| | | |
Collapse
|
8
|
Ehlert FJ, Griffin MT, Abe DM, Vo TH, Taketo MM, Manabe T, Matsui M. The M2 muscarinic receptor mediates contraction through indirect mechanisms in mouse urinary bladder. J Pharmacol Exp Ther 2005; 313:368-78. [PMID: 15608083 DOI: 10.1124/jpet.104.077909] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the contractile role of M2 muscarinic receptors in mouse urinary bladder. When measured in the absence of other agents, contractions elicited to the muscarinic agonist oxotremorine-M exhibited properties consistent with that expected for an M3 response in urinary bladder from wild-type and M2 knockout (KO) mice. Evidence for a minor M2 receptor-mediated contraction was revealed by a comparison of responses in M3 knockout and M2/M3 double knockout mice. Treatment of wild-type and M2 knockout urinary bladder with N-2-chloroethyl-4-piperidinyl diphenylacetate (4-DAMP mustard) caused a large inhibition of the muscarinic contractile response. The residual contractions were much smaller in M2 knockout bladder compared with wild type, suggesting that M2 receptors rescue the muscarinic contractile response in wild-type bladder following inactivation of M3 receptors with 4-DAMP mustard. When measured in the presence of prostaglandin F2alpha and isoproterenol or forskolin, oxotremorine-M mediated a potent contractile response in urinary bladder from M3 KO mice. This response exhibited an M2 profile in competitive antagonism studies and was completely absent in M2/M3 KO mice. Following 4-DAMP mustard treatment, oxotremorine-M elicited a contractile response in wild-type urinary bladder in the presence of KCl and isoproterenol or forskolin, and this response was diminished in M2 KO mice. Our results show that the M2 receptor mediates contractions indirectly in the urinary bladder by enhancing M3 receptor-mediated contractions and inhibiting relaxation. We also show that it is difficult to detect M2 receptor function in competitive antagonism studies under conditions where a simultaneous activation of M2 and M3 receptors occurs.
Collapse
Affiliation(s)
- Frederick J Ehlert
- Department of Pharmacology, College of Medicine, University of California Irvine, Irvine, CA 92697-4625, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Ehlert FJ. Contractile role of M2 and M3 muscarinic receptors in gastrointestinal, airway and urinary bladder smooth muscle. Life Sci 2004; 74:355-66. [PMID: 14607264 DOI: 10.1016/j.lfs.2003.09.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Both M(2) and M(3) muscarinic receptors are expressed in smooth muscle and influence contraction through distinct signaling pathways. M(3) receptors interact with G(q) to trigger phosphoinositide hydrolysis, Ca(2+) mobilization and a direct contractile response. In contrast, M(2) receptors interact with G(i) and G(o) to inhibit adenylyl cyclase and Ca(2+)-activated K(+) channels and to potentiate a Ca(2+)-dependent, nonselective cation conductance. Ultimately, these mechanisms lead to the prediction that the influence of the M(2) receptor on contraction should be conditional upon mobilization of Ca(2+) by another receptor such as the M(3). Mathematical modeling studies of these mechanisms show that the competitive antagonism of a muscarinic response mediated through activation of both M(2) and M(3) receptors should resemble the profile of the directly acting receptor (i.e., the M(3)) and not that of the conditionally acting receptor (i.e., the M(2)). Using a combination of pharmacological and genetic approaches, we have identified two mechanisms for the M(2) receptor in contraction: 1) a high potency inhibition of the relaxation elicited by agents that increase cytosolic cAMP and 2) a low potency potentiation of contractions elicited by the M(3) receptor. The latter mechanism may be involved in muscarinic agonist-mediated heterologous desensitization of smooth muscle, which requires activation of both M(2) and M(3) receptors.
Collapse
Affiliation(s)
- Frederick J Ehlert
- Department of Pharmacology, College of Medicine, University of California, Irvine, Irvine, CA 92697-4625, USA.
| |
Collapse
|
10
|
Sarria B, Naline E, Zhang Y, Cortijo J, Molimard M, Moreau J, Therond P, Advenier C, Morcillo EJ. Muscarinic M2 receptors in acetylcholine-isoproterenol functional antagonism in human isolated bronchus. Am J Physiol Lung Cell Mol Physiol 2002; 283:L1125-32. [PMID: 12376367 DOI: 10.1152/ajplung.00084.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The muscarinic functional antagonism of isoproterenol relaxation and the contribution of muscarinic M2 receptors were examined in human isolated bronchus. In intact tissues, acetylcholine (ACh) precontraction decreased isoproterenol potency and maximal relaxation (-log EC50 shift = -1.49 +/- 0.16 and E(max) inhibition for 100 microM ACh = 30%) more than the same levels of histamine contraction. The M2 receptor-selective antagonist methoctramine (1 microM) reduced this antagonism in ACh- but not histamine-contracted tissues. Similar results were obtained for forskolin-induced relaxation. After selective inactivation of M3 receptors with 4-diphenylacetoxy-N-(2-chloroethyl)piperadine hydrochloric acid (30 nM), demonstrated by abolition of contractile and inositol phosphate responses to ACh, muscarinic recontractile responses were obtained in U-46619-precontracted tissues fully relaxed with isoproterenol. Methoctramine antagonized recontraction, with pK(B) (6.9) higher than in intact tissues (5.4), suggesting participation of M2 receptors. In M3-inactivated tissues, methoctramine augmented the isoproterenol relaxant potency in U-46619-contracted bronchus and reversed the ACh-induced inhibition of isoproterenol cAMP accumulation. These results indicate that M2 receptors cause indirect contraction of human bronchus by reversing sympathetically mediated relaxation and contribute to cholinergic functional antagonism.
Collapse
Affiliation(s)
- Benjamin Sarria
- Departament de Farmacologia, Facultat de Medicina i Odontologia, Universitat de València, 46010 València, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chess-Williams R. Muscarinic receptors of the urinary bladder: detrusor, urothelial and prejunctional. AUTONOMIC & AUTACOID PHARMACOLOGY 2002; 22:133-45. [PMID: 12452898 DOI: 10.1046/j.1474-8673.2002.00258.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
1. The parasympathetic nervous system is responsible for maintaining normal bladder function, contracting the bladder smooth muscle (detrusor) and relaxing the bladder outlet during micturition. 2. Contraction of the bladder involves direct contraction via M3 receptors and an indirect 're-contraction' via M2-receptors whereby a reduction in adenylate cyclase activity reverses the relaxation induced by beta-adrenoceptor stimulation. 3. Muscarinic receptors are also located on the epithelial lining of the bladder (urothelium) where they induce the release of a diffusible factor responsible for inhibiting contraction of the underlying detrusor smooth muscle. The factor remains unidentified but is not nitric oxide, a cyclooxygenase product or adenosine triphosphate. 4. Finally, muscarinic receptors are also located prejunctionally in the bladder on cholinergic and adrenergic nerve terminals, where M1-receptors facilitate transmitter release and M2 or M4-receptors inhibit transmitter release. 5. In pathological states, changes may occur in these receptor systems resulting in bladder dysfunction. Muscarinic receptor antagonists are the main therapeutic agents available for treatment of the overactive bladder, but whether their therapeutic effect involves actions at all three locations (detrusor, prejunctional, urothelial) has yet to be established.
Collapse
Affiliation(s)
- R Chess-Williams
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, SIO 2TN, UK
| |
Collapse
|
12
|
Yamanishi T, Chapple CR, Yasuda K, Chess-Williams R. The role of M(2)-muscarinic receptors in mediating contraction of the pig urinary bladder in vitro. Br J Pharmacol 2000; 131:1482-8. [PMID: 11090124 PMCID: PMC1572475 DOI: 10.1038/sj.bjp.0703719] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. In urinary bladder, M(2)-muscarinic receptors predominate, but it is the smaller population of M(3)-receptors which mediate detrusor contraction. This study examines the M(2) : M(3) ratio and the role of M(2)-receptors in contraction of pig urinary bladder. 2. Competition experiments with [(3)H]-QNB determined the ratio of M(2) : M(3). In functional studies, affinity values (pK(B)) for 4-DAMP, darifenacin and methoctramine were calculated. Similar experiments were performed on tissues following selective M(3)-inactivation (incubation with 40 nM 4-DAMP mustard in the presence of 1 microM methoctramine to protect M(2)-receptors), precontraction with 50 mM KCl and relaxation with isoprenaline (30 microM) or forskolin (1 microM). 3. In competition binding, displacement of [(3)H]-QNB by 4-DAMP, darifenacin and methoctramine best fitted a two-site model suggesting a predominant (70 - 80%) population of M(2)-receptors. 4. On normal detrusor in vitro, 4-DAMP and methoctramine caused surmountable antagonism of responses to carbachol with pK(B) values of 9.37+/-0.07 and 6.05+/-0.05 respectively. Darifenacin caused unsurmountable antagonism, the apparent pK(B) value being 8.61+/-0.10. 5. In tissues where the M(3)-receptors had been inactivated and cyclic AMP levels elevated, 4-DAMP and darifenacin were less potent, with apparent pK(B) values of 8.72+/-0.08 and 6.74+/-0.07. In contrast, methoctramine was more potent, the apparent pK(B) value increasing significantly to 6.86+/-0.06. 6. se data suggest that the pig bladder possesses a similar muscarinic receptor population to the human bladder and that the M(3)-receptor subtype mediates contraction of the normal detrusor muscle. However an involvement of M(2)-receptors in contraction can be observed following pharmacological manipulation of the receptor population.
Collapse
Affiliation(s)
- Tomonori Yamanishi
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN
- Department of Urology, Royal Hallamshire Hospital, Sheffield
| | | | - Kosaku Yasuda
- Department of Urology, Dokkyo University, Koshigaya Hospital, Japan
| | - Russell Chess-Williams
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN
- Author for correspondence:
| |
Collapse
|
13
|
Braverman AS, Ruggieri MR. Selective alkylation of rat urinary bladder muscarinic receptors with 4-DAMP mustard reveals a contractile function for the M2 muscarinic receptor. J Recept Signal Transduct Res 1999; 19:819-33. [PMID: 10349596 PMCID: PMC3277790 DOI: 10.3109/10799899909042875] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Our previous data indicate that M3 muscarinic receptors mediate carbachol induced bladder contractions. The data presented here were obtained by selective alkylation of M3 receptors with 4-DAMP mustard and suggest that the M2 receptor subtype may be involved in inhibition of beta-adrenergic receptor induced relaxation, therefore, allowing recontraction. Alkylation resulted in 85% of M3 receptors and 65% of M2 receptors unable to bind radioligand as demonstrated by subtype selective immunoprecipitation. Rat bladder strips subjected to our alkylation procedure contracted submaximally, and direct carbachol contractions were inhibited by antagonists with affinities consistent with M3 receptor mediated contraction. In contrast, the affinities of antagonists for inhibition of carbachol induced recontractions following isoproterenol stimulated relaxation in the presence of 90 mM KCl, indicated a contractile function for the M2 receptor that was not observed in control strips. In conclusion, these studies demonstrate a possible role for the M2 subtype in bladder smooth muscle contraction.
Collapse
Affiliation(s)
- A S Braverman
- Department of Urology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|
14
|
Ehlert FJ, Sawyer GW, Esqueda EE. Contractile role of M2 and M3 muscarinic receptors in gastrointestinal smooth muscle. Life Sci 1999; 64:387-94. [PMID: 10069501 DOI: 10.1016/s0024-3205(98)00584-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Muscarinic agonists elicit contraction through M3 receptors in most isolated preparations of gastrointestinal smooth muscle, and not surprisingly, several investigators have identified M3 receptors in smooth muscle using biochemical, immunological and molecular biological methods. However, these studies have also shown that the M2 receptor outnumbers the M3 by a factor of about four in most instances. In smooth muscle, M3 receptors mediate phosphoinositide hydrolysis and Ca2+ mobilization, whereas M2 receptors mediate an inhibition of cAMP accumulation. The inhibitory effect of the M2 receptor on cAMP levels suggests an indirect role for this receptor; namely, an inhibition of the relaxant action of cAMP-stimulating agents. Such a function has been rigorously demonstrated in an experimental paradigm where gastrointestinal smooth muscle is first incubated with 4-DAMP mustard to inactivate M3 receptors during a Treatment Phase, and subsequently, the contractile activity of muscarinic agonists is characterized during a Test Phase in the presence of histamine and a relaxant agent. When present together, histamine and the relaxant agent (e.g., isoproterenol or forskolin) have no net contractile effect because their actions oppose one another. However, under these conditions, muscarinic agonists elicit a highly potent contractile response through the M2 receptor, presumably by inhibiting the relaxant action of isoproterenol or forskolin on histamine-induced contractions. This contractile response is pertussis toxin-sensitive, unlike the standard contractile response to muscarinic agonists, which is pertussis toxin-insensitive. When measured under standard conditions (i.e., in the absence of histamine and without 4-DAMP mustard-treatment), the contractile response to muscarinic agonists is moderately sensitive to pertussis toxin if isoproterenol or forskolin is present. Also, pertussis toxin-treatment enhances the relaxant action of isoproterenol in the field-stimulated guinea pig ileum. These results demonstrate that endogenous acetylcholine can activate M2 receptors to inhibit the relaxant effects of beta-adrenoceptor activation on M3 receptor-mediated contractions. An operational model for the interaction between M2 and M3 receptors shows that competitive antagonism of the interactive response resembles an M3 profile under most conditions, making it difficult to detect the contribution of the M2 receptor.
Collapse
Affiliation(s)
- F J Ehlert
- Department of Pharmacology, College of Medicine, University of California, Irvine 92697-4625, USA
| | | | | |
Collapse
|
15
|
Shen A, Mitchelson F. Muscarinic M2 receptor-mediated contraction in the guinea pig Taenia caeci: possible involvement of protein kinase C. Biochem Pharmacol 1998; 56:1529-37. [PMID: 9827588 DOI: 10.1016/s0006-2952(98)00242-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Contraction of the guinea pig taenia caeci is mediated by muscarinic M3 receptors; however, they comprise only 30% of the muscarinic receptors present. This study investigated the role of the predominant M2 receptor population in contractions and possible second messengers involved after M3 receptors were selectively alkylated by 4-DAMP mustard [N-(2-chloroethyl)-4-piperidinyldiphenylacetate] (60 nM) in the presence of otenzepad (AF-DX 116; 1 microM). Concentration-response curves to oxotremorine-M (oxo-M) in the presence of histamine and isoprenaline were performed in the presence of otenzepad (1 and 3 microM), resulting in a mean apparent pK(B) of 6.49, indicative of an M2 response. As the taenia has intrinsic tone, precontraction with histamine was not necessary and, therefore, in some experiments only isoprenaline was included. In these studies, an M3 response to oxo-M was observed, as the mean apparent pK(B) for otenzepad was 5.89. To investigate protein kinase C (PKC) involvement in the M2 response following M3 inactivation, the inhibitor chelerythrine (1 microM) was included with histamine and isoprenaline in the absence and presence of otenzepad. The oxo-M concentration-response curve was shifted by otenzepad with an apparent pK(B) value of 6.05, a value significantly different from that seen in the absence of chelerythrine (P < 0.05). These results suggest that activation of PKC by a spasmogen such as histamine is necessary to see an M2 response following M3 receptor inactivation.
Collapse
Affiliation(s)
- A Shen
- Victorian College of Pharmacy (Monash University), Department of Pharmaceutical Biology and Pharmacology, Parkville, Australia
| | | |
Collapse
|
16
|
Abstract
Muscarinic receptors are expressed in smooth muscle throughout the body. In most instances, the muscarinic receptor population in smooth muscle is composed of mainly the M2 and M3 subtypes in an 80% to 20% mixture. The M3 subtype mediates phosphoinositide hydrolysis and calcium mobilization, whereas the M2 subtype mediates an inhibition of cAMP accumulation. In addition, a variety of ionic conductances are elicited by muscarinic receptors. Muscarinic agonists stimulate a nonselective cation conductance that is pertussis toxin-sensitive and dependent on calcium. The pertussis toxin-sensitivity of this response suggests that it is mediated by M2 receptors. Following agonist induced depolarization of smooth muscle, voltage dependent calcium channels are activated to enable an influx of calcium. In some instances, muscarinic agonists enhance this conductance through a mechanism involving protein kinase C, whereas in other instances, muscarinic agonists suppress this calcium conductance. Smooth muscle often contains calcium activated potassium channels that tend to repolarize the membrane following calcium influx. Activation of muscarinic receptors suppresses this potassium conductance in some smooth muscles. Under standard conditions, muscarinic agonists elicit pertussis toxin-insensitive contractions through activation of the M3 receptor. When most of the M3 receptors are inactivated, it is possible to measure a pertussis toxin-sensitive contractile response to muscarinic agonists that is most likely mediated through M2 receptors. M2 receptors also cause an indirect contraction by inhibiting the relaxant effects of agents that increase cAMP (e.g., forskolin and isoproterenol).
Collapse
Affiliation(s)
- F J Ehlert
- Department of Pharmacology, College of Medicine, University of California, Irvine 92697, USA
| | | | | |
Collapse
|
17
|
Hegde SS, Choppin A, Bonhaus D, Briaud S, Loeb M, Moy TM, Loury D, Eglen RM. Functional role of M2 and M3 muscarinic receptors in the urinary bladder of rats in vitro and in vivo. Br J Pharmacol 1997; 120:1409-18. [PMID: 9113359 PMCID: PMC1564615 DOI: 10.1038/sj.bjp.0701048] [Citation(s) in RCA: 251] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
1. Urinary bladder smooth muscle is enriched with muscarinic receptors, the majority of which are of the M2 subtype whereas the remaining minority belong to the M3 subtype. The objective of the present study was to assess the functional role of M2 and M3 receptors in the urinary bladder of rat in vitro and in vivo by use of key discriminatory antagonists. 2. In the isolated bladder of rat, (+)-cis-dioxolane produced concentration-dependent contractions (pEC50 = 6.3) which were unaffected by tetrodotoxin (0.1 microM). These contractions were antagonized by muscarinic antagonists with the following rank order of affinity (pA2) estimates: atropine (9.1) > 4-diphenyl acetoxy-methyl piperidine methiodide (4-DAMP) (8.9) > darifenacin (8.5) > para fluoro hexahydrosiladifenidol (p-F-HHSiD) (7.4) > pirenzepine (6.8) > methoctramine (5.9). These pA2 estimates correlated most favourably (r = 0.99, P < 0.001) with the binding affinity (pKi) estimates of these compounds at human recombinant muscarinic m3 receptors expressed in Chinese hamster ovary cells, suggesting that the receptor mediating the direct contractile responses to (+)-cis-dioxolane equates with the pharmacologically defined M3 receptor. 3. As M2 receptors in smooth muscle are negatively coupled to adenylyl cyclase, we sought to determine whether a functional role of M2 receptors could be unmasked under conditions of elevated adenylyl cyclase activity (i.e., isoprenaline-induced relaxation of KCl pre-contracted tissues). Muscarinic M3 receptors were preferentially alkylated by exposing tissues to 4-DAMP mustard (40 nM, 1 h) in the presence of methoctramine (0.3 microM) to protect M2 receptors. Under these conditions, (+)-cis-dioxolane produced concentration-dependent reversal (re-contraction) of isoprenaline-induced relaxation (pEC50 = 5.8) but had marginal effects on pinacidil-induced, adenosine 3':5'-cyclic monophosphate (cyclic AMP)-independent, relaxation. The re-contractions were antagonized by methoctramine and darifenacin, yielding pA2 estimates of 6.8 and 7.6, respectively. These values are intermediate between those expected for these compounds at M2 and M3 receptors and were consistent with the involvement of both of these subtypes. 4. In urethane-anaesthetized rats, the cholinergic component (approximately 55%) of volume-induced bladder contractions was inhibited by muscarinic antagonists with the following rank order of potency (ID35%inh, nmol kg-1, i.v.): 4-DAMP (8.1) > atropine (20.7) > methoctramine (119.9) > darifenacin (283.3) > pirenzepine (369.1) > p-F-HHSiD (1053.8). These potency estimates correlated most favourably (r = 0.89, P = 0.04) with the pKi estimates of these compounds at human recombinant muscarinic m2 receptors. This is consistent with a major contribution of M2 receptors in the generation of volume-induced bladder contractions, although the modest potency of darifenacin does not exclude a role of M3 receptors. Pretreatment with propranolol (1 mg kg-1, i.v.) increased the ID35%inh of methoctramine significantly from 95.9 to 404.5 nmol kg-1 but had no significant effects on the inhibitory responses to darifenacin. These data suggest an obligatory role of beta-adrenoceptors in M2 receptor-mediated bladder contractions in vivo. 5. The findings of the present study suggest that both M2 and M3 receptors can cause contraction of the rat bladder in vitro and may also mediate reflex bladder contractions in vivo. It is proposed that muscarinic M3 receptor activation primarily causes direct contraction of the detrusor whereas M2 receptor activation can contract the bladder indirectly by reversing sympathetically (i.e. beta-adrenoceptor)-mediated relaxation. This dual mechanism may allow the parasympathetic nervous system, which is activated during voiding, to cause more efficient and complete emptying of the bladder.
Collapse
Affiliation(s)
- S S Hegde
- Department of Urogenital and Mechanistic Pharmacology, Institute of Pharmacology, Palo Alto, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|