1
|
Tian X, Zhou M, Zhang J, Huang X, Jiang D, Liu J, Zhang Q, Chen D, Hu Q. Mechanism of LncRNA-MiRNA in Renal Intrinsic Cells of Diabetic Kidney Disease and Potential Therapeutic Direction. DNA Cell Biol 2025. [PMID: 40117185 DOI: 10.1089/dna.2025.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025] Open
Abstract
The occurrence of diabetic kidney disease (DKD), a critical microvascular issue in diabetes, is progressively on the rise. In recent years, long noncoding RNAs (lncRNAs) have garnered considerable attention as a novel and critical layer of biological regulation. Our knowledge regarding the roles and underlying mechanisms of lncRNAs in various diseases, including DKD, continues to evolve. Similarly, microRNAs (miRNAs), which are small noncoding RNAs, have been recognized as crucial contributors to cellular processes and disease pathogenesis. Emerging studies have highlighted the complex interactions between lncRNAs and miRNAs, particularly in the context of DKD, underscoring their importance in complex human diseases. Renal intrinsic cell damage is an important cause of inducing DKD. Persistent high glucose stimulation leads to remodeling of renal intrinsic cells and a cascade of pathological changes. This article aims to review recent literature on the lncRNAs-mediated regulation of miRNAs affecting renal intrinsic cells in DKD and to propose novel molecular-level therapeutic strategies for DKD. Through in-depth investigation of this dynamic molecular interaction, we can gain a profound understanding of the potential mechanisms underlying diabetic nephropathy, potentially identifying new targets for therapeutic intervention and paving the way for personalized and effective treatments.
Collapse
Affiliation(s)
- Xiyue Tian
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Sichuan, China
| | - Min Zhou
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Sichuan, China
| | - Jingbo Zhang
- School of Public Health, Southwest Medical University, Sichuan, China
| | - Xinchun Huang
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Sichuan, China
| | - Dongyang Jiang
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Sichuan, China
| | - Jian Liu
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Sichuan, China
| | - Qiong Zhang
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Sichuan, China
| | - Dingguo Chen
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Sichuan, China
| | - Qiongdan Hu
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Sichuan, China
| |
Collapse
|
2
|
Sui Y, Shen Z, Wang Z, Feng J, Zhou G. Lactylation in cancer: metabolic mechanism and therapeutic strategies. Cell Death Discov 2025; 11:68. [PMID: 39979245 PMCID: PMC11842571 DOI: 10.1038/s41420-025-02349-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
Recent progress in cancer metabolism research has identified lactylation as a critical post-translational modification influencing tumor development and progression. The process relies on lactate accumulation and the activation of lactate-sensitive acyltransferases. Beyond its role in epigenetic regulation, lactylation has emerged as a significant factor in tumor metabolism and evolution, offering fresh opportunities for developing targeted therapies that transcend traditional approaches. This review explores the growing importance of lactylation in cancer biology and highlights its potential for advancing diagnostic tools and therapeutic strategies.
Collapse
Affiliation(s)
- Ying Sui
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Ziyang Shen
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Zhenling Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jifeng Feng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China.
| | - Guoren Zhou
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China.
| |
Collapse
|
3
|
Ungvari Z, Kunutsor SK. Coffee consumption and cardiometabolic health: a comprehensive review of the evidence. GeroScience 2024; 46:6473-6510. [PMID: 38963648 PMCID: PMC11493900 DOI: 10.1007/s11357-024-01262-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
This review provides a comprehensive synthesis of longitudinal observational and interventional studies on the cardiometabolic effects of coffee consumption. It explores biological mechanisms, and clinical and policy implications, and highlights gaps in the evidence while suggesting future research directions. It also reviews evidence on the causal relationships between coffee consumption and cardiometabolic outcomes from Mendelian randomization (MR) studies. Findings indicate that while coffee may cause short-term increases in blood pressure, it does not contribute to long-term hypertension risk. There is limited evidence indicating that coffee intake might reduce the risk of metabolic syndrome and non-alcoholic fatty liver disease. Furthermore, coffee consumption is consistently linked with reduced risks of type 2 diabetes (T2D) and chronic kidney disease (CKD), showing dose-response relationships. The relationship between coffee and cardiovascular disease is complex, showing potential stroke prevention benefits but ambiguous effects on coronary heart disease. Moderate coffee consumption, typically ranging from 1 to 5 cups per day, is linked to a reduced risk of heart failure, while its impact on atrial fibrillation remains inconclusive. Furthermore, coffee consumption is associated with a lower risk of all-cause mortality, following a U-shaped pattern, with the largest risk reduction observed at moderate consumption levels. Except for T2D and CKD, MR studies do not robustly support a causal link between coffee consumption and adverse cardiometabolic outcomes. The potential beneficial effects of coffee on cardiometabolic health are consistent across age, sex, geographical regions, and coffee subtypes and are multi-dimensional, involving antioxidative, anti-inflammatory, lipid-modulating, insulin-sensitizing, and thermogenic effects. Based on its beneficial effects on cardiometabolic health and fundamental biological processes involved in aging, moderate coffee consumption has the potential to contribute to extending the healthspan and increasing longevity. The findings underscore the need for future research to understand the underlying mechanisms and refine health recommendations regarding coffee consumption.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Setor K Kunutsor
- Leicester Real World Evidence Unit, Diabetes Research Centre, University of Leicester, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4WP, UK.
- Section of Cardiology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Saint Boniface Hospital, Winnipeg, MB, R2H 2A6, Canada.
| |
Collapse
|
4
|
Nicoletti CF, Assmann TS, Souza LL, Martinez JA. DNA Methylation and Non-Coding RNAs in Metabolic Disorders: Epigenetic Role of Nutrients, Dietary Patterns, and Weight Loss Interventions for Precision Nutrition. Lifestyle Genom 2024; 17:151-165. [PMID: 39481358 DOI: 10.1159/000541000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/14/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Dysregulation of epigenetic processes and abnormal epigenetic profiles are associated with various metabolic disorders. Nutrition, as an environmental factor, can induce epigenetic changes through both direct exposure and transgenerational inheritance, continuously altering gene expression and shaping the phenotype. Nutrients consumed through food or supplementation, such as vitamin B12, folate, vitamin B6, and choline, play a pivotal role in DNA methylation, a critical process for gene regulation. Additionally, there is mounting evidence that the expression of non-coding RNAs (ncRNAs) can be modulated by the intake of specific nutrients and natural compounds, thereby influencing processes involved in the onset and progression of metabolic diseases. SUMMARY Evidence suggests that dietary patterns, weight loss interventions, nutrients and nutritional bioactive compounds can modulate the expression of various microRNA (miRNAs) and DNA methylation levels, contributing to the development of metabolic disorders such as obesity and type 2 diabetes. Furthermore, several studies have proposed that DNA methylation and miRNA expression could serve as biomarkers for the effects of weight loss programs. KEY MESSAGE Despite ongoing debate regarding the effects of nutrient supplementation on DNA methylation levels and the expression of ncRNAs, certain DNA methylation marks and ncRNA expressions might predict the risk of metabolic disorders and act as biomarkers for forecasting the success of therapies within the framework of precision medicine and nutrition. The role of DNA methylation and miRNA expression as potential mediators of the effects of weight loss underscores their potential as biomarkers for the outcomes of weight loss programs. This highlights the influence of dietary patterns and weight loss interventions on the regulation of miRNA expression and DNA methylation levels, suggesting an interaction between these epigenetic factors and the body's response to weight loss.
Collapse
Affiliation(s)
- Carolina F Nicoletti
- Applied Physiology and Nutrition Research Group - Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Taís S Assmann
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Leticia L Souza
- Applied Physiology and Nutrition Research Group - Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - José Alfredo Martinez
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Madrid, Spain
| |
Collapse
|
5
|
Arif T, Shteinfer-Kuzmine A, Shoshan-Barmatz V. Decoding Cancer through Silencing the Mitochondrial Gatekeeper VDAC1. Biomolecules 2024; 14:1304. [PMID: 39456237 PMCID: PMC11506819 DOI: 10.3390/biom14101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Mitochondria serve as central hubs for regulating numerous cellular processes that include metabolism, apoptosis, cell cycle progression, proliferation, differentiation, epigenetics, immune signaling, and aging. The voltage-dependent anion channel 1 (VDAC1) functions as a crucial mitochondrial gatekeeper, controlling the flow of ions, such as Ca2+, nucleotides, and metabolites across the outer mitochondrial membrane, and is also integral to mitochondria-mediated apoptosis. VDAC1 functions in regulating ATP production, Ca2+ homeostasis, and apoptosis, which are essential for maintaining mitochondrial function and overall cellular health. Most cancer cells undergo metabolic reprogramming, often referred to as the "Warburg effect", supplying tumors with energy and precursors for the biosynthesis of nucleic acids, phospholipids, fatty acids, cholesterol, and porphyrins. Given its multifunctional nature and overexpression in many cancers, VDAC1 presents an attractive target for therapeutic intervention. Our research has demonstrated that silencing VDAC1 expression using specific siRNA in various tumor types leads to a metabolic rewiring of the malignant cancer phenotype. This results in a reversal of oncogenic properties that include reduced tumor growth, invasiveness, stemness, epithelial-mesenchymal transition. Additionally, VDAC1 depletion alters the tumor microenvironment by reducing angiogenesis and modifying the expression of extracellular matrix- and structure-related genes, such as collagens and glycoproteins. Furthermore, VDAC1 depletion affects several epigenetic-related enzymes and substrates, including the acetylation-related enzymes SIRT1, SIRT6, and HDAC2, which in turn modify the acetylation and methylation profiles of histone 3 and histone 4. These epigenetic changes can explain the altered expression levels of approximately 4000 genes that are associated with reversing cancer cells oncogenic properties. Given VDAC1's critical role in regulating metabolic and energy processes, targeting it offers a promising strategy for anti-cancer therapy. We also highlight the role of VDAC1 expression in various disease pathologies, including cardiovascular, neurodegenerative, and viral and bacterial infections, as explored through siRNA targeting VDAC1. Thus, this review underscores the potential of targeting VDAC1 as a strategy for addressing high-energy-demand cancers. By thoroughly understanding VDAC1's diverse roles in metabolism, energy regulation, mitochondrial functions, and other cellular processes, silencing VDAC1 emerges as a novel and strategic approach to combat cancer.
Collapse
Affiliation(s)
- Tasleem Arif
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Varda Shoshan-Barmatz
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
6
|
Capodici A, Mocciaro G, Gori D, Landry MJ, Masini A, Sanmarchi F, Fiore M, Coa AA, Castagna G, Gardner CD, Guaraldi F. Cardiovascular health and cancer risk associated with plant based diets: An umbrella review. PLoS One 2024; 19:e0300711. [PMID: 38748667 PMCID: PMC11095673 DOI: 10.1371/journal.pone.0300711] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/04/2024] [Indexed: 05/19/2024] Open
Abstract
CONTEXT Cardiovascular diseases (CVDs) and cancer are the two main leading causes of death and disability worldwide. Suboptimal diet, poor in vegetables, fruits, legumes and whole grain, and rich in processed and red meat, refined grains, and added sugars, is a primary modifiable risk factor. Based on health, economic and ethical concerns, plant-based diets have progressively widespread worldwide. OBJECTIVE This umbrella review aims at assessing the impact of animal-free and animal-products-free diets (A/APFDs) on the risk factors associated with the development of cardiometabolic diseases, cancer and their related mortalities. DATA SOURCES PubMed and Scopus were searched for reviews, systematic reviews, and meta-analyses published from 1st January 2000 to 31st June 2023, written in English and involving human subjects of all ages. Primary studies and reviews/meta-analyses based on interventional trials which used A/APFDs as a therapy for people with metabolic diseases were excluded. DATA EXTRACTION The umbrella review approach was applied for data extraction and analysis. The revised AMSTAR-R 11-item tool was applied to assess the quality of reviews/meta-analyses. RESULTS Overall, vegetarian and vegan diets are significantly associated with better lipid profile, glycemic control, body weight/BMI, inflammation, and lower risk of ischemic heart disease and cancer. Vegetarian diet is also associated with lower mortality from CVDs. On the other hand, no difference in the risk of developing gestational diabetes and hypertension were reported in pregnant women following vegetarian diets. Study quality was average. A key limitation is represented by the high heterogeneity of the study population in terms of sample size, demography, geographical origin, dietary patterns, and other lifestyle confounders. CONCLUSIONS Plant-based diets appear beneficial in reducing cardiometabolic risk factors, as well as CVDs, cancer risk and mortality. However, caution should be paid before broadly suggesting the adoption of A/AFPDs since the strength-of-evidence of study results is significantly limited by the large study heterogeneity alongside the potential risks associated with potentially restrictive regimens.
Collapse
Affiliation(s)
- Angelo Capodici
- Department of Biomedical and Neuromotor Science, Alma Mater Studiorum–University of Bologna, Bologna, Italy
- Interdisciplinary Research Center for Health Science, Sant’Anna School of Advanced Studies, Pisa, Tuscany, Italy
| | - Gabriele Mocciaro
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Davide Gori
- Department of Biomedical and Neuromotor Science, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Matthew J. Landry
- Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Alice Masini
- Department of Translational Medicine, University of Eastern Piedmont, (UNIUPO), Novara, Italy
| | - Francesco Sanmarchi
- Department of Biomedical and Neuromotor Science, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Matteo Fiore
- Department of Biomedical and Neuromotor Science, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Angela Andrea Coa
- Department of Biomedical and Neuromotor Science, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Gisele Castagna
- Department of Biomedical and Neuromotor Science, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Christopher D. Gardner
- Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Federica Guaraldi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma Neurochirurgia Ipofisi—Pituitary Unit, Bologna, Italy
| |
Collapse
|
7
|
Campo C, Gangemi S, Pioggia G, Allegra A. Beneficial Effect of Olive Oil and Its Derivates: Focus on Hematological Neoplasm. Life (Basel) 2024; 14:583. [PMID: 38792604 PMCID: PMC11122568 DOI: 10.3390/life14050583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Olive oil (Olea europaea) is one of the major components of the Mediterranean diet and is composed of a greater percentage of monounsaturated fatty acids, such as oleic acid; polyunsaturated fatty acids, such as linoleic acid; and minor compounds, such as phenolic compounds, and particularly hydroxytyrosol. The latter, in fact, are of greater interest since they have found widespread use in popular medicine. In recent years, it has been documented that phenolic acids and in particular hydroxytyrosol have anti-inflammatory, antioxidant, and antiproliferative action and therefore interest in their possible use in clinical practice and in particular in neoplasms, both solid and hematological, has arisen. This work aims to summarize and analyze the studies present in the literature, both in vitro and in vivo, on the possible use of minor components of olive oil in some hematological neoplasms. In recent years, in fact, interest in nutraceutical science has expanded as a possible adjuvant in the treatment of neoplastic pathologies. Although it is worth underlining that, regarding the object of our study, there are still few preclinical and clinical studies, it is, however, possible to document a role of possible interest in clinical practice.
Collapse
Affiliation(s)
- Chiara Campo
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 9815 Messina, Italy;
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98158 Messina, Italy;
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 9815 Messina, Italy;
| |
Collapse
|
8
|
Wang H, Wang WH, Wang W, Ma JH, Su XQ, Zhang LL, Hou YL, Liu JB, Ren JJ, Luo XL, Hao M. Folate deficiency promotes cervical squamous carcinoma SiHa cells progression by targeting miR-375/FZD4/β-catenin signaling. J Nutr Biochem 2024; 124:109489. [PMID: 37926400 DOI: 10.1016/j.jnutbio.2023.109489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/07/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
Epidemiological studies suggest an association between folate deficiency (FD) and cervical squamous cell carcinoma (SCC) progression. However, the underlying mechanism is unclear. Our study showed that FD-driven downregulation of miR-375 promoted proliferation of SCC SiHa cells and progression of xenograft tumors developed from SiHa; however, the exact mechanism of this process remained unclear. The current study aimed to elucidate the underlying mechanisms by which FD promotes the progression of SiHa cells by downregulating miR-375 expression. The results showed that miR-375 acted as a suppressor of SCC and inhibited the proliferation, migration, and invasion of SiHa cells. The FZD4 gene was identified as a target gene of miR-375, which can reverse the anti-onco effect of miR-375 and promote the proliferation and migration of SiHa cells. Furthermore, the regulatory effects of miR-375 and FZD4 on SiHa cells may be achieved by activating the β-catenin signaling pathway. Moreover, FD may regulate the expression of miR-375 by regulating its DNA methylation level in the promoter region. In conclusion, our study reveals that FD regulates the miR-375/FZD4 axis by increasing the methylation of the miR-375 promoter, thereby activating β-catenin signaling to promote SiHa cells progression. This study may provide new insights into the role of folic acid in the prevention and treatment of SCC.
Collapse
Affiliation(s)
- Hui Wang
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wen-Hao Wang
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wei Wang
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ji-Hong Ma
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peaking University Third Hospital), Beijing, China; Key Laboratory of Assisted Reproduction (Peaking University), Ministry of Education, Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xiao-Qiang Su
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li-Li Zhang
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yong-Li Hou
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jian-Bing Liu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing-Jing Ren
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiao-Lin Luo
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Min Hao
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
9
|
Singh S. Review on Natural Agents as Aromatase Inhibitors: Management of Breast Cancer. Comb Chem High Throughput Screen 2024; 27:2623-2638. [PMID: 37861041 DOI: 10.2174/0113862073269599231009115338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/16/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023]
Abstract
Breast cancer is a prevalent type of cancer that is typically hormone-dependent, caused by estrogen. Aromatase inhibitors are frequently utilised in the treatment of hormonereceptor- positive breast cancer because they prevent the enzyme aromatase from converting androgens to estrogens. Natural medicines with aromatase inhibitory characteristics have attracted interest as potential alternatives or complementary therapy to manufactured medications. This review discusses the function of natural agents as aromatase inhibitors in treating breast cancer. A variety of natural compounds have been investigated for their capacity to inhibit aromatase activity and lower estrogen levels. These agents include resveratrol from red wine and grapes, curcumin from turmeric extract and green teahigh in catechins, and other flavonoids such as genistein, luteolin and quercetin. It has been demonstrated that by decreasing estrogen synthesis, they can slow the growth of breast cancer cells that are dependent on estrogen. However, the clinical evidence supporting their efficacy and safety in breast cancer treatment is inadequate. More research is required to investigate the therapeutic potential of natural medicines, such as aromatase inhibitors, in treating breast cancer. The clinical trials are required to assess their efficacy, appropriate doses, and potential interactions with other therapies. In conclusion, natural aromatase inhibitory drugs are promising adjuncts in the treatment of hormone receptor-positive breast cancer. Their clinical value and safety profile, however, require additional investigation.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research, GLA University Mathura, U.P: 281406, India
| |
Collapse
|
10
|
Verma R, Rao L, Nagpal D, Yadav M, Kumar M, Mittal V, Kaushik D. Exploring the Prospective of Curcumin-loaded Nanomedicine in Brain Cancer Therapy: An Overview of Recent Updates and Patented Nanoformulations. RECENT PATENTS ON NANOTECHNOLOGY 2024; 18:278-294. [PMID: 37904561 DOI: 10.2174/1872210517666230823155328] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/27/2023] [Accepted: 07/18/2023] [Indexed: 11/01/2023]
Abstract
Cancer is a complex, one of the fatal non-communicable diseases, and its treatment has enormous challenges, with variable efficacy of traditional anti-cancer agents. By 2025, it is expected that 420 million additional cases of cancer will be diagnosed yearly. However, among various types of cancer, brain cancer treatment is most difficult due to the presence of blood-brain barriers. Nowadays, phytoconstituents are gaining popularity because of their biosafety and low toxicity to healthy cells. This article reviews various aspects related to curcumin for brain cancer therapeutics, including epidemiology, the role of nanotechnology, and various challenges for development and clinical trials. Furthermore, it elaborates on the prospects of curcumin for brain cancer therapeutics. In this article, our objective is to illuminate the anti-cancer potential of curcumin for brain cancer therapy. Moreover, it also explores how to defeat its constraints of clinical application because of poor bioavailability, stability, and rapid metabolism. This review also emphasizes the possibility of curcumin for the cure of brain cancer using cuttingedge biotechnological methods based on nanomedicine. This review further highlights the recent patents on curcumin-loaded nanoformulations for brain cancer. Overall, this article provides an overview of curcumin's potential in brain cancer therapy by considering challenges to be overwhelmed and future prospective. Moreover, this review summarizes the reported literature on the latest research related to the utility of curcumin in brain cancer therapy and aims to provide a reference for advanced investigation on brain cancer treatment.
Collapse
Affiliation(s)
- Ravinder Verma
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, 127021, India
| | - Lakshita Rao
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, India
| | - Diksha Nagpal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Manish Yadav
- Department of Pharmacy, G.D. Goenka University, Sohna Road, Gurugram, 122103, India
| | - Manish Kumar
- School of Pharmaceutical Sciences, CT University, Ludhiana, 142024, Punjab, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| |
Collapse
|
11
|
Ratre P, Chauhan P, Bhargava A, Tiwari R, Thareja S, Srivastava RK, Mishra PK. Nano-engineered vitamins as a potential epigenetic modifier against environmental air pollutants. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:547-564. [PMID: 35724323 DOI: 10.1515/reveh-2022-0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Air pollution has emerged as a serious threat to human health due to close association with spectrum of chronic ailments including cardiovascular disorders, respiratory diseases, nervous system dysfunctions, diabetes and cancer. Exposure to air-borne pollutants along with poor eating behaviours and inferior dietary quality irreversibly impacts epigenomic landscape, leading to aberrant transcriptional control of gene expression which is central to patho-physiology of non-communicable diseases. It is assumed that nutriepigenomic interventions such as vitamins can control such adverse effects through their immediate action on mitochondrial epigenomic-axis. Importantly, the exhaustive clinical utility of vitamins-interceded epigenetic synchronization is not well characterized. Therefore, improving the current limitations linked to stability and bioavailability issues in vitamin formulations is highly warranted. The present review not only sums up the available data on the role of vitamins as potential epigenetic modifiers but also discusses the importance of nano-engineered vitamins as potential epidrugs for dietary and pharmacological intervention to mitigate the long-term effects of air pollution toxicity.
Collapse
Affiliation(s)
- Pooja Ratre
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Prachi Chauhan
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | | | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| |
Collapse
|
12
|
Ge X, Sun Y, Kong J, Mao M, Yu H, Arora A, Suppavorasatit I, Wang Y. The thermal resistance and targeting release of zein-sodium alginate binary complexes as a vehicle for the oral delivery of riboflavin. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:92-102. [PMID: 36618050 PMCID: PMC9813308 DOI: 10.1007/s13197-022-05591-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 01/11/2023]
Abstract
Riboflavin (RF) is one kind of vitamin B, which has low bioavailability due to the low water solubility and the high photosensitivity during food processing and storage. The anti-solvent precipitation method was applied to fabricate a zein-sodium alginate (SA) binary complexes delivery system with the loading of RF, which was aimed to enhance the delivery efficiency, stability, and controlled release of RF in the gastrointestinal (GI) tract. The formation mechanism, physicochemical properties as well as the digestion behaviors were investigated. The incorporation of SA significantly increased the diameter and decreased the surface positive charge of the nanoparticles. The surface morphology of the nanoparticles was characterized using the scanning electron microscope. The FTIR analysis revealed that the electrostatic attraction was the dominant binding force in the formation of the zein-SA binary complexes nanoparticles. In addition, the study on the in vitro release process showed that the zein-SA nanoparticles could delay the release of the RF under the simulated GI tract conditions, which improved their oral bioavailability. In summary, the zein-SA nanoparticle is an effective vehicle for the oral delivery of RF as well as other vitamins and bioactives in the applications of food and nutrition.
Collapse
Affiliation(s)
- Xiaohan Ge
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058 China
| | - Yuting Sun
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058 China
| | - Jianglong Kong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058 China
| | - Meiru Mao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058 China
| | - Hongrui Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058 China
| | - Amit Arora
- Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| | - Inthawoot Suppavorasatit
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Phayatai Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand
| | - Yi Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058 China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100 China
| |
Collapse
|
13
|
Agaj A, Peršurić Ž, Pavelić SK. Mediterranean Food Industry By-Products as a Novel Source of Phytochemicals with a Promising Role in Cancer Prevention. Molecules 2022; 27:8655. [PMID: 36557789 PMCID: PMC9784942 DOI: 10.3390/molecules27248655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
The Mediterranean diet is recognized as a sustainable dietary approach with beneficial health effects. This is highly relevant, although the production of typical Mediterranean food, i.e., olive oil or wine, processed tomatoes and pomegranate products, generates significant amounts of waste. Ideally, this waste should be disposed in an appropriate, eco-friendly way. A number of scientific papers were published recently showing that these by-products can be exploited as a valuable source of biologically active components with health benefits, including anticancer effects. In this review, accordingly, we elaborate on such phytochemicals recovered from the food waste generated during the processing of vegetables and fruits, typical of the Mediterranean diet, with a focus on substances with anticancer activity. The molecular mechanisms of these phytochemicals, which might be included in supporting treatment and prevention of various types of cancer, are presented. The use of bioactive components from food waste may improve the economic feasibility and sustainability of the food processing industry in the Mediterranean region and can provide a new strategy to approach prevention of cancer.
Collapse
Affiliation(s)
- Andrea Agaj
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| | - Željka Peršurić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia
| | - Sandra Kraljević Pavelić
- Faculty of Health Studies, University of Rijeka, Ul. Viktora cara Emina 5, 51000 Rijeka, Croatia
| |
Collapse
|
14
|
Curcumin: An epigenetic regulator and its application in cancer. Biomed Pharmacother 2022; 156:113956. [DOI: 10.1016/j.biopha.2022.113956] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
|
15
|
Gianfredi V, Ferrara P, Dinu M, Nardi M, Nucci D. Diets, Dietary Patterns, Single Foods and Pancreatic Cancer Risk: An Umbrella Review of Meta-Analyses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14787. [PMID: 36429506 PMCID: PMC9691178 DOI: 10.3390/ijerph192214787] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Pancreatic cancer (PC) represents the third leading cause of cancer death in 2020. Despite the fact that, in 2018, the World Cancer Research Fund report concluded that there is still a lack of evidence on the role of foods or diets and risk for PC, a flourishing body of evidence has been published and needs to be analyzed. For this reason, we conducted an umbrella review on the association between different dietary patterns/food components and PC. Data sources PubMed/MEDLINE, Scopus, Web of Science, EMBASE, and the Cochrane Collaboration were searched. The Joanna Briggs Institute Umbrella Review Methodology was used. The protocol was registered in PROSPERO. A total of 23 articles were included, covering a wide range of dietary patterns/food components: healthy/prudent dietary patterns (n = 4), Mediterranean diets (MedDiet) (n = 1), plant-based diets (n = 2), the Dietary Inflammatory Index (DII) (n = 2), western diets (n = 2), and, lastly, unhealthy diets (n = 2). Regarding dietary components, the following were assessed: total fruit (n = 2), citrus fruit (n = 1), total vegetables (n = 2), cruciferous vegetables (n = 1), red meat (n = 6), processed meat (n = 4), poultry (n = 2), eggs (n = 1), fish (n = 5), whole grain (n = 2), potato (n = 1), and nuts (n = 2). The methodological quality of the included meta-analyses was generally low or critically low. Although the strength of evidence was generally weak, convincing or suggestive evidence was found for a healthy/prudent, plant-based diet, fruit and vegetables, and lower risk of PC, whereas a high intake of red meat was associated with a higher risk of PC at a convincing level of evidence. Further studies are needed to confirm the role of the other dietary patterns/food components and the risk of PC.
Collapse
Affiliation(s)
- Vincenza Gianfredi
- Department of Biomedical Sciences for Health, University of Milan, Via Pascal, 36, 20133 Milan, Italy
- CAPHRI Care and Public Health Research Institute, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Pietro Ferrara
- Center for Public Health Research, University of Milan-Bicocca, 20900 Monza, Italy
- IRCCS Istituto Auxologico Italiano, 20145 Milan, Italy
| | - Monica Dinu
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Mariateresa Nardi
- Nutritional Support Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata, 64, 35128 Padua, Italy
| | - Daniele Nucci
- Nutritional Support Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata, 64, 35128 Padua, Italy
| |
Collapse
|
16
|
Erichsen L, Thimm C, Santourlidis S. Methyl Group Metabolism in Differentiation, Aging, and Cancer. Int J Mol Sci 2022; 23:8378. [PMID: 35955511 PMCID: PMC9369357 DOI: 10.3390/ijms23158378] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
Methyl group metabolism belongs to a relatively understudied field of research. Its importance lies in the fact that methyl group metabolic pathways are crucial for the successful conversion of dietary nutrients into the basic building blocks to carry out any cellular methylation reaction. Methyl groups play essential roles in numerous cellular functions such as DNA methylation, nucleotide- and protein biosynthesis. Especially, DNA methylation is responsible for organizing the genome into transcriptionally silent and active regions. Ultimately, it is this proper annotation that determines the quality of expression patterns required to ensure and shape the phenotypic integrity and function of a highly specialized cell type. Life is characterized by constantly changing environmental conditions, which are addressed by changes in DNA methylation. This relationship is increasingly coming into focus as it is of fundamental importance for differentiation, aging, and cancer. The stability and permanence of these metabolic processes, fueling the supplementation of methyl groups, seem to be important criteria to prevent deficiencies and erosion of the methylome. Alterations in the metabolic processes can lead to epigenetic and genetic perturbations, causative for diverse disorders, accelerated aging, and various age-related diseases. In recent decades, the intake of methyl group compounds has changed significantly due to, e.g., environmental pollution and food additives. Based on the current knowledge, this review provides a brief overview of the highly interconnected relationship between nutrition, metabolism, changes in epigenetic modifications, cancer, and aging. One goal is to provide an impetus to additionally investigate changes in DNA methylation as a possible consequence of an impaired methyl group metabolism.
Collapse
Affiliation(s)
- Lars Erichsen
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Chantelle Thimm
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany;
| |
Collapse
|
17
|
Prasad M, Rajagopal P, Devarajan N, Veeraraghavan VP, Palanisamy CP, Cui B, Patil S, Jayaraman S. A comprehensive review on high fat diet-induced diabetes mellitus: An epigenetic view. J Nutr Biochem 2022; 107:109037. [PMID: 35533900 DOI: 10.1016/j.jnutbio.2022.109037] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/08/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
Modern lifestyle, genetics, nutritional overload through high-fat diet attributed prevalence and diabetes outcomes with various complications primarily due to obesity in which energy-dense diets frequently affect metabolic health. One possible issue usually associated with elevated chronic fat intake is insulin resistance, and hyperglycaemia constitutes an important function in altering the carbohydrates and lipids metabolism. Similarly, in assessing human susceptibility to weight gain and obesity, genetic variations play a central role, contributing to keen interest in identifying the possible role of epigenetics as a mediator of gene-environmental interactions influencing the production of type 2 diabetes mellitus and its related concerns. Epigenetic modifications associated with the acceptance of a sedentary lifestyle and environmental stress factors in response to energy intake and expenditure imbalances complement genetic alterations and lead to the production and advancement of metabolic disorders such as diabetes and obesity. Methylation of DNA, histone modifications and increases in the expression of non-coding RNAs can result in reduced transcriptional activity of key β-cell genes thus creating insulin resistance. Epigenetics contribute to changes in the expression of the underlying insulin resistance and insufficiency gene networks, along with low-grade obesity-related inflammation, increased ROS generation and DNA damage in multi organs. This review focused on epigenetic mechanisms and metabolic regulations associated with high fat diet (HFD)-induced diabetes mellitus.
Collapse
Affiliation(s)
- Monisha Prasad
- Centre for Molecular Medicine and diagnostic (CoMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | - Ponnulakshmi Rajagopal
- Central Research Laboratory, Meenakhsi Ammal Dental College and Hospitals, Academy of Higher Education and Research, Chennai, 600 095, India
| | - Nalini Devarajan
- Central Research Laboratory, Meenakhsi Academy of Higher Education and Research, West K.K. Nagar, Chennai, 600 078, India
| | - Vishnu Priya Veeraraghavan
- State Key Laboratory of Biobased Materials and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, China
| | - Chella Perumal Palanisamy
- State Key Laboratory of Biobased Materials and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Materials and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, China
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Saudi Arabia
| | - Selvaraj Jayaraman
- Centre for Molecular Medicine and diagnostic (CoMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India.
| |
Collapse
|
18
|
Pathak K, Pathak MP, Saikia R, Gogoi U, Sahariah JJ, Zothantluanga JH, Samanta A, Das A. Cancer Chemotherapy via Natural Bioactive Compounds. Curr Drug Discov Technol 2022; 19:e310322202888. [PMID: 35362385 DOI: 10.2174/1570163819666220331095744] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/29/2021] [Accepted: 12/17/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Cancer-induced mortality is increasingly prevalent globally which skyrocketed the necessity to discover new/novel safe and effective anticancer drugs. Cancer is characterized by the continuous multiplication of cells in the human which is unable to control. Scientific research is drawing its attention towards naturally-derived bioactive compounds as they have fewer side effects compared to the current synthetic drugs used for chemotherapy. OBJECTIVE Drugs isolated from natural sources and their role in the manipulation of epigenetic markers in cancer are discussed briefly in this review article. METHODS With advancing medicinal plant biotechnology and microbiology in the past century, several anticancer phytomedicines were developed. Modern pharmacopeia contains at least 25% herbal-based remedy including clinically used anticancer drugs. These drugs mainly include the podophyllotoxin derivatives vinca alkaloids, curcumin, mistletoe plant extracts, taxanes, camptothecin, combretastatin, and others including colchicine, artesunate, homoharringtonine, ellipticine, roscovitine, maytanasin, tapsigargin,andbruceantin. RESULTS Compounds (psammaplin, didemnin, dolastin, ecteinascidin,and halichondrin) isolated from marine sources and animals such as microalgae, cyanobacteria, heterotrophic bacteria, invertebrates. They have been evaluated for their anticancer activity on cells and experimental animal models and used chemotherapy.Drug induced manipulation of epigenetic markers plays an important role in the treatment of cancer. CONCLUSION The development of a new drug from isolated bioactive compounds of plant sources has been a feasible way to lower the toxicity and increase their effectiveness against cancer. Potential anticancer therapeutic leads obtained from various ethnomedicinal plants, foods, marine, and microorganisms are showing effective yet realistically safe pharmacological activity. This review will highlight important plant-based bioactive compounds like curcumin, stilbenes, terpenes, other polyphenolic phyto-compounds, and structurally related families that are used to prevent/ ameliorate cancer. However, a contribution from all possible fields of science is still a prerequisite for discovering safe and effective anticancer drugs.
Collapse
Affiliation(s)
- Kalyani Pathak
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| | - Manash Pratim Pathak
- Faculty of Pharmaceutical Sciences, Assam down town University, Panikhaiti, Guwahati-781026, Assam, India
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| | - Jon Jyoti Sahariah
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| | - James H Zothantluanga
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| | - Abhishek Samanta
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| | - Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| |
Collapse
|
19
|
Chakraborty A, Ghosh S, Biswas B, Pramanik S, Nriagu J, Bhowmick S. Epigenetic modifications from arsenic exposure: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151218. [PMID: 34717984 DOI: 10.1016/j.scitotenv.2021.151218] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Arsenic is a notorious element with the potential to harm exposed individuals in ways that include cancerous and non-cancerous health complications. Millions of people across the globe (especially in South and Southeast Asian countries including China, Vietnam, India and Bangladesh) are currently being unknowingly exposed to precarious levels of arsenic. Among the diverse effects associated with such arsenic levels of exposure is the propensity to alter the epigenome. Although a large volume of literature exists on arsenic-induced genotoxicity, cytotoxicity, and inter-individual susceptibility due to active research on these subject areas from the last millennial, it is only recently that attention has turned on the ramifications and mechanisms of arsenic-induced epigenetic changes. The present review summarizes the possible mechanisms involved in arsenic induced epigenetic alterations. It focuses on the mechanisms underlying epigenome reprogramming from arsenic exposure that result in improper cell signaling and dysfunction of various epigenetic components. The mechanistic information articulated from the review is used to propose a number of novel therapeutic strategies with a potential for ameliorating the burden of worldwide arsenic poisoning.
Collapse
Affiliation(s)
- Arijit Chakraborty
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Soma Ghosh
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Bratisha Biswas
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Sreemanta Pramanik
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Jerome Nriagu
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 109 Observatory Street, Ann Arbor, MI 48109-2029, USA
| | - Subhamoy Bhowmick
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
20
|
Zhang W, Cui N, Ye J, Yang B, Sun Y, Kuang H. Curcumin's prevention of inflammation-driven early gastric cancer and its molecular mechanism. CHINESE HERBAL MEDICINES 2022; 14:244-253. [PMID: 36117672 PMCID: PMC9476644 DOI: 10.1016/j.chmed.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/29/2021] [Accepted: 11/27/2021] [Indexed: 02/07/2023] Open
|
21
|
Ashraf W, Ahmad T, Almalki NAR, Krifa M, Zaayter L, Pizzi A, Muller CD, Hamiche A, Mély Y, Bronner C, Mousli M. Tannin extract from maritime pine bark exhibits anticancer properties by targeting the epigenetic UHRF1/DNMT1 tandem leading to the re-expression of TP73. Food Funct 2022; 13:316-326. [PMID: 34897340 DOI: 10.1039/d1fo01484f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Maritime pine bark is a rich source of polyphenolic compounds and is commonly employed as a herbal supplement worldwide. This study was designed to check the potential of maritime pine tannin extract (MPTE) in anticancer therapy and to determine the underlying mechanism of action. Our results showed that MPTE, containing procyanidin oligomers and lanostane type terpenoids, has an inhibitory effect on cancer cell proliferation through cell cycle arrest in the G2/M phase. Treatment with MPTE also induced apoptosis in a concentration-dependent manner in human cancer cell lines (HeLa and U2OS), as evidenced by the enhanced activation of caspase 3 and the cleavage of PARP along with the downregulation of the antiapoptotic protein Bcl-2. Interestingly, human non-cancerous fibroblasts are much less sensitive to MPTE, suggesting that it preferentially targets cancer cells. MPTE played a pro-oxidant role in cancer cells and promoted the expression of the p73 tumor suppressor gene in p53-deficient cells. It also downregulated the protooncogenic proteins UHRF1 and DNMT1, mediators of the DNA methylation machinery, and reduced the global methylation levels in HeLa cells. Overall, our results show that maritime pine tannin extract can play a favorable role in cancer treatment, and can be further explored by the pharmaceutical industry.
Collapse
Affiliation(s)
- Waseem Ashraf
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France. .,Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Tanveer Ahmad
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| | - Naif A R Almalki
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg, Equipe labellisée Ligue contre le Cancer, Illkirch, France
| | - Mounira Krifa
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France. .,Unit of Bioactive and Natural Substances and Biotechnology UR17ES49, Faculty of Dental Medicine, University of Monastir, Monastir, Tunisia
| | - Liliyana Zaayter
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| | | | - Christian D Muller
- Institut Pluridisciplinaire Hubert Curien, UMR 7178 CNRS Université de Strasbourg, Illkirch, France
| | - Ali Hamiche
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg, Equipe labellisée Ligue contre le Cancer, Illkirch, France
| | - Yves Mély
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| | - Christian Bronner
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg, Equipe labellisée Ligue contre le Cancer, Illkirch, France
| | - Marc Mousli
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| |
Collapse
|
22
|
Siddique A, Tayyaba T, Imran M, Rahman A. Biotechnology applications in precision food. BIOTECHNOLOGY IN HEALTHCARE 2022:197-222. [DOI: 10.1016/b978-0-323-90042-3.00013-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
23
|
Mishra P, Beura S, Ghosh R, Modak R. Nutritional Epigenetics: How Metabolism Epigenetically Controls Cellular Physiology, Gene Expression and Disease. Subcell Biochem 2022; 100:239-267. [PMID: 36301497 DOI: 10.1007/978-3-031-07634-3_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The regulation of gene expression is a dynamic process that is influenced by both internal and external factors. Alteration in the epigenetic profile is a key mechanism in the regulation process. Epigenetic regulators, such as enzymes and proteins involved in posttranslational modification (PTM), use different cofactors and substrates derived from dietary sources. For example, glucose metabolism provides acetyl CoA, S-adenosylmethionine (SAM), α- ketoglutarate, uridine diphosphate (UDP)-glucose, adenosine triphosphate (ATP), nicotinamide adenine dinucleotide (NAD+), and fatty acid desaturase (FAD), which are utilized by chromatin-modifying enzymes in many intermediary metabolic pathways. Any alteration in the metabolic status of the cell results in the alteration of these metabolites, which causes dysregulation in the activity of chromatin regulators, resulting in the alteration of the epigenetic profile. Such long-term or repeated alteration of epigenetic profile can lead to several diseases, like cancer, insulin resistance and diabetes, cognitive impairment, neurodegenerative disease, and metabolic syndromes. Here we discuss the functions of key nutrients that contribute to epigenetic regulation and their role in pathophysiological conditions.
Collapse
Affiliation(s)
- Pragyan Mishra
- Infection and Epigenetics Group, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Shibangini Beura
- Infection and Epigenetics Group, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Ritu Ghosh
- Infection and Epigenetics Group, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Rahul Modak
- Infection and Epigenetics Group, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India.
| |
Collapse
|
24
|
Dietary Phytoestrogens and Their Metabolites as Epigenetic Modulators with Impact on Human Health. Antioxidants (Basel) 2021; 10:antiox10121893. [PMID: 34942997 PMCID: PMC8750933 DOI: 10.3390/antiox10121893] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
The impact of dietary phytoestrogens on human health has been a topic of continuous debate since their discovery. Nowadays, based on their presumptive beneficial effects, the amount of phytoestrogens consumed in the daily diet has increased considerably worldwide. Thus, there is a growing need for scientific data regarding their mode of action in the human body. Recently, new insights of phytoestrogens’ bioavailability and metabolism have demonstrated an inter-and intra-population heterogeneity of final metabolites’ production. In addition, the phytoestrogens may have the ability to modulate epigenetic mechanisms that control gene expression. This review highlights the complexity and particularity of the metabolism of each class of phytoestrogens, pointing out the diversity of their bioactive gut metabolites. Futhermore, it presents emerging scientific data which suggest that, among well-known genistein and resveratrol, other phytoestrogens and their gut metabolites can act as epigenetic modulators with a possible impact on human health. The interconnection of dietary phytoestrogens’ consumption with gut microbiota composition, epigenome and related preventive mechanisms is discussed. The current challenges and future perspectives in designing relevant research directions to explore the potential health benefits of dietary phytoestrogens are also explored.
Collapse
|
25
|
Homayoonfal M, Asemi Z, Yousefi B. Targeting microRNAs with thymoquinone: a new approach for cancer therapy. Cell Mol Biol Lett 2021; 26:43. [PMID: 34627167 PMCID: PMC8502376 DOI: 10.1186/s11658-021-00286-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/27/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer is a global disease involving transformation of normal cells into tumor types via numerous mechanisms, with mortality among all generations, in spite of the breakthroughs in chemotherapy, radiotherapy and/or surgery for cancer treatment. Since one in six deaths is due to cancer, it is one of the overriding priorities of world health. Recently, bioactive natural compounds have been widely recognized due to their therapeutic effects for treatment of various chronic disorders, notably cancer. Thymoquinone (TQ), the most valuable constituent of black cumin seeds, has shown anti-cancer characteristics in a wide range of animal models. The revolutionary findings have revealed TQ's ability to regulate microRNA (miRNA) expression, offering a promising approach for cancer therapy. MiRNAs are small noncoding RNAs that modulate gene expression by means of variation in features of mRNA. MiRNAs manage several biological processes including gene expression and cellular signaling pathways. Accordingly, miRNAs can be considered as hallmarks for cancer diagnosis, prognosis and therapy. The purpose of this study was to review the various molecular mechanisms by which TQ exerts its potential as an anti-cancer agent through modulating miRNAs.
Collapse
Affiliation(s)
- Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Badary OA, Hamza MS, Tikamdas R. Thymoquinone: A Promising Natural Compound with Potential Benefits for COVID-19 Prevention and Cure. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1819-1833. [PMID: 33976534 PMCID: PMC8106451 DOI: 10.2147/dddt.s308863] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022]
Abstract
COVID-19 has caused a major global health crisis, as excessive inflammation, oxidation, and exaggerated immune response in some sufferers can lead to a condition known as cytokine storm, which may progress to acute respiratory distress syndrome (ARDs), which can be fatal. So far, few effective drugs have emerged to assist in the treatment of patients with COVID-19, though some herbal medicine candidates may assist in the fight against COVID-19 deaths. Thymoquinone (TQ), the main active ingredient of black seed oil, possesses antioxidant, anti-inflammatory, antiviral, antimicrobial, immunomodulatory and anticoagulant activities. TQ also increases the activity and number of cytokine suppressors, lymphocytes, natural killer cells, and macrophages, and it has demonstrated antiviral potential against a number of viruses, including murine cytomegalovirus, Epstein-Barr virus, hepatitis C virus, human immunodeficiency virus, and other coronaviruses. Recently, TQ has demonstrated notable antiviral activity against a SARSCoV-2 strain isolated from Egyptian patients and, interestingly, molecular docking studies have also shown that TQ could potentially inhibit COVID-19 development through binding to the receptor-binding domain on the spike and envelope proteins of SARS-CoV-2, which may hinder virus entry into the host cell and inhibit its ion channel and pore forming activity. Other studies have shown that TQ may have an inhibitory effect on SARS CoV2 proteases, which could diminish viral replication, and it has also demonstrated good antagonism to angiotensin-converting enzyme 2 receptors, allowing it to interfere with virus uptake into the host cell. Several studies have also noted its potential protective capability against numerous chronic diseases and conditions, including diabetes, hypertension, dyslipidemia, asthma, renal dysfunction and malignancy. TQ has recently been tested in clinical trials for the treatment of several different diseases, and this review thus aims to highlight the potential therapeutic effects of TQ in the context of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Osama A Badary
- Clinical Pharmacy Practice Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.,Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Marwa S Hamza
- Clinical Pharmacy Practice Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Rajiv Tikamdas
- Clinical Pharmacy Practice Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| |
Collapse
|
27
|
Huang X, Dong YL, Li T, Xiong W, Zhang X, Wang PJ, Huang JQ. Dietary Selenium Regulates microRNAs in Metabolic Disease: Recent Progress. Nutrients 2021; 13:1527. [PMID: 34062793 PMCID: PMC8147315 DOI: 10.3390/nu13051527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 02/01/2023] Open
Abstract
Selenium (Se) is an essential element for the maintenance of a healthy physiological state. However, due to environmental and dietary factors and the narrow safety range of Se, diseases caused by Se deficiency or excess have gained considerable traction in recent years. In particular, links have been identified between low Se status, cognitive decline, immune disorders, and increased mortality, whereas excess Se increases metabolic risk. Considerable evidence has suggested microRNAs (miRNAs) regulate interactions between the environment (including the diet) and genes, and play important roles in several diseases, including cancer. MiRNAs target messenger RNAs to induce changes in proteins including selenoprotein expression, ultimately generating disease. While a plethora of data exists on the epigenetic regulation of other dietary factors, nutrient Se epigenetics and especially miRNA regulated mechanisms remain unclear. Thus, this review mainly focuses on Se metabolism, pathogenic mechanisms, and miRNAs as key regulatory factors in Se-related diseases. Finally, we attempt to clarify the regulatory mechanisms underpinning Se, miRNAs, selenoproteins, and Se-related diseases.
Collapse
Affiliation(s)
- Xin Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.H.); (Y.-L.D.); (T.L.); (W.X.); (X.Z.); (P.-J.W.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Yu-Lan Dong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.H.); (Y.-L.D.); (T.L.); (W.X.); (X.Z.); (P.-J.W.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Tong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.H.); (Y.-L.D.); (T.L.); (W.X.); (X.Z.); (P.-J.W.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Wei Xiong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.H.); (Y.-L.D.); (T.L.); (W.X.); (X.Z.); (P.-J.W.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xu Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.H.); (Y.-L.D.); (T.L.); (W.X.); (X.Z.); (P.-J.W.)
| | - Peng-Jie Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.H.); (Y.-L.D.); (T.L.); (W.X.); (X.Z.); (P.-J.W.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Jia-Qiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.H.); (Y.-L.D.); (T.L.); (W.X.); (X.Z.); (P.-J.W.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China
| |
Collapse
|
28
|
Grady WM. Epigenetic alterations in the gastrointestinal tract: Current and emerging use for biomarkers of cancer. Adv Cancer Res 2021; 151:425-468. [PMID: 34148620 DOI: 10.1016/bs.acr.2021.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Colorectal cancer is a leading cause of cancer related deaths worldwide. One of the hallmarks of cancer and a fundamental trait of virtually all gastrointestinal cancers is genomic and epigenomic DNA alterations. Cancer cells acquire genetic and epigenetic alterations that drive the initiation and progression of the cancers by altering the molecular and cell biological process of the cells. These alterations, as well as other host and microenvironment factors, ultimately mediate the initiation and progression of cancers, including colorectal cancer. Epigenetic alterations, which include changes affecting DNA methylation, histone modifications, chromatin structure, and noncoding RNA expression, have emerged as a major class of molecular alteration in colon polyps and colorectal cancer. The classes of epigenetic alterations, their status in colorectal polyps and cancer, their effects on neoplasm biology, and their application to clinical care will be discussed.
Collapse
Affiliation(s)
- William M Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States; Division of Gastroenterology, University of Washington School of Medicine, Seattle, WA, United States.
| |
Collapse
|
29
|
Shteinfer-Kuzmine A, Verma A, Arif T, Aizenberg O, Paul A, Shoshan-Barmaz V. Mitochondria and nucleus cross-talk: Signaling in metabolism, apoptosis, and differentiation, and function in cancer. IUBMB Life 2021; 73:492-510. [PMID: 33179373 DOI: 10.1002/iub.2407] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022]
Abstract
The cross-talk between the mitochondrion and the nucleus regulates cellular functions, including differentiation and adaptation to stress. Mitochondria supply metabolites for epigenetic modifications and other nuclear-associated activities and certain mitochondrial proteins were found in the nucleus. The voltage-dependent anion channel 1 (VDAC1), localized at the outer mitochondrial membrane (OMM) is a central protein in controlling energy production, cell growth, Ca2+ homeostasis, and apoptosis. To alter the cross-talk between the mitochondria and the nucleus, we used specific siRNA to silence the expression of VDAC1 in glioblastoma (GBM) U87-MG and U118-MG cell-derived tumors, and then monitored the nuclear localization of mitochondrial proteins and the methylation and acetylation of histones. Depletion of VDAC1 from tumor cells reduced metabolism, leading to inhibition of tumor growth, and several tumor-associated processes and signaling pathways linked to cancer development. In addition, we demonstrate that certain mitochondrial pro-apoptotic proteins such as caspases 3, 8, and 9, and p53 were unexpectedly overexpressed in tumors, suggesting that they possess additional non-apoptotic functions. VDAC1 depletion and metabolic reprograming altered their expression levels and subcellular localization, specifically their translocation to the nucleus. In addition, VDAC1 depletion also leads to epigenetic modifications of histone acetylation and methylation, suggesting that the interchange between metabolism and cancer signaling pathways involves mitochondria-nucleus cross-talk. The mechanisms regulating mitochondrial protein trafficking into and out of the nucleus and the role these proteins play in the nucleus remain to be elucidated.
Collapse
Affiliation(s)
- Anna Shteinfer-Kuzmine
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Beersheba, Israel
| | - Ankit Verma
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Beersheba, Israel
| | - Tasleem Arif
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Beersheba, Israel
- Department of Cell, Developmental, & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Or Aizenberg
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Beersheba, Israel
| | - Avijit Paul
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Beersheba, Israel
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Varda Shoshan-Barmaz
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Beersheba, Israel
| |
Collapse
|
30
|
Curcumin from Turmeric Rhizome: A Potential Modulator of DNA Methylation Machinery in Breast Cancer Inhibition. Nutrients 2021; 13:nu13020332. [PMID: 33498667 PMCID: PMC7910847 DOI: 10.3390/nu13020332] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
One of the most systematically studied bioactive nutraceuticals for its benefits in the management of various diseases is the turmeric-derived compounds: curcumin. Turmeric obtained from the rhizome of a perennial herb Curcuma longa L. is a condiment commonly used in our diet. Curcumin is well known for its potential role in inhibiting cancer by targeting epigenetic machinery, with DNA methylation at the forefront. The dynamic DNA methylation processes serve as an adaptive mechanism to a wide variety of environmental factors, including diet. Every healthy tissue has a precise DNA methylation pattern that changes during cancer development, forming a cancer-specific design. Hypermethylation of tumor suppressor genes, global DNA demethylation, and promoter hypomethylation of oncogenes and prometastatic genes are hallmarks of nearly all types of cancer, including breast cancer. Curcumin has been shown to modulate epigenetic events that are dysregulated in cancer cells and possess the potential to prevent cancer or enhance the effects of conventional anti-cancer therapy. Although mechanisms underlying curcumin-mediated changes in the epigenome remain to be fully elucidated, the mode of action targeting both hypermethylated and hypomethylated genes in cancer is promising for cancer chemoprevention. This review provides a comprehensive discussion of potential epigenetic mechanisms of curcumin in reversing altered patterns of DNA methylation in breast cancer that is the most commonly diagnosed cancer and the leading cause of cancer death among females worldwide. Insight into the other bioactive components of turmeric rhizome as potential epigenetic modifiers has been indicated as well.
Collapse
|
31
|
Wang S, Maxwell CA, Akella NM. Diet as a Potential Moderator for Genome Stability and Immune Response in Pediatric Leukemia. Cancers (Basel) 2021; 13:cancers13030413. [PMID: 33499176 PMCID: PMC7865408 DOI: 10.3390/cancers13030413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Pediatric acute lymphoblastic leukemia (ALL) is the most prevalent cancer affecting children in developed societies. Here, we review the role of diet in control of the incidence and progression of childhood ALL. Prenatally, ALL risk is associated with higher birthweights of newborns, suggesting that ALL begins to evolve in-utero. Indeed, maternal diet influences the fetal genome and immune development. Postnatally, breastfeeding associates with decreased risk of ALL development. Finally, for the ALL-affected child, certain dietary regimens that impact the hormonal environment may impede disease progression. Improved understanding of the dietary regulation of hormones and immunity may inform better approaches to predict, protect, and ultimately save children afflicted with pediatric leukemia. Abstract Pediatric leukemias are the most prevalent cancers affecting children in developed societies, with childhood acute lymphoblastic leukemia (ALL) being the most common subtype. As diet is a likely modulator of many diseases, this review focuses on the potential for diet to influence the incidence and progression of childhood ALL. In particular, the potential effect of diets on genome stability and immunity during the prenatal and postnatal stages of early childhood development are discussed. Maternal diet plays an integral role in shaping the bodily composition of the newborn, and thus may influence fetal genome stability and immune system development. Indeed, higher birth weights of newborns are associated with increased risk of ALL, which suggests in-utero biology may shape the evolution of preleukemic clones. Postnatally, the ingestion of maternal breastmilk both nourishes the infant, and provides essential components that strengthen and educate the developing immune system. Consistently, breast-feeding associates with decreased risk of ALL development. For children already suffering from ALL, certain dietary regimens have been proposed. These regimens, which have been validated in both animals and humans, alter the internal hormonal environment. Thus, hormonal regulation by diet may shape childhood metabolism and immunity in a manner that is detrimental to the evolution or expansion of preleukemic and leukemic ALL clones.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6H 3V4, Canada;
| | - Christopher A. Maxwell
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6H 3V4, Canada;
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital, Vancouver, BC V5Z 4H4, Canada
- Correspondence: (C.A.M.); (N.M.A.)
| | - Neha M. Akella
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6H 3V4, Canada;
- Correspondence: (C.A.M.); (N.M.A.)
| |
Collapse
|
32
|
S N Chaitanya N, Devi A, Sahu S, Alugoju P. Molecular mechanisms of action of Trehalose in cancer: A comprehensive review. Life Sci 2021; 269:118968. [PMID: 33417959 DOI: 10.1016/j.lfs.2020.118968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023]
Abstract
Cellular homeostasis maintained by several cellular processes such as autophagy, apoptosis, inflammation, oxidative stress, aging, and neurodegeneration, contribute to cell growth and development. Cancer cells undergo aberrant changes from a normal cell that show abnormal behaviour such as reduced apoptosis and autophagy, increased oxidative stress and inflammation. Various pharmacological and genetic inhibitors have been reported as drug candidates to control cancer cells, but the use of natural molecules as anti-cancer agents are limited. There is an emerging need for the development of alternative natural therapeutic agents that maintain cellular homeostasis without affecting cell viability and physiology. This review highlights the multifunctional roles of Trehalose, a natural disaccharide that can target various cellular processes in the cancer. Trehalose possessing an antioxidant activity also has effect on cancer, which is explained through targeting cell progression, angiogenesis and metastasis pathways at molecular level targeting EGFR, PI3K, Akt, VEGF and MMP 9 proteins inside the cell.
Collapse
Affiliation(s)
- Nyshadham S N Chaitanya
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Telangana State 500046, India
| | - Arpita Devi
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Sibani Sahu
- Department of Human Genetics, Andhra University, Visakhapatnam, Andhra Pradesh 530001, India
| | - Phaniendra Alugoju
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
33
|
Gamma-tocotrienol modifies methylation of HOXA10, IRF4 and RORα genes in CD4+ T-lymphocytes: Evidence from a syngeneic mouse model of breast cancer. CURRENT RESEARCH IN IMMUNOLOGY 2021; 2:169-174. [PMID: 35492388 PMCID: PMC9040081 DOI: 10.1016/j.crimmu.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/22/2021] [Accepted: 10/03/2021] [Indexed: 11/23/2022] Open
Abstract
DNA methylation plays a crucial role in polarising naïve lymphocytes towards their various sub-populations to fight against many immune challenges including establishment of tumour. Gamma-tocotrienol (γT3) is a natural form of vitamin E, reported to possess anticancer and immunomodulatory effects. This study reports the anticancer effects of γT3 through modulation of DNA methylation in several genes in CD4+ T-lymphocytes using a syngeneic mouse model of breast cancer. Female BALB/c mice were fed with γT3 or vehicle (soy oil) for two-weeks via oral gavage before they were inoculated with 4T1 mouse mammary cancer cells. Supplementation continued until the mice were sacrificed. At autopsy, blood was collected via cardiac puncture and CD4+ T-cells were isolated for DNA extraction. The DNA was analysed using the EpiTech Methyl II mouse T-helper cell differentiation PCR array. γT3 supplementation reduced tumour growth in the tumour-induced animals and modulated host immune system by inducing changes in DNA methylation patterns of the HOXA10, IRF4 and RORα genes, which are involved in differentiation and clonal expansion of CD4+ T-cells. Results suggest that γT3 may enhance cell-mediated immune response in mice with breast cancer by inducing changes in DNA methylation pattern. γT3 supplementation reduced tumour growth in a syngeneic mouse model of breast cancer. Dietary γT3 decreased DNA methylation in Hoxa10 gene in the CD4+ T-cells from tumour-laden mice. Dietary γT3 increased DNA methylation in Irf4 and RORα genes in the CD4+ T-cells from tumour-laden mice.
Collapse
|
34
|
Tang X, Wei Y, Wang J, Chen S, Cai J, Tang J, Xu X, Long B, Yu G, Zhang Z, He M, Qin J. Association between SIRT6 Methylation and Human Longevity in a Chinese Population. Public Health Genomics 2020; 23:190-199. [PMID: 33238266 DOI: 10.1159/000508832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/19/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Sirtuin 6 gene (SIRT6) is a longevity gene that is involved in a variety of metabolic pathways, but the relationship between SIRT6 methylation and longevity has not been clarified. METHODS We conducted a case-control study on 129 residents with a family history of longevity (1 of parents, themselves, or siblings aged ≥90 years) and 86 individuals without a family history of exceptional longevity to identify the association. DNA pyrosequencing was performed to analyze the methylation status of SIRT6 promoter CpG sites. qRT-PCR and ELISA were used to estimate the SIRT6 messenger RNA (mRNA) levels and protein content. Six CpG sites (P1-P6) were identified as methylation variable positions in the SIRT6 promoter region. RESULTS At the P2 and P5 CpG sites, the methylation rates of the longevity group were lower than those of the control group (p < 0.001 and p = 0.009), which might be independent determinants of longevity. The mRNA and protein levels of SIRT6 decreased in the control group (p < 0.0001 and p = 0.038). The mRNA level negatively correlated with the methylation rates at the P2 (rs = -0.173, p = 0.011) and P5 sites (rs = -0.207, p = 0.002). Furthermore, the protein content positively correlated with the methylation rate at the P5 site (rs = 0.136, p = 0.046) but showed no significant correlation with the methylation rate at the P2 site. CONCLUSION The low level of SIRT6 methylation may be a potential protective factor of Chinese longevity.
Collapse
Affiliation(s)
- Xu Tang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China.,Department of General Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Yi Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Jian Wang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Shiyi Chen
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Jiansheng Cai
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Jiexia Tang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xia Xu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Bingshuang Long
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Guoqi Yu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Zhiyong Zhang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China.,Department of Occupational and Environmental Health, School of Public Health, Guilin Medical University, Guilin, China
| | - Min He
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China,
| | - Jian Qin
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China.,The First People's Hospital of Nanning, Nanning, China
| |
Collapse
|
35
|
Shoshan-Barmatz V, Shteinfer-Kuzmine A, Verma A. VDAC1 at the Intersection of Cell Metabolism, Apoptosis, and Diseases. Biomolecules 2020; 10:E1485. [PMID: 33114780 PMCID: PMC7693975 DOI: 10.3390/biom10111485] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/02/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
The voltage-dependent anion channel 1 (VDAC1) protein, is an important regulator of mitochondrial function, and serves as a mitochondrial gatekeeper, with responsibility for cellular fate. In addition to control over energy sources and metabolism, the protein also regulates epigenomic elements and apoptosis via mediating the release of apoptotic proteins from the mitochondria. Apoptotic and pathological conditions, as well as certain viruses, induce cell death by inducing VDAC1 overexpression leading to oligomerization, and the formation of a large channel within the VDAC1 homo-oligomer. This then permits the release of pro-apoptotic proteins from the mitochondria and subsequent apoptosis. Mitochondrial DNA can also be released through this channel, which triggers type-Ι interferon responses. VDAC1 also participates in endoplasmic reticulum (ER)-mitochondria cross-talk, and in the regulation of autophagy, and inflammation. Its location in the outer mitochondrial membrane, makes VDAC1 ideally placed to interact with over 100 proteins, and to orchestrate the interaction of mitochondrial and cellular activities through a number of signaling pathways. Here, we provide insights into the multiple functions of VDAC1 and describe its involvement in several diseases, which demonstrate the potential of this protein as a druggable target in a wide variety of pathologies, including cancer.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (A.S.-K.); (A.V.)
| | | | | |
Collapse
|
36
|
Ziadlou M, Hosseini-Esfahani F, Mozaffari Khosravi H, Hosseinpanah F, Barzin M, Khalaj A, Valizadeh M. Dietary macro- and micro-nutrients intake adequacy at 6th and 12th month post-bariatric surgery. BMC Surg 2020; 20:232. [PMID: 33046020 PMCID: PMC7549200 DOI: 10.1186/s12893-020-00880-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Bariatric surgery (BS) is considered as an effective solution to control morbid obesity. Food restrictions resulting from the operation may decrease dietary nutrient intakes, particularly during the first year after BS. This study mainly aimed to assess the adequacy of dietary nutrient intakes at 6th and 12th month after BS. METHOD Of the severely obese participants in the Tehran obesity treatment study in 2015-2016, 58 patients undergoing Roux-En-Y gastric bypass (N = 16) or sleeve gastrectomy (N = 42) were selected from Tehran Obesity Treatment Center. To assess the patients' dietary intake, a three-day, 24-h dietary recall was obtained on three unscheduled days (two non-consecutive weekdays and one weekend day) at 6th and 12th month after BS. To evaluate the adequacy of nutrient intake, the patients' intakes were compared to the current dietary reference intakes (DRIs), including estimated average requirements (EAR) or Adequate Intakes (AI). RESULTS The mean age of the participants (71% women) undergoing BS was 37 ± 8 years. Anthropometric parameters significantly decreased at the 12th month after BS. The percentage of energy from carbohydrate intake increased significantly between the 6th and 12th month after BS (P = 0.04). The mean ± SD of protein intake was lower than the recommended dosage with a dramatic decrease from 45 ± 30 to 31 ± 15 (g/day) between the two intervals (P = 0.001). The mean intake of saturated fatty acid (SFA) decreased dramatically (P < 0.001) from 6 to 12 month; however, the median intake of n3-polyunsaturated fatty acid (n3-PUFA) intake increased (P = 0.02). None of the participants showed nutrient intake adequacy in terms of biotin, fat soluble vitamins, pantothenic acid, potassium, and zinc. Moreover, less than 10% of the participants showed nutrient intake adequacy in terms of folate, magnesium, manganese, and calcium according to DRIs during the both intervals after BS. CONCLUSION Bariatric surgery can reduce dietary intakes, which is more obvious 12 months after the surgery. Out of 21 micronutrients, nearly all could not met the EAR and were received < 50%, also had significant reduction from the 6th to12th month after surgery.
Collapse
Affiliation(s)
- Maryam Ziadlou
- International Campus of Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Firoozeh Hosseini-Esfahani
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Hassan Mozaffari Khosravi
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farhad Hosseinpanah
- Obesity Research Center, Research Institute for Endocrine Science, Shahid Beheshti University of Medical Sciences, Tehran, IR, Iran
| | - Maryam Barzin
- Obesity Research Center, Research Institute for Endocrine Science, Shahid Beheshti University of Medical Sciences, Tehran, IR, Iran
| | - Alireza Khalaj
- Obesity Treatment Center, Department of Surgery, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Majid Valizadeh
- Obesity Research Center, Research Institute for Endocrine Science, Shahid Beheshti University of Medical Sciences, Tehran, IR, Iran.
| |
Collapse
|
37
|
Hurtado-Lorenzo A, Honig G, Heller C. Precision Nutrition Initiative: Toward Personalized Diet Recommendations for Patients With Inflammatory Bowel Diseases. CROHN'S & COLITIS 360 2020; 2:otaa087. [PMID: 36777761 PMCID: PMC9802167 DOI: 10.1093/crocol/otaa087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
| | - Gerard Honig
- Research Department, Crohn’s & Colitis Foundation, New York, New York, USA
| | - Caren Heller
- Research Department, Crohn’s & Colitis Foundation, New York, New York, USA
| |
Collapse
|
38
|
Science and Healthy Meals in the World: Nutritional Epigenomics and Nutrigenetics of the Mediterranean Diet. Nutrients 2020; 12:nu12061748. [PMID: 32545252 PMCID: PMC7353392 DOI: 10.3390/nu12061748] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
The Mediterranean Diet (MD), UNESCO Intangible Cultural Heritage of Humanity, has become a scientific topic of high interest due to its health benefits. The aim of this review is to pick up selected studies that report nutrigenomic or nutrigenetic data and recapitulate some of the biochemical/genomic/genetic aspects involved in the positive health effects of the MD. These include (i) the antioxidative potential of its constituents with protective effects against several diseases; (ii) the epigenetic and epigenomic effects exerted by food components, such as Indacaxanthin, Sulforaphane, and 3-Hydroxytyrosol among others, and their involvement in the modulation of miRNA expression; (iii) the existence of predisposing or protective human genotypes due to allelic diversities and the impact of the MD on disease risk. A part of the review is dedicated to the nutrigenomic effects of the main cooking methods used in the MD and also to a comparative analysis of the nutrigenomic properties of the MD and other diet regimens and non-MD-related aliments. Taking all the data into account, the traditional MD emerges as a diet with a high antioxidant and nutrigenomic modulation power, which is an example of the “Environment-Livings-Environment” relationship and an excellent patchwork of interconnected biological actions working toward human health.
Collapse
|
39
|
Boughanem H, Cabrera-Mulero A, Hernández-Alonso P, Clemente-Postigo M, Casanueva FF, Tinahones FJ, Morcillo S, Crujeiras AB, Macias-Gonzalez M. Association between variation of circulating 25-OH vitamin D and methylation of secreted frizzled-related protein 2 in colorectal cancer. Clin Epigenetics 2020; 12:83. [PMID: 32517740 PMCID: PMC7285750 DOI: 10.1186/s13148-020-00875-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/26/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUNDS Colorectal cancer (CRC) results from the accumulation of epigenetic and genetic changes in colon cells during neoplasic transformation, which the activation of Wingless (Wnt) signaling pathway is a common mechanism for CRC initiation. The Wnt pathway is mainly regulated by Wnt antagonists, as secreted frizzled-related protein (SFRP) family. Indeed, SFRP2 is proposed as a noninvasive biomarker for CRC diagnosis. Vitamin D also antagonizes Wnt signaling in colon cancers cells. Several studies showed that vitamin D was able to alter DNA methylation, although this mechanism is not yet clear. Therefore, the aim of this study was to find an association between circulating 25-OH vitamin D (30th percentile of vitamin D) and the SFRP2 methylation. METHODS A total of 67 CRC patients were included in the study. These patients were subdivided into two groups based on their 30th percentile vitamin D (20 patients were below, and 47 participants were above the 30th percentile of vitamin D). We investigated the SFRP2 methylation in peripheral blood mononuclear cells (PBMCs), visceral adipose tissue (VAT), CRC tumor tissue, and adjacent tumor-free area. We also determined the relationship between SFRP2 methylation and methylation of carcinogenic and adipogenic genes. Finally, we tested the effect of vitamin D on the SFRP2 methylation in human colorectal carcinoma cell lines 116 (HCT116) and studied the association of neoadjuvant therapy under the 30th percentile vitamin D with SFRP2 promoter methylation. RESULTS SFRP2 methylation in tumor area was decreased in patients who had higher levels of vitamin D. SFRP2 promoter methylation was positively correlated in tumor area with insulin and homeostasis model assessment of insulin resistance (HOMA-IR) but negatively correlated with HDL-c. SFRP2 methylation was also correlated with T cell lymphoma invasion and metastasis 1 (TIAM1) methylation in tumor area and CCAAT/enhancer-binding protein alpha (C/EBPα) in VAT. Treatment with vitamin D did not affect SFRP2 methylation in HCT116 cell line. Finally, neoadjuvant treatment was correlated with higher circulating 25-OH vitamin D and SFRP2 methylation under linear regression model. CONCLUSION Our results showed that higher circulating vitamin D is associated with low SFRP2 promoter methylation. Therefore, our results could suggest that vitamin D may have an epigenetic effect on DNA methylation. Finally, higher vitamin D could contribute to an improvement response to neoadjuvant treatment.
Collapse
Affiliation(s)
- Hatim Boughanem
- Biomedical Research Institute of Malaga (IBIMA), Faculty of Science, University of Malaga, 29010, Málaga, Spain
- Deparment of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA) and University of Malaga, Malaga, Spain
| | - Amanda Cabrera-Mulero
- Deparment of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA) and University of Malaga, Malaga, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
| | - Pablo Hernández-Alonso
- Deparment of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA) and University of Malaga, Malaga, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Sant Joan Hospital, Institut d'Investigació Sanitària Pere Virgili, Rovira i Virgili University, 43201, Reus, Spain
| | - Mercedes Clemente-Postigo
- Deparment of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA) and University of Malaga, Malaga, Spain
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)-Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain
| | - Felipe F Casanueva
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
- Epigenomics in Endocrinology and Nutrition Group, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Francisco José Tinahones
- Deparment of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA) and University of Malaga, Malaga, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
| | - Sonsoles Morcillo
- Deparment of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA) and University of Malaga, Malaga, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
| | - Ana B Crujeiras
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain.
- Epigenomics in Endocrinology and Nutrition Group, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.
| | - Manuel Macias-Gonzalez
- Deparment of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA) and University of Malaga, Malaga, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
40
|
Amsalem Z, Arif T, Shteinfer-Kuzmine A, Chalifa-Caspi V, Shoshan-Barmatz V. The Mitochondrial Protein VDAC1 at the Crossroads of Cancer Cell Metabolism: The Epigenetic Link. Cancers (Basel) 2020; 12:cancers12041031. [PMID: 32331482 PMCID: PMC7226296 DOI: 10.3390/cancers12041031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 12/29/2022] Open
Abstract
Carcinogenesis is a complicated process that involves the deregulation of epigenetics, resulting in cellular transformational events, such as proliferation, differentiation, and metastasis. Most chromatin-modifying enzymes utilize metabolites as co-factors or substrates and thus are directly dependent on such metabolites as acetyl-coenzyme A, S-adenosylmethionine, and NAD+. Here, we show that using specific siRNA to deplete a tumor of VDAC1 not only led to reprograming of the cancer cell metabolism but also altered several epigenetic-related enzymes and factors. VDAC1, in the outer mitochondrial membrane, controls metabolic cross-talk between the mitochondria and the rest of the cell, thus regulating the metabolic and energetic functions of mitochondria, and has been implicated in apoptotic-relevant events. We previously demonstrated that silencing VDAC1 expression in glioblastoma (GBM) U-87MG cell-derived tumors, resulted in reprogramed metabolism leading to inhibited tumor growth, angiogenesis, epithelial-mesenchymal transition and invasiveness, and elimination of cancer stem cells, while promoting the differentiation of residual tumor cells into neuronal-like cells. These VDAC1 depletion-mediated effects involved alterations in transcription factors regulating signaling pathways associated with cancer hallmarks. As the epigenome is sensitive to cellular metabolism, this study was designed to assess whether depleting VDAC1 affects the metabolism-epigenetics axis. Using DNA microarrays, q-PCR, and specific antibodies, we analyzed the effects of si-VDAC1 treatment of U-87MG-derived tumors on histone modifications and epigenetic-related enzyme expression levels, as well as the methylation and acetylation state, to uncover any alterations in epigenetic properties. Our results demonstrate that metabolic rewiring of GBM via VDAC1 depletion affects epigenetic modifications, and strongly support the presence of an interplay between metabolism and epigenetics.
Collapse
Affiliation(s)
- Zohar Amsalem
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (Z.A.); (T.A.); (A.S.-K.)
| | - Tasleem Arif
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (Z.A.); (T.A.); (A.S.-K.)
| | - Anna Shteinfer-Kuzmine
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (Z.A.); (T.A.); (A.S.-K.)
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Vered Chalifa-Caspi
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (Z.A.); (T.A.); (A.S.-K.)
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
- Correspondence: ; Fax: +972-8-647-2992
| |
Collapse
|
41
|
Benninghoff AD, Hintze KJ, Monsanto SP, Rodriguez DM, Hunter AH, Phatak S, Pestka JJ, Van Wettere AJ, Ward RE. Consumption of the Total Western Diet Promotes Colitis and Inflammation-Associated Colorectal Cancer in Mice. Nutrients 2020; 12:nu12020544. [PMID: 32093192 PMCID: PMC7071445 DOI: 10.3390/nu12020544] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
Consumption of a Western type diet is a known risk factor for colorectal cancer. Our group previously developed the total Western diet (TWD) for rodents with energy and nutrient profiles that emulate a typical Western diet. In this study, we tested the hypothesis that consumption of the TWD would enhance colitis, delay recovery from gut injury and promote colon tumorigenesis. In multiple experiments using the azoxymethane + dextran sodium sulfate or ApcMin/+ mouse models of colitis-associated colorectal carcinogenesis (CAC), we determined that mice fed TWD experienced more severe and more prolonged colitis compared to their counterparts fed the standard AIN93G diet, ultimately leading to markedly enhanced colon tumorigenesis. Additionally, this increased tumor response was attributed to the micronutrient fraction of the TWD, and restoration of calcium and vitamin D to standard amounts ameliorated the tumor-promoting effects of TWD. Finally, exposure to the TWD elicited large scale, dynamic changes in mRNA signatures of colon mucosa associated with interferon (IFN) response, inflammation, innate immunity, adaptive immunity, and antigen processing pathways, among others. Taken together, these observations indicate that consumption of the TWD markedly enhanced colitis, delayed recovery from gut injury, and enhanced colon tumorigenesis likely via extensive changes in expression of immune-related genes in the colon mucosa.
Collapse
Affiliation(s)
- Abby D. Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, UT 84322, USA
- USTAR Applied Nutrition Research, 9815 Old Main Hill, Utah State University, Logan, UT 84322, USA
- Correspondence: ; Tel.: +01-435-797-8649
| | - Korry J. Hintze
- USTAR Applied Nutrition Research, 9815 Old Main Hill, Utah State University, Logan, UT 84322, USA
- Department of Nutrition, Dietetics and Food Sciences, 8700 Old Main Hill, Utah State University, Logan, UT 84322, USA
| | - Stephany P. Monsanto
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, UT 84322, USA
| | - Daphne M. Rodriguez
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, UT 84322, USA
| | - Ashli H. Hunter
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, UT 84322, USA
| | - Sumira Phatak
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, UT 84322, USA
| | - James J. Pestka
- Department of Food Science and Human Nutrition, the Institute for Integrative Toxicology, and the Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Arnaud J. Van Wettere
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, UT 84322, USA
| | - Robert E. Ward
- USTAR Applied Nutrition Research, 9815 Old Main Hill, Utah State University, Logan, UT 84322, USA
- Department of Nutrition, Dietetics and Food Sciences, 8700 Old Main Hill, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
42
|
Abstract
Epigenetic modifications play an important role in disease pathogenesis and therefore are a focus of intense investigation. Epigenetic changes include DNA, RNA, and histone modifications along with expression of non-coding RNAs. Various factors such as environment, diet, and lifestyle can influence the epigenome. Dietary nutrients like vitamins can regulate both physiological and pathological processes through their direct impact on epigenome. Vitamin A acts as a major regulator of above-mentioned epigenetic mechanisms. B group vitamins including biotin, niacin, and pantothenic acid also participate in modulation of various epigenome. Further, vitamin C has shown to modulate both DNA methylation and histone modifications while few reports have also supported its role in miRNA-mediated pathways. Similarly, vitamin D also influences various epigenetic modifications of both DNA and histone by controlling the regulatory mechanisms. Despite the information that vitamins can modulate the epigenome, the detailed mechanisms of vitamin-mediated epigenetic regulations have not been explored fully and hence further detailed studies are required to decipher their role at epigenome level in both normal and disease pathogenesis. The current review summarizes the available literature on the role of vitamins as epigenetic modifier and highlights the key evidences for developing vitamins as potential epidrugs.
Collapse
Affiliation(s)
- Suza Mohammad Nur
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Suvasmita Rath
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Madison, WI, USA
| | - Varish Ahmad
- Health Information Technology Department, Faculty of Applied Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abrar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bushra Ateeq
- Molecular Oncology Lab, Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur (IIT K), Kanpur, India
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
43
|
Khan MA, Tania M, Fu J. Epigenetic role of thymoquinone: impact on cellular mechanism and cancer therapeutics. Drug Discov Today 2019; 24:2315-2322. [PMID: 31541714 DOI: 10.1016/j.drudis.2019.09.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/06/2019] [Accepted: 09/12/2019] [Indexed: 12/17/2022]
Abstract
Thymoquinone is a natural product known for its anticancer activity. Preclinical studies indicated numerous mechanisms of action by which thymoquinone exerts its effects on cancer cells. Recent evidence has indicated that thymoquinone can modulate epigenetic machinery, like modifying histone acetylation and deacetylation, DNA methylation and demethylation, which are among the major epigenetic changes that can contribute to carcinogenesis. Moreover, thymoquinone can alter the genetic expression of various noncoding RNAs, such as miRNA and lncRNA, which are the key parts of cellular epigenetics. This review focuses on cellular epigenetic systems, epigenetic changes responsible for cancer and the counteraction of thymoquinone to target epigenetic challenges, which might be among the mechanisms of the thymoquinone effect in cancer cells.
Collapse
Affiliation(s)
- Md Asaduzzaman Khan
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Mousumi Tania
- Division of Molecular Cancer Biology, The Red-Green Research Center, Dhaka 1205, Bangladesh
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
44
|
Rewiring of Cancer Cell Metabolism by Mitochondrial VDAC1 Depletion Results in Time-Dependent Tumor Reprogramming: Glioblastoma as a Proof of Concept. Cells 2019; 8:cells8111330. [PMID: 31661894 PMCID: PMC6912264 DOI: 10.3390/cells8111330] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022] Open
Abstract
Reprograming of the metabolism of cancer cells is an event recognized as a hallmark of the disease. The mitochondrial gatekeeper, voltage-dependent anion channel 1 (VDAC1), mediates transport of metabolites and ions in and out of mitochondria, and is involved in mitochondria-mediated apoptosis. Here, we compared the effects of reducing hVDAC1 expression in a glioblastoma xenograft using human-specific si-RNA (si-hVDAC1) for a short (19 days) and a long term (40 days). Tumors underwent reprograming, reflected in rewired metabolism, eradication of cancer stem cells (CSCs) and differentiation. Short- and long-term treatments of the tumors with si-hVDAC1 similarly reduced the expression of metabolism-related enzymes, and translocator protein (TSPO) and CSCs markers. In contrast, differentiation into cells expressing astrocyte or neuronal markers was noted only after a long period during which the tumor cells were hVDAC1-depleted. This suggests that tumor cell differentiation is a prolonged process that precedes metabolic reprograming and the “disappearance” of CSCs. Tumor proteomics analysis revealing global changes in the expression levels of proteins associated with signaling, synthesis and degradation of proteins, DNA structure and replication and epigenetic changes, all of which were highly altered after a long period of si-hVDAC1 tumor treatment. The depletion of hVDAC1 greatly reduced the levels of the multifunctional translocator protein TSPO, which is overexpressed in both the mitochondria and the nucleus of the tumor. The results thus show that VDAC1 depletion-mediated cancer cell metabolic reprograming involves a chain of events occurring in a sequential manner leading to a reversal of the unique properties of the tumor, indicative of the interplay between metabolism and oncogenic signaling networks.
Collapse
|
45
|
El Khoury D, Fayjaloun S, Nassar M, Sahakian J, Aad PY. Updates on the Effect of Mycotoxins on Male Reproductive Efficiency in Mammals. Toxins (Basel) 2019; 11:E515. [PMID: 31484408 PMCID: PMC6784030 DOI: 10.3390/toxins11090515] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/19/2019] [Accepted: 08/30/2019] [Indexed: 12/15/2022] Open
Abstract
Mycotoxins are ubiquitous and unavoidable harmful fungal products with the ability to cause disease in both animals and humans, and are found in almost all types of foods, with a greater prevalence in hot humid environments. These mycotoxins vary greatly in structure and biochemical effects; therefore, by better understanding the toxicological and pathological aspects of mycotoxins, we can be better equipped to fight the diseases, as well as the biological and economic devastations, they induce. Multiple studies point to the association between a recent increase in male infertility and the increased occurrence of these mycotoxins in the environment. Furthermore, understanding how mycotoxins may induce an accumulation of epimutations during parental lifetimes can shed light on their implications with respect to fertility and reproductive efficiency. By acknowledging the diversity of mycotoxin molecular function and mode of action, this review aims to address the current limited knowledge on the effects of these chemicals on spermatogenesis and the various endocrine and epigenetics patterns associated with their disruptions.
Collapse
Affiliation(s)
- Diala El Khoury
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh 2207, Lebanon
| | - Salma Fayjaloun
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh 2207, Lebanon
| | - Marc Nassar
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh 2207, Lebanon
| | - Joseph Sahakian
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh 2207, Lebanon
| | - Pauline Y Aad
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh 2207, Lebanon.
| |
Collapse
|
46
|
Kaufman-Szymczyk A, Majda K, Szuławska-Mroczek A, Fabianowska-Majewska K, Lubecka K. Clofarabine‑phytochemical combination exposures in CML cells inhibit DNA methylation machinery, upregulate tumor suppressor genes and promote caspase‑dependent apoptosis. Mol Med Rep 2019; 20:3597-3608. [PMID: 31485618 PMCID: PMC6755200 DOI: 10.3892/mmr.2019.10619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/02/2019] [Indexed: 01/24/2023] Open
Abstract
Clofarabine (2-chloro-2′-fluoro-2′-deoxyarabinosyladenine, CIF), a second-generation 2′-deoxyadenosine analog, possesses a variety of anti-cancer activities, including the capacity to modulate DNA methylation marks. Bioactive nutrients, including resveratrol (RSV) and all-trans retinoic acid (ATRA) have been indicated to regulate epigenetic machinery in malignant cells. The purpose of the current study was to evaluate whether the tested phytochemicals, RSV or ATRA, can improve the therapeutic epigenetic effects of CIF in chronic myeloid leukemia (CML) cells. The present study investigates, to the best of our knowledge, for the first time, the influence of CIF in combination with RSV or ATRA on the expression of relevant modifiers of DNA methylation machinery, including DNA Methyltransferase 1 (DNMT1) and Cyclin dependent kinase inhibitor 1A (CDKN1A) in CML cells. Subsequently, the combinatorial effects on promoter methylation and transcript levels of methylation-silenced tumor suppressor genes (TSGs), including phosphatase and tensin homologue (PTEN) and retinoic acid receptor beta (RARB), were estimated using MSRA and qPCR, respectively. The tested TSGs were chosen according to bioinformatical analysis of publicly available clinical data of human DNA methylation and gene expression arrays in leukemia patients. The K562 cell line was used as an experimental CML in vitro model. Following a period of 72 h exposure of K562 cells, the tested combinations led to significant cell growth inhibition and induction of caspase-3-dependent apoptosis. These observations were accompanied by DNMT1 downregulation and CDKN1A upregulation, with a concomitant enhanced decrease in DNMT1 protein level, especially after ATRA treatment with CIF. Concurrent methylation-mediated RARB and PTEN reactivation was detected. The results of the current study demonstrated that CIF that was used in combination with the tested phytochemicals, RSV or ATRA, exhibited a greater ability to remodel DNA methylation marks and promote cell death in CML cells. These results may support the application of CIF combinations with natural bioactive agents in anti-leukemic epigenetic therapy.
Collapse
Affiliation(s)
- Agnieszka Kaufman-Szymczyk
- Department of Biomedical Chemistry, Faculty of Health Sciences, Medical University of Lodz, 92‑215 Lodz, Poland
| | - Katarzyna Majda
- Department of Biomedical Chemistry, Faculty of Health Sciences, Medical University of Lodz, 92‑215 Lodz, Poland
| | - Agata Szuławska-Mroczek
- Department of Biomedical Chemistry, Faculty of Health Sciences, Medical University of Lodz, 92‑215 Lodz, Poland
| | | | - Katarzyna Lubecka
- Department of Biomedical Chemistry, Faculty of Health Sciences, Medical University of Lodz, 92‑215 Lodz, Poland
| |
Collapse
|
47
|
In Search of Panacea-Review of Recent Studies Concerning Nature-Derived Anticancer Agents. Nutrients 2019; 11:nu11061426. [PMID: 31242602 PMCID: PMC6627480 DOI: 10.3390/nu11061426] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Cancers are one of the leading causes of deaths affecting millions of people around the world, therefore they are currently a major public health problem. The treatment of cancer is based on surgical resection, radiotherapy, chemotherapy or immunotherapy, much of which is often insufficient and cause serious, burdensome and undesirable side effects. For many years, assorted secondary metabolites derived from plants have been used as antitumor agents. Recently, researchers have discovered a large number of new natural substances which can effectively interfere with cancer cells’ metabolism. The most famous groups of these compounds are topoisomerase and mitotic inhibitors. The aim of the latest research is to characterize natural compounds found in many common foods, especially by means of their abilities to regulate cell cycle, growth and differentiation, as well as epigenetic modulation. In this paper, we focus on a review of recent discoveries regarding nature-derived anticancer agents.
Collapse
|
48
|
Andreescu N, Puiu M, Niculescu M. Effects of Dietary Nutrients on Epigenetic Changes in Cancer. Methods Mol Biol 2019; 1856:121-139. [PMID: 30178249 DOI: 10.1007/978-1-4939-8751-1_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gene-nutrient interactions are important contributors to health management and disease prevention. Nutrition can alter gene expression, as well as the susceptibility to disease, including cancer, through epigenetic changes. Nutrients can influence the epigenetic status through several mechanisms, such as DNA methylation, histone modifications, and miRNA-dependent gene silencing. These alterations were associated with either increased or decreased risk for cancer development. There is convincing evidence indicating that several foods have protective roles in cancer prevention, by inhibiting tumor progression directly or through modifying tumor's microenvironment that leads to hostile conditions favorable to tumor initiation or growth. While nutritional intakes from foods cannot be adequately controlled for dosage, the role of nutrients in the epigenetics of cancer has led to more research aimed at developing nutriceuticals and drugs as cancer therapies. Clinical studies are needed to evaluate the optimum doses of dietary compounds, the safety profile of dosages, to establish the most efficient way of administration, and bioavailability, in order to maximize the beneficial effects already discovered, and to ensure replicability. Thus, nutrition represents a promising tool to be used not only in cancer prevention, but hopefully also in cancer treatment.
Collapse
Affiliation(s)
- Nicoleta Andreescu
- Medical Genetics Discipline, Center of Genomic Medicine, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania.
| | - Maria Puiu
- Medical Genetics Discipline, Center of Genomic Medicine, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania
| | - Mihai Niculescu
- Medical Genetics Discipline, Center of Genomic Medicine, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania
- Advanced Nutrigenomics, Hillsborough, NC, USA
| |
Collapse
|
49
|
Ni J, Xu L, Li W, Zheng C, Wu L. Targeted metabolomics for serum amino acids and acylcarnitines in patients with lung cancer. Exp Ther Med 2019; 18:188-198. [PMID: 31258653 PMCID: PMC6566041 DOI: 10.3892/etm.2019.7533] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is one of the most prevalent types of cancer, but accurate diagnosis remains a challenge. The aim of the present study was to create a model using amino acids and acylcarnitines for lung cancer screening. Serum samples were obtained from two groups of patients with lung cancer recruited in 2015 (including 40 patients and 100 matched controls) and 2017 (including 17 patients and 30 matched controls). Using a metabolomics method, 21 metabolites (13 types of amino acids and 8 types of acylcarnitines) were measured using liquid chromatography-tandem mass spectrometry. Data (from the 2015 and 2017 data sets) were analysed using a Mann-Whitney U test, Student's t-test, Welch's F test, receiver-operator characteristic curve or logistic regression in order to investigate the potential biomarkers. Six metabolites (glycine, valine, methionine, citrulline, arginine and C16-carnitine) were indicated to be involved in distinguishing patients with lung cancer from healthy controls. The six discriminating metabolites from the 2017 data set were further analysed using Partial least squares-discriminant analysis (PLS-DA). The PLS-DA model was verified using Spearman's correlation analysis and receiver operating characteristic curve analysis. These results demonstrated that the PLS-DA model using the six metabolites (glycine, valine, methionine, citrulline, arginine and C16-carnitine) had a strong ability to identify lung cancer. Therefore, the PLS-DA model using glycine, valine, methionine, citrulline, arginine and C16-carnitine may become a novel screening tool in patients with lung cancer.
Collapse
Affiliation(s)
- Junjun Ni
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China.,Beijing Harmony Health Medical Diagnostics Co., Ltd., Beijing 101111, P.R. China
| | - Li Xu
- Beijing Harmony Health Medical Diagnostics Co., Ltd., Beijing 101111, P.R. China
| | - Wei Li
- Beijing Harmony Health Medical Diagnostics Co., Ltd., Beijing 101111, P.R. China
| | - Chunmei Zheng
- Beijing Harmony Health Medical Diagnostics Co., Ltd., Beijing 101111, P.R. China
| | - Lijun Wu
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
50
|
Sikander M, Malik S, Chauhan N, Khan P, Kumari S, Kashyap VK, Khan S, Ganju A, Halaweish FT, Yallapu MM, Jaggi M, Chauhan SC. Cucurbitacin D Reprograms Glucose Metabolic Network in Prostate Cancer. Cancers (Basel) 2019; 11:cancers11030364. [PMID: 30875788 PMCID: PMC6469021 DOI: 10.3390/cancers11030364] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/25/2019] [Accepted: 03/08/2019] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PrCa) metastasis is the major cause of mortality and morbidity among men. Metastatic PrCa cells are typically adopted for aberrant glucose metabolism. Thus, chemophores that reprogram altered glucose metabolic machinery in cancer cells can be useful agent for the repression of PrCa metastasis. Herein, we report that cucurbitacin D (Cuc D) effectively inhibits glucose uptake and lactate production in metastatic PrCa cells via modulating glucose metabolism. This metabolic shift by Cuc D was correlated with decreased expression of GLUT1 by its direct binding as suggested by its proficient molecular docking (binding energy −8.5 kcal/mol). Cuc D treatment also altered the expression of key oncogenic proteins and miR-132 that are known to be involved in glucose metabolism. Cuc D (0.1 to 1 µM) treatment inhibited tumorigenic and metastatic potential of human PrCa cells via inducing apoptosis and cell cycle arrest in G2/M phase. Cuc D treatment also showed inhibition of tumor growth in PrCa xenograft mouse model with concomitant decrease in the expression of GLUT1, PCNA and restoration of miR-132. These results suggest that Cuc D is a novel modulator of glucose metabolism and could be a promising therapeutic modality for the attenuation of PrCa metastasis.
Collapse
Affiliation(s)
- Mohammed Sikander
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN 38163, USA.
| | - Shabnam Malik
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN 38163, USA.
| | - Neeraj Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN 38163, USA.
| | - Parvez Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Sonam Kumari
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN 38163, USA.
| | - Vivek Kumar Kashyap
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN 38163, USA.
| | - Sheema Khan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN 38163, USA.
| | - Aditya Ganju
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN 38163, USA.
| | | | - Murali M Yallapu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN 38163, USA.
| | - Meena Jaggi
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN 38163, USA.
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN 38163, USA.
| |
Collapse
|