1
|
Xie H, Cao S, Chen Y, Wang Z, Chen X, Cui Z. The role of SYK phosphorylation in LPS-induced immunoglobulin responses of B cells in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2025; 161:110283. [PMID: 40107331 DOI: 10.1016/j.fsi.2025.110283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Spleen tyrosine kinase (SYK), a non-receptor protein tyrosine kinase, is a key component of B cell receptor signaling and can regulate multiple physiological functions of B cells in mammals. In this study, a SYK gene was cloned and characterized from large yellow croaker (Larimichthys crocea) (LcSYK), whose open reading frame consists of 1851 base pairs and encodes 616 amino acid residues. The predicted LcSYK protein contains two N-terminal tandem Src homology 2 domains and a C-terminal tyrosine kinase catalytic domain, and shares a high amino acid sequence identity with SYK sequences in other vertebrate species. LcSYK was mainly expressed in immune tissues, such as head kidney, trunk kidney, spleen, and gill. The mRNA expression of LcSYK in primary head kidney leukocytes was not changed at 12, 24, and 48 h after lipopolysaccharide (LPS) stimulation. LPS stimulation upregulated the mRNA expression and protein production of IgM in IgM+ B cells, accompanied by an increase in the phosphorylation level, but not the total protein level, of LcSYK. Moreover, when we used PRT062607 HCl to inhibit the phosphorylation of LcSYK, both mRNA expression and protein production of IgM in IgM+ B cells were significantly suppressed. These results suggest that SYK phosphorylation may play a role in LPS-induced IgM production by IgM+ B cells, improving our understanding of the role of SYK in immunoglobulin responses of B cells in fish.
Collapse
Affiliation(s)
- Hongjun Xie
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuangshuang Cao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yueming Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhiqiang Wang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Zhengwei Cui
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
2
|
Deobald KN, Steele SP, Dominguez SR, Whiles S, Kawula T. Merocytophagy is an integrin-stabilized macrophage response to microbes reliant on Syk signaling. Front Immunol 2025; 16:1565250. [PMID: 40313956 PMCID: PMC12043706 DOI: 10.3389/fimmu.2025.1565250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
Macrophages and dendritic cells acquire bacteria and cytosolic content from other cells without killing the donor cell through a trogocytosis-associated process termed merocytophagy. While characteristics of this behavior have been partially identified, the mechanism and potential contribution to the response to infection are unclear. Here, we reveal that a wide range of distinct species of bacteria stimulate enhanced merocytophagy in macrophages through pattern recognition receptor (PRR). Further, we found that cell-to-cell transfer in response to Francisella tularensis infection occurs in a predominantly MyD88-independent manner, relying on spleen tyrosine kinase (Syk) activity. Syk signaling during this response also results in increased surface expression of cell-to-cell adhesion proteins integrin α4, integrin β1, ICAM-1 and CD44 at the site of merocytophagy transfer, and depleting these surface molecules impairs merocytophagic cell-to-cell transfer. Altogether, our data demonstrate that merocytophagy is a host response to infection facilitated by tight cell-to-cell binding which molecularly resembles an immunological synapse between macrophages.
Collapse
Affiliation(s)
| | | | | | | | - Thomas Kawula
- Allen School for Global Health, Washington State University, Pullman, WA, United States
| |
Collapse
|
3
|
Sae-Khow K, Charoensappakit A, Udompornpitak K, Saisorn W, Issara-Amphorn J, Palaga T, Leelahavanichkul A. Syk inhibitor attenuates lupus in FcγRIIb -/- mice through the Inhibition of DNA extracellular traps from macrophages and neutrophils via p38MAPK-dependent pathway. Cell Death Discov 2025; 11:63. [PMID: 39962056 PMCID: PMC11832894 DOI: 10.1038/s41420-025-02342-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/09/2025] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Spleen tyrosine kinase (Syk), an important hub of immune signaling, is activated by several signalings in active lupus which could be interfered by Syk inhibitor but is still not completely evaluated in innate immune cells associated with lupus activity. Hence, a Syk inhibitor (fostamatinib; R788) was tested in vivo using Fc gamma receptor-deficient (FcγRIIb-/-) lupus mice and in vitro (macrophages and neutrophils). After 4 weeks of oral Syk inhibitor, 40 week-old FcγRIIb-/- mice (a full-blown lupus model) demonstrated less prominent lupus parameters (serum anti-dsDNA, proteinuria, and glomerulonephritis), systemic inflammation, as evaluated by serum TNFa, IL-6, and citrullinated histone H3 (CitH3), gut permeability defect, as indicated by serum FITC dextran assay, serum lipopolysaccharide (LPS), and serum (1 → 3)-β-D-glucan (BG), extracellular traps (ETs) and immune complex deposition in spleens and kidneys (immunofluorescent staining of CitH3 and immunoglobulin G) than FcγRIIb-/- mice with placebo. Due to the spontaneous elevation of LPS and BG in serum, LPS plus BG (LPS + BG) was used to activate macrophages and neutrophils. After LPS + BG stimulation, FcγRIIb-/- macrophages and neutrophils demonstrated predominant abundance of phosphorylated Syk (Western blotting), and the pro-inflammatory responses (CD86 flow cytometry analysis, supernatant cytokines, ETs immunofluorescent, and flow cytometry-based apoptosis). With RNA sequencing analysis and western blotting, the Syk-p38MAPK-dependent pathway was suggested as downregulating several inflammatory pathways in LPS + BG-activated FcγRIIb-/- macrophages and neutrophils. Although both inhibitors against Syk and p38MAPK attenuated macrophage and neutrophil inflammatory responses against LPS + WGP, the apoptosis inhibition by p38MAPK inhibitor was not observed. These results suggested that Syk inhibitor (fostamatinib) improved the severity of lupus caused by FcγRIIb defect partly through Syk-p38MAPK anti-inflammation that inhibited both ET formation and cytokine production from innate immune cells.
Collapse
Affiliation(s)
- Kritsanawan Sae-Khow
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Awirut Charoensappakit
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kanyarat Udompornpitak
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wilasinee Saisorn
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jiraphorn Issara-Amphorn
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases NIH, Bethesda, USA
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
4
|
He Z, Uto T, Tanigawa S, Sakao K, Kumamoto T, Xie K, Pan X, Wu S, Yang Y, Komatsu M, Hou D. Fisetin is a selective adenosine triphosphate-competitive inhibitor for mitogen-activated protein kinase kinase 4 to inhibit lipopolysaccharide-stimulated inflammation. Biofactors 2025; 51:e2108. [PMID: 39087587 PMCID: PMC11680972 DOI: 10.1002/biof.2108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024]
Abstract
The mitogen-activated protein kinase kinase 4 (MKK4), a member of the MAP kinase kinase family, directly phosphorylates and activates the c-Jun NH2-terminal kinases (JNK), in response to proinflammatory cytokines and cellular stresses. Regulation of the MKK4 activity is considered to be a novel approach for the prevention and treatment of inflammation. The aim of this study was to identify whether fisetin, a potential anti-inflammatory compound, targets MKK4-JNK cascade to inhibit lipopolysaccharide (LPS)-stimulated inflammatory response. RAW264 macrophage pretreated with fisetin following LPS stimulation was used as a cell model to investigate the transactivation and expression of related-inflammatory genes by transient transfection assay, electrophoretic mobility shift assay (EMSA), or enzyme-linked immunosorbent assay (ELISA), and cellular signaling as well as binding of related-signal proteins by Western blot, pull-down assay and kinase assay, and molecular modeling. The transactivation and expression of cyclooxygenase-2 (COX-2) gene as well as prostaglandin E2 (PGE2) secretion induced by LPS were inhibited by fisetin in a dose-dependent manner. Signaling transduction analysis demonstrated that fisetin selectively inhibited MKK4-JNK1/2 signaling to suppress the phosphorylation of transcription factor AP-1 without affecting the NF-κB and Jak2-Stat3 signaling as well as the phosphorylation of Src, Syk, and TAK1. Furthermore, in vitro and ex vivo pull-down assay using cell lysate or purified protein demonstrated that fisetin could bind directly to MKK4. Molecular modeling using the Molecular Operating Environment™ software indicated that fisetin docked into the ATP-binding pocket of MKK4 with a binding energy of -71.75 kcal/mol and formed a 1.70 Å hydrogen bound with Asp247 residue of MKK4. The IC50 of fisetin against MKK4 was estimated as 2.899 μM in the kinase assay, and the ATP-competitive effect was confirmed by ATP titration. Taken together, our data revealed that fisetin is a potent selective ATP-competitive MKK4 inhibitor to suppress MKK4-JNK1/2-AP-1 cascade for inhibiting LPS-induced inflammation.
Collapse
Affiliation(s)
- Ziyu He
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
| | - Takuhiro Uto
- Department of Pharmacy, Faculty of Pharmaceutical SciencesNagasaki International UniversitySaseboJapan
| | - Shunsuke Tanigawa
- Department of Kidney Development, Institute of Molecular Embryology and GeneticsKumamoto UniversityKumamotoJapan
| | - Kozue Sakao
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
- Graduate School of Agriculture, Forestry and FisheriesKagoshima UniversityKagoshimaJapan
| | - Takuma Kumamoto
- Department of Brain & NeurosciencesTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Kun Xie
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and TechnologyHunan Agricultural UniversityChangshaPeople's Republic of China
| | - Xuchi Pan
- Graduate School of Agriculture, Forestry and FisheriesKagoshima UniversityKagoshimaJapan
| | - Shusong Wu
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and TechnologyHunan Agricultural UniversityChangshaPeople's Republic of China
| | - Yili Yang
- China Regional Research CentreInternational Centre for Genetic Engineering and BiotechnologyTaizhouPeople's Republic of China
| | - Masaharu Komatsu
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
- Graduate School of Agriculture, Forestry and FisheriesKagoshima UniversityKagoshimaJapan
| | - De‐Xing Hou
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
- Graduate School of Agriculture, Forestry and FisheriesKagoshima UniversityKagoshimaJapan
| |
Collapse
|
5
|
Chen X, Kang Y, Tang C, Zhang L, Guo L. TLR4 promotes smooth muscle cell-derived foam cells formation by inducing receptor-independent macropinocytosis. Biosci Biotechnol Biochem 2024; 89:22-32. [PMID: 39455413 DOI: 10.1093/bbb/zbae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Foam cells are primarily formed through scavenger receptors that mediate the uptake of various modified low-density lipoproteins (LDL) into cells. In addition to the receptor-dependent pathway, macropinocytosis is an essential nonreceptor endocytic pathway for vascular smooth muscle cells (VSMCs) to take up lipids. However, the molecular mechanisms underlying this process remain unclear. Primary cultured VSMCs were stimulated with 200 ng/mL lipopolysaccharide (LPS) and 200 µg/mL native LDL (nLDL). We observed a significant increase in Toll-like receptor 4 (TLR4) protein expression and a significant activation of macropinocytosis, which correlated with the highest uptake of nLDL and intracellular lipid deposition in WT VSMCs. However, macropinocytosis was inhibited and lipid accumulation decreased after treatment with macropinocytosis inhibitors and Syk inhibitors in WT VSMCs. Consistently, TLR4 knockout significantly suppressed macropinocytosis and lipid droplets accumulation in VSMCs. Taken together, our findings suggest a critical role of TLR4/Syk signaling in promoting receptor-independent macropinocytosis leading to VSMC-derived foam cells formation.
Collapse
MESH Headings
- Toll-Like Receptor 4/metabolism
- Pinocytosis/drug effects
- Animals
- Foam Cells/metabolism
- Foam Cells/cytology
- Foam Cells/drug effects
- Syk Kinase/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Signal Transduction
- Lipopolysaccharides/pharmacology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/cytology
- Mice
- Lipoproteins, LDL/metabolism
- Lipoproteins, LDL/pharmacology
- Cells, Cultured
- Mice, Knockout
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Xue Chen
- Department of Rheumatology and Clinical Immunology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Yulai Kang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Chunhua Tang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Lili Zhang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Lu Guo
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| |
Collapse
|
6
|
Najjar SM, Shively JE. Regulation of lipid storage and inflammation in the liver by CEACAM1. Eur J Clin Invest 2024; 54 Suppl 2:e14338. [PMID: 39674882 DOI: 10.1111/eci.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/11/2024] [Indexed: 12/17/2024]
Abstract
This review focuses on a special aspect of hepatic lipid storage and inflammation that occurs during nutritional excess in obesity. Mounting evidence supports that prolonged excess fatty acid (FA) uptake in the liver is strongly associated with hepatic lipid storage and inflammation and that the two processes are closely linked by a homeostatic mechanism. There is also strong evidence that bacterial lipids may enter the gut by a common mechanism with lipid absorption and that there is a set point to determine when their uptake triggers an inflammatory response in the liver. In fact, the progression from high uptake of FAs in the liver resulting in Metabolic dysfunction-associated steatotic liver disease (MASLD) to the development of the more serious Metabolic dysfunction-associated steatohepatitis (MASH) depends on the degree of inflammation and its progression from an acute to a chronic state. Thus, MASLD/MASH implicates both excess fatty acids and progressive inflammation in the aetiology of liver disease. We start the discussion by introduction of CD36, a major player in FA and lipopolysaccharide (LPS) uptake in the duodenum, liver and adipose tissue. We will then introduce CEACAM1, a major player in the regulation of hepatic de novo lipogenesis and the inflammatory response in the liver, and its dual association with CD36 in enterocytes and hepatocytes. We conclude that CEACAM1 and CD36 together regulate lipid droplet formation and inflammation in the liver.
Collapse
Affiliation(s)
- Sonia M Najjar
- Department of Biomedical Sciences and the Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - John E Shively
- Department of Immunology and Theranostics, Arthur D. Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
7
|
Verra C, Paulmann MK, Wegener J, Marzani E, Ferreira Alves G, Collino M, Coldewey SM, Thiemermann C. Spleen tyrosine kinase: a novel pharmacological target for sepsis-induced cardiac dysfunction and multi-organ failure. Front Immunol 2024; 15:1447901. [PMID: 39559354 PMCID: PMC11570271 DOI: 10.3389/fimmu.2024.1447901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Sepsis is a systemic condition caused by a dysregulated host response to infection and often associated with excessive release of proinflammatory cytokines resulting in multi-organ failure (MOF), including cardiac dysfunction. Despite a number of effective supportive treatments (e.g. ventilation, dialysis), there are no specific interventions that prevent or reduce MOF in patients with sepsis. To identify possible intervention targets, we re-analyzed the publicly accessible Gene Expression Omnibus accession GSE131761 dataset, which revealed an increased expression of spleen tyrosine kinase (SYK) in the whole blood of septic patients compared to healthy volunteers. This result suggests a potential involvement of SYK in the pathophysiology of sepsis. Thus, we investigated the effects of the highly selective SYK inhibitor PRT062607 (15mg/kg; i.p.) on sepsis-induced cardiac dysfunction and MOF in a clinically-relevant, murine model of sepsis. PRT062607 or vehicle (saline) was administered to 10-weeks-old C57BL/6 mice at 1h after the onset of sepsis induced by cecal ligation and puncture (CLP). Antibiotics (imipenem/cilastatin; 2mg/kg; s.c.) and analgesic (buprenorphine; 0.05mg/kg; i.p.) were administered at 6h and 18h post-CLP. After 24h, cardiac function was assessed in vivo by echocardiography and, after termination of the experiments, serum and cardiac samples were collected to evaluate the effects of SYK inhibition on the systemic release of inflammatory mediators and the degree of organ injury and dysfunction. Our results show that treatment of CLP-mice with PRT062607 significantly reduces systolic and diastolic cardiac dysfunction, renal dysfunction and liver injury compared to CLP-mice treated with vehicle. In addition, the sepsis-induced systemic inflammation (measured as an increase in inflammatory cytokines and chemokines in the serum) and the cardiac activation of NF-kB (IKK) and the NLRP3 inflammasome were significantly reduced in CLP-mice treated with PRT062607. These results demonstrate, for the first time, that SYK inhibition 1h after the onset of sepsis reduces the systemic inflammation, cardiac dysfunction and MOF, suggesting a potential role of the activation of SYK in the pathophysiology of sepsis. Novel therapeutic strategies that inhibit SYK activity may be of benefit in patients with diseases associated with local or systemic inflammation including sepsis.
Collapse
Affiliation(s)
- Chiara Verra
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Maria Kerstin Paulmann
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Jamila Wegener
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Enrica Marzani
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | | | - Massimo Collino
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Sina Maren Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Christoph Thiemermann
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
8
|
Kim HG, Kim JH, Yu T, Cho JY. Functional Involvement of TANK-Binding Kinase 1 in the MyD88-Dependent NF- κB Pathway Through Syk. Mediators Inflamm 2024; 2024:8634515. [PMID: 39493293 PMCID: PMC11531359 DOI: 10.1155/2024/8634515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024] Open
Abstract
Inflammation is a vital immune defense mechanism regulated by Toll-like receptors (TLRs) and the nuclear factor-kappa B (NF-κB) pathway. TANK-binding kinase 1 (TBK1) is central to immunity and inflammation and influences antiviral responses and cellular processes. However, the precise role of TBK1 in modulating the NF-κB pathway through interactions with other proteins, such as spleen tyrosine kinase (Syk), remains poorly understood. As dysregulation of TBK1 and NF-κB can lead to a variety of diseases, they are important therapeutic targets. In this work, inflammatory processes involving the TBK1-Syk-NF-κB pathway were elucidated using lipopolysaccharide (LPS)-induced macrophages; human embryonic kidney 293 (HEK293) cells overexpressing MyD88, TBK1, and Syk proteins and their mutants; and real-time polymerase chain reaction (PCR), immunoblotting analyses, and kinase assays. TBK1 was activated in LPS-, poly I:C-, and Pam3CSK-stimulated macrophages. Transcript levels of TNF, NOS2, and IL1B were increased in cells overexpressing TBK1 but not in cells overexpressing TBK1 K38A. The transcription of TNF, NOS2, and IL1B and NF-κB luciferase activity were inhibited by silencing TBK1 in LPS-stimulated RAW264.7 cells and MyD88-transfected HEK293 cells. Syk was the key mediator of the TBK1-dependent NF-κB pathway and bound directly to the coiled coil domain of TBK1, which was necessary to activate Syk and the Syk-p85 pathway. This research advances the understanding of the role of TBK1 in NF-κB signaling, emphasizing Syk as a key mediator. The interaction between TBK1 and Syk has potential for precise immune modulation that can be applied to treat immune-related disorders.
Collapse
Affiliation(s)
- Han Gyung Kim
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Hye Kim
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jae Youl Cho
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
9
|
Warner S, Teague HL, Ramos-Benitez MJ, Panicker S, Allen K, Gairhe S, Moyer T, Parachalil Gopalan B, Douagi I, Shet A, Kanthi Y, Suffredini AF, Chertow DS, Strich JR. R406 reduces lipopolysaccharide-induced neutrophil activation. Cell Immunol 2024; 403-404:104860. [PMID: 39084187 PMCID: PMC11387147 DOI: 10.1016/j.cellimm.2024.104860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Modulating SYK has been demonstrated to have impacts on pathogenic neutrophil responses in COVID-19. During sepsis, neutrophils are vital in early bacterial clearance but also contribute to the dysregulated immune response and organ injury when hyperactivated. Here, we evaluated the impact of R406, the active metabolite of fostamatinib, on neutrophils stimulated by LPS. We demonstrate that R406 was able to effectively inhibit NETosis, degranulation, ROS generation, neutrophil adhesion, and the formation of CD16low neutrophils that have been linked to detrimental outcomes in severe sepsis. Further, the neutrophils remain metabolically active, capable of releasing cytokines, perform phagocytosis, and migrate in response to IL-8. Taken together, this data provides evidence of the potential efficacy of utilizing fostamatinib in bacterial sepsis.
Collapse
Affiliation(s)
- Seth Warner
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Heather L Teague
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Marcos J Ramos-Benitez
- Basic Science Department, Microbiology Division, School of Medicine, Ponce Health Sciences University, Ponce, PR, USA
| | - Sumith Panicker
- Laboratory of Vascular Thrombosis and Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kiana Allen
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Salina Gairhe
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Tom Moyer
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bindu Parachalil Gopalan
- Laboratory of Sickle Thrombosis and Vascular Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Iyadh Douagi
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; NIH Center for Human Immunology, Inflammation, and Autoimmunity, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Arun Shet
- Laboratory of Sickle Thrombosis and Vascular Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yogendra Kanthi
- Laboratory of Vascular Thrombosis and Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anthony F Suffredini
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Daniel S Chertow
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA; Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey R Strich
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
Zhu J, Cheng W, He TT, Hou BL, Lei LY, Wang Z, Liang YN. Exploring the Anti-Inflammatory Effect of Tryptanthrin by Regulating TLR4/MyD88/ROS/NF-κB, JAK/STAT3, and Keap1/Nrf2 Signaling Pathways. ACS OMEGA 2024; 9:30904-30918. [PMID: 39035974 PMCID: PMC11256115 DOI: 10.1021/acsomega.4c03795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024]
Abstract
Tryptanthrin (TRYP) is the main active ingredient in Indigo Naturalis. Studies have shown that TRYP had excellent anti-inflammatory activity, but its specific mechanism has been unclear. In this work, the differentially expressed proteins resulting from TRYP intervention in LPS-stimulated RAW264.7 cells were obtained based on tandem mass tag proteomics technology. The anti-inflammatory mechanism of TRYP was further validated by a combination of experiments using the LPS-induced RAW264.7 cell model in vitro and the DSS-induced UC mouse model (free drinking 2.5% DSS) in vivo. The results demonstrated that TRYP could inhibit levels of NO, IL-6, and TNF-α in LPS-induced RAW264.7 cells. Twelve differential proteins were screened out. And the results indicated that TRYP could inhibit upregulated levels of gp91phox, p22phox, FcεRIγ, IKKα/β, and p-IκBα and reduce ROS levels in vitro. Besides, after TRYP treatment, the health conditions of colitis mice were all improved. Furthermore, TRYP inhibited the activation of JAK/STAT3, nuclear translocation of NF-κB p65, and promoted the nuclear expression of Nrf2 in vitro and in vivo. This work preliminarily indicated that TRYP might suppress the TLR4/MyD88/ROS/NF-κB and JAK/STAT3 signaling pathways to exert anti-inflammatory effects. Additionally, TRYP could achieve antioxidant effects by regulating the Keap1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Jie Zhu
- Co-construction Collaborative Innovation
Center for Chinese Medicine Resources Industrialization by Shaanxi
& Education Ministry, State Key Laboratory of Research & Development
of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Wen Cheng
- Co-construction Collaborative Innovation
Center for Chinese Medicine Resources Industrialization by Shaanxi
& Education Ministry, State Key Laboratory of Research & Development
of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Tian-Tian He
- Co-construction Collaborative Innovation
Center for Chinese Medicine Resources Industrialization by Shaanxi
& Education Ministry, State Key Laboratory of Research & Development
of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Bao-Long Hou
- Co-construction Collaborative Innovation
Center for Chinese Medicine Resources Industrialization by Shaanxi
& Education Ministry, State Key Laboratory of Research & Development
of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Li-Yan Lei
- Co-construction Collaborative Innovation
Center for Chinese Medicine Resources Industrialization by Shaanxi
& Education Ministry, State Key Laboratory of Research & Development
of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Zheng Wang
- Co-construction Collaborative Innovation
Center for Chinese Medicine Resources Industrialization by Shaanxi
& Education Ministry, State Key Laboratory of Research & Development
of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Yan-Ni Liang
- Co-construction Collaborative Innovation
Center for Chinese Medicine Resources Industrialization by Shaanxi
& Education Ministry, State Key Laboratory of Research & Development
of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| |
Collapse
|
11
|
Hsu JCN, Tseng HW, Chen CH, Lee TS. Transient receptor potential vanilloid 1 interacts with Toll-like receptor 4 (TLR4)/cluster of differentiation 14 (CD14) signaling pathway in lipopolysaccharide-mediated inflammation in macrophages. Exp Anim 2024; 73:336-346. [PMID: 38508727 PMCID: PMC11254490 DOI: 10.1538/expanim.23-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/16/2024] [Indexed: 03/22/2024] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1), a ligand-gated cation channel, is a receptor for vanilloids on sensory neurons and is also activated by capsaicin, heat, protons, arachidonic acid metabolites, and inflammatory mediators on neuronal or non-neuronal cells. However, the role of the TRPV1 receptor in pro-inflammatory cytokine secretion and its potential regulatory mechanisms in lipopolysaccharide (LPS)-induced inflammation has yet to be entirely understood. To investigate the role and regulatory mechanism of the TRPV1 receptor in regulating LPS-induced inflammatory responses, bone marrow-derived macrophages (BMDMs) harvested from wild-type (WT) and TRPV1 deficient (Trpv1-/-) mice were used as the cell model. In WT BMDMs, LPS induced an increase in the levels of tumor necrosis factor-α, IL-1β, inducible nitric oxide synthase, and nitric oxide, which were attenuated in Trpv1-/- BMDMs. Additionally, the phosphorylation of inhibitor of nuclear factor kappa-Bα and mitogen-activated protein kinases, as well as the translocation of nuclear factor kappa-B and activator protein 1, were all decreased in LPS-treated Trpv1-/- BMDMs. Immunoprecipitation assay revealed that LPS treatment increased the formation of TRPV1-Toll-like receptor 4 (TLR4)-cluster of differentiation 14 (CD14) complex in WT BMDMs. Genetic deletion of TRPV1 in BMDMs impaired the LPS-triggered immune-complex formation of TLR4, myeloid differentiation protein 88, and interleukin-1 receptor-associated kinase, all of which are essential regulators in LPS-induced activation of the TLR4 signaling pathway. Moreover, genetic deletion of TRPV1 prevented the LPS-induced lethality and pro-inflammatory production in mice. In conclusion, the TRPV1 receptor may positively regulate the LPS-mediated inflammatory responses in macrophages by increasing the interaction with the TLR4-CD14 complex and activating the downstream signaling cascade.
Collapse
Affiliation(s)
- Julia Chu-Ning Hsu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 145, Xingda Road, South District, Taichung 402202, Taiwan
| | - Hsu-Wen Tseng
- Department of Physiology, School of Medicine, National Yang-Ming University, 155, Sec. 2, Linong Street, Taipei 112304, Taiwan
| | - Chia-Hui Chen
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, 1, Sec. 1, Jen-Ai Road, Taipei 100233, Taiwan
| | - Tzong-Shyuan Lee
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, 1, Sec. 1, Jen-Ai Road, Taipei 100233, Taiwan
| |
Collapse
|
12
|
Shi XY, Zheng XM, Liu HJ, Han X, Zhang L, Hu B, Li S. Rotundic acid improves nonalcoholic steatohepatitis in mice by regulating glycolysis and the TLR4/AP1 signaling pathway. Lipids Health Dis 2023; 22:214. [PMID: 38049817 PMCID: PMC10694891 DOI: 10.1186/s12944-023-01976-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Steatosis and inflammation are the hallmarks of nonalcoholic steatohepatitis (NASH). Rotundic acid (RA) is among the key triterpenes of Ilicis Rotundae Cortex and has exhibited multipronged effects in terms of lowering the lipid content and alleviating inflammation. The study objective is to systematically evaluate the potential mechanisms through which RA affects the development and progression of NASH. METHODS Transcriptomic and proteomic analyses of primary hepatocytes isolated from the control, high-fat diet-induced NASH, and RA treatment groups were performed through Gene Ontology analysis and pathway enrichment. Hub genes were identified through network analysis. Integrative analysis revealed key RA-regulated pathways, which were verified by gene and protein expression studies and cell assays. RESULTS Hub genes were identified and enriched in the Toll-like receptor 4 (TLR4)/activator protein-1 (AP1) signaling pathway and glycolysis pathway. RA reversed glycolysis and attenuated the TLR4/AP1 pathway, thereby reducing lipid accumulation and inflammation. Additionally, lactate release in L-02 cells increased with NaAsO2-treated and significantly decreased with RA treatment, thus revealing that RA had a major impact on glycolysis. CONCLUSIONS RA is effective in lowering the lipid content and reducing inflammation in mice with NASH by ameliorating glycolysis and TLR4/AP1 pathways, which contributes to the existing knowledge and potentially sheds light on the development of therapeutic interventions for patients with NASH.
Collapse
Affiliation(s)
- Xing-Yang Shi
- MOE International Joint Laboratory for Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Xiao-Min Zheng
- MOE International Joint Laboratory for Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Hui-Jie Liu
- MOE International Joint Laboratory for Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Xue Han
- MOE International Joint Laboratory for Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Lei Zhang
- MOE International Joint Laboratory for Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- NMPA Key Laboratory for Quality Control of Blood Products, Guangdong Institute for Drug Control, Guangzhou, 510663, PR China
| | - Bei Hu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510030, PR China.
- School of Medicine, South China University of Technology, Guangzhou, 510006, PR China.
| | - Shan Li
- MOE International Joint Laboratory for Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China.
| |
Collapse
|
13
|
Bao S, Li F, Duan L, Li J, Jiang X. Thyroid-stimulating hormone may participate in insulin resistance by activating toll-like receptor 4 in liver tissues of subclinical hypothyroid rats. Mol Biol Rep 2023; 50:10637-10650. [PMID: 37884783 DOI: 10.1007/s11033-023-08834-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Thyroid-stimulating hormone (TSH) is an independent risk factor of and closely associated with metabolic disorders. In the present study, we explored the potential mechanism and adverse effects of TSH on insulin resistance in the liver of subclinical hypothyroidism models in vivo. METHODS The mean glucose infusion rate (GIR), free fatty acids (FFAs), the homeostatic model assessment for insulin resistance (HOMA-IR), fasting plasma insulin (FINS), the TLR4 signal pathway and its intracellular negative regulator-toll-interacting protein (Tollip), and the modulators of insulin signaling were evaluated. RESULTS Compared to the normal control group (NC group), the subclinical hypothyroidism rat group (SCH group) showed decreases in GIR and increases in FFAs, FINS, and HOMA-IR. The levels of TLR4 and of its downstream molecules like p-NF-κB, p-IRAK-1, IL-6 and TNF-α were evidently higher in the SCH group than in the NC group. Conversely, the level of Tollip was significantly lower in the SCH group than in the NC group. Compared to the NC group, the levels of phosphorylated IRS-1-Tyr and GLUT2 were decreased in the SCH group. Macrophage infiltration was higher in the SCH group than in the NC group. CONCLUSION TSH may participate in aggravating inflammation by increasing macrophage infiltration; furthermore, it may activate the TLR4-associated inflammatory signaling pathway, thus interfering with insulin signals in liver tissues. Targeting TSH may have therapeutic benefits against metabolic disorders.
Collapse
Affiliation(s)
- Suqing Bao
- Department of Endocrinology, Tianjin First Central Hospital, No. 24 Fu Kang Road, Nankai District, Tianjin, 300192, China.
| | - Fengbo Li
- Department of Orthopedics, Tianjin Hospital, No. 406 Jie fang South Road, Hexi District, Tianjin, 300211, China
| | - Lijun Duan
- Department of Endocrinology, Tianjin First Central Hospital, No. 24 Fu Kang Road, Nankai District, Tianjin, 300192, China
| | - Junfeng Li
- Department of Endocrinology, Tianjin First Central Hospital, No. 24 Fu Kang Road, Nankai District, Tianjin, 300192, China
| | - Xia Jiang
- Department of Endocrinology, Tianjin First Central Hospital, No. 24 Fu Kang Road, Nankai District, Tianjin, 300192, China
| |
Collapse
|
14
|
Tsukui D, Kimura Y, Kono H. GM-CSF receptor/SYK/JNK/FOXO1/CD11c signaling promotes atherosclerosis. iScience 2023; 26:107293. [PMID: 37520709 PMCID: PMC10382675 DOI: 10.1016/j.isci.2023.107293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/30/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Atherosclerosis complicates chronic inflammatory diseases, such as rheumatoid arthritis and systemic lupus erythematosus, suggesting that a shared physiological pathway regulates inflammatory responses in these diseases wherein spleen tyrosine kinase (SYK) is involved. We aimed to identify a shared therapeutic target for atherosclerosis and inflammatory diseases. We used Syk-knockout atherosclerosis-prone mice to determine whether SYK is involved in atherosclerosis via the inflammatory response and elucidate the mechanism of SYK signaling. The Syk-knockout mice showed reduced atherosclerosis in vivo, and macrophages derived from this strain showed ameliorated cell migration in vitro. CD11c expression decreased on Syk-knockout monocytes and macrophages; it was upregulated by forkhead box protein O1 (FOXO1) after stimulation with granulocyte-macrophage colony-stimulating factor (GM-CSF), and c-Jun amino-terminal kinase (JNK) mediated SYK signaling to FOXO1. Furthermore, FOXO1 inhibitor treatment mitigated atherosclerosis in mice. Thus, GM-CSF receptor/SYK/JNK/FOXO1/CD11c signaling in monocytes and macrophages and FOXO1 could be therapeutic targets for atherosclerosis and inflammatory diseases.
Collapse
Affiliation(s)
- Daisuke Tsukui
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Yoshitaka Kimura
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Hajime Kono
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| |
Collapse
|
15
|
Onyishi CU, Desanti GE, Wilkinson AL, Lara-Reyna S, Frickel EM, Fejer G, Christophe OD, Bryant CE, Mukhopadhyay S, Gordon S, May RC. Toll-like receptor 4 and macrophage scavenger receptor 1 crosstalk regulates phagocytosis of a fungal pathogen. Nat Commun 2023; 14:4895. [PMID: 37580395 PMCID: PMC10425417 DOI: 10.1038/s41467-023-40635-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023] Open
Abstract
The opportunistic fungal pathogen Cryptococcus neoformans causes lethal infections in immunocompromised patients. Macrophages are central to the host response to cryptococci; however, it is unclear how C. neoformans is recognised and phagocytosed by macrophages. Here we investigate the role of TLR4 in the non-opsonic phagocytosis of C. neoformans. We find that loss of TLR4 function unexpectedly increases phagocytosis of non-opsonised cryptococci by murine and human macrophages. The increased phagocytosis observed in Tlr4-/- cells was dampened by pre-treatment of macrophages with oxidised-LDL, a known ligand of scavenger receptors. The scavenger receptor, macrophage scavenger receptor 1 (MSR1) (also known as SR-A1 or CD204) was upregulated in Tlr4-/- macrophages. Genetic ablation of MSR1 resulted in a 75% decrease in phagocytosis of non-opsonised cryptococci, strongly suggesting that it is a key non-opsonic receptor for this pathogen. We go on to show that MSR1-mediated uptake likely involves the formation of a multimolecular signalling complex involving FcγR leading to SYK, PI3K, p38 and ERK1/2 activation to drive actin remodelling and phagocytosis. Altogether, our data indicate a hitherto unidentified role for TLR4/MSR1 crosstalk in the non-opsonic phagocytosis of C. neoformans.
Collapse
Affiliation(s)
- Chinaemerem U Onyishi
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Guillaume E Desanti
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Alex L Wilkinson
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Samuel Lara-Reyna
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Eva-Maria Frickel
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Gyorgy Fejer
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| | - Olivier D Christophe
- Université Paris-Saclay, INSERM, Hémostase inflammation thrombose HITH U1176, 94276, Le Kremlin-Bicêtre, France
| | - Clare E Bryant
- University of Cambridge, Department of Medicine, Box 157, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Subhankar Mukhopadhyay
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, United Kingdom
| | - Siamon Gordon
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Robin C May
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
| |
Collapse
|
16
|
Busold S, Akkerdaas JH, Zijlstra-Willems EM, van der Graaf K, Tas SW, de Jong EC, van Ree R, Geijtenbeek TBH. Toll-like receptor 4 and Syk kinase shape dendritic cell-induced immune activation to major house dust mite allergens. Front Med (Lausanne) 2023; 10:1105538. [PMID: 37614946 PMCID: PMC10442820 DOI: 10.3389/fmed.2023.1105538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/20/2023] [Indexed: 08/25/2023] Open
Abstract
Background House dust mite (HDM) is a major cause of respiratory allergic diseases. Dendritic cells (DCs) play a central role in orchestrating adaptive allergic immune responses. However, it remains unclear how DCs become activated by HDM. Biochemical functions of the major HDM allergens Der p 1 (cysteine protease) and Der p 2 (MD2-mimick) have been implicated to contribute to DC activation. Methods We investigated the immune activating potential of HDM extract and its major allergens Der p 1 and Der p 2 using monocyte-derived DCs (moDCs). Maturation and activation markers were monitored by flow cytometry and cytokine production by ELISA. Allergen depletion and proteinase K digestion were used to investigate the involvement of proteins, and in particular of the major allergens. Inhibitors of spleen tyrosine kinase (Syk), Toll-like receptor 4 (TLR4) and of C-type lectin receptors (CLRs) were used to identify the involved receptors. The contribution of endotoxins in moDC activation was assessed by their removal from HDM extract. Results HDM extract induced DC maturation and cytokine responses in contrast to the natural purified major allergens Der p 1 and Der p 2. Proteinase K digestion and removal of Der p 1 or Der p 2 did not alter the immune stimulatory capacity of HDM extract. Antibodies against the CLRs Dectin-1, Dectin-2, and DC-SIGN did not affect cytokine responses. In contrast, Syk inhibition partially reduced IL-6, IL-12 and completely blocked IL-10. Blocking TLR4 signaling reduced the HDM-induced IL-10 and IL-12p70 induction, but not IL-6, while endotoxin removal potently abolished the induced cytokine response. Conclusion Our data strongly suggest that HDM-induced DC activation is neither dependent on Der p 1 nor Der p 2, but depend on Syk and TLR4 activation, which might suggest a crosstalk between Syk and TLR4 pathways. Our data highlight that endotoxins play a potent role in immune responses targeting HDM.
Collapse
Affiliation(s)
- Stefanie Busold
- Amsterdam University Medical Centers, location AMC, Department of Experimental Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, Netherlands
| | - Jaap H. Akkerdaas
- Amsterdam University Medical Centers, location AMC, Department of Experimental Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, Netherlands
| | - Esther M. Zijlstra-Willems
- Amsterdam University Medical Centers, location AMC, Department of Experimental Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, Netherlands
| | | | - Sander W. Tas
- Amsterdam University Medical Centers, location AMC, Department of Experimental Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, Netherlands
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Esther C. de Jong
- Amsterdam University Medical Centers, location AMC, Department of Experimental Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, Netherlands
| | - Ronald van Ree
- Amsterdam University Medical Centers, location AMC, Department of Experimental Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, Netherlands
- Amsterdam University Medical Centers, location AMC, Department of Otorhinolaryngology, Amsterdam, Netherlands
| | - Teunis B. H. Geijtenbeek
- Amsterdam University Medical Centers, location AMC, Department of Experimental Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, Netherlands
| |
Collapse
|
17
|
Liberti A, Pollastro C, Pinto G, Illiano A, Marino R, Amoresano A, Spagnuolo A, Sordino P. Transcriptional and proteomic analysis of the innate immune response to microbial stimuli in a model invertebrate chordate. Front Immunol 2023; 14:1217077. [PMID: 37600818 PMCID: PMC10433773 DOI: 10.3389/fimmu.2023.1217077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023] Open
Abstract
Inflammatory response triggered by innate immunity can act to protect against microorganisms that behave as pathogens, with the aim to restore the homeostatic state between host and beneficial microbes. As a filter-feeder organism, the ascidian Ciona robusta is continuously exposed to external microbes that may be harmful under some conditions. In this work, we used transcriptional and proteomic approaches to investigate the inflammatory response induced by stimuli of bacterial (lipopolysaccharide -LPS- and diacylated lipopeptide - Pam2CSK4) and fungal (zymosan) origin, in Ciona juveniles at stage 4 of metamorphosis. We focused on receptors, co-interactors, transcription factors and cytokines belonging to the TLR and Dectin-1 pathways and on immune factors identified by homology approach (i.e. immunoglobulin (Ig) or C-type lectin domain containing molecules). While LPS did not induce a significant response in juvenile ascidians, Pam2CSK4 and zymosan exposure triggered the activation of specific inflammatory mechanisms. In particular, Pam2CSK4-induced inflammation was characterized by modulation of TLR and Dectin-1 pathway molecules, including receptors, transcription factors, and cytokines, while immune response to zymosan primarily involved C-type lectin receptors, co-interactors, Ig-containing molecules, and cytokines. A targeted proteomic analysis enabled to confirm transcriptional data, also highlighting a temporal delay between transcriptional induction and protein level changes. Finally, a protein-protein interaction network of Ciona immune molecules was rendered to provide a wide visualization and analysis platform of innate immunity. The in vivo inflammatory model described here reveals interconnections of innate immune pathways in specific responses to selected microbial stimuli. It also represents the starting point for studying ontogeny and regulation of inflammatory disorders in different physiological conditions.
Collapse
Affiliation(s)
- Assunta Liberti
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Carla Pollastro
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
- Istituto Nazionale Biostrutture e Biosistemi-Consorzio Interuniversitario, Rome, Italy
| | - Anna Illiano
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
- Istituto Nazionale Biostrutture e Biosistemi-Consorzio Interuniversitario, Rome, Italy
| | - Rita Marino
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
- Istituto Nazionale Biostrutture e Biosistemi-Consorzio Interuniversitario, Rome, Italy
| | - Antonietta Spagnuolo
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Paolo Sordino
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Messina, Italy
| |
Collapse
|
18
|
Shaker ME, Gomaa HAM, Abdelgawad MA, El-Mesery M, Shaaban AA, Hazem SH. Emerging roles of tyrosine kinases in hepatic inflammatory diseases and therapeutic opportunities. Int Immunopharmacol 2023; 120:110373. [PMID: 37257270 DOI: 10.1016/j.intimp.2023.110373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/06/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
Inflammation has been convicted of causing and worsening many liver diseases like acute liver failure, fibrosis, cirrhosis, fatty liver and liver cancer. Pattern recognition receptors (PRRs) like TLRs 4 and 9 localized on resident or recruited immune cells are well known cellular detectors of pathogen and damage-associated molecular patterns (PAMPs/DAMPs). Stimulation of these receptors generates the sterile and non-sterile inflammatory responses in the liver. When these responses are repeated, there will be a sustained liver injury that may progress to fibrosis and its outcomes. Crosstalk between inflammatory/fibrogenic-dependent streams and certain tyrosine kinases (TKs) has recently evolved in the context of hepatic diseases. Because of TKs increasing importance, their role should be elucidated to highlight effective approaches to manage the diverse liver disorders. This review will give a brief overview of types and functions of some TKs like BTK, JAKs, Syk, PI3K, Src and c-Abl, as well as receptors for TAM, PDGF, EGF, VEGF and HGF. It will then move to discuss the roles of these TKs in the regulation of the proinflammatory, fibrogenic and tumorigenic responses in the liver. Lastly, the therapeutic opportunities for targeting TKs in hepatic inflammatory disorders will be addressed. Overall, this review sheds light on the diverse TKs that have substantial roles in hepatic disorders and potential therapeutics modulating their activity.
Collapse
Affiliation(s)
- Mohamed E Shaker
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia.
| | - Hesham A M Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Ahmed A Shaaban
- Department of Pharmacology & Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Sara H Hazem
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
19
|
Du X, Liu Y, He X, Tao L, Fang M, Chu M. Uterus proliferative period ceRNA network of Yunshang black goat reveals candidate genes on different kidding number trait. Front Endocrinol (Lausanne) 2023; 14:1165409. [PMID: 37251683 PMCID: PMC10213787 DOI: 10.3389/fendo.2023.1165409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Pregnancy loss that occurs in the uterus is an important and widespread problem in humans and farm animals and is also a key factor affecting the fecundity of livestock. Understanding the differences in the fecundity of goats may be helpful in guiding the breeding of goats with high fecundity. In this study, we performed RNA sequencing and bioinformatics analysis to study the uterus of Yunshang black goats with high and low fecundity in the proliferative period. We identified mRNAs, long non-coding RNAs (lncRNAs), and microRNAs (miRNAs) by analyzing the uterine transcriptomes. The target genes of the identified miRNAs and lncRNAs were predicted, and miRNA-mRNA interaction and competitive endogenous RNA (ceRNA) networks were constructed. By comparisons between low- and high-fecundity groups, we identified 1,674 differentially expressed mRNAs (914 were upregulated, and 760 were downregulated), 288 differentially expressed lncRNAs (149 were upregulated, and 139 were downregulated), and 17 differentially expressed miRNAs (4 were upregulated, and 13 were downregulated). In addition, 49 miRNA-mRNA pairs and 45 miRNA-lncRNA pairs were predicted in the interaction networks. We successfully constructed a ceRNA interaction network with 108 edges that contained 19 miRNAs, 11 mRNAs, and 73 lncRNAs. Five candidate genes (PLEKHA7, FAT2, FN1, SYK, and ITPR2) that were annotated as cell adhesion or calcium membrane channel protein were identified. Our results provide the overall expression profiles of mRNAs, lncRNAs, and miRNAs in the goat uterus during the proliferative period and are a valuable reference for studies into the mechanisms associated with the high fecundity, which may be helpful to guide goat to reduce pregnancy loss.
Collapse
Affiliation(s)
- Xiaolong Du
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, Ministry of Agriculture and Rural Affairs (MARA) PRC Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Tao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meiying Fang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, Ministry of Agriculture and Rural Affairs (MARA) PRC Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
20
|
A Novel TLR4-SYK Interaction Axis Plays an Essential Role in the Innate Immunity Response in Bovine Mammary Epithelial Cells. Biomedicines 2022; 11:biomedicines11010097. [PMID: 36672605 PMCID: PMC9855420 DOI: 10.3390/biomedicines11010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Mammary gland epithelium, as the first line of defense for bovine mammary gland immunity, is crucial in the process of mammary glands’ innate immunity, especially that of bovine mammary epithelial cells (bMECs). Our previous studies successfully marked SYK as an important candidate gene for mastitis traits via GWAS and preliminarily confirmed that SYK expression is down-regulated in bMECs with LPS (E. coli) stimulation, but its work mechanism is still unclear. In this study, for the first time, in vivo, TLR4 and SYK were colocalized and had a high correlation in mastitis mammary epithelium; protein−protein interaction results also confirmed that there was a direct interaction between them in mastitis tissue, suggesting that SYK participates in the immune regulation of the TLR4 cascade for bovine mastitis. In vitro, TLR4 also interacts with SYK in LPS (E. coli)-stimulated or GBS (S. agalactiae)-infected bMECs, respectively. Moreover, TLR4 mRNA expression and protein levels were little affected in bMECsSYK- with LPS stimulation or GBS infection, indicating that SYK is an important downstream element of the TLR4 cascade in bMECs. Interestingly, IL-1β, IL-8, NF-κB and NLRP3 expression in LPS-stimulated or GBS-infected bMECsSYK- were significantly higher than in the control group, while AKT1 expression was down-regulated, implying that SYK could inhibit the IL-1β, IL-8, NF-κB and NLRP3 expression and alleviate inflammation in bMECs with LPS and GBS. Taken together, our solid evidence supports that TLR4/SYK/NF-κB signal axis in bMECs regulates the innate immunity response to LPS or GBS.
Collapse
|
21
|
McLeish KR, Fernandes MJ. Understanding inhibitory receptor function in neutrophils through the lens of
CLEC12A. Immunol Rev 2022; 314:50-68. [PMID: 36424898 DOI: 10.1111/imr.13174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neutrophils are the first leukocytes recruited from the circulation in response to invading pathogens or injured cells. To eradicate pathogens and contribute to tissue repair, recruited neutrophils generate and release a host of toxic chemicals that can also damage normal cells. To avoid collateral damage leading to tissue injury and organ dysfunction, molecular mechanisms evolved that tightly control neutrophil response threshold to activating signals, the strength and location of the response, and the timing of response termination. One mechanism of response control is interruption of activating intracellular signaling pathways by the 20 inhibitory receptors expressed by neutrophils. The two inhibitory C-type lectin receptors expressed by neutrophils, CLEC12A and DCIR, exhibit both common and distinct molecular and functional mechanisms, and they are associated with different diseases. In this review, we use studies on CLEC12A as a model of inhibitory receptor regulation of neutrophil function and participation in disease. Understanding the molecular mechanisms leading to inhibitory receptor specificity offers the possibility of using physiologic control of neutrophil functions as a pharmacologic tool to control inflammatory diseases.
Collapse
Affiliation(s)
- Kenneth R. McLeish
- Department of Medicine University of Louisville School of Medicine Louisville Kentucky USA
| | - Maria J. Fernandes
- Infectious and Immune Diseases Division CHU de Québec‐Laval University Research Center Québec Québec Canada
- Department of Microbiology‐Infectious Diseases and Immunology, Faculty of Medicine Laval University Québec Québec Canada
| |
Collapse
|
22
|
Cao M, Ma L, Yan C, Wang H, Ran M, Chen Y, Wang X, Liang X, Chai L, Li X. Mouse Ocilrp2/Clec2i negatively regulates LPS-mediated IL-6 production by blocking Dap12-Syk interaction in macrophage. Front Immunol 2022; 13:984520. [PMID: 36300111 PMCID: PMC9589251 DOI: 10.3389/fimmu.2022.984520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
C-type lectin Ocilrp2/Clec2i is widely expressed in dendritic cells, lymphokine-activated killer cells and activated T cells. Previous studies have shown that Ocilrp2 is an important regulator in the activation of T cells and NK cells. However, the role of Ocilrp2 in the inflammatory responses by activated macrophages is currently unknown. This study investigated the expression of inflammatory cytokines in LPS-induced macrophages from primary peritoneal macrophages silenced by specific siRNA target Ocilrp2. Ocilrp2 was significantly downregulated in macrophages via NF-κB and pathways upon LPS stimuli or VSV infection. Silencing Ocilrp2 resulted in the increased expression of IL-6 in LPS-stimulated peritoneal macrophages and mice. Moreover, IL-6 expression was reduced in LPS-induced Ocilrp2 over-expressing iBMDM cells. Furthermore, we found that Ocilrp2-related Syk activation is responsible for expressing inflammatory cytokines in LPS-stimulated macrophages. Silencing Ocilrp2 significantly promotes the binding of Syk to Dap12. Altogether, we identified the Ocilrp2 as a critical role in the TLR4 signaling pathway and inflammatory macrophages’ immune regulation, and added mechanistic insights into the crosstalk between TLR and Syk signaling.
Collapse
Affiliation(s)
- Mingya Cao
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
- Institute of Translational Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Lina Ma
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Chenyang Yan
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Han Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Mengzhe Ran
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Ying Chen
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Xiao Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Xiaonan Liang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Lihui Chai
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
- Institute of Translational Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Lihui Chai, ; Xia Li,
| | - Xia Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
- Institute of Translational Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Lihui Chai, ; Xia Li,
| |
Collapse
|
23
|
Kim JM, Noh EM, You YO, Kim MS, Lee YR. Downregulation of Matriptase Inhibits Porphyromonas gingivalis Lipopolysaccharide-Induced Matrix Metalloproteinase-1 and Proinflammatory Cytokines by Suppressing the TLR4/NF- κB Signaling Pathways in Human Gingival Fibroblasts. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3865844. [PMID: 36246974 PMCID: PMC9553488 DOI: 10.1155/2022/3865844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/30/2022]
Abstract
Matriptases are cell surface proteolytic enzymes belonging to the type II transmembrane serine protease family that mediate inflammatory skin disorders and cancer progression. Matriptases may affect the development of periodontitis via protease-activated receptor-2 activity. However, the cellular mechanism by which matriptases are involved in periodontitis is unknown. In this study, we examined the antiperiodontitis effects of matriptase on Porphyromonas gingivalis-derived lipopolysaccharide (PG-LPS)-stimulated human gingival fibroblasts (HGFs). Matriptase small interfering RNA-transfected HGFs were treated with PG-LPS. The mRNA and protein levels of proinflammatory cytokines and matrix metalloproteinase 1 (MMP-1) were evaluated using the quantitative real-time polymerase chain reaction (qRT-PCR) and an enzyme-linked immunosorbent assay (ELISA), respectively. Western blot analyses were performed to measure the levels of Toll-like receptor 4 (TLR4)/interleukin-1 (IL-1) receptor-associated kinase (IRAK)/transforming growth factor β-activated kinase 1 (TAK1), p65, and p50 in PG-LPS-stimulated HGFs. Matriptase downregulation inhibited LPS-induced proinflammatory cytokine expression, including the expression of IL-6, IL-8, tumor necrosis factor-α (TNF-α), and IL-Iβ. Moreover, matriptase downregulation inhibited PG-LPS-stimulated MMP-1 expression. Additionally, we confirmed that the mechanism underlying the effects of matriptase downregulation involves the suppression of PG-LPS-induced IRAK1/TAK1 and NF-κB. These results suggest that downregulation of matriptase PG-LPS-induced MMP-1 and proinflammatory cytokine expression via TLR4-mediated IRAK1/TAK1 and NF-κB signaling pathways in HGFs.
Collapse
Affiliation(s)
- Jeong-Mi Kim
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Eun-Mi Noh
- Department of Oral Biochemistry, And Institute of Biomaterials-Implant, College of Dentistry, Wonkwang University, Iksan City, Jeonbuk 54538, Republic of Korea
| | - Yong-Ouk You
- Department of Oral Biochemistry, And Institute of Biomaterials-Implant, College of Dentistry, Wonkwang University, Iksan City, Jeonbuk 54538, Republic of Korea
| | - Min Seuk Kim
- Department of Oral Physiology, And Institute of Biomaterial-Implant, College of Dentistry, Wonkwang University, Iksan City, Jeonbuk 54538, Republic of Korea
| | - Young-Rae Lee
- Department of Oral Biochemistry, And Institute of Biomaterials-Implant, College of Dentistry, Wonkwang University, Iksan City, Jeonbuk 54538, Republic of Korea
| |
Collapse
|
24
|
Oxidised Low-Density Lipoprotein-Induced Platelet Hyperactivity—Receptors and Signalling Mechanisms. Int J Mol Sci 2022; 23:ijms23169199. [PMID: 36012465 PMCID: PMC9409144 DOI: 10.3390/ijms23169199] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/26/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Dyslipidaemia leads to proatherogenic oxidative lipid stress that promotes vascular inflammation and thrombosis, the pathologies that underpin myocardial infarction, stroke, and deep vein thrombosis. These prothrombotic states are driven, at least in part, by platelet hyperactivity, and they are concurrent with the appearancxe of oxidatively modified low-density lipoproteins (LDL) in the circulation. Modified LDL are heterogenous in nature but, in a general sense, constitute a prototype circulating transporter for a plethora of oxidised lipid epitopes that act as danger-associated molecular patterns. It is well-established that oxidatively modified LDL promote platelet activation and arterial thrombosis through a number of constitutively expressed scavenger receptors, which transduce atherogenic lipid stress to a complex array of proactivatory signalling pathways in the platelets. Stimulation of these signalling events underlie the ability of modified LDL to induce platelet activation and blunt platelet inhibitory pathways, as well as promote platelet-mediated coagulation. Accumulating evidence from patients at risk of arterial thrombosis and experimental animal models of disease suggest that oxidised LDL represents a tangible link between the dyslipidaemic environment and increased platelet activation. The aim of this review is to summarise recent advances in our understanding of the pro-thrombotic signalling events induced in platelets by modified LDL ligation, describe the contribution of individual platelet scavenger receptors, and highlight potential future challenges of targeting these pathways.
Collapse
|
25
|
A Fun-Guide to Innate Immune Responses to Fungal Infections. J Fungi (Basel) 2022; 8:jof8080805. [PMID: 36012793 PMCID: PMC9409918 DOI: 10.3390/jof8080805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
Immunocompromised individuals are at high risk of developing severe fungal infections with high mortality rates, while fungal pathogens pose little risk to most healthy people. Poor therapeutic outcomes and growing antifungal resistance pose further challenges for treatments. Identifying specific immunomodulatory mechanisms exploited by fungal pathogens is critical for our understanding of fungal diseases and development of new therapies. A gap currently exists between the large body of literature concerning the innate immune response to fungal infections and the potential manipulation of host immune responses to aid clearance of infection. This review considers the innate immune mechanisms the host deploys to prevent fungal infection and how these mechanisms fail in immunocompromised hosts. Three clinically relevant fungal pathogens (Candida albicans, Cryptococcus spp. and Aspergillus spp.) will be explored. This review will also examine potential mechanisms of targeting the host therapeutically to improve outcomes of fungal infection.
Collapse
|
26
|
The transmembrane adapter SCIMP recruits tyrosine kinase Syk to phosphorylate Toll-like receptors to mediate selective inflammatory outputs. J Biol Chem 2022; 298:101857. [PMID: 35337798 PMCID: PMC9052152 DOI: 10.1016/j.jbc.2022.101857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/23/2022] Open
Abstract
Innate immune signaling by Toll-like receptors (TLRs) involves receptor phosphorylation, which helps to shape and drive key inflammatory outputs, yet our understanding of the kinases and mechanisms that mediate TLR phosphorylation is incomplete. Spleen tyrosine kinase (Syk) is a nonreceptor protein tyrosine kinase, which is known to relay adaptive and innate immune signaling, including from TLRs. However, TLRs do not contain the conserved dual immunoreceptor tyrosine-based activation motifs that typically recruit Syk to many other receptors. One possibility is that the Syk-TLR association is indirect, relying on an intermediary scaffolding protein. We previously identified a role for the palmitoylated transmembrane adapter protein SCIMP in scaffolding the Src tyrosine kinase Lyn, for TLR phosphorylation, but the role of SCIMP in mediating the interaction between Syk and TLRs has not yet been investigated. Here, we show that SCIMP recruits Syk in response to lipopolysaccharide-mediated TLR4 activation. We also show that Syk contributes to the phosphorylation of SCIMP and TLR4 to enhance their binding. Further evidence pinpoints two specific phosphorylation sites in SCIMP critical for its interaction with Syk-SH2 domains in the absence of immunoreceptor tyrosine-based activation motifs. Finally, using inhibitors and primary macrophages from SCIMP-/- mice, we confirm a functional role for SCIMP-mediated Syk interaction in modulating TLR4 phosphorylation, signaling, and cytokine outputs. In conclusion, we identify SCIMP as a novel, immune-specific Syk scaffold, which can contribute to inflammation through selective TLR-driven inflammatory responses.
Collapse
|
27
|
Abstract
Statins are 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors used worldwide to manage dyslipidaemia and thus limit the development of atherosclerotic disease and its complications. These atheroprotective drugs are now known to exert pleiotropic actions outside of their cholesterol-lowering activity, including altering immune cell function. Macrophages are phagocytic leukocytes that play critical functional roles in the pathogenesis of atherosclerosis and are directly targeted by statins. Early studies documented the anti-inflammatory effects of statins on macrophages, but emerging evidence suggests that these drugs can also enhance pro-inflammatory macrophage responses, creating an unresolved paradox. This review comprehensively examines the in vitro, in vivo, and clinical literature to document the statin-induced changes in macrophage polarization and immunomodulatory functions, explore the underlying mechanisms involved, and offer potential explanations for this paradox. A better understanding of the immunomodulatory actions of statins on macrophages should pave the way for the development of novel therapeutic approaches to manage atherosclerosis and other chronic diseases and conditions characterised by unresolved inflammation.
Collapse
|
28
|
Hiengrach P, Visitchanakun P, Finkelman MA, Chancharoenthana W, Leelahavanichkul A. More Prominent Inflammatory Response to Pachyman than to Whole-Glucan Particle and Oat-β-Glucans in Dextran Sulfate-Induced Mucositis Mice and Mouse Injection through Proinflammatory Macrophages. Int J Mol Sci 2022; 23:4026. [PMID: 35409384 PMCID: PMC8999416 DOI: 10.3390/ijms23074026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023] Open
Abstract
(1→3)-β-D-glucans (BG) (the glucose polymers) are recognized as pathogen motifs, and different forms of BGs are reported to have various effects. Here, different BGs, including Pachyman (BG with very few (1→6)-linkages), whole-glucan particles (BG with many (1→6)-glycosidic bonds), and Oat-BG (BG with (1→4)-linkages), were tested. In comparison with dextran sulfate solution (DSS) alone in mice, DSS with each of these BGs did not alter the weight loss, stool consistency, colon injury (histology and cytokines), endotoxemia, serum BG, and fecal microbiome but Pachyman-DSS-treated mice demonstrated the highest serum cytokine elicitation (TNF-α and IL-6). Likewise, a tail vein injection of Pachyman together with intraperitoneal lipopolysaccharide (LPS) induced the highest levels of these cytokines at 3 h post-injection than LPS alone or LPS with other BGs. With bone marrow-derived macrophages, BG induced only TNF-α (most prominent with Pachyman), while LPS with BG additively increased several cytokines (TNF-α, IL-6, and IL-10); inflammatory genes (iNOS, IL-1β, Syk, and NF-κB); and cell energy alterations (extracellular flux analysis). In conclusion, Pachyman induced the highest LPS proinflammatory synergistic effect on macrophages, followed by WGP, possibly through Syk-associated interactions between the Dectin-1 and TLR-4 signal transduction pathways. Selection of the proper form of BGs for specific clinical conditions might be beneficial.
Collapse
Affiliation(s)
- Pratsanee Hiengrach
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (P.H.); (P.V.)
| | - Peerapat Visitchanakun
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (P.H.); (P.V.)
| | | | - Wiwat Chancharoenthana
- Tropical Nephrology Research Unit, Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Tropical Immunology and Translational Research Unit, Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (P.H.); (P.V.)
- Nephrology Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
29
|
Viens AL, Timmer KD, Alexander NJ, Barghout R, Milosevic J, Hopke A, Atallah NJ, Scherer AK, Sykes DB, Irimia D, Mansour MK. TLR Signaling Rescues Fungicidal Activity in Syk-Deficient Neutrophils. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1664-1674. [PMID: 35277418 PMCID: PMC8976732 DOI: 10.4049/jimmunol.2100599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
An impaired neutrophil response to pathogenic fungi puts patients at risk for fungal infections with a high risk of morbidity and mortality. Acquired neutrophil dysfunction in the setting of iatrogenic immune modulators can include the inhibition of critical kinases such as spleen tyrosine kinase (Syk). In this study, we used an established system of conditionally immortalized mouse neutrophil progenitors to investigate the ability to augment Syk-deficient neutrophil function against Candida albicans with TLR agonist signaling. LPS, a known immunomodulatory molecule derived from Gram-negative bacteria, was capable of rescuing effector functions of Syk-deficient neutrophils, which are known to have poor fungicidal activity against Candida species. LPS priming of Syk-deficient mouse neutrophils demonstrates partial rescue of fungicidal activity, including phagocytosis, degranulation, and neutrophil swarming, but not reactive oxygen species production against C. albicans, in part due to c-Fos activation. Similarly, LPS priming of human neutrophils rescues fungicidal activity in the presence of pharmacologic inhibition of Syk and Bruton's tyrosine kinase (Btk), both critical kinases in the innate immune response to fungi. In vivo, neutropenic mice were reconstituted with wild-type or Syk-deficient neutrophils and challenged i.p. with C. albicans. In this model, LPS improved wild-type neutrophil homing to the fungal challenge, although Syk-deficient neutrophils did not persist in vivo, speaking to its crucial role on in vivo persistence. Taken together, we identify TLR signaling as an alternate activation pathway capable of partially restoring neutrophil effector function against Candida in a Syk-independent manner.
Collapse
Affiliation(s)
- Adam L Viens
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA;
| | - Kyle D Timmer
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
| | | | - Rana Barghout
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Boston, MA
| | - Jelena Milosevic
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Alex Hopke
- Harvard Medical School, Boston, MA
- Shriners Burns Hospital, Boston, MA; and
- Center for Engineering in Medicine and Surgery, Department of Surgery, Harvard Medical School, Boston, MA
| | - Natalie J Atallah
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Allison K Scherer
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Daniel Irimia
- Harvard Medical School, Boston, MA
- Shriners Burns Hospital, Boston, MA; and
- Center for Engineering in Medicine and Surgery, Department of Surgery, Harvard Medical School, Boston, MA
| | - Michael K Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA;
- Harvard Medical School, Boston, MA
| |
Collapse
|
30
|
Roy P, Orecchioni M, Ley K. How the immune system shapes atherosclerosis: roles of innate and adaptive immunity. Nat Rev Immunol 2022; 22:251-265. [PMID: 34389841 PMCID: PMC10111155 DOI: 10.1038/s41577-021-00584-1] [Citation(s) in RCA: 254] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is the root cause of many cardiovascular diseases. Extensive research in preclinical models and emerging evidence in humans have established the crucial roles of the innate and adaptive immune systems in driving atherosclerosis-associated chronic inflammation in arterial blood vessels. New techniques have highlighted the enormous heterogeneity of leukocyte subsets in the arterial wall that have pro-inflammatory or regulatory roles in atherogenesis. Understanding the homing and activation pathways of these immune cells, their disease-associated dynamics and their regulation by microbial and metabolic factors will be crucial for the development of clinical interventions for atherosclerosis, including potentially vaccination-based therapeutic strategies. Here, we review key molecular mechanisms of immune cell activation implicated in modulating atherogenesis and provide an update on the contributions of innate and adaptive immune cell subsets in atherosclerosis.
Collapse
Affiliation(s)
- Payel Roy
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Marco Orecchioni
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
31
|
Luigi-Sierra MG, Fernández A, Martínez A, Guan D, Delgado JV, Álvarez JF, Landi V, Such FX, Jordana J, Saura M, Amills M. Genomic patterns of homozygosity and inbreeding depression in Murciano-Granadina goats. J Anim Sci Biotechnol 2022; 13:35. [PMID: 35264251 PMCID: PMC8908635 DOI: 10.1186/s40104-022-00684-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/19/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Inbreeding depression can adversely affect traits related to fitness, reproduction and productive performance. Although current research suggests that inbreeding levels are generally low in most goat breeds, the impact of inbreeding depression on phenotypes of economic interest has only been investigated in a few studies based on genealogical data. RESULTS We genotyped 1040 goats with the Goat SNP50 BeadChip. This information was used to estimate different molecular inbreeding coefficients and characterise runs of homozygosity and homozygosity patterns. We detected 38 genomic regions with increased homozygosity as well as 8 ROH hotspots mapping to chromosomes 1, 2, 4, 6, 14, 16 and 17. Eight hundred seventeen goats with available records for dairy traits were analysed to evaluate the potential consequences of inbreeding depression on milk phenotypes. Four regions on chromosomes 8 and 25 were significantly associated with inbreeding depression for the natural logarithm of the somatic cell count. Notably, these regions contain several genes related with immunity, such as SYK, IL27, CCL19 and CCL21. Moreover, one region on chromosome 2 was significantly associated with inbreeding depression for milk yield. CONCLUSIONS Although genomic inbreeding levels are low in Murciano-Granadina goats, significant evidence of inbreeding depression for the logarithm of the somatic cell count, a phenotype closely associated with udder health and milk yield, have been detected in this population. Minimising inbreeding would be expected to augment economic gain by increasing milk yield and reducing the incidence of mastitis, which is one of the main causes of dairy goat culling.
Collapse
Affiliation(s)
- María Gracia Luigi-Sierra
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Almudena Fernández
- Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7,5, 28040, Madrid, Spain
| | - Amparo Martínez
- Departamento de Genética, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Dailu Guan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | | | | | - Vincenzo Landi
- Department of Veterinary Medicine, University of Bari ''Aldo Moro", 62 per Casamassima km. 3, 70010, Valenzano, SP, Italy
| | - Francesc Xavier Such
- Group of Research in Ruminants (G2R), Department of Animal and Food Science, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Jordi Jordana
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - María Saura
- Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7,5, 28040, Madrid, Spain.
| | - Marcel Amills
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
32
|
Saithong S, Saisorn W, Dang CP, Visitchanakun P, Chiewchengchol D, Leelahavanichkul A. Candida Administration Worsens Neutrophil Extracellular Traps in Renal Ischemia Reperfusion Injury Mice: An Impact of Gut Fungi on Acute Kidney Injury. J Innate Immun 2022; 14:502-517. [PMID: 35093955 PMCID: PMC9485968 DOI: 10.1159/000521633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/30/2021] [Indexed: 11/19/2022] Open
Abstract
Because of gut-barrier defect (gut-leakage) after acute kidney injury (AKI) and higher abundance of Candida albicans in human intestines compared with mouse guts, Candida administration in renal ischemia reperfusion injury (I/R) mice possibly more closely resemble patients with AKI than non-Candida model. Fungi in feces were detectable only in mice with Candida administration. Candida renal-I/R mice, when compared with non-Candida I/R, demonstrated more profound injuries, including (i) gut-leakage; FITC-dextran assay and serum (1→3)-β-D-glucan (BG), (ii) systemic inflammation (serum cytokines), and (iii) neutrophil extracellular traps (NETs); gene expression of peptidyl arginase 4 (PAD4) and IL-1β, nuclear morphology staining by 4′,6-diamidino-2-phenylindole (DAPI) and co-staining of myeloperoxidase (MPO) with neutrophil elastase (NE) in peripheral blood neutrophils. Although renal excretory function (serum creatinine) and renal histology score were nondifferent between renal-I/R mice with and without Candida, prominent renal NETs (PAD4 and IL-1β expression with MPO and NE co-staining) was demonstrated in Candida renal-I/R mice. Additionally, neutrophil activation by lipopolysaccharide (LPS) plus BG (LPS + BG), when compared with LPS alone, caused (i) NETs formation; dsDNA, DAPI-stained nuclear morphology and MPO with NE co-staining, (ii) inflammatory responses; Spleen tyrosine kinase (Syk) and NFκB expression, and (iii) reduced cell energy status (maximal respiratory capacity using extracellular flux analysis). Also, LPS + BG-activated NETs formation was inhibited by a dectin-1 inhibitor, supporting an impact of BG signaling. In conclusion, Candida-renal I/R demonstrated more prominent serum BG and LPS from gut translocation that increased systemic inflammation and NETs through TLR-4 and dectin-1 activation. The influence of gut fungi in AKI should be concerned.
Collapse
|
33
|
O’Reilly D, Murphy CA, Drew R, El-Khuffash A, Maguire PB, Ainle FN, Mc Callion N. Platelets in pediatric and neonatal sepsis: novel mediators of the inflammatory cascade. Pediatr Res 2022; 91:359-367. [PMID: 34711945 PMCID: PMC8816726 DOI: 10.1038/s41390-021-01715-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/14/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
Sepsis, a dysregulated host response to infection, has been difficult to accurately define in children. Despite a higher incidence, especially in neonates, a non-specific clinical presentation alongside a lack of verified biomarkers has prevented a common understanding of this condition. Platelets, traditionally regarded as mediators of haemostasis and thrombosis, are increasingly associated with functions in the immune system with involvement across the spectrum of innate and adaptive immunity. The large number of circulating platelets (approx. 150,000 cells per microlitre) mean they outnumber traditional immune cells and are often the first to encounter a pathogen at a site of injury. There are also well-described physiological differences between platelets in children and adults. The purpose of this review is to place into context the platelet and its role in immunology and examine the evidence where available for its role as an immune cell in childhood sepsis. It will examine how the platelet interacts with both humoral and cellular components of the immune system and finally discuss the role the platelet proteome, releasate and extracellular vesicles may play in childhood sepsis. This review also examines how platelet transfusions may interfere with the complex relationships between immune cells in infection. IMPACT: Platelets are increasingly being recognised as important "first responders" to immune threats. Differences in adult and paediatric platelets may contribute to differing immune response to infections. Adult platelet transfusions may affect infant immune responses to inflammatory/infectious stimuli.
Collapse
Affiliation(s)
- Daniel O’Reilly
- grid.416068.d0000 0004 0617 7587Department of Neonatology, Rotunda Hospital, Dublin, Ireland ,grid.7886.10000 0001 0768 2743Conway-SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland
| | - Claire A. Murphy
- grid.416068.d0000 0004 0617 7587Department of Neonatology, Rotunda Hospital, Dublin, Ireland ,grid.7886.10000 0001 0768 2743Conway-SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland ,grid.4912.e0000 0004 0488 7120Department of Paediatrics, Royal College of Surgeons in Ireland, Dubin, Ireland
| | - Richard Drew
- grid.416068.d0000 0004 0617 7587Clinical Innovation Unit, Rotunda Hospital, Dublin, Ireland ,Irish Meningitis and Sepsis Reference Laboratory, Children’s Health Ireland at Temple Street, Dublin, Ireland ,grid.4912.e0000 0004 0488 7120Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Afif El-Khuffash
- grid.416068.d0000 0004 0617 7587Department of Neonatology, Rotunda Hospital, Dublin, Ireland ,grid.4912.e0000 0004 0488 7120Department of Paediatrics, Royal College of Surgeons in Ireland, Dubin, Ireland
| | - Patricia B. Maguire
- grid.7886.10000 0001 0768 2743Conway-SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland ,grid.7886.10000 0001 0768 2743School of Biomolecular & Biomedical Science, University College Dublin, Dublin, Ireland
| | - Fionnuala Ni Ainle
- grid.7886.10000 0001 0768 2743Conway-SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland ,grid.7886.10000 0001 0768 2743School of Biomolecular & Biomedical Science, University College Dublin, Dublin, Ireland ,grid.411596.e0000 0004 0488 8430Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland ,grid.416068.d0000 0004 0617 7587Department of Haematology, Rotunda Hospital, Dublin, Ireland ,grid.7886.10000 0001 0768 2743School of Medicine, University College Dublin, Dublin, Ireland
| | - Naomi Mc Callion
- grid.416068.d0000 0004 0617 7587Department of Neonatology, Rotunda Hospital, Dublin, Ireland ,grid.4912.e0000 0004 0488 7120Department of Paediatrics, Royal College of Surgeons in Ireland, Dubin, Ireland
| |
Collapse
|
34
|
Luci C, Vieira E, Bourinet M, Rousseau D, Bonnafous S, Patouraux S, Lefevre L, Larbret F, Prod’homme V, Iannelli A, Tran A, Anty R, Bailly-Maitre B, Deckert M, Gual P. SYK-3BP2 Pathway Activity in Parenchymal and Myeloid Cells Is a Key Pathogenic Factor in Metabolic Steatohepatitis. Cell Mol Gastroenterol Hepatol 2021; 13:173-191. [PMID: 34411785 PMCID: PMC8593618 DOI: 10.1016/j.jcmgh.2021.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Spleen tyrosine kinase (SYK) signaling pathway regulates critical processes in innate immunity, but its role in parenchymal cells remains elusive in chronic liver diseases. We investigate the relative contribution of SYK and its substrate c-Abl Src homology 3 domain-binding protein-2 (3BP2) in both myeloid cells and hepatocytes in the onset of metabolic steatohepatitis. METHODS Hepatic SYK-3BP2 pathway was evaluated in mouse models of metabolic-associated fatty liver diseases (MAFLD) and in obese patients with biopsy-proven MAFLD (n = 33). Its role in liver complications was evaluated in Sh3bp2 KO and myeloid-specific Syk KO mice challenged with methionine and choline deficient diet and in homozygous Sh3bp2KI/KI mice with and without SYK expression in myeloid cells. RESULTS Here we report that hepatic expression of 3BP2 and SYK correlated with metabolic steatohepatitis severity in mice. 3BP2 deficiency and SYK deletion in myeloid cells mediated the same protective effects on liver inflammation, injury, and fibrosis priming upon diet-induced steatohepatitis. In primary hepatocytes, the targeting of 3BP2 or SYK strongly decreased the lipopolysaccharide-mediated inflammatory mediator expression and 3BP2-regulated SYK expression. In homozygous Sh3bp2KI/KI mice, the chronic inflammation mediated by the proteasome-resistant 3BP2 mutant promoted severe hepatitis and liver fibrosis with augmented liver SYK expression. In these mice, the deletion of SYK in myeloid cells was sufficient to prevent these liver lesions. The hepatic expression of SYK is also up-regulated with metabolic steatohepatitis and correlates with liver macrophages in biopsy-proven MAFLD patients. CONCLUSIONS Collectively, these data suggest an important role for the SYK-3BP2 pathway in the pathogenesis of chronic liver inflammatory diseases and highlight its targeting in hepatocytes and myeloid cells as a potential strategy to treat metabolic steatohepatitis.
Collapse
Affiliation(s)
- Carmelo Luci
- Université Côte d’Azur, INSERM, U1065, C3M, Nice, France
| | - Elodie Vieira
- Université Côte d’Azur, INSERM, U1065, C3M, Nice, France
| | - Manon Bourinet
- Université Côte d’Azur, INSERM, U1065, C3M, Nice, France
| | | | | | | | - Lauren Lefevre
- Université Côte d’Azur, INSERM, U1065, C3M, Nice, France
| | | | | | | | - Albert Tran
- Université Côte d’Azur, CHU, INSERM, U1065, C3M, Nice, France
| | - Rodolphe Anty
- Université Côte d’Azur, CHU, INSERM, U1065, C3M, Nice, France
| | | | - Marcel Deckert
- Université Côte d’Azur, INSERM, U1065, C3M, Nice, France,Marcel Deckert, PhD, Inserm UMR1065/C3M, Bâtiment Universitaire ARCHIMED, Team "Microenvironment, signaling and cancer", 151 route Saint Antoine de Ginestière, BP 2 3194, 06204 Nice, France.
| | - Philippe Gual
- Université Côte d’Azur, INSERM, U1065, C3M, Nice, France,Correspondence Address correspondence to: Philippe Gual, PhD, Inserm UMR1065/C3M, Bâtiment Universitaire ARCHIMED, Team "Chronic liver diseases associated with obesity and alcohol", 151 route Saint Antoine de Ginestière, BP 2 3194, 06204 Nice, France. fax: +33 4 89 06 42 60.
| |
Collapse
|
35
|
Wang D, Shao S, Zhang Y, Zhao D, Wang M. Insight Into Polysaccharides From Panax ginseng C. A. Meyer in Improving Intestinal Inflammation: Modulating Intestinal Microbiota and Autophagy. Front Immunol 2021; 12:683911. [PMID: 34354704 PMCID: PMC8329555 DOI: 10.3389/fimmu.2021.683911] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/02/2021] [Indexed: 12/17/2022] Open
Abstract
Polysaccharides from Panax ginseng C. A. Meyer (P. ginseng) are the main active component of P. ginseng and exhibit significant intestinal anti-inflammatory activity. However, the therapeutic mechanism of the ginseng polysaccharide is unclear, and this hinders the application for medicine or functional food. In this study, a polysaccharide was isolated from P. ginseng (GP). The primary structure and morphology of the GP were studied by HPLC, FT-IR spectroscopy, and scanning electron microscopy (SEM). Further, its intestinal anti-inflammatory activity and its mechanism of function were evaluated in experimental systems using DSS-induced rats, fecal microbiota transplantation (FMT), and LPS-stimulated HT-29 cells. Results showed that GP modulated the structure of gut microbiota and restored mTOR-dependent autophagic dysfunction. Consequently, active autophagy suppressed inflammation through the inhibition of NF-κB, oxidative stress, and the release of cytokines. Therefore, our research provides a rationale for future investigations into the relationship between microbiota and autophagy and revealed the therapeutic potential of GP for inflammatory bowel disease.
Collapse
Affiliation(s)
- Dandan Wang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Shuai Shao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yanqiu Zhang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China.,Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Mingxing Wang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
36
|
Żelechowska P, Brzezińska-Błaszczyk E, Różalska S, Agier J, Kozłowska E. Mannan activates tissue native and IgE-sensitized mast cells to proinflammatory response and chemotaxis in TLR4-dependent manner. J Leukoc Biol 2021; 109:931-942. [PMID: 33047839 DOI: 10.1002/jlb.4a0720-452r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/08/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022] Open
Abstract
Mast cells take part in host defense against microorganisms as they are numerous at the portal of infection, exert several essential mechanisms of pathogen destruction, and they express pattern recognition receptors. Accumulating evidence indicates that these cells are involved in the control and clearance of bacterial, viral, or parasitic infections, but much less is known about their contribution in defense against fungi. The study was aimed to establish whether mannan, which comprises an outermost layer and major structural constituent of the fungal cell wall, may directly stimulate tissue mast cells to the antifungal response. Our findings indicate that mannan activates mast cells isolated from the rat peritoneal cavity to initiate the proinflammatory response. We found that mannan stimulates mast cells to release histamine and to generate cysteinyl leukotrienes, cytokines (IFN-γ, GM-CSF, TNF), and chemokines (CCL2, CCL3). It also increased the mRNA expression of various cytokines/chemokines. We also documented that mannan strongly activates mast cells to generate reactive oxygen species and serves as a potent chemoattractant for these cells. Furthermore, we established that mannan-induced activity of mast cells is mediated via TLR4 with the involvement of the spleen tyrosine kinase molecule. Taking together, our results clearly support the idea that mast cells act as sentinel cells and crucially determine the course of the immune response during fungal infection. Additionally, presented data on IgE-coated mast cells suggest that exposure to fungal mannan could influence the severity of IgE-dependent diseases, including allergic ones.
Collapse
Affiliation(s)
- Paulina Żelechowska
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Ewa Brzezińska-Błaszczyk
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Justyna Agier
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Elżbieta Kozłowska
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
37
|
Slingsby MHL, Vijey P, Tsai IT, Roweth H, Couldwell G, Wilkie AR, Gaus H, Goolsby JM, Okazaki R, Terkovich BE, Semple JW, Thon JN, Henry SP, Narayanan P, Italiano JE. Sequence-specific 2'-O-methoxyethyl antisense oligonucleotides activate human platelets through glycoprotein VI, triggering formation of platelet-leukocyte aggregates. Haematologica 2021; 107:519-531. [PMID: 33567808 PMCID: PMC8804562 DOI: 10.3324/haematol.2020.260059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Indexed: 11/17/2022] Open
Abstract
Antisense oligonucleotides (ASO) are DNA-based, disease-modifying drugs. Clinical trials with 2'-O-methoxyethyl (2’MOE) ASO have shown dose- and sequence-specific lowering of platelet counts according to two phenotypes. Phenotype 1 is a moderate (but not clinically severe) drop in platelet count. Phenotype 2 is rare, severe thrombocytopenia. This article focuses on the underlying cause of the more common phenotype 1, investigating the effects of ASO on platelet production and platelet function. Five phosphorothioate ASO were studied: three 2’MOE sequences; 487660 (no effects on platelet count), 104838 (associated with phenotype 1), and 501861 (effects unknown) and two CpG sequences; 120704 and ODN 2395 (known to activate platelets). Human cord bloodderived megakaryocytes were treated with these ASO to study their effects on proplatelet production. Platelet activation (determined by surface P-selectin) and platelet-leukocyte aggregates were analyzed in ASO-treated blood from healthy human volunteers. None of the ASO inhibited proplatelet production by human megakaryocytes. All the ASO were shown to bind to the platelet receptor glycoprotein VI (KD ~0.2-1.5 μM). CpG ASO had the highest affinity to glycoprotein VI, the most potent platelet-activating effects and led to the greatest formation of platelet-leukocyte aggregates. 2’MOE ASO 487660 had no detectable platelet effects, while 2’MOE ASOs 104838 and 501861 triggered moderate platelet activation and SYKdependent formation of platelet-leukocyte aggregates. Donors with higher platelet glycoprotein VI levels had greater ASO-induced platelet activation. Sequence-dependent ASO-induced platelet activation and platelet-leukocyte aggregates may explain phenotype 1 (moderate drops in platelet count). Platelet glycoprotein VI levels could be useful as a screening tool to identify patients at higher risk of ASO-induced platelet side effects.
Collapse
Affiliation(s)
- Martina H Lundberg Slingsby
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, MA, USA; Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| | - Prakrith Vijey
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - I-Ting Tsai
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, MA, USA; Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Harvey Roweth
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Genevieve Couldwell
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Adrian R Wilkie
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, MA, USA; Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Hans Gaus
- Nonclinical Development, Ionis Pharmaceuticals Inc., Carlsbad, CA
| | - Jazana M Goolsby
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Ross Okazaki
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Brooke E Terkovich
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - John W Semple
- Departments of Pharmacology and Medicine, University of Toronto, Toronto, Canada; Division of Hematology and Transfusion Medicine, Lund University, Lund
| | - Jonathan N Thon
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Scott P Henry
- Nonclinical Development, Ionis Pharmaceuticals Inc., Carlsbad, CA
| | | | - Joseph E Italiano
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, MA, USA; Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
38
|
Association of Toll-Like Receptor 4 Gene Polymorphisms with Acute Aortic Dissection in a Chinese Han Population. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8306903. [PMID: 33426065 PMCID: PMC7783515 DOI: 10.1155/2020/8306903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/20/2022]
Abstract
Background Inflammation may be involved in the pathogenesis of acute aortic dissection (AAD). Toll-like receptor 4 (TLR4) is known to play a critical role in regulating the immune and inflammatory processes. To date, the relationship between genetic variation of TLR4 and AAD is far from clear. The purpose of our study was to illustrate the relevance of TLR4 polymorphisms with the susceptibility to AAD. Methods A total of 222 AAD patients and 222 controls were enrolled in this study. Frequency distributions of TLR4 polymorphisms (rs10759932 in the promoter and rs11536889 in the 3′-untranslated region) were determined by the KASP method. Clinical parameters were acquired from subjects' medical records, and serum TLR4 levels were collected from our previously published data. Results We found that rs10759932 polymorphism was associated with a reduced risk of AAD in the overall population (CC vs. TT: OR = 0.393, 95%CI = 0.164‐0.939, P = 0.036; recessive model: OR = 0.439, 95%CI = 0.196‐0.984, P = 0.045) and subgroup analyses stratified by sex. The GC genotype and dominant model of rs11536889 conferred a significantly higher risk of AAD compared with GG genotype in female subjects (GC vs. GG: OR = 3.382, 95%CI = 1.051‐10.885, P = 0.041; dominant model: OR = 3.043, 95%CI = 1.041‐8.900, P = 0.042). In addition, a significant interaction between the rs11536889 recessive model and dyslipidemia was observed for an increased risk of AAD (Pinteraction = 0.038, OR = 15.229) after the adjustment for potential clinical covariates. We also used the false-positive report probability (FPRP) analysis to validate the significant results. Furthermore, rs11536889 polymorphism could affect the maximal aortic diameters of AAD (P = 0.037), while AAD patients carrying CC genotype of rs10759932 showed lower serum TLR4 levels than TT genotype carriers (P = 0.043). Conclusions Our findings provide evidence for the association between TLR4 polymorphisms and AAD susceptibility in a Chinese Han population, which may have some implications for understanding the role of TLR4 in the pathophysiology of AAD.
Collapse
|
39
|
Yoo JY, Cha DR, Kim B, An EJ, Lee SR, Cha JJ, Kang YS, Ghee JY, Han JY, Bae YS. LPS-Induced Acute Kidney Injury Is Mediated by Nox4-SH3YL1. Cell Rep 2020; 33:108245. [PMID: 33086058 DOI: 10.1016/j.celrep.2020.108245] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 07/06/2020] [Accepted: 09/17/2020] [Indexed: 01/18/2023] Open
Abstract
Cytosolic proteins are required for regulation of NADPH (nicotinamide adenine dinucleotide phosphate) oxidase (Nox) isozymes. Here we show that Src homology 3 (SH3) domain-containing YSC84-like 1 (SH3YL1), as a Nox4 cytosolic regulator, mediates lipopolysaccharide (LPS)-induced H2O2 generation, leading to acute kidney injury. The SH3YL1, Ysc84p/Lsb4p, Lsb3p, and plant FYVE proteins (SYLF) region and SH3 domain of SH3YL1 contribute to formation of a complex with Nox4-p22phox. Interaction of p22phox with SH3YL1 is triggered by LPS, and the complex induces H2O2 generation and pro-inflammatory cytokine expression in mouse tubular epithelial cells. After LPS injection, SH3YL1 knockout mice show lower levels of acute kidney injury biomarkers, decreased secretion of pro-inflammatory cytokines, decreased infiltration of macrophages, and reduced tubular damage compared with wild-type (WT) mice. The results strongly suggest that SH3YL1 is involved in renal failure in LPS-induced acute kidney injury (AKI) mice. We demonstrate that formation of a ternary complex of p22phox-SH3YL1-Nox4, leading to H2O2 generation, induces severe renal failure in the LPS-induced AKI model.
Collapse
Affiliation(s)
- Jung-Yeon Yoo
- Department of Life Sciences, Ewha Womans University, Seoul 120-750, Korea
| | - Dae Ryong Cha
- Department of Internal Medicine, Division of Nephrology, Korea University Ansan Hospital, 516 Kojan-Dong, Ansan City, Kyungki-Do 425-020, Korea
| | - Borim Kim
- Department of Life Sciences, Ewha Womans University, Seoul 120-750, Korea
| | - Eun Jung An
- Department of Life Sciences, Ewha Womans University, Seoul 120-750, Korea
| | - Sae Rom Lee
- Department of Life Sciences, Ewha Womans University, Seoul 120-750, Korea
| | - Jin Joo Cha
- Department of Internal Medicine, Division of Nephrology, Korea University Ansan Hospital, 516 Kojan-Dong, Ansan City, Kyungki-Do 425-020, Korea
| | - Young Sun Kang
- Department of Internal Medicine, Division of Nephrology, Korea University Ansan Hospital, 516 Kojan-Dong, Ansan City, Kyungki-Do 425-020, Korea
| | - Jung Yeon Ghee
- Department of Internal Medicine, Division of Nephrology, Korea University Ansan Hospital, 516 Kojan-Dong, Ansan City, Kyungki-Do 425-020, Korea
| | - Jee Young Han
- Department of Pathology, Inha University, Incheon, Korea
| | - Yun Soo Bae
- Department of Life Sciences, Ewha Womans University, Seoul 120-750, Korea.
| |
Collapse
|
40
|
Lopes AH, Silva RL, Fonseca MD, Gomes FI, Maganin AG, Ribeiro LS, Marques LMM, Cunha FQ, Alves-Filho JC, Zamboni DS, Lopes NP, Franklin BS, Gombault A, Ramalho FS, Quesniaux VFJ, Couillin I, Ryffel B, Cunha TM. Molecular basis of carrageenan-induced cytokines production in macrophages. Cell Commun Signal 2020; 18:141. [PMID: 32894139 PMCID: PMC7487827 DOI: 10.1186/s12964-020-00621-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Low molecular weight carrageenan (Cg) is a seaweed-derived sulfated polysaccharide widely used as inflammatory stimulus in preclinical studies. However, the molecular mechanisms of Cg-induced inflammation are not fully elucidated. The present study aimed to investigate the molecular basis involved in Cg-induced macrophages activation and cytokines production. METHODS Primary culture of mouse peritoneal macrophages were stimulated with Kappa Cg. The supernatant and cell lysate were used for ELISA, western blotting, immunofluorescence. Cg-induced mouse colitis was also developed. RESULTS Here we show that Cg activates peritoneal macrophages to produce pro-inflammatory cytokines such as TNF and IL-1β. While Cg-induced TNF production/secretion depends on TLR4/MyD88 signaling, the production of pro-IL-1β relies on TLR4/TRIF/SYK/reactive oxygen species (ROS) signaling pathway. The maturation of pro-IL1β into IL-1β is dependent on canonical NLRP3 inflammasome activation via Pannexin-1/P2X7/K+ efflux signaling. In vivo, Cg-induced colitis was reduced in mice in the absence of NLRP3 inflammasome components. CONCLUSIONS In conclusion, we unravel a critical role of the NLRP3 inflammasome in Cg-induced pro-inflammatory cytokines production and colitis, which is an important discovery on the pro-inflammatory properties of this sulfated polysaccharide for pre-clinical studies. Video abstract Carrageenan (Cg) is one the most used flogistic stimulus in preclinical studies. Nevertheless, the molecular basis of Cg-induced inflammation is not totally elucidated. Herein, Lopes et al. unraveled the molecular basis for Cg-induced macrophages production of biological active IL-1β. The Cg-stimulated macrophages produces pro-IL-1β depends on TLR4/TRIF/Syk/ROS, whereas its processing into mature IL-1β is dependent on the canonical NLRP3 inflammasome.
Collapse
Affiliation(s)
- Alexandre H. Lopes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Center for Research in Inflammatory Diseases (CRID)Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP Brazil
| | - Rangel L. Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Center for Research in Inflammatory Diseases (CRID)Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP Brazil
| | - Miriam D. Fonseca
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Center for Research in Inflammatory Diseases (CRID)Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP Brazil
| | - Francisco I. Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Center for Research in Inflammatory Diseases (CRID)Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP Brazil
| | - Alexandre G. Maganin
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Center for Research in Inflammatory Diseases (CRID)Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP Brazil
| | - Lucas S. Ribeiro
- Institute of Innate Immunity, University Hospitals, University of Bonn, 53127 Bonn, Germany
| | | | - Fernando Q. Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Center for Research in Inflammatory Diseases (CRID)Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP Brazil
| | - Jose C. Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Center for Research in Inflammatory Diseases (CRID)Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP Brazil
| | - Dario S. Zamboni
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Norberto P. Lopes
- Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Bernardo S. Franklin
- Institute of Innate Immunity, University Hospitals, University of Bonn, 53127 Bonn, Germany
| | - Aurélie Gombault
- University of Orleans and CNRS, UMR7355 Experimental and Molecular Immunology, Orleans, France
| | - Fernando Silva Ramalho
- Department of Pathology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Valerie F. J. Quesniaux
- University of Orleans and CNRS, UMR7355 Experimental and Molecular Immunology, Orleans, France
| | - Isabelle Couillin
- University of Orleans and CNRS, UMR7355 Experimental and Molecular Immunology, Orleans, France
| | - Bernhard Ryffel
- University of Orleans and CNRS, UMR7355 Experimental and Molecular Immunology, Orleans, France
| | - Thiago M. Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Center for Research in Inflammatory Diseases (CRID)Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP Brazil
| |
Collapse
|
41
|
Youk H, Kim M, Lee CJ, Oh J, Park S, Kang SM, Kim JH, Ann SJ, Lee SH. Nlrp3, Csf3, and Edn1 in Macrophage Response to Saturated Fatty Acids and Modified Low-Density Lipoprotein. Korean Circ J 2020; 51:68-80. [PMID: 32975056 PMCID: PMC7779813 DOI: 10.4070/kcj.2020.0117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/09/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022] Open
Abstract
Background and Objectives The relationship between metabolic stress, inflammation, and cardiovascular disease is being studied steadily. The aim of this study was to evaluate the effect of palmitate (PA) and minimally modified low-density lipoprotein (mmLDL) on macrophages and to identify the associated pathways. Methods J774 macrophages were incubated with PA or mmLDL and lipopolysaccharide (LPS). Secretion of inflammatory chemokines and the expression of corresponding genes were determined. The phosphorylation of extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase was also assessed. RNA sequencing of macrophages was performed to identify the genes regulated by PA or mmLDL. Some of the genes regulated by the 2 agents were validated by knocking down the cells using small interfering RNA. Results PA or mmLDL promoted the secretion of interleukin (IL)-6 and IL-1β in LPS-stimulated macrophages, and this was accompanied by higher phosphorylation of ERK. RNA sequencing revealed dozens of genes that were regulated in this process, such as Csf3 and Edn1, which were affected by PA and mmLDL, respectively. These agents also increased Nlrp3 expression. The effect of Csf3 or Edn1 silencing on inflammation was modest, whereas toll-like receptor (TLR) 4 inhibition reduced a large proportion of macrophage activation. Conclusions We demonstrated that the proinflammatory milieu with high levels of PA or mmLDL promoted macrophage activation and the expression of associated genes such as Nlrp3, Csf3, and Edn1. Although the TLR4 pathway appeared to be most relevant, additional role of other genes in this process provided insights regarding the potential targets for intervention.
Collapse
Affiliation(s)
- Harin Youk
- Graduate Program of Science for Aging, Graduate School of Yonsei University, Seoul, Korea
| | - Miso Kim
- Graduate Program of Science for Aging, Graduate School of Yonsei University, Seoul, Korea
| | - Chan Joo Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jaewon Oh
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sungha Park
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seok Min Kang
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Ho Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Jin Ann
- Graduate Program of Science for Aging, Graduate School of Yonsei University, Seoul, Korea.
| | - Sang Hak Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
42
|
Issara-Amphorn J, Somboonna N, Pisitkun P, Hirankarn N, Leelahavanichkul A. Syk inhibitor attenuates inflammation in lupus mice from FcgRIIb deficiency but not in pristane induction: the influence of lupus pathogenesis on the therapeutic effect. Lupus 2020; 29:1248-1262. [PMID: 32700597 DOI: 10.1177/0961203320941106] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Macrophages are responsible for the recognition of pathogen molecules. The downstream signalling of the innate immune responses against pathogen molecules, lipopolysaccharide (LPS) and (1→3)-β-D-glucan (BG), and the adaptive immune response to antibodies, Fc gamma receptor (FcgR), is spleen tyrosine kinase (Syk). Because pathogen molecules and antibodies could be presented in lupus, impact of Syk and macrophages in lupus is explored. FcgR-IIb deficient (FcgRIIb-/-) mice, a model of inhibitory signalling loss, at 40 weeks old, but not pristane mice (a chemical induction lupus model) demonstrated spontaneous elevation of LPS and BG in serum from gut translocation despite the similarity in faecal microbiome analysis. Syk abundance in FcgRIIb-/- mice was higher than in pristane mice, possibly due to several Syk activators (anti-dsDNA, LPS and BG), and Syk inhibitor-attenuated proteinuria and serum cytokines only in FcgRIIb-/- mice. In addition, LPS + BG enhanced the expression of activating FcgRs, NF-κB and Syk, together with supernatant TNF-α predominantly in FcgRIIb-/- compared to wild-type macrophages. The inhibitors against Dectin-1, Syk and nuclear factor kappa B, but not anti-Raf-1, reduced supernatant TNF-α in LPS+BG-activated macrophages, implying Syk-dependent signalling. The pathogen molecules enhanced activating-FcgRs, without inhibition, through Syk, a shared downstream innate and adaptive signalling, is responsible for the hyper-responsiveness in FcgRIIb-/- macrophages. In conclusion, Syk inhibitor attenuated inflammation in FcgRIIb-/- but not in pristane mice, implying the influence of a lupus genetic background in treatment modalities.
Collapse
Affiliation(s)
- Jiraphorn Issara-Amphorn
- Medical Microbiology, Interdisciplinary and International Programme, Graduate School, Chulalongkorn University, Bangkok, Thailand.,Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Naraporn Somboonna
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok, Thailand
| | - Prapaporn Pisitkun
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nattiya Hirankarn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Centre of Excellence in Immunology and Immune Mediated Diseases, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
43
|
Negoro PE, Xu S, Dagher Z, Hopke A, Reedy JL, Feldman MB, Khan NS, Viens AL, Alexander NJ, Atallah NJ, Scherer AK, Dutko RA, Jeffery J, Kernien JF, Fites JS, Nett JE, Klein BS, Vyas JM, Irimia D, Sykes DB, Mansour MK. Spleen Tyrosine Kinase Is a Critical Regulator of Neutrophil Responses to Candida Species. mBio 2020; 11:e02043-19. [PMID: 32398316 PMCID: PMC7218286 DOI: 10.1128/mbio.02043-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
Invasive fungal infections constitute a lethal threat, with patient mortality as high as 90%. The incidence of invasive fungal infections is increasing, especially in the setting of patients receiving immunomodulatory agents, chemotherapy, or immunosuppressive medications following solid-organ or bone marrow transplantation. In addition, inhibitors of spleen tyrosine kinase (Syk) have been recently developed for the treatment of patients with refractory autoimmune and hematologic indications. Neutrophils are the initial innate cellular responders to many types of pathogens, including invasive fungi. A central process governing neutrophil recognition of fungi is through lectin binding receptors, many of which rely on Syk for cellular activation. We previously demonstrated that Syk activation is essential for cellular activation, phagosomal maturation, and elimination of phagocytosed fungal pathogens in macrophages. Here, we used combined genetic and chemical inhibitor approaches to evaluate the importance of Syk in the response of neutrophils to Candida species. We took advantage of a Cas9-expressing neutrophil progenitor cell line to generate isogenic wild-type and Syk-deficient neutrophils. Syk-deficient neutrophils are unable to control the human pathogens Candida albicans, Candida glabrata, and Candida auris Neutrophil responses to Candida species, including the production of reactive oxygen species and of cytokines such as tumor necrosis factor alpha (TNF-α), the formation of neutrophil extracellular traps (NETs), phagocytosis, and neutrophil swarming, appear to be critically dependent on Syk. These results demonstrate an essential role for Syk in neutrophil responses to Candida species and raise concern for increased fungal infections with the development of Syk-modulating therapeutics.IMPORTANCE Neutrophils are recognized to represent significant immune cell mediators for the clearance and elimination of the human-pathogenic fungal pathogen Candida The sensing of fungi by innate cells is performed, in part, through lectin receptor recognition of cell wall components and downstream cellular activation by signaling components, including spleen tyrosine kinase (Syk). While the essential role of Syk in macrophages and dendritic cells is clear, there remains uncertainty with respect to its contribution in neutrophils. In this study, we demonstrated that Syk is critical for multiple cellular functions in neutrophils responding to major human-pathogenic Candida species. These data not only demonstrate the vital nature of Syk with respect to the control of fungi by neutrophils but also warn of the potential infectious complications arising from the recent clinical development of novel Syk inhibitors for hematologic and autoimmune disorders.
Collapse
Affiliation(s)
- Paige E Negoro
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Shuying Xu
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Zeina Dagher
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alex Hopke
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer L Reedy
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Michael B Feldman
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Nida S Khan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Adam L Viens
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Natalie J Alexander
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Natalie J Atallah
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Allison K Scherer
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Richard A Dutko
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jane Jeffery
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - John F Kernien
- Department of Medicine, University of Wisconsin-Madison, Madison Wisconsin, USA
| | - J Scott Fites
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jeniel E Nett
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin-Madison, Madison Wisconsin, USA
| | - Bruce S Klein
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin-Madison, Madison Wisconsin, USA
| | - Jatin M Vyas
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel Irimia
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Michael K Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
44
|
Di Ceglie I, Kruisbergen NNL, van den Bosch MHJ, van Lent PLEM. Fc-gamma receptors and S100A8/A9 cause bone erosion during rheumatoid arthritis. Do they act as partners in crime? Rheumatology (Oxford) 2020; 58:1331-1343. [PMID: 31180451 DOI: 10.1093/rheumatology/kez218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/25/2019] [Indexed: 12/19/2022] Open
Abstract
Bone erosion is one of the central hallmarks of RA and is caused by excessive differentiation and activation of osteoclasts. Presence of autoantibodies in seropositive arthritis is associated with radiographic disease progression. ICs, formed by autoantibodies and their antigens, activate Fcγ-receptor signalling in immune cells, and as such stimulate inflammation-mediated bone erosion. Interestingly, ICs can also directly activate osteoclasts by binding to FcγRs on their surface. Next to autoantibodies, high levels of alarmins, among which is S100A8/A9, are typical for RA and they can further activate the immune system but also directly promote osteoclast function. Therefore, IC-activated FcγRs and S100A8/A9 might act as partners in crime to stimulate inflammation and osteoclasts differentiation and function, thereby stimulating bone erosion. This review discusses the separate roles of ICs, FcγRs and alarmins in bone erosion and sheds new light on the possible interplay between them, which could fuel bone erosion.
Collapse
Affiliation(s)
- Irene Di Ceglie
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nik N L Kruisbergen
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Peter L E M van Lent
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
45
|
Kurniawan DW, Storm G, Prakash J, Bansal R. Role of spleen tyrosine kinase in liver diseases. World J Gastroenterol 2020; 26:1005-1019. [PMID: 32205992 PMCID: PMC7081001 DOI: 10.3748/wjg.v26.i10.1005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/14/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
Spleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase expressed in most hematopoietic cells and non-hematopoietic cells and play a crucial role in both immune and non-immune biological responses. SYK mediate diverse cellular responses via an immune-receptor tyrosine-based activation motifs (ITAMs)-dependent signalling pathways, ITAMs-independent and ITAMs-semi-dependent signalling pathways. In liver, SYK expression has been observed in parenchymal (hepatocytes) and non-parenchymal cells (hepatic stellate cells and Kupffer cells), and found to be positively correlated with the disease severity. The implication of SYK pathway has been reported in different liver diseases including liver fibrosis, viral hepatitis, alcoholic liver disease, non-alcoholic steatohepatitis and hepatocellular carcinoma. Antagonism of SYK pathway using kinase inhibitors have shown to attenuate the progression of liver diseases thereby suggesting SYK as a highly promising therapeutic target. This review summarizes the current understanding of SYK and its therapeutic implication in liver diseases.
Collapse
Affiliation(s)
- Dhadhang Wahyu Kurniawan
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede 7500, the Netherlands
- Department of Pharmacy, Universitas Jenderal Soedirman, Purwokerto 53132, Indonesia
| | - Gert Storm
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede 7500, the Netherlands
- Department of Pharmaceutics, University of Utrecht, Utrecht 3454, the Netherlands
| | - Jai Prakash
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede 7500, the Netherlands
| | - Ruchi Bansal
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede 7500, the Netherlands
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Enschede 7500, the Netherlands
| |
Collapse
|
46
|
Toll-like Receptors and the Control of Immunity. Cell 2020; 180:1044-1066. [DOI: 10.1016/j.cell.2020.02.041] [Citation(s) in RCA: 567] [Impact Index Per Article: 113.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/02/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
|
47
|
Hashimoto R, Kakigi R, Miyamoto Y, Nakamura K, Itoh S, Daida H, Okada T, Katoh Y. JAK-STAT-dependent regulation of scavenger receptors in LPS-activated murine macrophages. Eur J Pharmacol 2020; 871:172940. [PMID: 31968212 DOI: 10.1016/j.ejphar.2020.172940] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/23/2019] [Accepted: 01/17/2020] [Indexed: 12/17/2022]
Abstract
In atherosclerosis progression, atherosclerotic plaques develop upon accumulated foam cells derived from macrophages that take up modified low-density lipoprotein (LDL). CD36 and CD204 are the principal scavenger receptors responsible for the uptake of modified LDL. Lipopolysaccharide (LPS) exacerbates atherosclerosis by enhancing the expression of scavenger receptors and thus increasing the uptake of modified LDL into macrophages. However, the signaling pathways that mediate LPS and scavenger receptor expression have not been fully elucidated. We used mouse bone marrow-derived macrophages and investigated the effects of LPS in vitro. LPS enhanced the phosphorylation of extracellular signal-regulated kinase (ERK) and signal transducer and activator of transcription-1 (STAT-1). Inhibitors of the mitogen-activated protein kinase (MAPK)/ERK kinase (MEK) pathway (U0126 and PD0325901) suppressed the uptake of acetylated-LDL (Ac-LDL) and the expression of CD204 but not CD36 in LPS-activated macrophages. Inhibitors of the Janus tyrosine kinase (JAK)-STAT pathway (ruxolitinib and tofacitinib) suppressed the uptake of Ac-LDL and the expression of both CD36 and CD204 in LPS-activated macrophages. We next injected LPS into the peritoneal cavity of mice and analyzed the effects of LPS. MEK inhibitor U0126 suppressed the uptake of Ac-LDL and the expression of CD204 but not CD36 in LPS-activated macrophages. JAK inhibitor ruxolitinib suppressed the uptake of Ac-LDL and the expression of both CD36 and CD204 in LPS-activated macrophages. These results suggest that scavenger receptors in LPS-activated mouse macrophages are regulated through a JAK-STAT-dependent pathway. Although further evaluation is necessary, JAK-STAT inhibition could be useful in atherosclerosis therapy, at least for atherosclerosis exacerbated by LPS.
Collapse
Affiliation(s)
- Ryota Hashimoto
- Laboratory of Molecular and Biochemical Research, Research Support Center, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan; Department of Physiology, Juntendo University Faculty of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Ryo Kakigi
- Department of Management Science, Josai International University, 1 Gumyo, Togane, Chiba, 283-8555, Japan
| | - Yuki Miyamoto
- Department of Cardiology, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kyoko Nakamura
- Department of Physiology, Juntendo University Faculty of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Seigo Itoh
- Department of Cardiology, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hiroyuki Daida
- Department of Cardiology, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Takao Okada
- Department of Physiology, Juntendo University Faculty of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Youichi Katoh
- Department of Cardiology, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan; Juntendo University Faculty of International Liberal Arts, Hongo 2-1-1, Bunkyo-ku, Tokyo, 112-8421, Japan.
| |
Collapse
|
48
|
Ma P, Yue L, Yang H, Fan Y, Bai J, Li S, Yuan J, Zhang Z, Yao C, Lin M, Hou Q. Chondroprotective and anti-inflammatory effects of amurensin H by regulating TLR4/Syk/NF-κB signals. J Cell Mol Med 2019; 24:1958-1968. [PMID: 31876072 PMCID: PMC6991675 DOI: 10.1111/jcmm.14893] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 12/25/2022] Open
Abstract
The low-grade, chronic inflammation initiated by TLR4-triggered innate immune responses has a central role on early osteoarthritis. Amurensin H is a resveratrol dimer with anti-inflammatory and anti-apoptotic effects, while its effects on TLR-4 signals to inhibit osteoarthritis are still unclear. In the present study, treatment with amurensin H for 2 weeks in monosodium iodoacetate-induced mice significantly slows down cartilage degeneration and inflammation using macroscopic evaluation, haematoxylin and eosin (HE) staining and micro-magnetic resonance imaging. In IL-1β-stimulated rat chondrocytes, amurensin H suppresses the production of inflammatory mediators including nitric oxide, IL-6, IL-17, PGE2 and TNF-α using Greiss and ELISA assay. Amurensin H inhibits matrix degradation via decreasing levels of MMP-9 and MMP-13 using Western blot assay, promotes synthesis of type II collagen and glycosaminoglycan using immunostaining and safranin O staining, respectively. Amurensin H inhibits intracellular and mitochondrial reactive oxygen species (ROS) generation, and mitochondrial membrane depolarization using DCFH-DA, MitoSOX Red and JC-1 assay as well. IL-1β stimulates TLR4 activation and Syk phosphorylation in chondrocytes, while amurensin H inhibits TLR4/Syk signals and downstream p65 phosphorylation and translocation in a time and dose-dependent manner. Together, these results suggest that amurensin H exerts chondroprotective effects by attenuating oxidative stress, inflammation and matrix degradation via the TLR4/Syk/NF-κB pathway.
Collapse
Affiliation(s)
- Pei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lifeng Yue
- Department of Neology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yannan Fan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jinye Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuyi Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiqiao Yuan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ziqian Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chunsuo Yao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mingbao Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qi Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
49
|
Huang D, Mao X, Peng J, Cheng M, Bai T, Du M, Huang K, Liu B, Yang L, Huang K, Zhang F. Role of adipokine zinc-α 2-glycoprotein in coronary heart disease. Am J Physiol Endocrinol Metab 2019; 317:E1055-E1062. [PMID: 31526290 DOI: 10.1152/ajpendo.00075.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Zinc-α2-glycoprotein (AZGP1) is a newly identified adipokine that is associated with lipid metabolism and vascular fibrosis. Although adipokines contribute to lipid dysfunction and its related diseases, including stroke and coronary heart disease (CHD), the role of AZGP1 remains unclear. In this study, the role of AZGP1 in atherosclerosis and CHD was investigated. Serum AZGP1 levels from control (n = 84) and CHD (n = 91) patients were examined by ELISA and its relationship with various clinical parameters was analyzed. Immunohistochemistry and immunofluorescence were used to detect the expression of AZGP1 and its receptor in coronary atherosclerotic arteries. THP-1 and human embryonic kidney 293 cells were used to verify its anti-inflammatory role in atherosclerosis. Serum AZGP1 levels in CHD patients were lower than controls (P < 0.01) and independently associated with CHD prevalence (P = 0.021). AZGP1 levels also inversely correlated with the Gensini score. Immunohistochemistry and immunofluorescence showed that AZGP1 and its receptor β3-adrenoceptor (β3-AR) colocalized in lipid-rich areas of atherosclerotic plaques, particularly around macrophages. In vitro, AZGP1 had no effect on foam cell formation but showed anti-inflammatory effects through its regulation of JNK/AP-1 signaling. In summary, AZGP1 is an anti-inflammatory agent that can be targeted for CHD treatment.
Collapse
Affiliation(s)
- Dandan Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiang Mao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiangtong Peng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Du
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengxiao Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
50
|
Zhao J, Zheng H, Sui Z, Jing F, Quan X, Zhao W, Liu G. Ursolic acid exhibits anti-inflammatory effects through blocking TLR4-MyD88 pathway mediated by autophagy. Cytokine 2019; 123:154726. [PMID: 31302461 DOI: 10.1016/j.cyto.2019.05.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 04/23/2019] [Accepted: 05/13/2019] [Indexed: 02/02/2023]
Abstract
There is an urgent need for effective treatments to reduce the large and growing burden of acute kidney injury (AKI) and its consequences. Inflammation is believed to play a vital role in the pathophysiology of AKI. Macrophage autophagy is considered protective against inflammation. Previous study discovered that ursolic acid (UA), a natural pentacyclic triterpene carboxylic acid found in many plants as apples, bilberries, cranberries and so on, promoted cancer cell autophagy. In the present study, we aimed to explore the effect of UA on ameliorating AKI and the role of macrophage autophagy in the context of inflammation. The data from in vivo experiments showed that pretreatment of mice with UA significantly suppressed xylene-induced ear oedema as well as protected against LPS-induced AKI. Related mechanisms were further studied through in vitro experiment. As expected, UA decreased inflammatory factors TNF-α, IL-6 and IL-1β secretion in macrophages in response to lipopolysaccharide (LPS) stimulation. Furthermore, UA blocked LPS-induced TLR4/MyD88 pathway. More importantly, enhanced autophagy of macrophages by UA through increasing the expression of both LC3B and Beclin-1 led to alter macrophage function. What is more, similar to UA, autophagy inhibitor 3-MA obviously decreased inflammation factors releases hinting the vital role of autophagy in regulating inflammation. In all, above study suggested that UA is a potential anti-inflammatory natural compound for treating AKI by inducing autophagy.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Pharmacy, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Haoyi Zheng
- Qingdao University Medical College, 308 Ningxia Road, Qingdao, Shandong 266021, China
| | - Zhongguo Sui
- Department of Pharmacy, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fanbo Jing
- Department of Pharmacy, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xianghua Quan
- Department of Pharmacy, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wenwen Zhao
- Qingdao University Medical College, 308 Ningxia Road, Qingdao, Shandong 266021, China
| | - Guangwei Liu
- Outpatient Department, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|