1
|
Kocsis AE, Kucsápszky N, Santa-Maria AR, Hunyadi A, Deli MA, Walter FR. Much More than Nutrients: The Protective Effects of Nutraceuticals on the Blood-Brain Barrier in Diseases. Nutrients 2025; 17:766. [PMID: 40077636 PMCID: PMC11901837 DOI: 10.3390/nu17050766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
The dysfunction of the blood-brain barrier (BBB) is well described in several diseases, and is considered a pathological factor in many neurological disorders. This review summarizes the most important groups of natural compounds, including alkaloids, flavonoids, anthocyanidines, carotenoids, lipids, and vitamins that were investigated for their potential protective effects on brain endothelium. The brain penetration of these compounds and their interaction with BBB efflux transporters and solute carriers are discussed. The cerebrovascular endothelium is considered a therapeutic target for natural compounds in diseases. In preclinical studies modeling systemic and central nervous system diseases, nutraceuticals exerted beneficial effects on the BBB. In vivo, they decreased BBB permeability, brain edema, astrocyte swelling, and morphological changes in the vessel structure and basal lamina. At the level of brain endothelial cells, nutraceuticals increased cell survival and decreased apoptosis. From the general endothelial functions, decreased angiogenesis and increased levels of vasodilating agents were demonstrated. From the BBB functions, elevated barrier integrity by tightened intercellular junctions, and increased expression and activity of BBB transporters, such as efflux pumps, solute carriers, and metabolic enzymes, were shown. Nutraceuticals enhanced the antioxidative defense and exerted anti-inflammatory effects at the BBB. The most important signaling changes mediating the increased cell survival and BBB stability were the activation of the WNT, PI3K-AKT, and NRF2 pathways, and inhibition of the MAPK, JNK, ERK, and NF-κB pathways. Nutraceuticals represent a valuable source of new potentially therapeutic molecules to treat brain diseases by protecting the BBB.
Collapse
Affiliation(s)
- Anna E. Kocsis
- Biological Barriers Research Group, Institute of Biophysics, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (A.E.K.); (N.K.)
| | - Nóra Kucsápszky
- Biological Barriers Research Group, Institute of Biophysics, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (A.E.K.); (N.K.)
| | - Ana Raquel Santa-Maria
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Attila Hunyadi
- Institute of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
- Interdisciplinary Centre of Natural Products, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
- HUN-REN-SZTE Biologically Active Natural Products Research Group, Eötvös u. 6, H-6720 Szeged, Hungary
- Graduate Institute of Natural Products, Kaohsiung Medical University, Shih-Chuan 1st Rd. 100, Kaohsiung 807, Taiwan
| | - Mária A. Deli
- Biological Barriers Research Group, Institute of Biophysics, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (A.E.K.); (N.K.)
| | - Fruzsina R. Walter
- Biological Barriers Research Group, Institute of Biophysics, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (A.E.K.); (N.K.)
| |
Collapse
|
2
|
Flavonoids: Food associations, therapeutic mechanisms, metabolism and nanoformulations. Food Res Int 2022; 157:111442. [PMID: 35761682 DOI: 10.1016/j.foodres.2022.111442] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 01/09/2023]
Abstract
Flavonoids possess an impressive therapeutic potential, thereby imparting them a nutraceutical character. As it becomes increasingly common to consume foods associated with healing properties, it is imperative to understand the associations of different foods with different classes of nutraceutic compounds, and their mechanisms of therapeutic action. At the same time, it is important to address the limitations thereof so that plausible future directions may be drawn. This review summarizes the food associations of flavonoids, and discusses the mechanisms responsible for imparting them their nutraceutic properties, detailing the nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway, inhibition of inflammatory signaling pathways such as toll-like receptor (TLR), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), cyclooxygenase 2 (COX-2) and lipoxygenase-2 (LOX-2) mediators. Further on, the review explains the mechanism of flavonoids metabolism, reasons for low bioavailability and thereafter recapitulates the role of technological interventions to overcome the limitations, with a particular focus on nanoformulations that utilize the synergy between flavonoids and biocompatible materials used as nanocarriers, as reported in works spanning over a decade. It is the Generally Recognized as Safe (GRAS) classified carriers that will become the basis for developing functional formulations. It is promisingly noteworthy that some flavonoid formulations have been commercialized and mentioned therein. Such commercially viable and safe for consumption technological applications pave way for bringing science to the table, and add value to the innate properties of flavonoids.
Collapse
|
3
|
Gui H, Sun L, Liu R, Si X, Li D, Wang Y, Shu C, Sun X, Jiang Q, Qiao Y, Li B, Tian J. Current knowledge of anthocyanin metabolism in the digestive tract: absorption, distribution, degradation, and interconversion. Crit Rev Food Sci Nutr 2022; 63:5953-5966. [PMID: 35057688 DOI: 10.1080/10408398.2022.2026291] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Potential roles for anthocyanins in preventing various chronic diseases have been reported. These compounds are highly sensitive to external conditions and are susceptible to degradation, which increases the complexity of their metabolism in vivo. This review discusses anthocyanin metabolism in the digestive tract, phase I and II metabolism, and enterohepatic circulation (EHC), as well as their distribution of anthocyanins in blood, urine, and several organs. In the oral cavity, anthocyanins are partly hydrolyzed by microbiota into aglycones which are then conjugated by glucuronidase. In stomach, anthocyanins are absorbed without deglycosylation via specific transporters, such as sodium-dependent glucose co-transporter 1 and facilitative glucose transporters 1, while in small intestine, they are mainly absorbed as aglycones. High polymeric anthocyanins are easily degraded into low-polymeric forms or smaller phenolic acids by colonic microbiota, which improves their absorption. Anthocyanins and their derivatives are modified by phase I and II metabolic enzymes in cells and are released into the blood via the gastrovascular cavity into EHC. Notably, interconversion can be occurred under the action of enzymes such as catechol-O-methyltransferase. Taking together, differences in anthocyanin absorption, distribution, metabolism, and excretion largely depend on their glycoside and aglycone structures.
Collapse
Affiliation(s)
- Hailong Gui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Lijun Sun
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, China
| | - Ruihai Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Dongnan Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Chi Shu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Xiyun Sun
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Qiao Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Yanyan Qiao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Ryu D, Sung Y, Hong J, Koh E. Cellular uptake of anthocyanins extracted from black soybean, grape, and purple sweet potato using INT-407 cells. Food Sci Biotechnol 2021; 30:1383-1391. [PMID: 34691805 DOI: 10.1007/s10068-021-00976-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/14/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022] Open
Abstract
This study combined in vitro digestion and INT-407 cells to evaluate the bioaccessibility of anthocyanins in the small intestinal epithelial cells. Black soybean, grape, and purple sweet potato were chosen as they have a different anthocyanin composition. After the aqueous extract was digested under in vitro gastric and intestinal conditions, the digested mixture was incubated in the media of INT-407 for 2 h at 37 °C. Low proportion (< 0.3%) of anthocyanins in black soybean and grape passed through cell membranes. Cyanidin-3-O-glucoside and pelargonidin-3-O-glucoside in black soybean and cyanidin-3-O-(6-O-p-coumaroyl)-5-O-diglucoside and delphinidin-3-O-(6-O-p-coumaroyl)-5-O-diglucoside in grape were found inside the cell. However, acylated anthocyanins containing three sugar moieties in purple sweet potato were not detected inside the cell. p-Coumaric acid was detected in the cells incubated with grape, but not in the media. These indicate that chemical structure of anthocyanins affected their cellular uptake and antioxidant activity in INT-407 cells. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-021-00976-y.
Collapse
Affiliation(s)
- Dayeon Ryu
- Division of Applied Food System, Seoul Women's University, 621 Hwarang-ro, Nowon-gu, Seoul, 01797 Korea
| | - Yunkyung Sung
- Division of Applied Food System, Seoul Women's University, 621 Hwarang-ro, Nowon-gu, Seoul, 01797 Korea
| | - Jungil Hong
- Division of Applied Food System, Seoul Women's University, 621 Hwarang-ro, Nowon-gu, Seoul, 01797 Korea
| | - Eunmi Koh
- Division of Applied Food System, Seoul Women's University, 621 Hwarang-ro, Nowon-gu, Seoul, 01797 Korea
| |
Collapse
|
5
|
Bidirectional Influences of Cranberry on the Pharmacokinetics and Pharmacodynamics of Warfarin with Mechanism Elucidation. Nutrients 2021; 13:nu13093219. [PMID: 34579096 PMCID: PMC8470483 DOI: 10.3390/nu13093219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
Cranberry is a dietary supplement popularly used for the prophylaxis of urinary tract infection. Interestingly, cranberry–warfarin interactions in clinical reports have shown bidirectional outcomes. (±) Warfarin, a widely prescribed anticoagulant, but with a narrow therapeutic index, contains equal amounts of S- and R-warfarin, of which S-warfarin is more active. The aim of this study was to investigate the effects of different ingestion times of cranberry on the pharmacokinetics and pharmacodynamics of warfarin. Rats were orally administered (±) warfarin (0.2 mg/kg) with and without cranberry (5.0 g/kg) at 0.5 h prior to the warfarin, and at 10 h after the warfarin. The plasma concentrations of S- and R-warfarin were determined by LC/MS. The results indicate that cranberry ingested at 0.5 h before (±) warfarin significantly decreased the systemic exposures of S-warfarin and R-warfarin. Conversely, when cranberry was ingested at 10 h after (±) warfarin, the elimination of S-warfarin was significantly inhibited, and the anticoagulation effect of (±) warfarin was significantly enhanced. The results of the mechanism studies indicate that cranberry activated the breast cancer resistance protein (BCRP), which mediated the efflux transports of S-warfarin and R-warfarin. Moreover, the metabolites of cranberry inhibited cytochrome P450 (CYP) 2C9, the main metabolizing enzyme for S-warfarin. In conclusion, cranberry affected the pharmacokinetics of (±) warfarin in a bidirectional manner by activating the BCRP by CJ during absorption and inhibiting the BCRP and CYP2C9 by CMs during elimination, depending on the ingestion time of CJ. The combined use of cranberry with warfarin should be avoided.
Collapse
|
6
|
Qu F, Ai Z, Liu S, Zhang H, Chen Y, Wang Y, Ni D. Study on mechanism of low bioavailability of black tea theaflavins by using Caco-2 cell monolayer. Drug Deliv 2021; 28:1737-1747. [PMID: 34463173 PMCID: PMC8409943 DOI: 10.1080/10717544.2021.1949074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
This study aimed to clarify the bioavailability mechanism of theaflavins by using the Caco-2 monolayer in vitro model. Prior to the transport of theaflavin (TF), theaflavin-3-gallate (TF3G), theaflavin-3'-gallate (TF3'G), and theaflavin-3, 3'-digallate (TFDG), we found the cytotoxicity of theaflavins was in the order of TF3'G > TFDG > TF3G > TF, suggesting the galloyl moiety enhances the cytotoxicity of theaflavins. Meantime, the galloyl moiety made theaflavins unstable, with the stability in the order of TF > TFDG > TF3G/TF3'G. Four theaflavins showed poor bioavailability with the Papp values ranging from 0.44 × 10-7 to 3.64 × 10-7 cm/s in the absorptive transport. All the theaflavins showed an efflux ratio of over 1.24. And it is further confirmed that P-glycoprotein (P-gp), multidrug resistance associated proteins (MRPs) and breast cancer resistance protein (BCRP) were all shown to contribute to the efflux transport of four theaflavins, with P-gp playing the most important role, followed by MRPs and BCRP. Moreover, theaflavins increased the expression of P-gp, MRP1, MPR3, and BCRP while decreased the expression of MRP2 at the transcription and translation levels. Additionally, the gallated theaflavins were degraded into simple theaflavins and gallic acids when transported through Caco-2 monolayers. Overall, the structural instability, efflux transporters, and cell metabolism were all responsible for the low bioavailability of four theaflavins in Caco-2 monolayers.
Collapse
Affiliation(s)
- Fengfeng Qu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Ministry of Education, Huazhong Agricultural University, Wuhan, China.,College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Zeyi Ai
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Shuyuan Liu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Haojie Zhang
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yuqiong Chen
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yaomin Wang
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Dejiang Ni
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Garcia C, Blesso CN. Antioxidant properties of anthocyanins and their mechanism of action in atherosclerosis. Free Radic Biol Med 2021; 172:152-166. [PMID: 34087429 DOI: 10.1016/j.freeradbiomed.2021.05.040] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/14/2021] [Accepted: 05/29/2021] [Indexed: 12/20/2022]
Abstract
Atherosclerosis develops due to lipid accumulation in the arterial wall and sclerosis as result of increased hyperlipidemia, oxidative stress, lipid oxidation, and protein oxidation. However, improving antioxidant status through diet may prevent the progression of atherosclerotic cardiovascular disease. It is believed that polyphenol-rich plants contribute to the inverse relationship between fruit and vegetable intake and chronic disease. Anthocyanins are flavonoid polyphenols with antioxidant properties that have been associated with reduced risk of cardiovascular disease. The consumption of anthocyanins increases total antioxidant capacity, antioxidant defense enzymes, and HDL antioxidant properties by several measures in preclinical and clinical populations. Anthocyanins appear to impart antioxidant actions via direct antioxidant properties, as well as indirectly via inducing intracellular Nrf2 activation and antioxidant gene expression. These actions counter oxidative stress and inflammatory signaling in cells present in atherosclerotic plaques, including macrophages and endothelial cells. Overall, anthocyanins may protect against atherosclerosis and cardiovascular disease through their effects on cellular antioxidant status, oxidative stress, and inflammation; however, their underlying mechanisms of action appear to be complex and require further elucidation.
Collapse
Affiliation(s)
- Chelsea Garcia
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, 06269, United States
| | - Christopher N Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, 06269, United States.
| |
Collapse
|
8
|
Xu Y, Li Y, Xie J, Xie L, Mo J, Chen W. Bioavailability, Absorption, and Metabolism of Pelargonidin-Based Anthocyanins Using Sprague-Dawley Rats and Caco-2 Cell Monolayers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7841-7850. [PMID: 34139848 DOI: 10.1021/acs.jafc.1c00257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The present study is aimed to clarify the absorption and metabolism properties of pelargonidin-based anthocyanins. Results showed that pelargonidin-3-O-rutinoside (Pg3R) was absorbed in its intact form after oral administration and reached a maximum plasma concentration of 175.38 ± 55.95 nM at 60 min. Three main metabolites were identified in plasma, including Pg3R-monoglucuronide (m/z 755.2046), Pg3R-hydroxylated (m/z 595.1644), and Pg3R-demethylated (m/z 565.1569) metabolites. The plasma concentration of the Pg3R-demethylated metabolite (57.04 ± 23.15 nM) was much higher than that of other two metabolites, indicating that demethylation was the main metabolic pathway for Pg3R, while the glucuronide conjugate was detected as the dominant metabolic form of pelargonidin-3-O-glucoside (Pg3G). The bioavailability of Pg3R (1.13%) was fourfold higher than that of Pg3G (0.28%), demonstrating that anthocyanins linked to the rutinoside may exhibit higher bioavailability than that of glucoside. In vitro transport study unveiled that passive diffusion and active efflux were involved in the absorption of Pg3R and Pg3G.
Collapse
Affiliation(s)
- Yang Xu
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Yuting Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Jiahong Xie
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Lianghua Xie
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Jianling Mo
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Wei Chen
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
9
|
Auxtero MD, Chalante S, Abade MR, Jorge R, Fernandes AI. Potential Herb-Drug Interactions in the Management of Age-Related Cognitive Dysfunction. Pharmaceutics 2021; 13:124. [PMID: 33478035 PMCID: PMC7835864 DOI: 10.3390/pharmaceutics13010124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Late-life mild cognitive impairment and dementia represent a significant burden on healthcare systems and a unique challenge to medicine due to the currently limited treatment options. Plant phytochemicals have been considered in alternative, or complementary, prevention and treatment strategies. Herbals are consumed as such, or as food supplements, whose consumption has recently increased. However, these products are not exempt from adverse effects and pharmacological interactions, presenting a special risk in aged, polymedicated individuals. Understanding pharmacokinetic and pharmacodynamic interactions is warranted to avoid undesirable adverse drug reactions, which may result in unwanted side-effects or therapeutic failure. The present study reviews the potential interactions between selected bioactive compounds (170) used by seniors for cognitive enhancement and representative drugs of 10 pharmacotherapeutic classes commonly prescribed to the middle-aged adults, often multimorbid and polymedicated, to anticipate and prevent risks arising from their co-administration. A literature review was conducted to identify mutual targets affected (inhibition/induction/substrate), the frequency of which was taken as a measure of potential interaction. Although a limited number of drugs were studied, from this work, interaction with other drugs affecting the same targets may be anticipated and prevented, constituting a valuable tool for healthcare professionals in clinical practice.
Collapse
Affiliation(s)
- Maria D. Auxtero
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Susana Chalante
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Mário R. Abade
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Rui Jorge
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
- Polytechnic Institute of Santarém, School of Agriculture, Quinta do Galinheiro, 2001-904 Santarém, Portugal
- CIEQV, Life Quality Research Centre, IPSantarém/IPLeiria, Avenida Dr. Mário Soares, 110, 2040-413 Rio Maior, Portugal
| | - Ana I. Fernandes
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| |
Collapse
|
10
|
Boullata JI. Enteral Medication for the Tube-Fed Patient: Making This Route Safe and Effective. Nutr Clin Pract 2020; 36:111-132. [PMID: 33373487 DOI: 10.1002/ncp.10615] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/15/2020] [Indexed: 12/26/2022] Open
Abstract
The administration of medication through an enteral access device requires important forethought. Meeting a patient's therapeutic needs requires achieving expected drug bioavailability without increasing the risk for toxicity, therapeutic failure, or feeding tube occlusion. Superimposing gut dysfunction, critical illness, or enteral nutrition-drug interaction further increases the need for a systematic approach to prescribing, evaluating, and preparing a drug for administration through an enteral access device. This review will explain the fundamental factors involved in drug bioavailability through the gut, address the influencing considerations for the enterally fed patient, and describe best practices for enteral drug preparation and administration.
Collapse
Affiliation(s)
- Joseph I Boullata
- Department of Clinical Nutrition Support Services, Penn Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Hai Y, Zhang Y, Liang Y, Ma X, Qi X, Xiao J, Xue W, Luo Y, Yue T. Advance on the absorption, metabolism, and efficacy exertion of quercetin and its important derivatives. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.50] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Yu Hai
- College of Food Science and Technology Northwest University Xi'an Shaanxi P. R. China
| | - Yuanxiao Zhang
- School of Chemical Engineering Northwest University Xi'an Shaanxi P. R. China
| | - Yingzhi Liang
- College of Food Science and Technology Northwest University Xi'an Shaanxi P. R. China
| | - Xiaoyu Ma
- College of Life Science Northwest University Xi'an Shaanxi P. R. China
| | - Xiao Qi
- College of Food Science and Technology Northwest University Xi'an Shaanxi P. R. China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology University of Vigo ‐ Ourense Campus Ourense E‐32004 Spain
| | - Weiming Xue
- School of Chemical Engineering Northwest University Xi'an Shaanxi P. R. China
| | - Yane Luo
- College of Food Science and Technology Northwest University Xi'an Shaanxi P. R. China
| | - Tianli Yue
- College of Food Science and Technology Northwest University Xi'an Shaanxi P. R. China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Beijing P. R. China
| |
Collapse
|
12
|
Gonzali S, Perata P. Anthocyanins from Purple Tomatoes as Novel Antioxidants to Promote Human Health. Antioxidants (Basel) 2020; 9:E1017. [PMID: 33092051 PMCID: PMC7590037 DOI: 10.3390/antiox9101017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022] Open
Abstract
Anthocyanins are plant secondary metabolites belonging to the class of polyphenols, whose beneficial roles in the prevention and treatment of several important human diseases have been demonstrated in many epidemiological studies. Their intake through diet strictly depends on the eating habits, as anthocyanins are contained in red and purple fruit and vegetables as well as in some processed foods and beverages, such as red wine. Genetic engineering and breeding programs have been recently carried out to increase the content of anthocyanins in candidate plant species which cannot offer satisfactory levels of these precious compounds. Tomato (Solanum lycopersicum) is a vegetable commodity where these strategies have resulted in success, leading to the production of new anthocyanin-rich fruit varieties, some of which are already marketed. These varieties produce purple fruits with a high nutraceutical value, combining the health benefits of the anthocyanins to the other classical tomato phytochemicals, particularly carotenoids. The antioxidant capacity in tomato purple fruits is higher than in non-anthocyanin tomatoes and their healthy role has already been demonstrated in both in vitro and in vivo studies. Recent evidence has indicated a particular capacity of tomato fruit anthocyanins to act as scavengers of harmful reactive chemical species and inhibitors of proliferating cancer cells, as well as anti-inflammatory molecules.
Collapse
Affiliation(s)
| | - Pierdomenico Perata
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy;
| |
Collapse
|
13
|
A dietary anthocyanin cyanidin-3-O-glucoside binds to PPARs to regulate glucose metabolism and insulin sensitivity in mice. Commun Biol 2020; 3:514. [PMID: 32948821 PMCID: PMC7501857 DOI: 10.1038/s42003-020-01231-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 07/02/2020] [Indexed: 12/11/2022] Open
Abstract
We demonstrate the mechanism by which C3G, a major dietary anthocyanin, regulates energy metabolism and insulin sensitivity. Oral administration of C3G reduced hepatic and plasma triglyceride levels, adiposity, and improved glucose tolerance in mice fed high-fat diet. Hepatic metabolomic analysis revealed that C3G shifted metabolite profiles towards fatty acid oxidation and ketogenesis. C3G increased glucose uptake in HepG2 cells and C2C12 myotubes and induced the rate of hepatic fatty acid oxidation. C3G directly interacted with and activated PPARs, with the highest affinity for PPARα. The ability of C3G to reduce plasma and hepatic triglycerides, glucose tolerance, and adiposity and to induce oxygen consumption and energy expenditure was abrogated in PPARα-deficient mice, suggesting that PPARα is the major target for C3G. These findings demonstrate that the dietary anthocyanin C3G activates PPARs, a master regulators of energy metabolism. C3G is an agonistic ligand of PPARs and stimulates fuel preference to fat.
Collapse
|
14
|
Denaro M, Smeriglio A, De Francesco C, Xiao J, Cornara L, Trombetta D. In vitro intestinal transport and anti-inflammatory properties of ideain across Caco-2 transwell model. Fitoterapia 2020; 146:104723. [PMID: 32949649 DOI: 10.1016/j.fitote.2020.104723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/09/2020] [Accepted: 09/12/2020] [Indexed: 02/08/2023]
Abstract
The aim of the study was to investigate the absorption and transport mechanisms as well as the anti-inflammatory properties of ideain on Caco-2 transwell model. A concentration and time-dependent bidirectional transport was highlighted; despite this, a clear saturation of the transepithelial absorption in the A-B direction was observed at ideain concentration > 10 μM, suggesting an involvement of membrane transporters. Comparing Papp and PDR values of ideain (10 μM) to reference drugs with a low to a high apparent permeability, it is possible to predict a low in vivo absorption, with a transport efficiency of 1.03%. Co-treatments with several EDTA-Na2 concentrations (1-5 mM) and P-gp inhibition studies with verapamil 100 μM ruled out a passive diffusion of this molecule as well the possibility that P-gp could affect ideain absorption. Inhibition studies using 2 mM phloridzin (SGLT1 inhibitor) and 2 mM phloretin (GLUT2 inhibitor), showed a clear SGLT1 and GLUT2 involvement in the ideain absorption, with SGLT1, which plays the pivotal role. Finally, preliminary anti-inflammatory studies showed that ideain is able to modulate, at a pharmanutritional dose, and with a comparable activity in respect to the reference drug dexamethasone (10 μM), the LPS-induced inflammation in Caco-2 transwell model, which makes it a potentially useful molecule for nutraceutical purpose.
Collapse
Affiliation(s)
- Marcella Denaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; Foundation Prof. Antonio Imbesi, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy.
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; Foundation Prof. Antonio Imbesi, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy.
| | - Clara De Francesco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; Foundation Prof. Antonio Imbesi, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau, SAR 999078, China
| | - Laura Cornara
- Department of Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132 Genova, Italy.
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy.
| |
Collapse
|
15
|
Bendokas V, Skemiene K, Trumbeckaite S, Stanys V, Passamonti S, Borutaite V, Liobikas J. Anthocyanins: From plant pigments to health benefits at mitochondrial level. Crit Rev Food Sci Nutr 2019; 60:3352-3365. [PMID: 31718251 DOI: 10.1080/10408398.2019.1687421] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Anthocyanins are water-soluble pigments providing certain color for various plant parts, especially in edible berries. Earlier these compounds were only known as natural food colorants, the stability of which depended on pH, light, storage temperature and chemical structure. However, due to the increase of the in vitro, in vivo experimental data, as well as of the epidemiological studies, today anthocyanins and their metabolites are also regarded as potential pharmaceutical compounds providing various beneficial health effects on either human or animal cardiovascular system, brain, liver, pancreas and kidney. Many of these effects are shown to be related to the free-radical scavenging and antioxidant properties of anthocyanins, or to their ability to modulate the intracellular antioxidant systems. However, it is generally overlooked that instead of acting exclusively as antioxidants certain anthocyanins affect the activity of mitochondria that are the main source of energy in cells. Therefore, the aim of the present review is to summarize the major knowledge about the chemistry and regulation of biosynthesis of anthocyanins in plants, to overview the facts on bioavailability, and to discuss the most recent experimental findings related to the beneficial health effects emphasizing mitochondria.
Collapse
Affiliation(s)
- Vidmantas Bendokas
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | - Kristina Skemiene
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Sonata Trumbeckaite
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Department of Pharmacognosy, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vidmantas Stanys
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | | | - Vilmante Borutaite
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Julius Liobikas
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
16
|
Chen Z, Zhang R, Shi W, Li L, Liu H, Liu Z, Wu L. The Multifunctional Benefits of Naturally Occurring Delphinidin and Its Glycosides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11288-11306. [PMID: 31557009 DOI: 10.1021/acs.jafc.9b05079] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Delphinidin (Del) and its glycosides are water-soluble pigments, belonging to a subgroup of flavonoids. They are health-promoting candidates for pharmaceutical and nutraceutical uses, as indicated by exhibiting antioxidation, anti-inflammation, antimicroorganism, antidiabetes, antiobesity, cardiovascular protection, neuroprotection, and anticancer properties. Glycosylation modification of Del is associated with increased stability and reduced biological activity. Del and its glycosides can be the alternative inhibitors of CBRs, ERα/β, EGFR, BCRP, and SGLT-1, and virtual docking indicates that the sugar moiety may not effectively interact with the active sites of the targets. Structure-based characteristics confer the multifunctional properties of Del and its glycosides. Because of their health-promoting effects, Del and its glycosides are promising and have been developed as potential pharmaceuticals. However, more investigation on the underlying mechanisms of Del and its glycosides in mediating cellular processes with high specificity are still needed. The research progression of Del and its glycosides over the last 10 years is comprehensively reviewed in this article.
Collapse
Affiliation(s)
- Zhixi Chen
- College of Pharmacy , Gannan Medical University , Ganzhou 341000 , China
| | - Rui Zhang
- College of Pharmacy , Gannan Medical University , Ganzhou 341000 , China
| | - Weimei Shi
- College of Pharmacy , Gannan Medical University , Ganzhou 341000 , China
| | - Linfu Li
- College of Pharmacy , Gannan Medical University , Ganzhou 341000 , China
| | - Hai Liu
- College of Pharmacy , Gannan Medical University , Ganzhou 341000 , China
| | - Zhiping Liu
- School of Basic Medicine , Gannan Medical University , Ganzhou 341000 , China
| | - Longhuo Wu
- College of Pharmacy , Gannan Medical University , Ganzhou 341000 , China
| |
Collapse
|
17
|
Kotcherlakota R, Nimushakavi S, Roy A, Yadavalli HC, Mukherjee S, Haque S, Patra CR. Biosynthesized Gold Nanoparticles: In Vivo Study of Near-Infrared Fluorescence (NIR)-Based Bio-imaging and Cell Labeling Applications. ACS Biomater Sci Eng 2019; 5:5439-5452. [PMID: 33464064 DOI: 10.1021/acsbiomaterials.9b00721] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Near infrared (NIR) fluorescence imaging is a striking imaging modality for biomedical and clinical applications due to its deep tissue penetration and low phototoxicity. The major issue with NIR dyes is their non-specific distribution and requirement of tagging with biomolecules for specific tissue localization. Till now, there have been no imaging agents available that can distribute into a specific organ without the need for targeted ligands, which remains as an unmet clinical need. In the present study, we demonstrate that the Zinnia elegans plant extract (abbreviated as ZE) assisted synthesis of highly biocompatible gold nanoparticles (AuZE), leading to their non-invasive bio-imaging applications in the NIR region (red at 820 nm emission: NIR region). AuZE and ZE both exhibited green fluorescence at 350 nm excitation and red fluorescence in the NIR region (710 nm). We verified the source of this fluorescence, which originates from the fluorescent molecules present in the ZE extract. After intraperitoneal administration in C57BL6 mice, very interestingly, AuZE is distributed into the brain of C57BL6 mice without the need for any targeted ligand and exhibited bright red fluorescence in the NIR region (710 nm excitation, 820 nm emission) as evidenced by non-invasive imaging as well as ICPOES techniques. We further explored the activity of ZE and AuZE as cell labeling agents (B16F10 cells were pre-incubated with AuZE and implanted into mice, and the fluorescence was monitored), which could be applicable for graft transplantation biology. To the best of our knowledge, this is the first report that demonstrates the versatile applications of green synthesized gold nanoparticles using a ZE extract. Considering these exciting results and fruitful outcomes, the ZE and AuZE NPs would stand as an alternative imaging agent to commercially available NIR dyes and change the conventional fluorescence-based bio-imaging strategies. Therefore, the biosynthesized AuNPs open new directions for future research to explore these latest observations in the field of disease diagnosis and therapy.
Collapse
Affiliation(s)
- Rajesh Kotcherlakota
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sahithi Nimushakavi
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arpita Roy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hari Chandana Yadavalli
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
| | - Sudip Mukherjee
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
| | - Shagufta Haque
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
18
|
Manolescu BN, Oprea E, Mititelu M, Ruta LL, Farcasanu IC. Dietary Anthocyanins and Stroke: A Review of Pharmacokinetic and Pharmacodynamic Studies. Nutrients 2019; 11:nu11071479. [PMID: 31261786 PMCID: PMC6682894 DOI: 10.3390/nu11071479] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/22/2019] [Accepted: 06/22/2019] [Indexed: 12/15/2022] Open
Abstract
Cerebrovascular accidents are currently the second major cause of death and the third leading cause of disability in the world, according to the World Health Organization (WHO), which has provided protocols for stroke prevention. Although there is a multitude of studies on the health benefits associated with anthocyanin (ACN) consumption, there is no a rigorous systematization of the data linking dietary ACN with stroke prevention. This review is intended to present data from epidemiological, in vitro, in vivo, and clinical studies dealing with the stroke related to ACN-rich diets or ACN supplements, along with possible mechanisms of action revealed by pharmacokinetic studies, including ACN passage through the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Bogdan Nicolae Manolescu
- Department of Organic Chemistry "C.D. Nenitescu", Faculty of Applied Chemistry and Science of Materials, Polytechnic University of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania.
| | - Eliza Oprea
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Street, 050663 Bucharest, Romania.
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Hygiene, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia, 020956 Bucharest, Romania.
| | - Lavinia L Ruta
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Street, 050663 Bucharest, Romania.
| | - Ileana C Farcasanu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Street, 050663 Bucharest, Romania.
| |
Collapse
|
19
|
Boullata JI. Drug-Nutrition Interactions and the Brain: It’s Not All in Your Head. Curr Nutr Rep 2019; 8:92-98. [DOI: 10.1007/s13668-019-0273-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Eskra JN, Schlicht MJ, Bosland MC. Effects of Black Raspberries and Their Ellagic Acid and Anthocyanin Constituents on Taxane Chemotherapy of Castration-Resistant Prostate Cancer Cells. Sci Rep 2019; 9:4367. [PMID: 30867440 PMCID: PMC6416359 DOI: 10.1038/s41598-019-39589-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/25/2019] [Indexed: 01/25/2023] Open
Abstract
Cancer patients often use dietary supplements while on therapy, but little is known about interactions of supplements with cancer chemotherapy. Black raspberries (BRB) have anti-cancer effects, but have not been evaluated for interference with chemotherapy for castrate-resistant prostate cancer (CRPC). Here we studied whether BRB and some of their constituents interact with docetaxel and cabazitaxel on CRPC cells in culture and implanted into nude mice. Ellagic acid increased, but BRB extract inhibited, microtubule assembly. Ellagic acid decreased tubulin polymerization by cabazitaxel and bound to tubulin. Ellagic acid, its metabolite urolithin A, BRB extract, and the anthocyanin metabolite protocatechuic acid (PCA) did not alter cytotoxicity of taxanes. Ellagic acid inhibited drug efflux in CRPC cells, but BRB extract and PCA did not. None of these compounds altered CYP3A4 activity. Although dietary ellagic acid did not alter the tumor growth inhibition by docetaxel of xenografted 22Rv1 cells, ellagic acid has the potential to interfere with taxane chemotherapy by reducing tubulin polymerization while inhibiting P-glycoprotein drug efflux. These data are cause for concern of consuming ellagic acid during treatment for CRPC and indicate need for further research, but BRB consumption appears safe.
Collapse
Affiliation(s)
- Jillian N Eskra
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Urology, Johns Hopkins University, Baltimore, MD, USA
| | - Michael J Schlicht
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Maarten C Bosland
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
21
|
Han F, Yang P, Wang H, Fernandes I, Mateus N, Liu Y. Digestion and absorption of red grape and wine anthocyanins through the gastrointestinal tract. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.025] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Combined cereal and pulse flavonoids show enhanced bioavailability by downregulating phase II metabolism and ABC membrane transporter function in Caco-2 model. Food Chem 2018; 279:88-97. [PMID: 30611516 DOI: 10.1016/j.foodchem.2018.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/18/2022]
Abstract
Predominant flavonoids in cereals and pulses are structurally different and may positively interact to enhance bioactivity in combined diet. This work investigated the effects of combined cereal 3-deoxyflavonoids (apigenin, naringenin) and pulse flavonols (quercetin), along with natural extracts, on their bioavailability and underlying mechanisms using Caco-2 monolayer model. Membrane permeability, phase II metabolism, and ATP binding cassette (ABC) membrane transporter expression and function were measured. Apparent absorption of quercetin and apigenin increased (p < 0.05) 3.3× and 1.5×, respectively, while both compounds were significantly less metabolized in combined treatments. Combinations with naringenin had insignificant effect, suggesting a role for flavonoid C2C3 conjugation. Both natural extracts and apigenin-quercetin combinations synergistically (3-40 fold) downregulated ABC transporter expression, and inhibited P-glycoprotein activity, suggesting direct binding and inhibition of ATPase. Combination of conjugated cereal and pulse flavonoids enhances their potential bioavailability through synergistic inhibition of membrane transporter and phase II enzyme function.
Collapse
|
23
|
Chirumbolo S, Bjørklund G, Lysiuk R, Vella A, Lenchyk L, Upyr T. Targeting Cancer with Phytochemicals via Their Fine Tuning of the Cell Survival Signaling Pathways. Int J Mol Sci 2018; 19:ijms19113568. [PMID: 30424557 PMCID: PMC6274856 DOI: 10.3390/ijms19113568] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 02/07/2023] Open
Abstract
The role of phytochemicals as potential prodrugs or therapeutic substances against tumors has come in the spotlight in the very recent years, thanks to the huge mass of encouraging and promising results of the in vitro activity of many phenolic compounds from plant raw extracts against many cancer cell lines. Little but important evidence can be retrieved from the clinical and nutritional scientific literature, where flavonoids are investigated as major pro-apoptotic and anti-metastatic compounds. However, the actual role of these compounds in cancer is still far to be fully elucidated. Many of these phytochemicals act in a pleiotropic and poorly specific manner, but, more importantly, they are able to tune the reactive oxygen species (ROS) signaling to activate a survival or a pro-autophagic and pro-apoptosis mechanism, depending on the oxidative stress-responsive endowment of the targeted cell. This review will try to focus on this issue.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy.
- Scientific Secretary-Council for Nutritional and Environmental Medicine (CONEM), 8610 Mo i Rana, Norway.
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), 8610 Mo i Rana, Norway.
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, DanyloHalytskyLviv National Medical University, 79007 Lviv, Ukraine.
| | - Antonio Vella
- AOUI Verona, University Hospital, Section of Immunology, 37134 Verona, Italy.
| | - Larysa Lenchyk
- Department of Chemistry of Natural Compounds, National University of Pharmacy, 61168 Kharkiv, Ukraine.
| | - Taras Upyr
- Department of Pharmacognosy, National University of Pharmacy, 61168 Kharkiv, Ukraine.
| |
Collapse
|
24
|
Kalt W, McDonald JE, Vinqvist-Tymchuk MR, Liu Y, Fillmore SAE. Human anthocyanin bioavailability: effect of intake duration and dosing. Food Funct 2018; 8:4563-4569. [PMID: 29115354 DOI: 10.1039/c7fo01074e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
While in vitro and animal evidence supports a role for anthocyanins in human health, future opportunities in berry health benefits will rest upon evidence from clinical intervention trials. Because little is known about the behaviour of anthocyanins during long term intake in humans, several clinical design factors were examined. Urine from volunteers (n = 17) who consumed blueberry juice daily was analysed using LC-MS/MS for predicted flavonoid-based products of anthocyanins in relation to a 5-day anthocyanin-free run-in, 28 days of blueberry juice intake, a 7-day washout and two dosing regimens. Total and parent anthocyanin content in urine varied 10-fold among the 17 participants. A high 24-0 h total anthocyanin excretion was associated with high anthocyanin retention (i.e. 0 h, before blueberry juice intake). Total anthocyanin excretion was not different before and after up to 7 days of washout indicative of a slow release of anthocyanins. Urinary excretion of anthocyanins declined during the 36-day study. The 24-0 h excretion was greater for total anthocyanins but not for parent anthocyanins when daily blueberry juice was taken all at once rather than as ⅓ doses taken thrice daily. However parent anthocyanins were retained better (higher 0 h) with 1× dosing. These findings could aid in the design of clinical research on anthocyanins and health.
Collapse
Affiliation(s)
- Wilhelmina Kalt
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main St, Kentville, NS B4N 1J5, Canada.
| | | | | | | | | |
Collapse
|
25
|
Phytotherapeutics: The Emerging Role of Intestinal and Hepatocellular Transporters in Drug Interactions with Botanical Supplements. Molecules 2017; 22:molecules22101699. [PMID: 29065448 PMCID: PMC6151444 DOI: 10.3390/molecules22101699] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 09/30/2017] [Accepted: 10/02/2017] [Indexed: 01/17/2023] Open
Abstract
In herbalism, botanical supplements are commonly believed to be safe remedies, however, botanical supplements and dietary ingredients interact with transport and metabolic processes, affecting drug disposition. Although a large number of studies have described that botanical supplements interfere with drug metabolism, the mode of their interaction with drug transport processes is not well described. Such interactions may result in serious undesired effects and changed drug efficacy, therefore, some studies on interaction between botanical supplement ingredients and drug transporters such as P-gp and OATPs are described here, suggesting that the interaction between botanical supplements and the drug transporters is clinically significant.
Collapse
|
26
|
Li Y, Revalde J, Paxton JW. The effects of dietary and herbal phytochemicals on drug transporters. Adv Drug Deliv Rev 2017; 116:45-62. [PMID: 27637455 DOI: 10.1016/j.addr.2016.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/10/2016] [Accepted: 09/05/2016] [Indexed: 12/22/2022]
Abstract
Membrane transporter proteins (the ABC transporters and SLC transporters) play pivotal roles in drug absorption and disposition, and thus determine their efficacy and safety. Accumulating evidence suggests that the expression and activity of these transporters may be modulated by various phytochemicals (PCs) found in diets rich in plants and herbs. PC absorption and disposition are also subject to the function of membrane transporter and drug metabolizing enzymes. PC-drug interactions may involve multiple major drug transporters (and metabolizing enzymes) in the body, leading to alterations in the pharmacokinetics of substrate drugs, and thus their efficacy and toxicity. This review summarizes the reported in vitro and in vivo interactions between common dietary PCs and the major drug transporters. The oral absorption, distribution into pharmacological sanctuaries and excretion of substrate drugs and PCs are considered, along with their possible interactions with the ABC and SLC transporters which influence these processes.
Collapse
|
27
|
Lin B, Gong C, Song H, Cui Y. Effects of anthocyanins on the prevention and treatment of cancer. Br J Pharmacol 2017; 174:1226-1243. [PMID: 27646173 PMCID: PMC5429338 DOI: 10.1111/bph.13627] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/17/2016] [Accepted: 09/13/2016] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED Anthocyanins are a class of water-soluble flavonoids, which show a range of pharmacological effects, such as prevention of cardiovascular disease, obesity control and antitumour activity. Their potential antitumour effects are reported to be based on a wide variety of biological activities including antioxidant; anti-inflammation; anti-mutagenesis; induction of differentiation; inhibiting proliferation by modulating signal transduction pathways, inducing cell cycle arrest and stimulating apoptosis or autophagy of cancer cells; anti-invasion; anti-metastasis; reversing drug resistance of cancer cells and increasing their sensitivity to chemotherapy. In this review, the latest progress on the anticancer activities of anthocyanins and the underlying molecular mechanisms is summarized using data from basic research in vitro and in vivo, from clinical trials and taking into account theory and practice. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Bo‐Wen Lin
- Department of Regenerative MedicineTongji University School of MedicineShanghaiChina
| | - Cheng‐Chen Gong
- Department of Regenerative MedicineTongji University School of MedicineShanghaiChina
| | - Hai‐Fei Song
- Department of Regenerative MedicineTongji University School of MedicineShanghaiChina
| | - Ying‐Yu Cui
- Department of Regenerative MedicineTongji University School of MedicineShanghaiChina
- Key Laboratory of ArrhythmiasMinistry of Education (Tongji University)ShanghaiChina
- Institute of Medical GeneticsTongji University School of MedicineShanghaiChina
| |
Collapse
|
28
|
Delphinidin Reduces Glucose Uptake in Mice Jejunal Tissue and Human Intestinal Cells Lines through FFA1/GPR40. Int J Mol Sci 2017; 18:ijms18040750. [PMID: 28379159 PMCID: PMC5412335 DOI: 10.3390/ijms18040750] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 11/23/2022] Open
Abstract
Anthocyanins are pigments with antihyperglycemic properties, and they are potential candidates for developing functional foods for the therapy or prevention of Diabetes mellitus type 2 (DM2). The mechanism of these beneficial effects of anthocyanins are, however, hard to explain, given their very low bioavailability due to poor intestinal absorption. We propose that free fatty acid receptor 1 (FFA1, also named GPR40), is involved in an inhibitory effect of the anthocyanidin delphinidin over intestinal glucose absorption. We show the direct effects of delphinidin on the intestine using jejunum samples from RF/J mice, and the human intestinal cell lines HT-29, Caco-2, and NCM460. By the use of specific pharmacological antagonists, we determined that delphinidin inhibits glucose absorption in both mouse jejunum and a human enterocytic cell line in a FFA1-dependent manner. Delphinidin also affects the function of sodium-glucose cotransporter 1 (SGLT1). Intracellular signaling after FFA1 activation involved cAMP increase and cytosolic Ca2+ oscillations originated from intracellular Ca2+ stores and were followed by store-operated Ca2+ entry. Taken together, our results suggest a new GPR-40 mediated local mechanism of action for delphinidin over intestinal cells that may in part explain its antidiabetic effect. These findings are promising for the search for new prevention and pharmacological treatment strategies for DM2 management.
Collapse
|
29
|
Ouanouki A, Lamy S, Annabi B. Anthocyanidins inhibit epithelial-mesenchymal transition through a TGFβ/Smad2 signaling pathway in glioblastoma cells. Mol Carcinog 2017; 56:1088-1099. [PMID: 27649384 DOI: 10.1002/mc.22575] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/01/2016] [Accepted: 09/16/2016] [Indexed: 12/17/2022]
Abstract
Epidemiological studies have convincingly demonstrated that diets rich in fruits and vegetables play an important role in preventing cancer due to their polyphenol content. Among polyphenols, the anthocyanidins are known to possess anti-inflammatory, cardioprotective, anti-angiogenic, and anti-carcinogenic properties. Despite the well-known role of transforming growth factor-β (TGF-β) in high grade gliomas, the impact of anthocyanidins on TGF-β-induced epithelial-mesenchymal transition (EMT), a process that allows benign tumor cells to infiltrate surrounding tissues, remains poorly understood. The objective of this study is to investigate the impact of anthocyanidins such as cyanidin (Cy), delphinidin (Dp), malvidin (Mv), pelargonidin (Pg), and petunidin (Pt) on TGF-β-induced EMT and to determine the mechanism(s) underlying such action. Human U-87 glioblastoma (U-87 MG) cells were treated with anthocyanidins prior to, along with or following the addition of TGF-β. We found that anthocyanidins differently affected TGF-β-induced EMT, depending on the treatment conditions. Dp was the most potent EMT inhibitor through its inhibitory effect on the TGF-β Smad and non-Smad signaling pathways. These effects altered expression of the EMT mesenchymal markers fibronectin and Snail, as well as markedly reducing U-87 MG cell migration. Our study highlights a new action of anthocyanidins against EMT that supports their beneficial health and chemopreventive effects in dietary-based strategies against cancer. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amira Ouanouki
- Laboratoire d'Oncologie Moléculaire, Centre de Recherche BioMed, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Sylvie Lamy
- Laboratoire d'Oncologie Moléculaire, Centre de Recherche BioMed, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Centre de Recherche BioMed, Université du Québec à Montréal, Montréal, Québec, Canada
| |
Collapse
|
30
|
Kaur M, Badhan RKS. Phytochemical mediated-modulation of the expression and transporter function of breast cancer resistance protein at the blood-brain barrier: An in-vitro study. Brain Res 2016; 1654:9-23. [PMID: 27771282 DOI: 10.1016/j.brainres.2016.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/10/2016] [Accepted: 10/18/2016] [Indexed: 01/29/2023]
Abstract
Clinical translation of BCRP inhibitors have failed due to neurotoxicity and novel approaches are required to identify suitable modulators of BCRP to enhance CNS drug delivery. In this study we examine 18 compounds, primarily phytochemicals, as potential novel modulators of AhR-mediated regulation of BCRP expression and function in immortalised and primary porcine brain microvascular endothelial cells as a mechanism to enhance CNS drug delivery. The majority of modulators possessed a cellular viability IC50 >100µm in both cell systems. BCRP activity, when exposed to modulators for 1h, was diminished for most modulators through significant increases in H33342 accumulation at <10µm with 2,6,4-trimethoflavone increasing H33342 intracellular accumulation by 3.7-6.6 fold over 1-100µm. Western blotting and qPCR identified two inducers of BCRP (quercetin and naringin) and two down-regulators (17-β-estradiol and curcumin) with associated changes in BCRP efflux transport function further confirmed in both cell lines. siRNA downregulation of AhR resulted in a 1.75±0.08 fold change in BCRP expression, confirming the role of AhR in the regulation of BCRP. These findings establish the regulatory role AhR of in controlling BCRP expression at the BBB and confirm quercetin, naringin, 17-β-estradiol, and curcumin as novel inducers and down-regulators of BCRP gene, protein expression and functional transporter activity and hence potential novel target sites and candidates for enhancing CNS drug delivery.
Collapse
Affiliation(s)
- Manjit Kaur
- Aston University, Aston Research Centre for Healthy Ageing, School of Life and Health Sciences, Birmingham B4 7ET, UK
| | - Raj K S Badhan
- Aston University, Aston Research Centre for Healthy Ageing, School of Life and Health Sciences, Birmingham B4 7ET, UK.
| |
Collapse
|
31
|
Stieger B, Mahdi ZM, Jäger W. Intestinal and Hepatocellular Transporters: Therapeutic Effects and Drug Interactions of Herbal Supplements. Annu Rev Pharmacol Toxicol 2016; 57:399-416. [PMID: 27648763 DOI: 10.1146/annurev-pharmtox-010716-105010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Herbal supplements are generally considered safe; however, drug disposition is influenced by the interactions of herbal supplements and food constituents with transport and metabolic processes. Although the interference of herbal supplements with drug metabolism has been studied extensively, knowledge of how they interact with the drug transport processes is less advanced. Therefore, we describe here specific examples of experimental and human interaction studies of herbal supplement components with drug transporters addressing, for example, organic anion transporting polypeptides or P-glycoprotein, as such interactions may lead to severe side effects and altered drug efficacy. Hence, it is clearly necessary to increase the awareness of the clinical relevance of the interference of herbal supplements with the drug transport processes.
Collapse
Affiliation(s)
- Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - Zainab M Mahdi
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - Walter Jäger
- Division of Clinical Pharmacy and Diagnostics, Department of Pharmaceutical Chemistry, University of Vienna, A-1090 Vienna, Austria;
| |
Collapse
|
32
|
Vrzal R. Anthocyanidins but not anthocyanins inhibit P-glycoprotein-mediated calcein extrusion - possible implication for orally administered drugs. Fundam Clin Pharmacol 2016; 30:248-52. [DOI: 10.1111/fcp.12183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/29/2015] [Accepted: 01/25/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Radim Vrzal
- Department of Cell Biology and Genetics; Faculty of Science; Palacky University; Slechtitelu 27 783 71 Olomouc Czech Republic
| |
Collapse
|
33
|
Pan MH, Chiou YS, Chen LH, Ho CT. Breast cancer chemoprevention by dietary natural phenolic compounds: Specific epigenetic related molecular targets. Mol Nutr Food Res 2014; 59:21-35. [DOI: 10.1002/mnfr.201400515] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/08/2014] [Accepted: 11/03/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Min-Hsiung Pan
- Institute of Food Science and Technology; National Taiwan University; Taipei Taiwan
- Department of Medical Research, China Medical University Hospital; China Medical University; Taichung Taiwan
| | - Yi-Siou Chiou
- Institute of Food Science and Technology; National Taiwan University; Taipei Taiwan
| | - Li-Hua Chen
- Institute of Food Science and Technology; National Taiwan University; Taipei Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University; New Brunswick; NJ USA
| |
Collapse
|
34
|
Campos-Bedolla P, Walter FR, Veszelka S, Deli MA. Role of the Blood–Brain Barrier in the Nutrition of the Central Nervous System. Arch Med Res 2014; 45:610-38. [DOI: 10.1016/j.arcmed.2014.11.018] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 11/24/2014] [Indexed: 12/22/2022]
|
35
|
|
36
|
Luo LP, Han B, Yu XP, Chen XY, Zhou J, Chen W, Zhu YF, Peng XL, Zou Q, Li SY. Anti-metastasis Activity of Black Rice Anthocyanins Against Breast Cancer: Analyses Using an ErbB2 Positive Breast Cancer Cell Line and Tumoral Xenograft Model. Asian Pac J Cancer Prev 2014; 15:6219-25. [DOI: 10.7314/apjcp.2014.15.15.6219] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
37
|
Tan KW, Cooney J, Jensen D, Li Y, Paxton JW, Birch NP, Scheepens A. Hop-derived prenylflavonoids are substrates and inhibitors of the efflux transporter breast cancer resistance protein (BCRP/ABCG2). Mol Nutr Food Res 2014; 58:2099-110. [DOI: 10.1002/mnfr.201400288] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Kee W. Tan
- Food Innovation; The New Zealand Institute for Plant and Food Research Limited; Auckland New Zealand
- School of Biological Sciences, Faculty of Science; The University of Auckland; Auckland New Zealand
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences; The University of Auckland; Auckland New Zealand
| | - Janine Cooney
- Food Innovation; The New Zealand Institute for Plant and Food Research Limited; Auckland New Zealand
| | - Dwayne Jensen
- Food Innovation; The New Zealand Institute for Plant and Food Research Limited; Auckland New Zealand
| | - Yan Li
- School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences; Auckland University of Technology; Auckland New Zealand
| | - James W. Paxton
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences; The University of Auckland; Auckland New Zealand
| | - Nigel P. Birch
- School of Biological Sciences, Faculty of Science; The University of Auckland; Auckland New Zealand
- Centre for Brain Research; The University of Auckland; Auckland New Zealand
| | - Arjan Scheepens
- Food Innovation; The New Zealand Institute for Plant and Food Research Limited; Auckland New Zealand
| |
Collapse
|
38
|
Kalt W, Liu Y, McDonald JE, Vinqvist-Tymchuk MR, Fillmore SAE. Anthocyanin metabolites are abundant and persistent in human urine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:3926-3934. [PMID: 24432743 DOI: 10.1021/jf500107j] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
LC-MS/MS revealed that metabolites of anthocyanins (Acn) were abundant in human urine (n = 17) even after 5 days with no dietary Acn. After intake of 250 mL of blueberry juice, parent Acn were 4% and Acn metabolites were 96% of the total urinary Acn for the following 24 h. Multiple reaction monitoring revealed 226 combinations of mass transition × retention times for known Acn and predicted Acn metabolites. These were dominated by aglycones, especially aglycone glucuronides. The diversity of Acn metabolites could include positional isomers of Acn conjugates and chalcones. The persistence of Acn metabolites suggested enterohepatic recycling leading to prolonged residence time. The prevalence of Acn metabolites based on pelargonidin, which is not present in blueberry juice, may reflect ongoing dehydroxylation and demethylation of other Acn via xenobiotic and colonic bacterial action. The results suggest that exposure to Acn-based flavonoid moieties is substantially greater than suggested by earlier research.
Collapse
Affiliation(s)
- Wilhelmina Kalt
- Atlantic Food and Horticulture Research Centre, Agriculture and Agri-Food Canada , 32 Main Street, Kentville, NS B4N 1J5, Canada
| | | | | | | | | |
Collapse
|
39
|
Fang J. Some anthocyanins could be efficiently absorbed across the gastrointestinal mucosa: extensive presystemic metabolism reduces apparent bioavailability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:3904-3911. [PMID: 24650097 DOI: 10.1021/jf405356b] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Despite the accumulating evidence supporting the health effects of anthocyanins, their plasma concentrations were found to be very low. However, 30 and 56% of cyanidin 3-glucoside (Cy-3-glc) and pelargonidin 3-glucoside (Pg-3-glc) were found as protocatechuic acid (PCA) and 4-hydroxybenzoic acid, respectively, in plasma following oral administration in humans. Second, 12.4% of (13)C was recovered from urine and breath following oral ingestion of [(13)C]-Cy-3-glc in humans. The actual percentage of [(13)C]-Cy-3-glc absorbed across the gastrointestinal wall could be higher because of the involvement of enterohepatic recycling in the disposition of anthocyanins. In animal studies, high total urinary recoveries were found following oral ingestion of (14)C-labeled anthocyanins. Third, anthocyanins seem to be efficiently absorbed following in situ gastric and intestinal perfusions in rats. Therefore, some anthocyanins could be efficiently absorbed from the gastrointestinal lumen, undergo extensive first-pass metabolism, and enter the systemic circulation as metabolites.
Collapse
Affiliation(s)
- Jim Fang
- College of Pharmacy and Nutrition, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
40
|
Phytic acid enhances the oral absorption of isorhamnetin, quercetin, and kaempferol in total flavones of Hippophae rhamnoides L. Fitoterapia 2014; 93:216-25. [PMID: 24462958 DOI: 10.1016/j.fitote.2014.01.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 12/31/2013] [Accepted: 01/09/2014] [Indexed: 01/04/2023]
|
41
|
Tan KW, Killeen DP, Li Y, Paxton JW, Birch NP, Scheepens A. Dietary polyacetylenes of the falcarinol type are inhibitors of breast cancer resistance protein (BCRP/ABCG2). Eur J Pharmacol 2014; 723:346-52. [DOI: 10.1016/j.ejphar.2013.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/07/2013] [Accepted: 11/02/2013] [Indexed: 12/17/2022]
|
42
|
Tan KW, Li Y, Paxton JW, Birch NP, Scheepens A. Identification of novel dietary phytochemicals inhibiting the efflux transporter breast cancer resistance protein (BCRP/ABCG2). Food Chem 2013; 138:2267-74. [DOI: 10.1016/j.foodchem.2012.12.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/02/2012] [Accepted: 12/03/2012] [Indexed: 01/03/2023]
|
43
|
Jia Y, Kim JY, Jun HJ, Kim SJ, Lee JH, Hoang MH, Kim HS, Chang HI, Hwang KY, Um SJ, Lee SJ. Cyanidin is an agonistic ligand for peroxisome proliferator-activated receptor-alpha reducing hepatic lipid. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:698-708. [DOI: 10.1016/j.bbalip.2012.11.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 11/15/2012] [Accepted: 11/29/2012] [Indexed: 10/27/2022]
|
44
|
Li Y, Paxton JW. The effects of flavonoids on the ABC transporters: consequences for the pharmacokinetics of substrate drugs. Expert Opin Drug Metab Toxicol 2013; 9:267-85. [PMID: 23289831 DOI: 10.1517/17425255.2013.749858] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION The flavonoids are a large group of dietary plant compounds with suggested health benefits. There is accumulating evidence that many of these flavonoids can interact with the major drug transporters (and metabolizing enzymes) in the body, leading to alterations in the pharmacokinetics of substrate drugs, and thus their efficacy and toxicity. AREAS COVERED This review summarizes and updates the reported in vitro and in vivo interactions between common dietary flavonoids and the major drug-effluxing ABC transporters; these include P-glycoprotein, breast cancer resistance protein and multidrug resistance proteins 1 and 2. In contrast to previous reviews, the ADME of flavonoids are considered, along with their glycosides and Phase II conjugates. The authors also consider their possible interactions with the ABC transporters in the oral absorption, distribution into pharmacological sanctuaries and excretion of substrate drugs. Electronic databases, including PubMed, Scopus and Google Scholar were searched to identify appropriate in vitro and in vivo ABC transporter-flavonoid interactions, particularly within the last 10 years. EXPERT OPINION Caution is advised when taking flavonoid-containing supplements or herbal remedies concurrently with drugs. Further clinical studies are warranted to explore the impact of flavonoids and their metabolites on the pharmacokinetics, efficacy and toxicity of drugs.
Collapse
Affiliation(s)
- Yan Li
- Auckland University of Technology, Faculty of Health and Environmental Sciences, Department of Interdisciplinary Studies, Auckland, New Zealand
| | | |
Collapse
|
45
|
Medicinal significance, pharmacological activities, and analytical aspects of anthocyanidins ‘delphinidin’: A concise report. JOURNAL OF ACUTE DISEASE 2013. [DOI: 10.1016/s2221-6189(13)60123-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
46
|
Ziberna L, Lunder M, Tramer F, Drevenšek G, Passamonti S. The endothelial plasma membrane transporter bilitranslocase mediates rat aortic vasodilation induced by anthocyanins. Nutr Metab Cardiovasc Dis 2013; 23:68-74. [PMID: 21546228 DOI: 10.1016/j.numecd.2011.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 12/17/2010] [Accepted: 02/04/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIMS Anthocyanins, a sub-class of flavonoids, induce endothelium-dependent vasorelaxation, by activating endothelial nitric oxide synthase and consequently increasing production of the vasorelaxant agent nitric oxide. It is not yet clear if anthocyanin-induced vasorelaxation starts with their interaction with plasma membrane receptors in the extracellular compartment, or with their membrane transport toward intracellular molecular targets. We therefore investigated the possible role of bilitranslocase (TC 2.A.65.1.1), an endothelial plasma membrane carrier that transports flavonoids, in the vasodilation activity induced by anthocyanins. METHODS AND RESULTS Vascular reactivity was assessed in thoracic aortic rings obtained from male Wistar rats. Pre-treatment of aortic rings with anti-sequence bilitranslocase antibodies targeting the carrier, decreased vasodilation induced by cyanidin 3-glucoside and bilberry anthocyanins. CONCLUSION Here we show for the first time that bilitranslocase mediates a critical step in vasodilation induced by anthocyanins. This offers new insights into the molecular mechanism involved in endothelium-dependent vasorelaxation by flavonoids, and the importance of their specific membrane carriers.
Collapse
Affiliation(s)
- L Ziberna
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
47
|
Wang H, Khor TO, Shu L, Su Z, Fuentes F, Lee JH, Kong ANT. Plants vs. cancer: a review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer Agents Med Chem 2012; 12:1281-305. [PMID: 22583408 PMCID: PMC4017674 DOI: 10.2174/187152012803833026] [Citation(s) in RCA: 317] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 03/06/2012] [Accepted: 03/06/2012] [Indexed: 11/22/2022]
Abstract
Cancer remains to be one of the leading causes of death in the United States and around the world. The advent of modern drug-targeted therapies has undeniably improved cancer patients' cares. However, advanced metastasized cancer remains untreatable. Hence, continued searching for a safer and more effective chemoprevention and treatment is clearly needed for the improvement of the efficiency and to lower the treatment cost for cancer care. Cancer chemoprevention with natural phytochemical compounds is an emerging strategy to prevent, impede, delay, or cure cancer. This review summarizes the latest research in cancer chemoprevention and treatment using the bioactive components from natural plants. Relevant molecular mechanisms involved in the pharmacological effects of these phytochemicals are discussed. Pharmaceutical developmental challenges and opportunities in bringing the phytochemicals into the market are also explored. The authors wish to expand this research area not only for their scientific soundness, but also for their potential druggability.
Collapse
Affiliation(s)
- Hu Wang
- Graduate Program in Pharmaceutical Sciences, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Tin Oo Khor
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Limin Shu
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Zhengyuen Su
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Francisco Fuentes
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Jong-Hun Lee
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Ah-Ng Tony Kong
- Graduate Program in Pharmaceutical Sciences, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| |
Collapse
|
48
|
Ziberna L, Tramer F, Moze S, Vrhovsek U, Mattivi F, Passamonti S. Transport and bioactivity of cyanidin 3-glucoside into the vascular endothelium. Free Radic Biol Med 2012; 52:1750-9. [PMID: 22387282 DOI: 10.1016/j.freeradbiomed.2012.02.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 02/13/2012] [Accepted: 02/19/2012] [Indexed: 02/07/2023]
Abstract
Flavonoids are dietary components involved in decreasing oxidative stress in the vascular endothelium and thus the risk of endothelial dysfunction. However, their very low concentrations in plasma place this role in doubt. Thus, a relationship between the effective intracellular concentration of flavonoids and their bioactivity needs to be assessed. This study examined the uptake of physiological concentrations of cyanidin 3-glucoside, a widespread dietary flavonoid, into human vascular endothelial cells. Furthermore, the involvement of the membrane transporter bilitranslocase (TC No. 2.A.65.1.1) as the key underlying molecular mechanism for membrane transport was investigated by using purified anti-sequence antibodies binding at the extracellular domain of the protein. The experimental observations were carried out in isolated plasma membrane vesicles and intact endothelial cells from human endothelial cells (EA.hy926) and on an ischemia-reperfusion model in isolated rat hearts. Cyanidin 3-glucoside was transported via bilitranslocase into endothelial cells, where it acted as a powerful intracellular antioxidant and a cardioprotective agent in the reperfusion phase after ischemia. These findings suggest that dietary flavonoids, despite their limited oral bioavailability and very low postabsorption plasma concentrations, may provide protection against oxidative stress-based cardiovascular diseases. Bilitranslocase, by mediating the cellular uptake of some flavonoids, is thus a key factor in their protective activity on endothelial function.
Collapse
Affiliation(s)
- Lovro Ziberna
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Gao X, Cassidy A, Schwarzschild MA, Rimm EB, Ascherio A. Habitual intake of dietary flavonoids and risk of Parkinson disease. Neurology 2012; 78:1138-45. [PMID: 22491871 DOI: 10.1212/wnl.0b013e31824f7fc4] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE To prospectively examine whether higher intakes of total flavonoids and their subclasses (flavanones, anthocyanins, flavan-3-ols, flavonols, flavones, and polymers) were associated with a lower risk of developing Parkinson disease (PD). METHODS In the current analysis, we included 49,281 men in the Health Professional Follow-up Study and 80,336 women from the Nurses' Health Study. Five major sources of flavonoid-rich foods (tea, berry fruits, apples, red wine, and orange/orange juice) were also examined. Flavonoid intake was assessed using an updated food composition database and a validated food frequency questionnaire. RESULTS We identified 805 participants (438 men and 367 women) who developed PD during 20-22 years of follow-up. In men, after adjusting for multiple confounders, participants in the highest quintile of total flavonoids had a 40%lower PD risk than those in the lowest quintile (hazard ratio [HR] = 0.60; 95% confidence interval 0.43, 0.83; p trend = 0.001). No significant relationship was observed in women (p trend = 0.62) or in pooled analyses (p trend = 0.23). In the pooled analyses for the subclasses, intakes of anthocyanins and a rich dietary source, berries, were significantly associated with a lower PD risk (HR comparing 2 extreme intake quintiles were 0.76 for anthocyanins and 0.77 for berries, respectively; p trend < 0.02 for both). CONCLUSIONS Our findings suggest that intake of some flavonoids may reduce PD risk, particularly in men, but a protective effect of other constituents of plant foods cannot be excluded.
Collapse
Affiliation(s)
- X Gao
- Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School,Boston, MA, USA.
| | | | | | | | | |
Collapse
|