1
|
Simankowicz P, Stępniewska J. The Role of Endocannabinoids in Physiological Processes and Disease Pathology: A Comprehensive Review. J Clin Med 2025; 14:2851. [PMID: 40283681 PMCID: PMC12027566 DOI: 10.3390/jcm14082851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/18/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025] Open
Abstract
The endocannabinoid system is a complex communication system involved in maintaining homeostasis in various physiological processes, including metabolism, immune response, pain modulation, and neuroprotection. Endocannabinoids, mainly anandamide and 2-arachidonoylglycerol, are natural ligands of the cannabinoid receptors CB1 and CB2, which are widely distributed throughout the central nervous system and peripheral tissues. Their biosynthesis, degradation, and interaction with other signaling pathways play crucial roles in both health and disease. This article provides a comprehensive overview of the physiological and pathological roles of endocannabinoids, discusses their potential as therapeutic targets, and highlights recent advances in endocannabinoid-based treatments.
Collapse
Affiliation(s)
| | - Joanna Stępniewska
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
2
|
Wang Y, Guo J, Mao Z, Chen Y. Symphony of the gut microbiota and endocannabinoidome: a molecular and functional perspective. Front Cell Infect Microbiol 2025; 15:1566290. [PMID: 40207053 PMCID: PMC11979265 DOI: 10.3389/fcimb.2025.1566290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
This review examines the impact of interactions between the gut microbiota and the endocannabinoidome (eCBome) on health and disease, highlighting their significance for physiological and pathological processes. We identify key research gaps and challenges to advance the field. The review discusses the role of dietary patterns and physical activity in regulating these interactions. It also explores the complex nature of these interactions in conditions such as inflammatory bowel disease (IBD), depression, anxiety, Alzheimer's disease (AD), and metabolic disorders. This analysis evaluates their contributions to disease onset and progression, and examines the molecular mechanisms and signaling pathways involved. From this, we provide forward-looking perspectives on future research directions, advocating for a more nuanced understanding of the gut microbiota-eCBome axis. We anticipate that future research will integrate gut microbiota-endocannabinoidome interactions into therapeutic strategies for a broad range of diseases.
Collapse
Affiliation(s)
| | | | | | - Ying Chen
- Department of Pediatric Gastroenterology, Shengjing Hospital of China Medical
University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Nayyar D, Said JM, McCarthy H, Hryciw DH, O'Keefe L, McAinch AJ. Effect of a High Linoleic Acid Diet on Pregnant Women and Their Offspring. Nutrients 2024; 16:3019. [PMID: 39275331 PMCID: PMC11397513 DOI: 10.3390/nu16173019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
Nutritional intake during pregnancy can affect gestational length, fetal development, and impact postnatal growth and health in offspring. Perturbations in maternal nutrition with either an excess or deficiency in nutrients during pregnancy may have harmful effects on the offspring's development and increase the risk of developing chronic diseases later in life. In pregnancy, nutrients transfer from the mother to the fetus via the placenta. Essential fatty acids, linoleic acid (LA) and alpha linoleic acid (ALA), can only be obtained in the diet. In Western countries, the ratio of LA and ALA in the diet has increased dramatically in recent decades. Some animal and human studies have found a correlation between maternal intake of LA and birth weight; however, the association varies. In contrast, some human studies have demonstrated inconclusive findings regarding the correlation between cord blood levels of LA and birth outcomes. In addition, high dietary LA intake in animal studies in pregnancy increased the production of inflammatory markers such as prostaglandins, leukotrienes, cytokines, and tumour necrosis factor-alpha. This review aims to highlight the effect of high dietary LA intake during pregnancy on birth outcomes, obesity, maternal inflammatory markers, and the transfer of fatty acids across the placenta.
Collapse
Affiliation(s)
- Deepti Nayyar
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
| | - Joanne M Said
- Department of Maternal Fetal Medicine, Joan Kirner Women's & Children's Sunshine Hospital, Western Health, St Albans, VIC 3021, Australia
- Department of Obstetrics, Gynaecology and Newborn Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Helen McCarthy
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
| | - Deanne H Hryciw
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Lannie O'Keefe
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
| | - Andrew J McAinch
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
| |
Collapse
|
4
|
Crowley K, Kiraga Ł, Miszczuk E, Skiba S, Banach J, Latek U, Mendel M, Chłopecka M. Effects of Cannabinoids on Intestinal Motility, Barrier Permeability, and Therapeutic Potential in Gastrointestinal Diseases. Int J Mol Sci 2024; 25:6682. [PMID: 38928387 PMCID: PMC11203611 DOI: 10.3390/ijms25126682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Cannabinoids and their receptors play a significant role in the regulation of gastrointestinal (GIT) peristalsis and intestinal barrier permeability. This review critically evaluates current knowledge about the mechanisms of action and biological effects of endocannabinoids and phytocannabinoids on GIT functions and the potential therapeutic applications of these compounds. The results of ex vivo and in vivo preclinical data indicate that cannabinoids can both inhibit and stimulate gut peristalsis, depending on various factors. Endocannabinoids affect peristalsis in a cannabinoid (CB) receptor-specific manner; however, there is also an important interaction between them and the transient receptor potential cation channel subfamily V member 1 (TRPV1) system. Phytocannabinoids such as Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) impact gut motility mainly through the CB1 receptor. They were also found to improve intestinal barrier integrity, mainly through CB1 receptor stimulation but also via protein kinase A (PKA), mitogen-associated protein kinase (MAPK), and adenylyl cyclase signaling pathways, as well as by influencing the expression of tight junction (TJ) proteins. The anti-inflammatory effects of cannabinoids in GIT disorders are postulated to occur by the lowering of inflammatory factors such as myeloperoxidase (MPO) activity and regulation of cytokine levels. In conclusion, there is a prospect of utilizing cannabinoids as components of therapy for GIT disorders.
Collapse
Affiliation(s)
- Kijan Crowley
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.C.); (E.M.); (U.L.); (M.M.)
| | - Łukasz Kiraga
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.C.); (E.M.); (U.L.); (M.M.)
| | - Edyta Miszczuk
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.C.); (E.M.); (U.L.); (M.M.)
| | - Sergiusz Skiba
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.C.); (E.M.); (U.L.); (M.M.)
| | - Joanna Banach
- Department of Research and Processing Seed, Institute of Natural Fibers and Medicinal Plants—National Research Institute, Wojska Polskiego 71b, 60-630 Poznan, Poland;
| | - Urszula Latek
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.C.); (E.M.); (U.L.); (M.M.)
| | - Marta Mendel
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.C.); (E.M.); (U.L.); (M.M.)
| | - Magdalena Chłopecka
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.C.); (E.M.); (U.L.); (M.M.)
| |
Collapse
|
5
|
Wood CP, Alvarez C, DiPatrizio NV. Cholinergic Neurotransmission Controls Orexigenic Endocannabinoid Signaling in the Gut in Diet-Induced Obesity. J Neurosci 2024; 44:e0813232024. [PMID: 38594069 PMCID: PMC11097264 DOI: 10.1523/jneurosci.0813-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 03/12/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024] Open
Abstract
The brain bidirectionally communicates with the gut to control food intake and energy balance, which becomes dysregulated in obesity. For example, endocannabinoid (eCB) signaling in the small-intestinal (SI) epithelium is upregulated in diet-induced obese (DIO) mice and promotes overeating by a mechanism that includes inhibiting gut-brain satiation signaling. Upstream neural and molecular mechanism(s) involved in overproduction of orexigenic gut eCBs in DIO, however, are unknown. We tested the hypothesis that overactive parasympathetic signaling at the muscarinic acetylcholine receptors (mAChRs) in the SI increases biosynthesis of the eCB, 2-arachidonoyl-sn-glycerol (2-AG), which drives hyperphagia via local CB1Rs in DIO. Male mice were maintained on a high-fat/high-sucrose Western-style diet for 60 d, then administered several mAChR antagonists 30 min prior to tissue harvest or a food intake test. Levels of 2-AG and the activity of its metabolic enzymes in the SI were quantitated. DIO mice, when compared to those fed a low-fat/no-sucrose diet, displayed increased expression of cFos protein in the dorsal motor nucleus of the vagus, which suggests an increased activity of efferent cholinergic neurotransmission. These mice exhibited elevated levels of 2-AG biosynthesis in the SI, that was reduced to control levels by mAChR antagonists. Moreover, the peripherally restricted mAChR antagonist, methylhomatropine bromide, and the peripherally restricted CB1R antagonist, AM6545, reduced food intake in DIO mice for up to 24 h but had no effect in mice conditionally deficient in SI CB1Rs. These results suggest that hyperactivity at mAChRs in the periphery increases formation of 2-AG in the SI and activates local CB1Rs, which drives hyperphagia in DIO.
Collapse
Affiliation(s)
- Courtney P Wood
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California 92521
- University of California Riverside Center for Cannabinoid Research, Riverside, California 92521
| | - Camila Alvarez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California 92521
- University of California Riverside Center for Cannabinoid Research, Riverside, California 92521
| | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California 92521
- University of California Riverside Center for Cannabinoid Research, Riverside, California 92521
| |
Collapse
|
6
|
Pekkarinen L, Kantonen T, Oikonen V, Haaparanta-Solin M, Aarnio R, Dickens AM, von Eyken A, Latva-Rasku A, Dadson P, Kirjavainen AK, Rajander J, Kalliokoski K, Rönnemaa T, Nummenmaa L, Nuutila P. Lower abdominal adipose tissue cannabinoid type 1 receptor availability in young men with overweight. Obesity (Silver Spring) 2023; 31:1844-1858. [PMID: 37368516 DOI: 10.1002/oby.23770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/16/2023] [Accepted: 03/06/2023] [Indexed: 06/29/2023]
Abstract
OBJECTIVE Cannabinoid type 1 receptors (CB1R) modulate feeding behavior and energy homeostasis, and the CB1R tone is dysgulated in obesity. This study aimed to investigate CB1R availability in peripheral tissue and brain in young men with overweight versus lean men. METHODS Healthy males with high (HR, n = 16) or low (LR, n = 20) obesity risk were studied with fluoride 18-labeled FMPEP-d2 positron emission tomography to quantify CB1R availability in abdominal adipose tissue, brown adipose tissue, muscle, and brain. Obesity risk was assessed by BMI, physical exercise habits, and familial obesity risk, including parental overweight, obesity, and type 2 diabetes. To assess insulin sensitivity, fluoro-[18 F]-deoxy-2-D-glucose positron emission tomography during hyperinsulinemic-euglycemic clamp was performed. Serum endocannabinoids were analyzed. RESULTS CB1R availability in abdominal adipose tissue was lower in the HR than in the LR group, whereas no difference was found in other tissues. CB1R availability of abdominal adipose tissue and brain correlated positively with insulin sensitivity and negatively with unfavorable lipid profile, BMI, body adiposity, and inflammatory markers. Serum arachidonoyl glycerol concentration was associated with lower CB1R availability of the whole brain, unfavorable lipid profile, and higher serum inflammatory markers. CONCLUSIONS The results suggest endocannabinoid dysregulation already in the preobesity state.
Collapse
Affiliation(s)
- Laura Pekkarinen
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| | - Tatu Kantonen
- Turku PET Centre, University of Turku, Turku, Finland
- Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | - Vesa Oikonen
- Turku PET Centre, University of Turku, Turku, Finland
| | - Merja Haaparanta-Solin
- Turku PET Centre, University of Turku, Turku, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | | | - Alex M Dickens
- Turku Bioscience Centre, University of Turku, Turku, Finland
- Åbo Akademi University, Turku, Finland
| | - Annie von Eyken
- Turku Bioscience Centre, University of Turku, Turku, Finland
- Åbo Akademi University, Turku, Finland
| | | | - Prince Dadson
- Turku PET Centre, University of Turku, Turku, Finland
| | | | - Johan Rajander
- Turku PET Centre, Åbo Akademi University, Turku, Finland
| | | | - Tapani Rönnemaa
- Department of Endocrinology, Turku University Hospital, Turku, Finland
- Department of Medicine, University of Turku, Turku, Finland
| | - Lauri Nummenmaa
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Psychology, University of Turku, Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| |
Collapse
|
7
|
Mukorako P, St-Pierre DH, Flamand N, Biertho L, Lebel S, Lemoine N, Plamondon J, Roy MC, Tchernof A, Varin TV, Marette A, Silvestri C, Di Marzo V, Richard D. Hypoabsorptive surgeries cause limb-dependent changes in the gut endocannabinoidome and microbiome in association with beneficial metabolic effects. Int J Obes (Lond) 2023:10.1038/s41366-023-01307-3. [PMID: 37142736 DOI: 10.1038/s41366-023-01307-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023]
Abstract
OBJECTIVE To determine whether the metabolic benefits of hypoabsorptive surgeries are associated with changes in the gut endocannabinoidome (eCBome) and microbiome. METHODS Biliopancreatic diversion with duodenal switch (BPD-DS) and single anastomosis duodeno-ileal bypass with sleeve gastrectomy (SADI-S) were performed in diet-induced obese (DIO) male Wistar rats. Control groups fed a high-fat diet (HF) included sham-operated (SHAM HF) and SHAM HF-pair-weighed to BPD-DS (SHAM HF-PW). Body weight, fat mass gain, fecal energy loss, HOMA-IR, and gut-secreted hormone levels were measured. The levels of eCBome lipid mediators and prostaglandins were quantified in different intestinal segments by LC-MS/MS, while expression levels of genes encoding eCBome metabolic enzymes and receptors were determined by RT-qPCR. Metataxonomic (16S rRNA) analysis was performed on residual distal jejunum, proximal jejunum, and ileum contents. RESULTS BPD-DS and SADI-S reduced fat gain and HOMA-IR, while increasing glucagon-like peptide-1 (GLP-1) and peptide tyrosine tyrosine (PYY) levels in HF-fed rats. Both surgeries induced potent limb-dependent alterations in eCBome mediators and in gut microbial ecology. In response to BPD-DS and SADI-S, changes in gut microbiota were significantly correlated with those of eCBome mediators. Principal component analyses revealed connections between PYY, N-oleoylethanolamine (OEA), N-linoleoylethanolamine (LEA), Clostridium, and Enterobacteriaceae_g_2 in the proximal and distal jejunum and in the ileum. CONCLUSIONS BPD-DS and SADI-S caused limb-dependent changes in the gut eCBome and microbiome. The present results indicate that these variables could significantly influence the beneficial metabolic outcome of hypoabsorptive bariatric surgeries.
Collapse
Affiliation(s)
- Paulette Mukorako
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
- Québec Heart and Lung Institute, Chemin Sainte-Foy, Québec, QC, Canada
| | - David H St-Pierre
- Institute of Nutrition and Functional Foods, Centre NUTRISS, Québec, QC, Canada
- Department of Exercise Sciences, Université du Québec à Montréal (UQAM), Québec, QC, Canada
- School of Nutrition, Faculty of Agriculture and Food Sciences, Québec, QC, Canada
| | - Nicolas Flamand
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
- Québec Heart and Lung Institute, Chemin Sainte-Foy, Québec, QC, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, QC, Canada
| | - Laurent Biertho
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
- Québec Heart and Lung Institute, Chemin Sainte-Foy, Québec, QC, Canada
| | - Stéfane Lebel
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
- Québec Heart and Lung Institute, Chemin Sainte-Foy, Québec, QC, Canada
| | - Natacha Lemoine
- Québec Heart and Lung Institute, Chemin Sainte-Foy, Québec, QC, Canada
| | - Julie Plamondon
- Québec Heart and Lung Institute, Chemin Sainte-Foy, Québec, QC, Canada
| | - Marie-Claude Roy
- Québec Heart and Lung Institute, Chemin Sainte-Foy, Québec, QC, Canada
| | - André Tchernof
- Québec Heart and Lung Institute, Chemin Sainte-Foy, Québec, QC, Canada
- School of Nutrition, Faculty of Agriculture and Food Sciences, Québec, QC, Canada
| | - Thibault V Varin
- Institute of Nutrition and Functional Foods, Centre NUTRISS, Québec, QC, Canada
| | - André Marette
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
- Québec Heart and Lung Institute, Chemin Sainte-Foy, Québec, QC, Canada
- Institute of Nutrition and Functional Foods, Centre NUTRISS, Québec, QC, Canada
| | - Cristoforo Silvestri
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada.
- Québec Heart and Lung Institute, Chemin Sainte-Foy, Québec, QC, Canada.
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, QC, Canada.
| | - Vincenzo Di Marzo
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada.
- Québec Heart and Lung Institute, Chemin Sainte-Foy, Québec, QC, Canada.
- Institute of Nutrition and Functional Foods, Centre NUTRISS, Québec, QC, Canada.
- School of Nutrition, Faculty of Agriculture and Food Sciences, Québec, QC, Canada.
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, QC, Canada.
| | - Denis Richard
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada.
- Québec Heart and Lung Institute, Chemin Sainte-Foy, Québec, QC, Canada.
| |
Collapse
|
8
|
Ji S, You Y, Peng B, Zhong T, Kuang Y, Li S, Du L, Chen L, Sun X, Dai J, Huang S, Wu Y, Liu Y. Multi-omics analysis reveals the metabolic regulators of duodenal low-grade inflammation in a functional dyspepsia model. Front Immunol 2022; 13:944591. [PMID: 36091013 PMCID: PMC9453867 DOI: 10.3389/fimmu.2022.944591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/28/2022] [Indexed: 11/27/2022] Open
Abstract
Several gastrointestinal phenotypes and impairment of duodenal mucosal barrier have been reported in clinical studies in patients with functional dyspepsia (FD). Due to the preferential colonization of the mucosa, intestinal microbes and their metabolites are commonly involved in host metabolism and immune responses. However, there are no studies on the intertwined correlation among multi-level data. For more comprehensive illustrating, a multi-omics analysis focusing on the duodenum was performed in the FD rat model. We found that differential microbiomes in the duodenum were significantly correlated with the biosynthesis of lipopolysaccharide and peptidoglycan. The innate immune response-related genes, which were upregulated in the duodenum, were associated with the TLR2/TLR4-NFκB signaling pathway. More importantly, arachidonyl ethanolamide (anandamide, AEA) and endocannabinoid analogues showed linear relationships with the FD phenotypes. Taken together, multi-level data from microbiome, transcriptome and metabolome reveal that AEA may regulate duodenal low-grade inflammation in FD. These results suggest an important cue of gut microbiome–endocannabinoid system axis in the pathogenesis of FD.
Collapse
Affiliation(s)
- Shuai Ji
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yanting You
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Baizhao Peng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Tianyu Zhong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuxiang Kuang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shasha Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lijing Du
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Liqian Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaomin Sun
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jiaojiao Dai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Suiping Huang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Yanyan Liu, ; Yuyao Wu, ; Suiping Huang,
| | - Yuyao Wu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- *Correspondence: Yanyan Liu, ; Yuyao Wu, ; Suiping Huang,
| | - Yanyan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- *Correspondence: Yanyan Liu, ; Yuyao Wu, ; Suiping Huang,
| |
Collapse
|
9
|
Srivastava RK, Lutz B, Ruiz de Azua I. The Microbiome and Gut Endocannabinoid System in the Regulation of Stress Responses and Metabolism. Front Cell Neurosci 2022; 16:867267. [PMID: 35634468 PMCID: PMC9130962 DOI: 10.3389/fncel.2022.867267] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
The endocannabinoid system, with its receptors and ligands, is present in the gut epithelium and enteroendocrine cells, and is able to modulate brain functions, both indirectly through circulating gut-derived factors and directly through the vagus nerve, finally acting on the brain’s mechanisms regarding metabolism and behavior. The gut endocannabinoid system also regulates gut motility, permeability, and inflammatory responses. Furthermore, microbiota composition has been shown to influence the activity of the endocannabinoid system. This review examines the interaction between microbiota, intestinal endocannabinoid system, metabolism, and stress responses. We hypothesize that the crosstalk between microbiota and intestinal endocannabinoid system has a prominent role in stress-induced changes in the gut-brain axis affecting metabolic and mental health. Inter-individual differences are commonly observed in stress responses, but mechanisms underlying resilience and vulnerability to stress are far from understood. Both gut microbiota and the endocannabinoid system have been implicated in stress resilience. We also discuss interventions targeting the microbiota and the endocannabinoid system to mitigate metabolic and stress-related disorders.
Collapse
Affiliation(s)
- Raj Kamal Srivastava
- Department of Zoology, Indira Gandhi National Tribal University, Anuppur, India
- *Correspondence: Raj Kamal Srivastava,
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Inigo Ruiz de Azua
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Inigo Ruiz de Azua,
| |
Collapse
|
10
|
The Endocannabinoid System and Physical Activity—A Robust Duo in the Novel Therapeutic Approach against Metabolic Disorders. Int J Mol Sci 2022; 23:ijms23063083. [PMID: 35328503 PMCID: PMC8948925 DOI: 10.3390/ijms23063083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
Rapidly increasing worldwide prevalence of obesity and related pathologies encompassing coronary heart disease, hypertension, metabolic syndrome, or type 2 diabetes constitute serious threats to global health and are associated with a significantly elevated risk of premature death. Considering the enormous burden of these pathologies, novel therapeutic and preventive patterns are indispensable. Dysregulation of one of the most complex biological systems in the human body namely, the endocannabinoid system (ECS) may result in metabolic imbalance and development of insulin resistance, type 2 diabetes, or non-alcoholic fatty liver disease. Furthermore, many studies showed that physical exercises, depending on their type, intensity, and frequency, exert various alterations within the ECS. Emerging evidence suggests that targeting the ECS via physical activity may produce robust beneficial effects on the course of metabolic pathologies. However, the data showing a direct correlation between the ECS and physical activity in the aspect of metabolic health are very scarce. Therefore, the aim of this review was to provide the most up-to-date state of knowledge about the interplay between the ECS activity and physical exercises in the novel therapeutic and preventive approach toward metabolic pathologies. We believe that this paper, at least in part, will fulfill the existing gap in knowledge and encourage researchers to further explore this very complex yet interesting link between the ECS, its action in physical activity, and subsequent positive outcomes for metabolic health.
Collapse
|
11
|
Schiano Moriello A, Di Marzo V, Petrosino S. Mutual Links between the Endocannabinoidome and the Gut Microbiome, with Special Reference to Companion Animals: A Nutritional Viewpoint. Animals (Basel) 2022; 12:ani12030348. [PMID: 35158670 PMCID: PMC8833664 DOI: 10.3390/ani12030348] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/21/2022] [Accepted: 01/30/2022] [Indexed: 12/07/2022] Open
Abstract
There is growing evidence that perturbation of the gut microbiome, known as “dysbiosis”, is associated with the pathogenesis of human and veterinary diseases that are not restricted to the gastrointestinal tract. In this regard, recent studies have demonstrated that dysbiosis is linked to the pathogenesis of central neuroinflammatory disorders, supporting the existence of the so-called microbiome-gut-brain axis. The endocannabinoid system is a recently recognized lipid signaling system and termed endocannabinoidome monitoring a variety of body responses. Accumulating evidence demonstrates that a profound link exists between the gut microbiome and the endocannabinoidome, with mutual interactions controlling intestinal homeostasis, energy metabolism and neuroinflammatory responses during physiological conditions. In the present review, we summarize the latest data on the microbiome-endocannabinoidome mutual link in health and disease, focalizing the attention on gut dysbiosis and/or altered endocannabinoidome tone that may distort the bidirectional crosstalk between these two complex systems, thus leading to gastrointestinal and metabolic diseases (e.g., idiopathic inflammation, chronic enteropathies and obesity) as well as neuroinflammatory disorders (e.g., neuropathic pain and depression). We also briefly discuss the novel possible dietary interventions based not only on probiotics and/or prebiotics, but also, and most importantly, on endocannabinoid-like modulators (e.g., palmitoylethanolamide) for intestinal health and beyond.
Collapse
Affiliation(s)
- Aniello Schiano Moriello
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Napoli, Italy; (A.S.M.); (V.D.M.)
- Epitech Group SpA, Via Einaudi 13, 35030 Padova, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Napoli, Italy; (A.S.M.); (V.D.M.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, CRIUCPQ and INAF, Centre NUTRISS, Faculties of Medicine and Agriculture and Food Sciences, Université Laval, Quebéc City, QC G1V 4G5, Canada
| | - Stefania Petrosino
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Napoli, Italy; (A.S.M.); (V.D.M.)
- Epitech Group SpA, Via Einaudi 13, 35030 Padova, Italy
- Correspondence:
| |
Collapse
|
12
|
Vijay A, Kouraki A, Gohir S, Turnbull J, Kelly A, Chapman V, Barrett DA, Bulsiewicz WJ, Valdes AM. The anti-inflammatory effect of bacterial short chain fatty acids is partially mediated by endocannabinoids. Gut Microbes 2022; 13:1997559. [PMID: 34787065 PMCID: PMC8604388 DOI: 10.1080/19490976.2021.1997559] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The endocannabinoid (EC) system has pleiotropic functions in the body. It plays a key role in energy homeostasis and the development of metabolic disorders being a mediator in the relationship between the gut microbiota and host metabolism. In the current study we explore the functional interactions between the endocannabinoid system and the gut microbiome in modulating inflammatory markers. Using data from a 6 week exercise intervention (treatment n = 38 control n = 40) and a cross sectional validation cohort (n = 35), we measured the associations of 2-arachidonoylglycerol (2-AG), anandamide (AEA), N-oleoylethanolamine (OEA) and N-palmitoylethanolamine (PEA) with gut microbiome composition, gut derived metabolites (SCFAs) and inflammatory markers both cross-sectionally and longitudinally. At baseline AEA and OEA were positively associated with alpha diversity (β(SE) = .32 (.06), P = .002; .44 (.04), P < .001) and with SCFA producing bacteria such as Bifidobacterium (2-AG β(SE) = .21 (.10), P < .01; PEA β(SE) = .23 (.08), P < .01), Coprococcus 3 and Faecalibacterium (PEA β(SE) = .29 (.11), P = .01; .25 (.09), P < .01) and negatively associated with Collinsella (AEA β(SE) = -.31 (.12), P = .004). Additionally, we found AEA to be positively associated with SCFA Butyrate (β(SE) = .34 (.15), P = .01). AEA, OEA and PEA all increased significantly with the exercise intervention but remained constant in the control group. Changes in AEA correlated with SCFA butyrate and increases in AEA and PEA correlated with decreases in TNF-ɑ and IL-6 statistically mediating one third of the effect of SCFAs on these cytokines. Our data show that the anti-inflammatory effects of SCFAs are partly mediated by the EC system suggesting that there may be other pathways involved in the modulation of the immune system via the gut microbiome.
Collapse
Affiliation(s)
- Amrita Vijay
- Division of Rheumatology, Orthopedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK,CONTACT Amrita Vijay Division of Rheumatology, Orthopedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Afroditi Kouraki
- Division of Rheumatology, Orthopedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK,Nihr Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Sameer Gohir
- Division of Rheumatology, Orthopedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK,Nihr Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - James Turnbull
- Nihr Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK,Arthritis Research Uk Pain Centre, University of Nottingham, Medical School, Queen’s Medical Centre, Nottingham, UK
| | - Anthony Kelly
- Division of Rheumatology, Orthopedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK,Nihr Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Vicky Chapman
- Division of Rheumatology, Orthopedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK,Arthritis Research Uk Pain Centre, University of Nottingham, Medical School, Queen’s Medical Centre, Nottingham, UK
| | - David A Barrett
- Nihr Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK,DAB-Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | - Ana M Valdes
- Division of Rheumatology, Orthopedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK,Nihr Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
13
|
Khan RN, Maner-Smith K, A. Owens J, Barbian ME, Jones RM, R. Naudin C. At the heart of microbial conversations: endocannabinoids and the microbiome in cardiometabolic risk. Gut Microbes 2022; 13:1-21. [PMID: 33896380 PMCID: PMC8078674 DOI: 10.1080/19490976.2021.1911572] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cardiometabolic syndrome encompasses intertwined risk factors such as hypertension, dyslipidemia, elevated triglycerides, abdominal obesity, and other maladaptive metabolic and inflammatory aberrations. As the molecular mechanisms linking cardiovascular disease and metabolic disorders are investigated, endocannabinoids have emerged as molecules of interest. The endocannabinoid system (ECS) of biologically active lipids has been implicated in several conditions, including chronic liver disease, osteoporosis, and more recently in cardiovascular diseases. The gut microbiome is a major regulator of inflammatory and metabolic signaling in the host, and if disrupted, has the potential to drive metabolic and cardiovascular diseases. Extensive studies have unraveled the impact of the gut microbiome on host physiology, with recent reports showing that gut microbes exquisitely control the ECS, with significant influences on host metabolic and cardiac health. In this review, we outline how modulation of the gut microbiome affects host metabolism and cardiovascular health via the ECS, and how these findings could be exploited as novel therapeutic targets for various metabolic and cardiac diseases.
Collapse
Affiliation(s)
- Ramsha Nabihah Khan
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Kristal Maner-Smith
- Emory Integrated Metabolomics and Lipidomics Core, Emory University, Atlanta, Georgia, USA
| | - Joshua A. Owens
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Maria Estefania Barbian
- Division of Neonatology, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Rheinallt M. Jones
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Crystal R. Naudin
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA,CONTACT Crystal R. Naudin Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA30322, United States of America
| |
Collapse
|
14
|
Schmill MP, Thompson Z, Argueta DA, DiPatrizio NV, Garland T. Effects of Selective Breeding, Voluntary Exercise, and Sex on Endocannabinoid Levels in the Mouse Small-Intestinal Epithelium. Physiol Behav 2021; 245:113675. [PMID: 34929258 DOI: 10.1016/j.physbeh.2021.113675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/17/2021] [Accepted: 12/12/2021] [Indexed: 11/19/2022]
Abstract
The endocannabinoid (eCB) system in the gut communicates with the body and brain as part of the homeostatic mechanisms that affect energy balance. Although perhaps best known for its effects on energy intake, the eCB system also regulates voluntary locomotor behavior. Here, we examined gut eCB concentrations in relation to voluntary exercise, specifically in mice selectively bred for high voluntary wheel running behavior. We measured gut eCBs in four replicate non-selected Control (C) lines and four replicate lines of High Runner (HR) mice that had been selectively bred for 74 generations based on the average number of wheel revolutions on days 5 and 6 of a 6-day period of wheel access when young adults. On average, mice from HR lines run voluntarily on wheels ∼3-fold more than C mice on a daily basis. A recent study showed that circulating levels of primary endocannabinoids 2-arachidonoyl-sn-glycerol (2-AG) and anandamide (AEA) are altered by six days of wheel access, by acute wheel running, and differ between HR and C mice in sex-specific ways [1]. We hypothesized that eCBs in the upper small-intestinal epithelium (i.e., proximal jejunum), a region firmly implicated in eCB signaling, would differ between HR and C mice (linetype), between the sexes, between mice housed with vs. without wheels for six days, and would covary with amounts of acute running and/or home-cage activity (during the previous 30 minutes). We used the same 192 mice as in [1] , half males and half females, half HR and half C (all 8 lines), and half either given or not given access to wheels for six days. We assessed the eCBs, 2-AG and AEA, and their analogs docosahexaenoylglycerol (DHG), docosahexaenoylethanolamide (DHEA), and oleoylethanolamide (OEA). Both 2-AG and DHG showed a significant 3-way interaction of linetype, wheel access, and sex. In addition, HR mice had lower concentrations of 2-AG in the small-intestinal epithelium when compared to C mice, which may be functionally related to differences in locomotor activity or to differences in body composition and/or food consumption. Moreover, the amount of home-cage activity during the prior 30 min was a negative predictor of 2-AG and AEA concentrations in jejunum mucosa, particularly in the mice with no wheel access. Lastly, 2-AG, but not AEA, was significantly correlated with 2-AG in plasma in the same mice.
Collapse
Affiliation(s)
- Margaret P Schmill
- Neuroscience Graduate Program, University of California, Riverside, 92521, USA
| | - Zoe Thompson
- Neuroscience Graduate Program, University of California, Riverside, 92521, USA; Department of Biology, Utah Valley University, Orem, UT, 84058, USA
| | - Donovan A Argueta
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 92521, USA; Department of Medicine, School of Medicine, University of California, Irvine, 92697, USA
| | - Nicholas V DiPatrizio
- Neuroscience Graduate Program, University of California, Riverside, 92521, USA; Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 92521, USA
| | - Theodore Garland
- Neuroscience Graduate Program, University of California, Riverside, 92521, USA; Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, 92521, USA.
| |
Collapse
|
15
|
Lian J, Casari I, Falasca M. Modulatory role of the endocannabinoidome in the pathophysiology of the gastrointestinal tract. Pharmacol Res 2021; 175:106025. [PMID: 34883211 DOI: 10.1016/j.phrs.2021.106025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 12/13/2022]
Abstract
Originating from Eastern Asia, the plant Cannabis sativa has been used for centuries as a medicinal treatment. The unwanted psychotropic effects of one of its major components, Δ9-tetrahydrocannabinol, discouraged its therapeutic employment until, recently, the discovery of cannabinoids receptors and their endogenous ligands endocannabinoids reignited the interest. The endocannabinoid system has lately been found to play an important role in the maintenance of human health, both centrally and peripherally. However, the initial idea of the endocannabinoid system structure has been quickly understood to be too simplistic and, as new receptors, mediators, and enzymes have been discovered to participate in a complex relationship, the new, more comprehensive term "expanded endocannabinoid system" or "endocannabinoidome", has taken over. The discovery of other endocannabinoid-like receptors, such as the G protein-coupled receptor 119 and G protein-coupled receptor 55, has opened the way to the development of potential therapeutic targets for the treatment of various metabolic disorders. In addition, recent findings have also provided evidence suggesting the potential therapeutic link between the endocannabinoidome and various inflammatory-based gut diseases, such as inflammatory bowel disease and cancer. This review will provide an introduction to the endocannabinoidome, focusing on its modulatory role in the gastrointestinal tract and on the interest generated by the link between gut microbiota, the endocannabinoid system and metabolic diseases such as inflammatory bowel disease, type-2 diabetes and obesity. In addition, we will look at the potential novel aspects and benefits of drugs targeting the endocannabinoid system.
Collapse
Affiliation(s)
- Jerome Lian
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Ilaria Casari
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|
16
|
Knuth MM, Stutts WL, Ritter MM, Garrard KP, Kullman SW. Vitamin D deficiency promotes accumulation of bioactive lipids and increased endocannabinoid tone in zebrafish. J Lipid Res 2021; 62:100142. [PMID: 34673019 PMCID: PMC8604674 DOI: 10.1016/j.jlr.2021.100142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/29/2022] Open
Abstract
Vitamin D is well known for its traditional role in bone mineral homeostasis; however, recent evidence suggests that vitamin D also plays a significant role in metabolic control. This study served to investigate putative linkages between vitamin D deficiency (VDD) and metabolic disruption of bioactive lipids by MS imaging. Our approach employed infrared-matrix-assisted laser desorption electrospray ionization MS imaging for lipid metabolite profiling in 6-month-old zebrafish fed either a VDD or a vitamin D-sufficient (VDS) diet. Using a lipidomics pipeline, we found that VDD zebrafish had a greater abundance of bioactive lipids (N-acyls, endocannabinoids [ECs], diacylglycerols/triacylglycerols, bile acids/bile alcohols, and vitamin D derivatives) suggestive of increased EC tone compared with VDS zebrafish. Tandem MS was performed on several differentially expressed metabolites with sufficient ion abundances to aid in structural elucidation and provide additional support for MS annotations. To confirm activation of the EC pathways, we subsequently examined expression of genes involved in EC biosynthesis, metabolism, and receptor signaling in adipose tissue and liver from VDD and VDS zebrafish. Gene expression changes were congruent with increased EC tone, with VDD zebrafish demonstrating increased synthesis and metabolism of anandamide compared with VDS zebrafish. Taken together, our data suggest that VDD may promote accumulation of bioactive lipids and increased EC tone in zebrafish.
Collapse
Affiliation(s)
- Megan M Knuth
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Genetics, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC 27514, USA; Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA.
| | - Whitney L Stutts
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC 27606, USA
| | - Morgan M Ritter
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Kenneth P Garrard
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC 27606, USA; FTMS Laboratory for Human Health Research and Department of Chemistry, North Carolina State University, Raleigh, NC 27607, USA; Precision Engineering Consortium, Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Seth W Kullman
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
17
|
Bariani MV, Correa F, Rubio APD, Wolfson ML, Schander JA, Cella M, Aisemberg J, Franchi AM. Maternal obesity reverses the resistance to LPS-induced adverse pregnancy outcome and increases female offspring metabolic alterations in cannabinoid receptor 1 knockout mice. J Nutr Biochem 2021; 96:108805. [PMID: 34147601 DOI: 10.1016/j.jnutbio.2021.108805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 11/23/2022]
Abstract
Maternal overnutrition negatively impacts the offspring's health leading to an increased risk of developing chronic diseases or metabolic syndrome in adulthood. What we eat affects the endocannabinoid system (eCS) activity, which in turn modulates lipogenesis and fatty acids utilization in hepatic, muscle, and adipose tissues. This study aimed to evaluate the transgenerational effect of maternal obesity on cannabinoid receptor 1 knock-out (CB1 KO) animals in combination with a postnatal obesogenic diet on the development of metabolic disturbances on their offspring. CB1 KO mice were fed a control diet (CD) or a high-fat diet (HFD; 33% more energy from fat) for 3 months. Offspring born to control and obese mothers were also fed with CD or HFD. We observed that pups born to an HFD-fed mother presented higher postnatal weight, lower hepatic fatty acid amide hydrolase activity, and increased blood cholesterol levels when compared to the offspring born to CD-fed mothers. When female mice born to HFD-fed CB1 KO mothers were exposed to an HFD, they gained more weight, presented elevated blood cholesterol levels, and more abdominal adipose tissue accumulation than control-fed adult offspring. The eCS is involved in several reproductive physiological processes. Interestingly, we showed that CB1 KO mice in gestational day 15 presented resistance to LPS-induced deleterious effects on pregnancy outcome, which was overcome when these mice were obese. Our results suggest that an HFD in CB1 receptor-deficient mice contributes to a "nutritional programming" of the offspring resulting in increased susceptibility to metabolic challenges both perinatally and during adulthood.
Collapse
Affiliation(s)
- María Victoria Bariani
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernando Correa
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Paula Domínguez Rubio
- Departamento de Química Biológica. Intendente Güiraldes, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Biológica. Intendente Güiraldes, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Manuel Luis Wolfson
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Aylen Schander
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maximiliano Cella
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Aisemberg
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Ana María Franchi
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
18
|
Schmitz K, Trautmann S, Hahnefeld L, Fischer C, Schreiber Y, Wilken-Schmitz A, Gurke R, Brunkhorst R, Werner ER, Watschinger K, Wicker S, Thomas D, Geisslinger G, Tegeder I. Sapropterin (BH4) Aggravates Autoimmune Encephalomyelitis in Mice. Neurotherapeutics 2021; 18:1862-1879. [PMID: 33844153 PMCID: PMC8609075 DOI: 10.1007/s13311-021-01043-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2021] [Indexed: 02/04/2023] Open
Abstract
Depletion of the enzyme cofactor, tetrahydrobiopterin (BH4), in T-cells was shown to prevent their proliferation upon receptor stimulation in models of allergic inflammation in mice, suggesting that BH4 drives autoimmunity. Hence, the clinically available BH4 drug (sapropterin) might increase the risk of autoimmune diseases. The present study assessed the implications for multiple sclerosis (MS) as an exemplary CNS autoimmune disease. Plasma levels of biopterin were persistently low in MS patients and tended to be lower with high Expanded Disability Status Scale (EDSS). Instead, the bypass product, neopterin, was increased. The deregulation suggested that BH4 replenishment might further drive the immune response or beneficially restore the BH4 balances. To answer this question, mice were treated with sapropterin in immunization-evoked autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. Sapropterin-treated mice had higher EAE disease scores associated with higher numbers of T-cells infiltrating the spinal cord, but normal T-cell subpopulations in spleen and blood. Mechanistically, sapropterin treatment was associated with increased plasma levels of long-chain ceramides and low levels of the poly-unsaturated fatty acid, linolenic acid (FA18:3). These lipid changes are known to contribute to disruptions of the blood-brain barrier in EAE mice. Indeed, RNA data analyses revealed upregulations of genes involved in ceramide synthesis in brain endothelial cells of EAE mice (LASS6/CERS6, LASS3/CERS3, UGCG, ELOVL6, and ELOVL4). The results support the view that BH4 fortifies autoimmune CNS disease, mechanistically involving lipid deregulations that are known to contribute to the EAE pathology.
Collapse
Affiliation(s)
- Katja Schmitz
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, Frankfurt, Germany
| | - Sandra Trautmann
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, Frankfurt, Germany
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, Frankfurt, Germany
| | - Caroline Fischer
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, Frankfurt, Germany
| | - Yannick Schreiber
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
| | - Annett Wilken-Schmitz
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, Frankfurt, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
| | - Robert Brunkhorst
- Department of Clinical Neurology, Medical Faculty, Goethe-University, Frankfurt, Germany
| | - Ernst R Werner
- Institute of Biological Chemistry, Medical University of Innsbruck, Biocenter, Austria
| | - Katrin Watschinger
- Institute of Biological Chemistry, Medical University of Innsbruck, Biocenter, Austria
| | - Sabine Wicker
- Occupational Health Services, Medical Faculty, Goethe-University, Frankfurt, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Frankfurt, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, Frankfurt, Germany.
| |
Collapse
|
19
|
Role of the Endocannabinoid System in the Adipose Tissue with Focus on Energy Metabolism. Cells 2021; 10:cells10061279. [PMID: 34064024 PMCID: PMC8224009 DOI: 10.3390/cells10061279] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system is involved in a wide range of processes including the control of energy acquisition and expenditure. Endocannabinoids and their receptors are present in the central nervous system but also in peripheral tissues, notably the adipose tissues. The endocannabinoid system interacts with two main hormones regulating appetite, namely leptin and ghrelin. The inhibitory effect of the cannabinoid receptor 1 (CB1) antagonist rimonabant on fat mass suggested that the endocannabinoid system can also have a peripheral action in addition to its effect on appetite reduction. Thus, several investigations have focused on the peripheral role of the endocannabinoid system in the regulation of metabolism. The white adipose tissue stores energy as triglycerides while the brown adipose tissue helps to dissipate energy as heat. The endocannabinoid system regulates several functions of the adipose tissues to favor energy accumulation. In this review we will describe the presence of the endocannabinoid system in the adipose tissue. We will survey the role of the endocannabinoid system in the regulation of white and brown adipose tissue metabolism and how the eCB system participates in obesity and metabolic diseases.
Collapse
|
20
|
Kotańska M, Mika K, Szafarz M, Kubacka M, Müller CE, Sapa J, Kieć-Kononowicz K. Effects of GPR18 Ligands on Body Weight and Metabolic Parameters in a Female Rat Model of Excessive Eating. Pharmaceuticals (Basel) 2021; 14:ph14030270. [PMID: 33809564 PMCID: PMC8002110 DOI: 10.3390/ph14030270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 12/29/2022] Open
Abstract
GPR18 has been proposed to play a role in the progression of metabolic disease and obesity. Therefore, the aim of this study was to determine the effects of selective GRP18 ligands (the antagonists PSB-CB5 and PSB-CB27 and the agonist PSB-KK1415) on body mass and the development of metabolic disorders commonly accompanying obesity. Experiments were carried out on female Wistar rats. In order to determine the anorectic activity of the investigated ligands, their effect on food and water intake in a model of excessive eating was assessed. Lipid profile, glucose and insulin levels as well as alanine aminotransferase, aspartate aminotransferase, and γ-glutamyl transpeptidase activity in plasma were also evaluated. Potential side effects were examined in rat models of pica behavior and conditioned taste aversion. Animals treated with different ligands gained significantly less weight than rats from the obese control group. Effects of GPR18 antagonists on food intake and body weight were specific and unrelated to visceral illness, stress or changes in spontaneous activity. However, the GPR18 agonist is likely to affect body weight by inducing gastrointestinal disorders such as nausea. The presented preliminary data support the idea that the search for selective GPR18 antagonists for the treatment of obesity might be promising.
Collapse
Affiliation(s)
- Magdalena Kotańska
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University, Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; (K.M.); (M.K.); (J.S.)
- Correspondence: ; Tel./Fax: +48-12-6205530
| | - Kamil Mika
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University, Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; (K.M.); (M.K.); (J.S.)
| | - Małgorzata Szafarz
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Krakow, Poland;
| | - Monika Kubacka
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University, Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; (K.M.); (M.K.); (J.S.)
| | - Christa E. Müller
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, PharmaCenter Bonn, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany;
| | - Jacek Sapa
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University, Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; (K.M.); (M.K.); (J.S.)
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, 9 Medyczna Street, 30-688 Kraków, Poland;
| |
Collapse
|
21
|
Soni KG, Dike PN, Suh JH, Halder T, Edwards PT, Foong JPP, Conner ME, Preidis GA. Early-life malnutrition causes gastrointestinal dysmotility that is sexually dimorphic. Neurogastroenterol Motil 2020; 32:e13936. [PMID: 33021011 PMCID: PMC7688589 DOI: 10.1111/nmo.13936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/07/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Slow gastrointestinal (GI) transit occurs in moderate-to-severe malnutrition. Mechanisms underlying malnutrition-associated dysmotility remain unknown, partially due to lack of animal models. This study sought to characterize GI dysmotility in mouse models of malnutrition. METHODS Neonatal mice were malnourished by timed maternal separation. Alternatively, low-protein, low-fat diet was administered to dams, with malnourished neonates tested at two weeks or weaned to the same chow and tested as young adults. We determined total GI transit time by carmine red gavage, colonic motility by rectal bead latency, and both gastric emptying and small bowel motility with fluorescein isothiocyanate-conjugated dextran. We assessed histology with light microscopy, ex vivo contractility and permeability with force-transduction and Ussing chamber studies, and gut microbiota composition by 16S rDNA sequencing. KEY RESULTS Both models of neonatal malnutrition and young adult malnourished males but not females exhibited moderate growth faltering, stunting, and grossly abnormal stomachs. Progression of fluorescent dye was impaired in both neonatal models of malnutrition, whereas gastric emptying was delayed only in maternally separated pups and malnourished young adult females. Malnourished young adult males but not females had atrophic GI mucosa, exaggerated intestinal contractile responses, and increased gut barrier permeability. These sex-specific abnormalities were associated with altered gut microbial communities. CONCLUSIONS & INFERENCES Multiple models of early-life malnutrition exhibit delayed upper GI transit. Malnutrition affects young adult males more profoundly than females. These models will facilitate future studies to identify mechanisms underlying malnutrition-induced pathophysiology and sex-specific regulatory effects.
Collapse
Affiliation(s)
- Krishnakant G. Soni
- Section of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| | - Peace N. Dike
- Section of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| | - Ji Ho Suh
- Section of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| | - Tripti Halder
- Section of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| | - Price T. Edwards
- Section of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| | - Jaime P. P. Foong
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Margaret E. Conner
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Geoffrey A. Preidis
- Section of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|
22
|
Bielawiec P, Harasim-Symbor E, Konstantynowicz-Nowicka K, Sztolsztener K, Chabowski A. Chronic Cannabidiol Administration Attenuates Skeletal Muscle De Novo Ceramide Synthesis Pathway and Related Metabolic Effects in a Rat Model of High-Fat Diet-Induced Obesity. Biomolecules 2020; 10:biom10091241. [PMID: 32859125 PMCID: PMC7564398 DOI: 10.3390/biom10091241] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
Numerous studies showed that sustained obesity results in accumulation of bioactive lipid derivatives in several tissues, including skeletal muscle, which further contributes to the development of metabolic disturbances and insulin resistance (IR). The latest data indicate that a potential factor regulating lipid and glucose metabolism is a phytocannabinoid—cannabidiol (CBD), a component of medical marijuana (Cannabis). Therefore, we aimed to investigate whether chronic CBD administration influences bioactive lipid content (e.g., ceramide (CER)), as well as glucose metabolism, in the red skeletal muscle (musculus gastrocnemius) with predominant oxidative metabolism. All experiments were conducted on an animal model of obesity, i.e., Wistar rats fed a high-fat diet (HFD) or standard rodent chow, and subsequently injected with CBD in a dose of 10 mg/kg or its solvent for two weeks. The sphingolipid content was assessed using high-performance liquid chromatography (HPLC), while, in order to determine insulin and glucose concentrations, immunoenzymatic and colorimetric methods were used. The protein expression from sphingolipid and insulin signaling pathways, as well as endocannabinoidome components, was evaluated by immunoblotting. Unexpectedly, our experimental model revealed that the significantly intensified intramuscular de novo CER synthesis pathway in the HFD group was attenuated by chronic CBD treatment. Additionally, due to CBD administration, the content of other sphingolipid derivatives, i.e., sphingosine-1-phosphate (S1P) was restored in the high-fat feeding state, which coincided with an improvement in skeletal muscle insulin signal transduction and glycogen recovery.
Collapse
|
23
|
Lauterbach MA, Latz E, Christ A. Metabolomic Profiling Reveals Distinct and Mutual Effects of Diet and Inflammation in Shaping Systemic Metabolism in Ldlr-/- Mice. Metabolites 2020; 10:metabo10090336. [PMID: 32824900 PMCID: PMC7570335 DOI: 10.3390/metabo10090336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 12/30/2022] Open
Abstract
Changes in modern dietary habits such as consumption of Western-type diets affect physiology on several levels, including metabolism and inflammation. It is currently unclear whether changes in systemic metabolism due to dietary interventions are long-lasting and affect acute inflammatory processes. Here, we investigated how high-fat diet (HFD) feeding altered systemic metabolism and the metabolomic response to inflammatory stimuli. We conducted metabolomic profiling of sera collected from Ldlr−/− mice on either regular chow diet (CD) or HFD, and after an additional low-dose lipopolysaccharide (LPS) challenge. HFD feeding, as well as LPS treatment, elicited pronounced metabolic changes. HFD qualitatively altered the systemic metabolic response to LPS; particularly, serum concentrations of fatty acids and their metabolites varied between LPS-challenged mice on HFD or CD, respectively. To investigate whether systemic metabolic changes were sustained long-term, mice fed HFD were shifted back to CD after four weeks (HFD > CD). When shifted back to CD, serum metabolites returned to baseline levels, and so did the response to LPS. Our results imply that systemic metabolism rapidly adapts to dietary changes. The profound systemic metabolic rewiring observed in response to diet might affect immune cell reprogramming and inflammatory responses.
Collapse
Affiliation(s)
- Mario A. Lauterbach
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany;
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany;
- Department of Infectious Diseases and Immunology, UMass Medical School, Worcester, MA 01605, USA
- Center of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Correspondence: (E.L.); (A.C.)
| | - Anette Christ
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany;
- Department of Infectious Diseases and Immunology, UMass Medical School, Worcester, MA 01605, USA
- Correspondence: (E.L.); (A.C.)
| |
Collapse
|
24
|
Toschi A, Tugnoli B, Rossi B, Piva A, Grilli E. Thymol modulates the endocannabinoid system and gut chemosensing of weaning pigs. BMC Vet Res 2020; 16:289. [PMID: 32787931 PMCID: PMC7425016 DOI: 10.1186/s12917-020-02516-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
Background The recent identification of the endocannabinoid system in the gastrointestinal tract suggests a role in controlling intestinal inflammation. In addition, the gut chemosensing system has therapeutic applications in the treatment of gastrointestinal diseases and inflammation due to the presence of a large variety of receptors. The purposes of this study were to investigate the presence of markers of the endocannabinoid system and the chemosensing system in the pig gut and, second, to determine if thymol modulates these markers. One hundred sixty 28-day-old piglets were allocated into one of 5 treatment groups (n = 32 per treatment): T1 (control), T2 (25.5 mg thymol/kg feed), T3 (51 mg thymol/kg feed), T4 (153 mg thymol/kg feed), and T5 (510 mg thymol/kg feed). After 14 days of treatment, piglets were sacrificed (n = 8), and then duodenal and ileal mucosal scrapings were collected. Gene expression of cannabinoid receptors (CB1 and CB2), transient receptor potential vanilloid 1 (TRPV1), the olfactory receptor OR1G1, diacylglycerol lipases (DGL-α and DGL-β), fatty acid amine hydrolase (FAAH), and cytokines was measured, and ELISAs of pro-inflammatory cytokines levels were performed. Results mRNAs encoding all markers tested were detected. In the duodenum and ileum, the CB1, CB2, TRPV1, and OR1G1 mRNAs were expressed at higher levels in the T4 and T5 groups compared to the control group. The level of the FAAH mRNA was increased in the ileum of the T4 group compared to the control. Regarding the immune response, the level of the tumor necrosis factor (TNF-α) mRNA was significantly increased in the duodenum of the T5 group, but this increase was not consistent with the protein level. Conclusions These results indicate the presence of endocannabinoid system and gut chemosensing markers in the piglet gut mucosa. Moreover, thymol modulated the expression of the CB1, CB2, TRPV1, and OR1G1 mRNAs in the duodenum and ileum. It also modulated the mRNA levels of enzymes involved in the biosynthesis and degradation of endocannabinoid molecules. Based on these findings, the effects of thymol on promoting gut health are potentially mediated by the activation of these receptors.
Collapse
Affiliation(s)
- Andrea Toschi
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'Emilia, BO, Italy
| | | | - Barbara Rossi
- Vetagro SpA, via Porro, 2, 42124, Reggio Emilia, Italy
| | - Andrea Piva
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'Emilia, BO, Italy.,Vetagro SpA, via Porro, 2, 42124, Reggio Emilia, Italy
| | - Ester Grilli
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'Emilia, BO, Italy. .,Vetagro, Inc., 116 W. Jackson Blvd, Chicago, IL, 60604, USA.
| |
Collapse
|
25
|
Yagin NL, Hajjarzadeh S, Aliasgharzadeh S, Aliasgari F, Mahdavi R. The association of dietary patterns with endocannabinoids levels in overweight and obese women. Lipids Health Dis 2020; 19:161. [PMID: 32631352 PMCID: PMC7339382 DOI: 10.1186/s12944-020-01341-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/30/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Higher levels of anandamide (AEA) and 2-arachidonoylglycerol (2-AG), the main arachidonic acid-derived endocannabinoids, are frequently reported in overweight and obese individuals. Recently, endocannabinoids have become a research interest in obesity area regarding their role in food intake. The relationship between dietary patterns and endocannabinoids is poorly understood; therefore, this study evaluated the association of the dietary patterns with AEA and 2-AG levels in overweight and obese women. METHODS In this cross sectional study, 183 overweight and obese females from Tabriz, Iran who aged between 19 and 50 years old and with mean BMI = 32.44 ± 3.79 kg/m2 were interviewed. The AEA and 2-AG levels were measured, and the dietary patterns were assessed using food frequency questionnaire. To extract the dietary patterns, factor analysis was applied. The association between AEA and 2-AG levels and dietary patterns was analyzed by linear regression. RESULTS Three major dietary patterns including "Western", "healthy", and "traditional" were extracted. After adjusting for age, physical activity, BMI, waist circumference, and fat mass, higher levels of AEA and 2-AG were observed in participants who were in the highest quintile of the Western pattern (P < 0.05). Also, in both unadjusted and adjusted models, significantly lower levels of AEA and 2-AG were detected in the women of the highest quintile of the healthy pattern (P < 0.01). Moreover, there was no significant association between "traditional" pattern and AEA and 2- AG levels in both unadjusted and adjusted models (P > 0.05). CONCLUSION In regard with the lower levels of endocannabinoids in healthy dietary pattern, adherence to healthy pattern might have promising results in regulating endocannabinoids levels.
Collapse
Affiliation(s)
- Neda Lotfi Yagin
- Student Research Committee, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Hajjarzadeh
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soghra Aliasgharzadeh
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Aliasgari
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mahdavi
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
26
|
Obesity Affects the Microbiota-Gut-Brain Axis and the Regulation Thereof by Endocannabinoids and Related Mediators. Int J Mol Sci 2020; 21:ijms21051554. [PMID: 32106469 PMCID: PMC7084914 DOI: 10.3390/ijms21051554] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/21/2022] Open
Abstract
The hypothalamus regulates energy homeostasis by integrating environmental and internal signals to produce behavioral responses to start or stop eating. Many satiation signals are mediated by microbiota-derived metabolites coming from the gastrointestinal tract and acting also in the brain through a complex bidirectional communication system, the microbiota–gut–brain axis. In recent years, the intestinal microbiota has emerged as a critical regulator of hypothalamic appetite-related neuronal networks. Obesogenic high-fat diets (HFDs) enhance endocannabinoid levels, both in the brain and peripheral tissues. HFDs change the gut microbiota composition by altering the Firmicutes:Bacteroidetes ratio and causing endotoxemia mainly by rising the levels of lipopolysaccharide (LPS), the most potent immunogenic component of Gram-negative bacteria. Endotoxemia induces the collapse of the gut and brain barriers, interleukin 1β (IL1β)- and tumor necrosis factor α (TNFα)-mediated neuroinflammatory responses and gliosis, which alter the appetite-regulatory circuits of the brain mediobasal hypothalamic area delimited by the median eminence. This review summarizes the emerging state-of-the-art evidence on the function of the “expanded endocannabinoid (eCB) system” or endocannabinoidome at the crossroads between intestinal microbiota, gut-brain communication and host metabolism; and highlights the critical role of this intersection in the onset of obesity.
Collapse
|
27
|
Bielawiec P, Harasim-Symbor E, Chabowski A. Phytocannabinoids: Useful Drugs for the Treatment of Obesity? Special Focus on Cannabidiol. Front Endocrinol (Lausanne) 2020; 11:114. [PMID: 32194509 PMCID: PMC7064444 DOI: 10.3389/fendo.2020.00114] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/21/2020] [Indexed: 12/13/2022] Open
Abstract
Currently, an increasing number of diseases related to insulin resistance and obesity is an alarming problem worldwide. It is well-known that the above states can lead to the development of type 2 diabetes, hypertension, and cardiovascular diseases. An excessive amount of triacylglycerols (TAGs) in a diet also evokes adipocyte hyperplasia and subsequent accumulation of lipids in peripheral organs (liver, cardiac muscle). Therefore, new therapeutic methods are constantly sought for the prevention, treatment and alleviation of symptoms of the above mentioned diseases. Currently, much attention is paid to Cannabis derivatives-phytocannabinoids, which interact with the endocannabinoid system (ECS) constituents. Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) are the most abundant compounds of Cannabis plants and their therapeutic application has been suggested. CBD is considered as a potential therapeutic agent due to its anti-inflammatory, anti-oxidant, anti-tumor, neuroprotective, and potential anti-obesity properties. Therefore, in this review, we especially highlight pharmacological properties of CBD as well as its impact on obesity in different tissues.
Collapse
|
28
|
Christie S, O'Rielly R, Li H, Wittert GA, Page AJ. Biphasic effects of methanandamide on murine gastric vagal afferent mechanosensitivity. J Physiol 2019; 598:139-150. [PMID: 31642519 DOI: 10.1113/jp278696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/20/2019] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS The fine control of food intake is important for the maintenance of a healthy metabolic state. Gastric vagal afferents (GVAs) are involved in the peripheral regulation of food intake via signalling the degree of distension of the stomach which ultimately leads to feelings of fullness and satiety. This study provides evidence that endocannabinoids such as anandamide are capable of regulating GVA sensitivity in a concentration-dependent biphasic manner. This biphasic effect is dependent upon interactions between the CB1, TRPV1 and GHSR receptors. These data have important implications for the peripheral control of food intake. ABSTRACT Gastric vagal afferents (GVAs) signal to the hindbrain resulting in satiety. Endocannabinoids are endogenous ligands of cannabinoid 1 receptor (CB1) and transient receptor potential vanilloid-1 (TRPV1) channels. The endocannabinoid anandamide (AEA) is expressed in the stomach, and its receptor CB1 is expressed in ghrelin-positive gastric mucosal cells. Further, TRPV1, CB1 and growth hormone secretagogue receptor (ghrelin receptor, GHSR) are expressed in subpopulations of GVA neurons. This study aimed to determine the interaction between TRPV1, CB1, GHSR and endocannabinoids in the modulation of GVA signalling. An in vitro electrophysiology preparation was used to assess GVA mechanosensitivity in male C57BL/6 mice. Effects of methanandamide (mAEA; 1-100 nm), on GVA responses to stretch were determined in the absence and presence of antagonists of CB1, TRPV1, GHSR, protein kinase-A (PKA), protein kinase-C (PKC) and G-protein subunits Gαi/o , or Gαq . Low doses (1-10 nm) of mAEA reduced GVA responses to 3 g stretch, whereas high doses (30-100 nm) increased the response. The inhibitory and excitatory effects of mAEA (1-100 nm) were reduced/lost in the presence of a CB1 and TRPV1 antagonist. PKA, Gαi/o or GHSR antagonists prevented the inhibitory effect of mAEA on GVA mechanosensitivity. Conversely, in the presence of a PKC or Gαq antagonist the excitatory effect of mAEA was reduced or lost, respectively. Activation of CB1, by mAEA, can activate or inhibit TRPV1 to increase or decrease GVA responses to stretch, depending on the pathway activated. These interactions could play an important role in the fine control of food intake.
Collapse
Affiliation(s)
- Stewart Christie
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Rebecca O'Rielly
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Hui Li
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia.,Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Gary A Wittert
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia.,Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Amanda J Page
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia.,Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| |
Collapse
|
29
|
De Caro C, Iannone LF, Citraro R, Striano P, De Sarro G, Constanti A, Cryan JF, Russo E. Can we 'seize' the gut microbiota to treat epilepsy? Neurosci Biobehav Rev 2019; 107:750-764. [PMID: 31626816 DOI: 10.1016/j.neubiorev.2019.10.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 02/08/2023]
Abstract
The gut-microbiota, the complex intestinal microbial ecosystem essential to health, is an emerging concept in medicine. Several studies demonstrate a microbiota-gut-brain bidirectional connection via neural, endocrine, metabolic and immune pathways. Accordingly, the gut microbiota has a crucial role in modulating intestinal permeability, to alter local/peripheral immune responses and in production of essential metabolites and neurotransmitters. Its alterations may consequently influence all these pathways that contribute to neuronal hyper-excitability and mirrored neuroinflammation in epilepsy and similarly other neurological conditions. Indeed, pre- and clinical studies support the role of the microbiome in pathogenesis, seizure modulation and responses to treatment in epilepsy. Up to now, researchers have focussed attention above all on the brain to develop antiepileptic treatments, but considering the microbiome, could extend our possibilities for developing novel therapies in the future. We provide here a comprehensive overview of the available data on the potential role of gut microbiota in the physiopathology and therapy of epilepsy and the supposed underlying mechanisms.
Collapse
Affiliation(s)
- Carmen De Caro
- Science of Health Department, School of Medicine, University Magna Graecia, Catanzaro, Italy
| | - Luigi Francesco Iannone
- Science of Health Department, School of Medicine, University Magna Graecia, Catanzaro, Italy
| | - Rita Citraro
- Science of Health Department, School of Medicine, University Magna Graecia, Catanzaro, Italy
| | - Pasquale Striano
- Paediatric Neurology and Muscular Diseases Unit, DINOGMI-Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, IRCCS "G. Gaslini" Institute, Genova, Italy
| | - Giovambattista De Sarro
- Science of Health Department, School of Medicine, University Magna Graecia, Catanzaro, Italy
| | - Andrew Constanti
- Department of Pharmacology, UCL School of Pharmacy, 29/39 Brunswick Square, London, United Kingdom
| | - John F Cryan
- UK.APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Emilio Russo
- Science of Health Department, School of Medicine, University Magna Graecia, Catanzaro, Italy.
| |
Collapse
|
30
|
Argueta DA, Perez PA, Makriyannis A, DiPatrizio NV. Cannabinoid CB 1 Receptors Inhibit Gut-Brain Satiation Signaling in Diet-Induced Obesity. Front Physiol 2019; 10:704. [PMID: 31281260 PMCID: PMC6597959 DOI: 10.3389/fphys.2019.00704] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/20/2019] [Indexed: 01/08/2023] Open
Abstract
Gut-brain signaling controls feeding behavior and energy homeostasis; however, the underlying molecular mechanisms and impact of diet-induced obesity (DIO) on these pathways are poorly defined. We tested the hypothesis that elevated endocannabinoid activity at cannabinoid CB1 receptor (CB1Rs) in the gut of mice rendered DIO by chronic access to a high fat and sucrose diet for 60 days inhibits nutrient-induced release of satiation peptides and promotes overeating. Immunoreactivity for CB1Rs was present in enteroendocrine cells in the mouse’s upper small-intestinal epithelium that produce and secrete the satiation peptide, cholecystokinin (CCK), and expression of mRNA for CB1Rs was greater in these cells when compared to non-CCK producing cells. Oral gavage of corn oil increased levels of bioactive CCK (CCK-8) in plasma from mice fed a low fat no-sucrose diet. Pretreatment with the cannabinoid receptor agonist, WIN55,212-2, blocked this response, which was reversed by co-administration with the peripherally-restricted CB1R neutral antagonist, AM6545. Furthermore, monoacylglycerol metabolic enzyme function was dysregulated in the upper small-intestinal epithelium from DIO mice, which was met with increased levels of a variety of monoacylglycerols including the endocannabinoid, 2-arachidonoyl-sn-glycerol. Corn oil failed to affect levels of CCK in DIO mouse plasma; however, pretreatment with AM6545 restored the ability for corn oil to stimulate increases in levels of CCK, which suggests that elevated endocannabinoid signaling at small intestinal CB1Rs in DIO mice inhibits nutrient-induced CCK release. Moreover, the hypophagic effect of AM6545 in DIO mice was reversed by co-administration with the CCKA receptor antagonist, devazepide. Collectively, these results provide evidence that hyperphagia associated with DIO is driven by a mechanism that includes CB1R-mediated inhibition of gut-brain satiation signaling.
Collapse
Affiliation(s)
- Donovan A Argueta
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Pedro A Perez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | | | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
31
|
Endocannabinoid System in Hepatic Glucose Metabolism, Fatty Liver Disease, and Cirrhosis. Int J Mol Sci 2019; 20:ijms20102516. [PMID: 31121839 PMCID: PMC6566399 DOI: 10.3390/ijms20102516] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/18/2019] [Accepted: 05/19/2019] [Indexed: 12/18/2022] Open
Abstract
There is growing evidence that glucose metabolism in the liver is in part under the control of the endocannabinoid system (ECS) which is also supported by its presence in this organ. The ECS consists of its cannabinoid receptors (CBRs) and enzymes that are responsible for endocannabinoid production and metabolism. ECS is known to be differentially influenced by the hepatic glucose metabolism and insulin resistance, e.g., cannabinoid receptor type 1(CB1) antagonist can improve the glucose tolerance and insulin resistance. Interestingly, our own study shows that expression patterns of CBRs are influenced by the light/dark cycle, which is of significant physiological and clinical interest. The ECS system is highly upregulated during chronic liver disease and a growing number of studies suggest a mechanistic and therapeutic impact of ECS on the development of liver fibrosis, especially putting its receptors into focus. An opposing effect of the CBRs was exerted via the CB1 or CB2 receptor stimulation. An activation of CB1 promoted fibrogenesis, while CB2 activation improved antifibrogenic responses. However, underlying mechanisms are not yet clear. In the context of liver diseases, the ECS is considered as a possible mediator, which seems to be involved in the synthesis of fibrotic tissue, increase of intrahepatic vascular resistance and subsequently development of portal hypertension. Portal hypertension is the main event that leads to complications of the disease. The main complication is the development of variceal bleeding and ascites, which have prognostic relevance for the patients. The present review summarizes the current understanding and impact of the ECS on glucose metabolism in the liver, in association with the development of liver cirrhosis and hemodynamics in cirrhosis and its complication, to give perspectives for development of new therapeutic strategies.
Collapse
|
32
|
Ruiz de Azua I, Lutz B. Multiple endocannabinoid-mediated mechanisms in the regulation of energy homeostasis in brain and peripheral tissues. Cell Mol Life Sci 2019; 76:1341-1363. [PMID: 30599065 PMCID: PMC11105297 DOI: 10.1007/s00018-018-2994-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/22/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023]
Abstract
The endocannabinoid (eCB) system is widely expressed in many central and peripheral tissues, and is involved in a plethora of physiological processes. Among these, activity of the eCB system promotes energy intake and storage, which, however, under pathophysiological conditions, can favour the development of obesity and obesity-related disorders. It is proposed that eCB signalling is evolutionary beneficial for survival under periods of scarce food resources. Remarkably, eCB signalling is increased both in hunger and in overnutrition conditions, such as obesity and type-2 diabetes. This apparent paradox suggests a role of the eCB system both at initiation and at clinical endpoint of obesity. This review will focus on recent findings about the role of the eCB system controlling whole-body metabolism in mice that are genetically modified selectively in different cell types. The current data in fact support the notion that eCB signalling is not only engaged in the development but also in the maintenance of obesity, whereby specific cell types in central and peripheral tissues are key sites in regulating the entire body's energy homeostasis.
Collapse
MESH Headings
- Adipose Tissue/metabolism
- Animals
- Brain/metabolism
- Endocannabinoids/metabolism
- Energy Metabolism
- Muscle, Skeletal/metabolism
- Obesity/metabolism
- Obesity/pathology
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
Collapse
Affiliation(s)
- Inigo Ruiz de Azua
- German Resilience Center (DRZ) and Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 5, 55128, Mainz, Germany.
| | - Beat Lutz
- German Resilience Center (DRZ) and Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 5, 55128, Mainz, Germany
| |
Collapse
|
33
|
Intestinal epithelial N-acylphosphatidylethanolamine phospholipase D links dietary fat to metabolic adaptations in obesity and steatosis. Nat Commun 2019; 10:457. [PMID: 30692526 PMCID: PMC6349942 DOI: 10.1038/s41467-018-08051-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 12/12/2018] [Indexed: 12/17/2022] Open
Abstract
Variations in N-acylethanolamines (NAE) levels are associated with obesity and metabolic comorbidities. Their role in the gut remains unclear. Therefore, we generated a mouse model of inducible intestinal epithelial cell (IEC)-specific deletion of N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD), a key enzyme involved in NAE biosynthesis (Napepld∆IEC). We discovered that Napepld∆IEC mice are hyperphagic upon first high-fat diet (HFD) exposure, and develop exacerbated obesity and steatosis. These mice display hypothalamic Pomc neurons dysfunctions and alterations in intestinal and plasma NAE and 2-acylglycerols. After long-term HFD, Napepld∆IEC mice present reduced energy expenditure. The increased steatosis is associated with higher gut and liver lipid absorption. Napepld∆IEC mice display altered gut microbiota. Akkermansia muciniphila administration partly counteracts the IEC NAPE-PLD deletion effects. In conclusion, intestinal NAPE-PLD is a key sensor in nutritional adaptation to fat intake, gut-to-brain axis and energy homeostasis and thereby constitutes a novel target to tackle obesity and related disorders. Obesity is associated with altered N-acylethanolamine levels (NAE). Here the authors show that deletion of the gene encoding N-acylphosphatidylethanolamine phospholipase D, a key enzyme for NAE synthesis, in intestinal cells of mice leads to the development of obesity and hepatic steatosis via a mechanism involving the gut-brain axis.
Collapse
|
34
|
Zachut M, Kra G, Moallem U, Livshitz L, Levin Y, Udi S, Nemirovski A, Tam J. Characterization of the endocannabinoid system in subcutaneous adipose tissue in periparturient dairy cows and its association to metabolic profiles. PLoS One 2018; 13:e0205996. [PMID: 30403679 PMCID: PMC6221292 DOI: 10.1371/journal.pone.0205996] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/04/2018] [Indexed: 12/30/2022] Open
Abstract
Adipose tissue (AT) plays a major role in metabolic adaptations in postpartum (PP) dairy cows. The endocannabinoid (eCB) system is a key regulator of metabolism and energy homeostasis; however, information about this system in ruminants is scarce. Therefore, this work aimed to assess the eCB system in subcutaneous AT, and to determine its relation to the metabolic profile in peripartum cows. Biopsies of AT were performed at 14 d prepartum, and 4 and 30 d PP from 18 multiparous peripartum cows. Cows were categorized retrospectively according to those with high body weight (BW) loss (HWL, 8.5 ± 1.7% BW loss) or low body weight loss (LWL, 2.9 ± 2.5% BW loss) during the first month PP. The HWL had higher plasma non-esterified fatty acids and a lower insulin/glucagon ratio PP than did LWL. Two-fold elevated AT levels of the main eCBs, N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), were found 4 d PP compared with prepartum in HWL, but not in LWL cows. AT levels of the eCB-like molecules oleoylethanolamide, palmitoylethanolamide, and of arachidonic acid were elevated PP compared with prepartum in all cows. The abundance of monoglyceride lipase (MGLL), the 2-AG degrading enzyme, was lower in HWL vs. LWL AT PP. The relative gene expression of the cannabinoid receptors CNR1 and CNR2 in AT tended to be higher in HWL vs. LWL PP. Proteomic analysis of AT showed an enrichment of the inflammatory pathways’ acute phase signaling and complement system in HWL vs. LWL cows PP. In summary, eCB levels in AT were elevated at the onset of lactation as part of the metabolic adaptations in PP dairy cows. Furthermore, activating the eCB system in AT is most likely associated with a metabolic response of greater BW loss, lipolysis, and AT inflammation in PP dairy cows.
Collapse
Affiliation(s)
- Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences, Volcani Center, Rishon Lezion, Israel
- * E-mail:
| | - Gitit Kra
- Department of Ruminant Science, Institute of Animal Sciences, Volcani Center, Rishon Lezion, Israel
| | - Uzi Moallem
- Department of Ruminant Science, Institute of Animal Sciences, Volcani Center, Rishon Lezion, Israel
| | - Lilya Livshitz
- Department of Ruminant Science, Institute of Animal Sciences, Volcani Center, Rishon Lezion, Israel
| | - Yishai Levin
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Shiran Udi
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alina Nemirovski
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, the Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
35
|
Perez PA, DiPatrizio NV. Impact of maternal western diet-induced obesity on offspring mortality and peripheral endocannabinoid system in mice. PLoS One 2018; 13:e0205021. [PMID: 30273406 PMCID: PMC6166980 DOI: 10.1371/journal.pone.0205021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/18/2018] [Indexed: 12/16/2022] Open
Abstract
Over two-thirds of adults in the United States are obese or overweight, which is largely due to chronic overconsumption of diets high in fats and sugars (i.e., Western diet). Recent studies reveal that maternal obesity may predispose offspring to development of obesity and other metabolic diseases; however, the molecular underpinnings of these outcomes are largely unknown. The endocannabinoid system is an important signaling pathway that controls feeding behavior and energy homeostasis, and its activity becomes upregulated in the upper small intestinal epithelium of Western diet-induced obese mice, which drives overeating. In the current investigation, we examined the impact of chronic maternal consumption of Western diet on the expression and function of the endocannabinoid system in several peripheral organs important for food intake and energy homeostasis in offspring. Female C57BL/6Tac mice were fed a Western diet or low-fat/no-sucrose control chow for 10 weeks, then males were introduced for mating. Dams were maintained on their respective diets through weaning of pups, at which time pups were maintained on low-fat/no-sucrose chow for 10 weeks. Neonates born from dams fed Western diet, when compared to those born from mice fed control chow, unexpectedly displayed increases in mortality that occurred exclusively within six days following birth (greater than 50% mortality). Males comprised a larger fraction of surviving offspring from obese dams. Furthermore, surviving offspring displayed transient increases in body mass for first two days post weaning, and no marked changes in feeding patterns and endocannabinoid levels in upper small intestinal epithelium, pancreas, and plasma, or in expression of key endocannabinoid system genes in the upper small intestinal epithelium and pancreas at 10 weeks post-weaning. Collectively, these results suggest that maternal diet composition greatly influences survival of neonate C57BL/6Tac mice, and that surviving offspring from dams chronically fed a Western diet do not display marked changes in body mass, eating patterns, or expression and function of the endocannabinoid system in several peripheral organs important for feeding behavior and energy homeostasis.
Collapse
Affiliation(s)
- Pedro A. Perez
- University of California Riverside, School of Medicine, Division of Biomedical Sciences, Riverside CA, United States of America
| | - Nicholas V. DiPatrizio
- University of California Riverside, School of Medicine, Division of Biomedical Sciences, Riverside CA, United States of America
| |
Collapse
|
36
|
Little TJ, Cvijanovic N, DiPatrizio NV, Argueta DA, Rayner CK, Feinle-Bisset C, Young RL. Plasma endocannabinoid levels in lean, overweight, and obese humans: relationships to intestinal permeability markers, inflammation, and incretin secretion. Am J Physiol Endocrinol Metab 2018; 315:E489-E495. [PMID: 29438631 PMCID: PMC6230711 DOI: 10.1152/ajpendo.00355.2017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 12/12/2022]
Abstract
Intestinal production of endocannabinoid and oleoylethanolamide (OEA) is impaired in high-fat diet/obese rodents, leading to reduced satiety. Such diets also alter the intestinal microbiome in association with enhanced intestinal permeability and inflammation; however, little is known of these effects in humans. This study aimed to 1) evaluate effects of lipid on plasma anandamide (AEA), 2-arachidonyl- sn-glycerol (2-AG), and OEA in humans; and 2) examine relationships to intestinal permeability, inflammation markers, and incretin hormone secretion. Twenty lean, 18 overweight, and 19 obese participants underwent intraduodenal Intralipid infusion (2 kcal/min) with collection of endoscopic duodenal biopsies and blood. Plasma AEA, 2-AG, and OEA (HPLC/tandem mass spectrometry), tumor necrosis factor-α (TNFα), glucagon-like peptide-1 (GLP-1), and glucose-dependent insulinotropic peptide (GIP) (multiplex), and duodenal expression of occludin, zona-occludin-1 (ZO-1), intestinal-alkaline-phosphatase (IAP), and Toll-like receptor 4 (TLR4) (by RT-PCR) were assessed. Fasting plasma AEA was increased in obese compared with lean and overweight patients ( P < 0.05), with no effect of BMI group or ID lipid infusion on plasma 2-AG or OEA. Duodenal expression of IAP and ZO-1 was reduced in obese compared with lean ( P < 0.05), and these levels related negatively to plasma AEA ( P < 0.05). The iAUC for AEA was positively related to iAUC GIP ( r = 0.384, P = 0.005). Obese individuals have increased plasma AEA and decreased duodenal expression of ZO-1 and IAP compared with lean and overweight subjects. The relationships between plasma AEA with duodenal ZO-1, IAP, and GIP suggest that altered endocannabinoid signaling may contribute to changes in intestinal permeability, inflammation, and incretin release in human obesity.
Collapse
Affiliation(s)
- Tanya J Little
- University of Adelaide School of Medicine , Adelaide , Australia
- National Health and Medical Research Council Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide; Adelaide , Australia
| | - Nada Cvijanovic
- University of Adelaide School of Medicine , Adelaide , Australia
- South Australian Health and Medical Research Institute , Adelaide , Australia
- National Health and Medical Research Council Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide; Adelaide , Australia
| | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Donovan A Argueta
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Christopher K Rayner
- University of Adelaide School of Medicine , Adelaide , Australia
- National Health and Medical Research Council Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide; Adelaide , Australia
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital , Adelaide , Australia
| | - Christine Feinle-Bisset
- University of Adelaide School of Medicine , Adelaide , Australia
- National Health and Medical Research Council Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide; Adelaide , Australia
| | - Richard L Young
- University of Adelaide School of Medicine , Adelaide , Australia
- South Australian Health and Medical Research Institute , Adelaide , Australia
- National Health and Medical Research Council Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide; Adelaide , Australia
| |
Collapse
|
37
|
Bliss ES, Whiteside E. The Gut-Brain Axis, the Human Gut Microbiota and Their Integration in the Development of Obesity. Front Physiol 2018; 9:900. [PMID: 30050464 PMCID: PMC6052131 DOI: 10.3389/fphys.2018.00900] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/21/2018] [Indexed: 12/17/2022] Open
Abstract
Obesity is a global epidemic, placing socioeconomic strain on public healthcare systems, especially within the so-called Western countries, such as Australia, United States, United Kingdom, and Canada. Obesity results from an imbalance between energy intake and energy expenditure, where energy intake exceeds expenditure. Current non-invasive treatments lack efficacy in combating obesity, suggesting that obesity is a multi-faceted and more complex disease than previously thought. This has led to an increase in research exploring energy homeostasis and the discovery of a complex bidirectional communication axis referred to as the gut-brain axis. The gut-brain axis is comprised of various neurohumoral components that allow the gut and brain to communicate with each other. Communication occurs within the axis via local, paracrine and/or endocrine mechanisms involving a variety of gut-derived peptides produced from enteroendocrine cells (EECs), including glucagon-like peptide 1 (GLP1), cholecystokinin (CCK), peptide YY3-36 (PYY), pancreatic polypeptide (PP), and oxyntomodulin. Neural networks, such as the enteric nervous system (ENS) and vagus nerve also convey information within the gut-brain axis. Emerging evidence suggests the human gut microbiota, a complex ecosystem residing in the gastrointestinal tract (GIT), may influence weight-gain through several inter-dependent pathways including energy harvesting, short-chain fatty-acids (SCFA) signalling, behaviour modifications, controlling satiety and modulating inflammatory responses within the host. Hence, the gut-brain axis, the microbiota and the link between these elements and the role each plays in either promoting or regulating energy and thereby contributing to obesity will be explored in this review.
Collapse
Affiliation(s)
- Edward S. Bliss
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia
| | | |
Collapse
|
38
|
|
39
|
Basson AR, Lam M, Cominelli F. Complementary and Alternative Medicine Strategies for Therapeutic Gut Microbiota Modulation in Inflammatory Bowel Disease and their Next-Generation Approaches. Gastroenterol Clin North Am 2017; 46:689-729. [PMID: 29173517 PMCID: PMC5909826 DOI: 10.1016/j.gtc.2017.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The human gut microbiome exerts a major impact on human health and disease, and therapeutic gut microbiota modulation is now a well-advocated strategy in the management of many diseases, including inflammatory bowel disease (IBD). Scientific and clinical evidence in support of complementary and alternative medicine, in targeting intestinal dysbiosis among patients with IBD, or other disorders, has increased dramatically over the past years. Delivery of "artificial" stool replacements for fecal microbiota transplantation (FMT) could provide an effective, safer alternative to that of human donor stool. Nevertheless, optimum timing of FMT administration in IBD remains unexplored, and future investigations are essential.
Collapse
Affiliation(s)
- Abigail R Basson
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Minh Lam
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Fabio Cominelli
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; Department of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
40
|
Mehrpouya-Bahrami P, Chitrala KN, Ganewatta MS, Tang C, Murphy EA, Enos RT, Velazquez KT, McCellan J, Nagarkatti M, Nagarkatti P. Blockade of CB1 cannabinoid receptor alters gut microbiota and attenuates inflammation and diet-induced obesity. Sci Rep 2017; 7:15645. [PMID: 29142285 PMCID: PMC5688117 DOI: 10.1038/s41598-017-15154-6] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 10/23/2017] [Indexed: 01/22/2023] Open
Abstract
Obesity is characterized by chronic low-grade, systemic inflammation, altered gut microbiota, and gut barrier disruption. Additionally, obesity is associated with increased activity of endocannabinoid system (eCB). However, the clear connection between gut microbiota and the eCB system in the regulation of energy homeostasis and adipose tissue inflammation and metabolism, remains to be established. We investigated the effect of treatment of mice with a cannabinoid receptor 1 (CB1) antagonist on Diet-Induced Obesity (DIO), specifically whether such a treatment that blocks endocannabinoid activity can induce changes in gut microbiota and anti-inflammatory state in adipose tissue. Blockade of CB1 attenuated DIO, inflammatory cytokines and trafficking of M1 macrophages into adipose tissue. Decreased inflammatory tone was associated with a lower intestinal permeability and decreased metabolic endotoxemia as evidenced by reduced plasma LPS level, and improved hyperglycemia and insulin resistance. 16S rRNA metagenomics sequencing revealed that CB1 blockade dramatically increased relative abundance of Akkermansia muciniphila and decreased Lanchnospiraceae and Erysipelotrichaceae in the gut. Together, the current study suggests that blocking of CB1 ameliorates Diet-Induced Obesity and metabolic disorder by modulating macrophage inflammatory mediators, and that this effect is associated with alterations in gut microbiota and their metabolites.
Collapse
Affiliation(s)
- Pegah Mehrpouya-Bahrami
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Columbia, SC, USA
| | | | - Mitra S Ganewatta
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - E Angela Murphy
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Columbia, SC, USA
| | - Reilly T Enos
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Columbia, SC, USA
| | - Kandy T Velazquez
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Columbia, SC, USA
| | - Jamie McCellan
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Columbia, SC, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Columbia, SC, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Columbia, SC, USA.
| |
Collapse
|
41
|
Stern CA, da Silva TR, Raymundi AM, de Souza CP, Hiroaki-Sato VA, Kato L, Guimarães FS, Andreatini R, Takahashi RN, Bertoglio LJ. Cannabidiol disrupts the consolidation of specific and generalized fear memories via dorsal hippocampus CB 1 and CB 2 receptors. Neuropharmacology 2017; 125:220-230. [DOI: 10.1016/j.neuropharm.2017.07.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/17/2017] [Accepted: 07/22/2017] [Indexed: 11/28/2022]
|
42
|
Kimberly WT, O'Sullivan JF, Nath AK, Keyes M, Shi X, Larson MG, Yang Q, Long MT, Vasan R, Peterson RT, Wang TJ, Corey KE, Gerszten RE. Metabolite profiling identifies anandamide as a biomarker of nonalcoholic steatohepatitis. JCI Insight 2017; 2:92989. [PMID: 28469090 DOI: 10.1172/jci.insight.92989] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/04/2017] [Indexed: 02/06/2023] Open
Abstract
The discovery of metabolite-phenotype associations may highlight candidate biomarkers and metabolic pathways altered in disease states. We sought to identify novel metabolites associated with obesity and one of its major complications, nonalcoholic fatty liver disease (NAFLD), using a liquid chromatography-tandem mass spectrometry method. In 997 individuals in Framingham Heart Study Generation 3 (FHS Gen 3), we identified an association between anandamide (AEA) and BMI. Further examination revealed that AEA was associated with radiographic hepatic steatosis. In a histologically defined NAFLD cohort, AEA was associated with NAFLD severity, the presence of nonalcoholic steatohepatitis, and fibrosis. These data highlight AEA as a marker linking cardiometabolic disease and NAFLD severity.
Collapse
Affiliation(s)
- W Taylor Kimberly
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - John F O'Sullivan
- Division of Cardiovascular Medicine, Beth Israel Deaconess Hospital, Boston, Massachusetts, USA
| | - Anjali K Nath
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michelle Keyes
- Framingham Heart Study of the National Heart, Lung, and Blood Institute and Boston University School of Medicine, Framingham, Massachusetts, USA
| | - Xu Shi
- Division of Cardiovascular Medicine, Beth Israel Deaconess Hospital, Boston, Massachusetts, USA
| | - Martin G Larson
- Framingham Heart Study of the National Heart, Lung, and Blood Institute and Boston University School of Medicine, Framingham, Massachusetts, USA.,Biostatistics Department, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Qiong Yang
- Framingham Heart Study of the National Heart, Lung, and Blood Institute and Boston University School of Medicine, Framingham, Massachusetts, USA.,Biostatistics Department, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Michelle T Long
- Framingham Heart Study of the National Heart, Lung, and Blood Institute and Boston University School of Medicine, Framingham, Massachusetts, USA.,Section of Gastroenterology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Ramachandran Vasan
- Framingham Heart Study of the National Heart, Lung, and Blood Institute and Boston University School of Medicine, Framingham, Massachusetts, USA
| | - Randall T Peterson
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas J Wang
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Kathleen E Corey
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Hospital, Boston, Massachusetts, USA
| |
Collapse
|
43
|
Mela V, Piscitelli F, Berzal AL, Chowen J, Silvestri C, Viveros MP, Di Marzo V. Sex-dependent effects of neonatal maternal deprivation on endocannabinoid levels in the adipose tissue: influence of diet. J Physiol Biochem 2017; 73:349-357. [DOI: 10.1007/s13105-017-0558-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 03/08/2017] [Indexed: 12/27/2022]
|
44
|
Abstract
Obesity is a global epidemic that contributes to a number of health complications including cardiovascular disease, type 2 diabetes, cancer and neuropsychiatric disorders. Pharmacotherapeutic strategies to treat obesity are urgently needed. Research over the past two decades has increased substantially our knowledge of central and peripheral mechanisms underlying homeostatic energy balance. Homeostatic mechanisms involve multiple components including neuronal circuits, some originating in hypothalamus and brain stem, as well as peripherally-derived satiety, hunger and adiposity signals that modulate neural activity and regulate eating behavior. Dysregulation of one or more of these homeostatic components results in obesity. Coincident with obesity, reward mechanisms that regulate hedonic aspects of food intake override the homeostatic regulation of eating. In addition to functional interactions between homeostatic and reward systems in the regulation of food intake, homeostatic signals have the ability to alter vulnerability to drug abuse. Regarding the treatment of obesity, pharmacological monotherapies primarily focus on a single protein target. FDA-approved monotherapy options include phentermine (Adipex-P®), orlistat (Xenical®), lorcaserin (Belviq®) and liraglutide (Saxenda®). However, monotherapies have limited efficacy, in part due to the recruitment of alternate and counter-regulatory pathways. Consequently, a multi-target approach may provide greater benefit. Recently, two combination products have been approved by the FDA to treat obesity, including phentermine/topiramate (Qsymia®) and naltrexone/bupropion (Contrave®). The current review provides an overview of homeostatic and reward mechanisms that regulate energy balance, potential therapeutic targets for obesity and current treatment options, including some candidate therapeutics in clinical development. Finally, challenges in anti-obesity drug development are discussed.
Collapse
Affiliation(s)
- Vidya Narayanaswami
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Linda P Dwoskin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
45
|
Argueta DA, DiPatrizio NV. Peripheral endocannabinoid signaling controls hyperphagia in western diet-induced obesity. Physiol Behav 2017; 171:32-39. [PMID: 28065722 DOI: 10.1016/j.physbeh.2016.12.044] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/16/2016] [Accepted: 12/20/2016] [Indexed: 01/07/2023]
Abstract
The endocannabinoid system in the brain and periphery plays a major role in controlling food intake and energy balance. We reported that tasting dietary fats was met with increased levels of the endocannabinoids, 2-arachidonoyl-sn-glycerol (2-AG) and anandamide, in the rat upper small intestine, and pharmacological inhibition of this local signaling event dose-dependently blocked sham feeding of fats. We now investigated the contribution of peripheral endocannabinoid signaling in hyperphagia associated with chronic consumption of a western-style diet in mice ([WD] i.e., high fat and sucrose). Feeding patterns were assessed in male C57BL/6Tac mice maintained for 60days on WD or a standard rodent chow (SD), and the role for peripheral endocannabinoid signaling at CB1Rs in controlling food intake was investigated via pharmacological interventions. In addition, levels of the endocannabinoids, 2-AG and anandamide, in the upper small intestine and circulation of mice were analyzed via liquid chromatography coupled to tandem mass spectrometry to evaluate diet-related changes in endocannabinoid signaling and the potential impact on food intake. Mice fed WD for 60days exhibited large increases in body weight, daily caloric intake, average meal size, and rate of feeding when compared to control mice fed SD. Inhibiting peripheral CB1Rs with the peripherally-restricted neutral cannabinoid CB1 receptor antagonist, AM6545 (10mg/kg), significantly reduced intake of WD during a 6h test, but failed to modify intake of SD in mice. AM6545 normalized intake of WD, average meal size, and rate of feeding to levels found in SD control mice. These results suggest that endogenous activity at peripheral CB1Rs in WD mice is critical for driving hyperphagia. In support of this hypothesis, levels of 2-AG and anandamide in both, jejunum mucosa and plasma, of ad-libitum fed WD mice increased when compared to SC mice. Furthermore, expression of genes for primary components of the endocannabinoid system (i.e., cannabinoid receptors, and endocannabinoid biosynthetic and degradative enzymes) was dysregulated in WD mice when compared to SC mice. Our results suggest that hyperphagia associated with WD-induced obesity is driven by enhanced endocannabinoid signaling at peripheral CB1Rs.
Collapse
Affiliation(s)
| | - Nicholas V DiPatrizio
- University of California Riverside, Riverside, CA, USA; School of Medicine, Riverside, CA, USA; Division of Biomedical Sciences, Riverside, CA, USA.
| |
Collapse
|
46
|
Ligresti A, De Petrocellis L, Di Marzo V. From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology. Physiol Rev 2016; 96:1593-659. [DOI: 10.1152/physrev.00002.2016] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Apart from having been used and misused for at least four millennia for, among others, recreational and medicinal purposes, the cannabis plant and its most peculiar chemical components, the plant cannabinoids (phytocannabinoids), have the merit to have led humanity to discover one of the most intriguing and pleiotropic endogenous signaling systems, the endocannabinoid system (ECS). This review article aims to describe and critically discuss, in the most comprehensive possible manner, the multifaceted aspects of 1) the pharmacology and potential impact on mammalian physiology of all major phytocannabinoids, and not only of the most famous one Δ9-tetrahydrocannabinol, and 2) the adaptive pro-homeostatic physiological, or maladaptive pathological, roles of the ECS in mammalian cells, tissues, and organs. In doing so, we have respected the chronological order of the milestones of the millennial route from medicinal/recreational cannabis to the ECS and beyond, as it is now clear that some of the early steps in this long path, which were originally neglected, are becoming important again. The emerging picture is rather complex, but still supports the belief that more important discoveries on human physiology, and new therapies, might come in the future from new knowledge in this field.
Collapse
Affiliation(s)
- Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Luciano De Petrocellis
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| |
Collapse
|
47
|
Yuan D, Wu Z, Wang Y. Evolution of the diacylglycerol lipases. Prog Lipid Res 2016; 64:85-97. [PMID: 27568643 DOI: 10.1016/j.plipres.2016.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/24/2016] [Accepted: 08/24/2016] [Indexed: 01/31/2023]
Abstract
Diacylglycerol lipases (DGLs) mainly catalyze "on-demand" biosynthesis of bioactive monoacylglycerols (MAGs) with different long fatty acyl chains, including 2-arachidonoylglycerol (2-AG), 2-linoleoylglycerol (2-LG), 2-oleoylglycerol (2-OG) and 2-palmitoylglycerol (2-PG). Enzymatic characterization of DGLs, their expression and distribution, and functional features has been elucidated from microorganisms to mammals in some extent. In mammals, biosynthesis, degradation and metabolism of these bioactive lipids intertwine and form a complicated biochemical pathway to affect the mammal neuromodulation of central nervous system and also other physiological processes in most peripheral organs and non-nervous tissue cells, and yet we still do not know if the neuromodulatory role of mammal DGL and MAGs is similar to invertebrates. Tracing the evolutionary history of DGLs from microorganisms to vertebrates will be an essential method to infer DGL and MAG research in organisms. In this review, we give an exhaustive explanation of the ancestral origin, divergence and evolutionary pattern through systemic searching of DGL orthologs in different species. Finally, we also summarize our recent work on the structural and functional studies of DGL in order to explore usage of DGLs in industry and the development of inhibitors for clinical intervention.
Collapse
Affiliation(s)
- Dongjuan Yuan
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, People's Republic of China; College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Yonghua Wang
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, People's Republic of China.
| |
Collapse
|
48
|
Decara JM, Pavón FJ, Suárez J, Romero-Cuevas M, Baixeras E, Vázquez M, Rivera P, Gavito AL, Almeida B, Joglar J, de la Torre R, Rodríguez de Fonseca F, Serrano A. Treatment with a novel oleic-acid-dihydroxyamphetamine conjugation ameliorates non-alcoholic fatty liver disease in obese Zucker rats. Dis Model Mech 2016; 8:1213-25. [PMID: 26438694 PMCID: PMC4610231 DOI: 10.1242/dmm.019919] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Fatty liver disease is one of the main hepatic complications associated with obesity. To date, there are no effective treatments for this pathology apart from the use of classical fibrates. In this study, we have characterized the in vivo effects of a novel conjugation of oleic acid with an amphetamine derivative (OLHHA) in an animal model of genetic obesity. Lean and obese Zucker rats received a daily intraperitoneal administration of OLHHA (5 mg kg−1) for 15 days. Plasma and liver samples were collected for the biochemical and molecular biological analyses, including both immunohistochemical and histological studies. The expression of key enzymes and proteins that are involved in lipid metabolism and energy homeostasis was evaluated in the liver samples. The potential of OLHHA to produce adverse drug reactions or toxicity was also evaluated through the monitoring of interactions with hERG channel and liver cytochrome. We found that OLHHA is a drug with a safe pharmacological profile. Treatment for 15 days with OLHHA reduced the liver fat content and plasma triglyceride levels, and this was accompanied by a general improvement in the profile of plasma parameters related to liver damage in the obese rats. A decrease in fat accumulation in the liver was confirmed using histological staining. Additionally, OLHHA was observed to exert anti-apoptotic effects. This hepatoprotective activity in obese rats was associated with an increase in the mRNA and protein expression of the cannabinoid type 1 receptor and a decrease in the expression of the lipogenic enzymes FAS and HMGCR primarily. However, changes in the mRNA expression of certain proteins were not associated with changes in the protein expression (i.e. L-FABP and INSIG2). The present results demonstrate that OLHHA is a potential anti-steatotic drug that ameliorates the obesity-associated fatty liver and suggest the potential use of this new drug for the treatment of non-alcoholic fatty liver disease. Drug Discovery Collection: OLHHA is a safe drug with hepatoprotective and anti-steatotic effects on non-alcoholic fatty liver disease in obese rats.
Collapse
Affiliation(s)
- Juan M Decara
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga/Universidad de Málaga, Málaga, 29010 Spain
| | - Francisco Javier Pavón
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga/Universidad de Málaga, Málaga, 29010 Spain
| | - Juan Suárez
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga/Universidad de Málaga, Málaga, 29010 Spain CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, 28029 Spain
| | - Miguel Romero-Cuevas
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga/Universidad de Málaga, Málaga, 29010 Spain CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, 28029 Spain
| | - Elena Baixeras
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga/Universidad de Málaga, Málaga, 29010 Spain
| | - Mariam Vázquez
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga/Universidad de Málaga, Málaga, 29010 Spain
| | - Patricia Rivera
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga/Universidad de Málaga, Málaga, 29010 Spain
| | - Ana L Gavito
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga/Universidad de Málaga, Málaga, 29010 Spain
| | - Bruno Almeida
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Neurosciences Program, Barcelona, 08003 Spain Facultat de Ciencies de la Salut i de la Vida, Universitat Pompeu Fabra (CEXS-UPF), Barcelona, 08002 Spain
| | - Jesús Joglar
- Departamento de Química Biológica y Modelización Molecular, Instituto de Química Avanzada de Cataluña (IQAC-CSIC), Barcelona, 08034 Spain
| | - Rafael de la Torre
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, 28029 Spain Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Neurosciences Program, Barcelona, 08003 Spain Facultat de Ciencies de la Salut i de la Vida, Universitat Pompeu Fabra (CEXS-UPF), Barcelona, 08002 Spain
| | - Fernando Rodríguez de Fonseca
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga/Universidad de Málaga, Málaga, 29010 Spain CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, 28029 Spain
| | - Antonia Serrano
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga/Universidad de Málaga, Málaga, 29010 Spain CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, 28029 Spain
| |
Collapse
|
49
|
D'Aquila T, Hung YH, Carreiro A, Buhman KK. Recent discoveries on absorption of dietary fat: Presence, synthesis, and metabolism of cytoplasmic lipid droplets within enterocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:730-47. [PMID: 27108063 DOI: 10.1016/j.bbalip.2016.04.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/16/2016] [Accepted: 04/16/2016] [Indexed: 02/07/2023]
Abstract
Dietary fat provides essential nutrients, contributes to energy balance, and regulates blood lipid concentrations. These functions are important to health, but can also become dysregulated and contribute to diseases such as obesity, diabetes, cardiovascular disease, and cancer. Within enterocytes, the digestive products of dietary fat are re-synthesized into triacylglycerol, which is either secreted on chylomicrons or stored within cytoplasmic lipid droplets (CLDs). CLDs were originally thought to be inert stores of neutral lipids, but are now recognized as dynamic organelles that function in multiple cellular processes in addition to lipid metabolism. This review will highlight recent discoveries related to dietary fat absorption with an emphasis on the presence, synthesis, and metabolism of CLDs within this process.
Collapse
Affiliation(s)
- Theresa D'Aquila
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Yu-Han Hung
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Alicia Carreiro
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Kimberly K Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
50
|
González-Mariscal I, Krzysik-Walker SM, Kim W, Rouse M, Egan JM. Blockade of cannabinoid 1 receptor improves GLP-1R mediated insulin secretion in mice. Mol Cell Endocrinol 2016; 423:1-10. [PMID: 26724516 PMCID: PMC4752920 DOI: 10.1016/j.mce.2015.12.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 01/18/2023]
Abstract
The cannabinoid 1 receptor (CB1) is an important regulator of energy metabolism. Reports of in vivo and in vitro studies give conflicting results regarding its role in insulin secretion, possibly due to circulatory factors, such as incretins. We hypothesized that this receptor may be a regulator of the entero-insular axis. We found that despite lower food consumption and lower body weight postprandial GLP-1 plasma concentrations were increased in CB1(-/-) mice compared to CB1(+/+) mice administered a standard diet or high fat/sugar diet. Upon exogenous GLP-1 treatment, CB1(-/-) mice had increased glucose-stimulated insulin secretion. In mouse insulinoma cells, cannabinoids reduced GLP-1R-mediated intracellular cAMP accumulation and subsequent insulin secretion. Importantly, such effects were also evident in human islets, and were prevented by pharmacologic blockade of CB1. Collectively, these findings suggest a novel mechanism in which endocannabinoids are negative modulators of incretin-mediated insulin secretion.
Collapse
Affiliation(s)
| | | | - Wook Kim
- National Institute on Aging/NIH, 251 Bayview Boulevard, Baltimore, MD 21224, USA; Department of Molecular Science and Technology, Ajou University, Suwan 443-749, South Korea.
| | - Michael Rouse
- National Institute on Aging/NIH, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Josephine M Egan
- National Institute on Aging/NIH, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| |
Collapse
|