1
|
Saffe S, Doerry K, Büscher AK, Hansen M, Rohmann M, Kanzelmeyer N, Latta K, Kemper MJ, Loos S. Variable treatment response to lumasiran in pediatric patients with primary hyperoxaluria type 1. Pediatr Nephrol 2025; 40:1929-1937. [PMID: 39869204 PMCID: PMC12031841 DOI: 10.1007/s00467-025-06665-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 12/13/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025]
Abstract
BACKGROUND Primary hyperoxaluria type 1 (PH 1) is a rare genetic condition due to mutations in the AGXT gene. This leads to an overproduction of oxalate in the liver. Hyperoxaluria often causes kidney stones, nephrocalcinosis, and chronic kidney disease. Lumasiran is a recently approved drug that reduces the hepatic oxalate production by mRNA interference. METHODS In this multicenter study, we evaluated the response to lumasiran treatment in PH 1 patients (n = 8) with a median age of 10.9 years (range 1.2-17.9 years), including two patients on hemodialysis. We retrospectively analyzed the reduction of urinary and plasma oxalate levels as well as changes in kidney stone events, nephrocalcinosis, and kidney function. RESULTS In patients without kidney failure, the median reduction of urinary oxalate was 64% (range 10-80%) and 71% (61-86%) at 6 and 12 months, respectively. However, only one patient reached urinary oxalate levels within the age-specific normal range. Two patients did not respond to lumasiran and treatment was stopped. In one of the two patients on hemodialysis, the frequency of sessions could be reduced. The only notable side effects were injection site reactions. CONCLUSION There was a variable response to lumasiran in PH 1. Despite a reduction of hyperoxaluria in many patients with PH 1, only one patient reached normal values and 2 of 8 patients did not respond. Regular monitoring of urinary oxalate values and registry data collection seems mandatory to monitor the efficacy and the long-term outcome of PH 1 treated with lumasiran.
Collapse
Affiliation(s)
- Sina Saffe
- Department of Pediatrics, Asklepios Klinik Nord Heidberg, Hamburg, Germany
| | - Katja Doerry
- University Medical Center Hamburg-Eppendorf, University Children's Hospital, Martinistrasse 52, Hamburg, 20246, Germany
| | - Anja K Büscher
- Pediatric Nephrology, Children's Hospital, University of Essen, Essen, Germany
| | - Matthias Hansen
- Department of Pediatric Nephrology, KfH-Nierenzentrum Für Kinder Und Jugendliche Beim Clementine Kinderhospital, Frankfurt, Germany
| | - Melanie Rohmann
- Department of Pediatric Nephrology, Universitätsklinikum Jena, Jena, Germany
| | - Nele Kanzelmeyer
- Department of Pediatric Nephrology, Medizinische Hochschule Hannover, Kinderklinik, Hannover, Germany
| | - Kay Latta
- Department of Pediatric Nephrology, Clementine Kinderhospital, Frankfurt, Germany
| | - Markus J Kemper
- Department of Pediatrics, Asklepios Klinik Nord Heidberg, Hamburg, Germany
| | - Sebastian Loos
- University Medical Center Hamburg-Eppendorf, University Children's Hospital, Martinistrasse 52, Hamburg, 20246, Germany.
| |
Collapse
|
2
|
Yang T, Ge J, Huang L, Zhu X, Zhang D, Tang S, Zhao J, Ma Y, Long M, Bo X, Li J, Zhang Y, Yuan Q, Sharma AD, Ott M, Geng H, Zhao Y, Zhang L, Shen H, Li H, Li D, Wan P, Xia Q. Preclinical evaluation of AGT mRNA replacement therapy for primary hyperoxaluria type I disease. SCIENCE ADVANCES 2025; 11:eadt9694. [PMID: 40203111 PMCID: PMC11980851 DOI: 10.1126/sciadv.adt9694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Primary hyperoxaluria type 1 (PH1) is a rare inherited liver disorder caused by alanine glyoxylate aminotransferase (AGT) dysfunction, leading to accumulation of glyoxylate which is then converted into oxalate. Excessive oxalate results in kidney damage due to deposition of oxalate crystals. We have developed an mRNA-based protein replacement therapy for PH1 to restore normal glyoxylate to glycine metabolism. Sequence optimized human AGT mRNA (hAGT mRNA) was encapsulated in lipopolyplex (LPP) and produced functional AGT enzyme in peroxisomes. Pharmacokinetics and pharmacodynamics (PK/PD) were evaluated in vitro and in vivo. PK demonstrated that AGT mRNA and AGT protein maintained high expression levels for up to 48 hours. A single 2 mg/kg dose in AgxtQ84-/- rats achieved a 70% reduction in urinary oxalate. Toxicological assessment identified the highest nonserious toxic dose (HNSTD) as 2 mg/kg. These findings affirm the efficacy and safety of hAGT mRNA/LPP and support its clinical application in PH1 treatment.
Collapse
Affiliation(s)
- Taihua Yang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jiahao Ge
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lei Huang
- Stemirna Therapeutics, Shanghai 201203, China
- Department of Material Science, Fudan University, Shanghai 200433, China
| | - Xinye Zhu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Dexin Zhang
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Siyuan Tang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jie Zhao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yinhe Ma
- Department of Clinical research unit, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mei Long
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaochen Bo
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jie Li
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yiqing Zhang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qinggong Yuan
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Amar Deep Sharma
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Michael Ott
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Hongquan Geng
- Department of Urology, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Yicheng Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130062, China
| | - Liang Zhang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Haifa Shen
- Stemirna Therapeutics, Shanghai 201203, China
| | - Hangwen Li
- Stemirna Therapeutics, Shanghai 201203, China
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Ping Wan
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Institute of Organ Transplantation, Shanghai 200127, China
- Shanghai Organ Transplantation and Immune Engineering Technology Research Center, Shanghai 200127, China
| |
Collapse
|
3
|
Deesker LJ, Karacoban HA, Metry EL, Garrelfs SF, Bacchetta J, Boyer O, Collard L, Devresse A, Hayes W, Hulton SA, Martin-Higueras C, Moochhala SH, Neuhaus TJ, Oh J, Prikhodina L, Sikora P, Oosterveld MJ, Groothoff JW, Mandrile G, Beck BB. Intrafamilial Disease Heterogeneity in Primary Hyperoxaluria Type 1. Kidney Int Rep 2024; 9:3006-3015. [PMID: 39430166 PMCID: PMC11489452 DOI: 10.1016/j.ekir.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 10/22/2024] Open
Abstract
Introduction Primary hyperoxaluria type 1 (PH1) is known for its variable clinical course, even within families. However, the extent of this heterogeneity has not been well-studied. We aimed to analyze intrafamilial clinical heterogeneity and disease course among siblings in a large cohort of familial PH1 cases. Methods A retrospective registry study was performed using data from OxalEurope. All PH1 families with 2 or more affected siblings were included. A 6-point PH1 clinical outcome scoring system was developed to grade heterogeneity within a family. Intrafamilial clinical heterogeneity was defined as a score ≥2. Kaplan-Meier analyses were used to analyze differences in kidney survival between index cases and siblings. Results We included 88 families, encompassing 193 patients with PH1. The median interquartile range (IQR) follow-up time was 7.8 (1.9-17) years. Intrafamilial clinical heterogeneity, as defined by our score, was found in 38 (43%) PH1 families. In 54% of the families, affected siblings had a better outcome than the index case. Clinically asymptomatic siblings at the time of their diagnosis had a significantly more favorable clinical outcome based on the authors' scoring system than siblings with clinical signs and index cases (P < 0.001). Kaplan-Meier analyses revealed that index cases reached kidney failure at an earlier age and earlier in follow-up compared to siblings (P < 0.001). Conclusions Intrafamilial clinical heterogeneity was found in a substantial number of familial PH1 cases. Compared to index cases, siblings had significantly better clinical outcomes and kidney survival; thereby supporting the policy of family screening to diagnose affected siblings early to improve their prognosis.
Collapse
Affiliation(s)
- Lisa J. Deesker
- Department of Pediatric Nephrology, Emma Children’s Hospital, University of Amsterdam, Amsterdam, the Netherlands
| | - Hazal A. Karacoban
- Department of Pediatric Nephrology, Emma Children’s Hospital, University of Amsterdam, Amsterdam, the Netherlands
| | - Elisabeth L. Metry
- Department of Pediatric Nephrology, Emma Children’s Hospital, University of Amsterdam, Amsterdam, the Netherlands
| | - Sander F. Garrelfs
- Department of Pediatric Nephrology, Emma Children’s Hospital, University of Amsterdam, Amsterdam, the Netherlands
| | - Justine Bacchetta
- Centre de Référence des Maladies Rénales Rares, Hospices Civils de Lyon and Université Claude-Bernard Lyon 1, INSERM 1033 Unit, Lyon, France
| | - Olivia Boyer
- Néphrologie Pédiatrique, Centre de Référence MARHEA, Institut Imagine, Université Paris Cité, Hôpital Necker-Enfants Malades, Paris, France
| | - Laure Collard
- Department of Pediatrics, Centre Hospitalier Universitaire de Liège, Belgium
| | - Arnaud Devresse
- Department of Nephrology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Wesley Hayes
- Department of Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Sally-Anne Hulton
- Department of Nephrology, Birmingham Women’s and Children’s Hospital NHS Foundation Trust, Birmingham, UK
| | - Cristina Martin-Higueras
- Institute of Biomedical Technology, CIBERER, University of Laguna, San Cristóbal de La Laguna, Spain
| | | | - Thomas J. Neuhaus
- Department of Pediatrics, Children's Hospital Lucerne, Lucerne, Switzerland
| | - Jun Oh
- Department of Pediatric Nephrology, Medical University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Larisa Prikhodina
- Department of Inherited and Acquired Kidney Diseases, Veltishev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University, Moscow, Russia
| | - Przemyslaw Sikora
- Department of Pediatric Nephrology, Medical University of Lublin, Lublin, Poland
| | - Michiel J.S. Oosterveld
- Department of Pediatric Nephrology, Emma Children’s Hospital, University of Amsterdam, Amsterdam, the Netherlands
| | - Jaap W. Groothoff
- Department of Pediatric Nephrology, Emma Children’s Hospital, University of Amsterdam, Amsterdam, the Netherlands
| | - Giorgia Mandrile
- Genetic Unit and Thalassemia Center, San Luigi University Hospital, Orbassano, Italy
| | - Bodo B. Beck
- Institute of Human Genetics, Center for Molecular Medicine Cologne, University Hospital of Cologne, Cologne, Germany
- Center for Rare and Hereditary Kidney Disease Cologne, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Saland JM, Lieske JC, Groothoff JW, Frishberg Y, Shasha-Lavsky H, Magen D, Moochhala SH, Simkova E, Coenen M, Hayes W, Hogan J, Sellier-Leclerc AL, Willey R, Gansner JM, Hulton SA. Efficacy and Safety of Lumasiran in Patients With Primary Hyperoxaluria Type 1: Results from a Phase III Clinical Trial. Kidney Int Rep 2024; 9:2037-2046. [PMID: 39081738 PMCID: PMC11284403 DOI: 10.1016/j.ekir.2024.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/05/2024] [Accepted: 04/19/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Patients with primary hyperoxaluria type 1 (PH1), a genetic disorder associated with hepatic oxalate overproduction, frequently experience recurrent kidney stones and worsening kidney function. Lumasiran is indicated for the treatment of PH1 to lower urinary and plasma oxalate (POx). Methods ILLUMINATE-A (NCT03681184) is a phase III trial in patients aged ≥6 years with PH1 and estimated glomerular filtration rate (eGFR) ≥30 ml/min per 1.73 m2. A 6-month double-blind placebo-controlled period is followed by an extension period (≤54 months; all patients receive lumasiran). We report interim data through month 36. Results Of 39 patients enrolled, 24 of 26 (lumasiran/lumasiran group) and 13 of 13 (placebo/lumasiran group) entered and continue in the extension period. At month 36, in the lumasiran/lumasiran group (36 months of lumasiran treatment) and placebo/lumasiran group (30 months of lumasiran treatment), mean 24-hour urinary oxalate (UOx) reductions from baseline were 63% and 58%, respectively; 76% and 92% of patients reached a 24-hour UOx excretion ≤1.5× the upper limit of normal (ULN). eGFR remained stable. Kidney stone event rates decreased from 2.31 (95% confidence interval: 1.88-2.84) per person-year (PY) during the 12 months before consent to 0.60 (0.46-0.77) per PY during lumasiran treatment. Medullary nephrocalcinosis generally remained stable or improved; approximately one-third of patients (both groups) improved to complete resolution. The most common lumasiran-related adverse events (AEs) were mild, transient injection-site reactions. Conclusion In patients with PH1, longer-term lumasiran treatment led to sustained reduction in UOx excretion, with an acceptable safety profile and encouraging clinical outcomes.See for Video Abstract.
Collapse
Affiliation(s)
- Jeffrey M. Saland
- Jack and Lucy Clark Department of Pediatrics, Mount Sinai Kravis Children’s Hospital, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John C. Lieske
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Jaap W. Groothoff
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Yaacov Frishberg
- Division of Pediatric Nephrology, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | - Daniella Magen
- Pediatric Nephrology Institute, Rambam Health Care Campus, Haifa, Israel
| | | | - Eva Simkova
- Nephrology - Medical Affairs, Al Jalila Children’s Hospital, Dubai, United Arab Emirates
| | - Martin Coenen
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Wesley Hayes
- Department of Paediatric Nephrology, Great Ormond Street Hospital, London, UK
| | - Julien Hogan
- Pediatric Nephrology Department, Hôpital Robert-Debré, Paris, France
| | - Anne-Laure Sellier-Leclerc
- Hôpital Femme Mère Enfant en Centre d’Investigation Clinique INSERM, Hospices Civils de Lyon, Bron, France
| | | | | | - Sally-Anne Hulton
- Department of Nephrology, Birmingham Women’s and Children’s Hospital, Birmingham, UK
| |
Collapse
|
5
|
Pszczolinski R, Acquaviva C, Berrahal I, Biebuyck N, Burtey S, Clabault K, Dossier C, Guillet M, Hemery F, Letavernier E, Rousset-Rouvière C, Bacchetta J, Moulin B. Primary hyperoxaluria in adults and children: a nationwide cohort highlights a persistent diagnostic delay. Clin Kidney J 2024; 17:sfae099. [PMID: 38737343 PMCID: PMC11087826 DOI: 10.1093/ckj/sfae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Indexed: 05/14/2024] Open
Abstract
Background Primary hyperoxalurias (PH) are extremely rare genetic disorders characterized by clinical heterogeneity. Delay in diagnosing these conditions can have detrimental effects on patient outcomes. The primary objective of this study is to assess the current diagnostic delay for PH. Methods This nationwide, observational and retrospective study included patients who received a genetic diagnosis of PH types 1, 2 and 3 between 1 January 2015 and 31 December 2019. Diagnostic delay was defined as the duration between the onset of symptoms and the time of genetic diagnosis. Results A total of 52 patients (34 children and 18 adults) were included in the study, with 40 PH1 (77%), 3 PH2 (6%) and 9 PH3 (17%). At the time of diagnosis, 12 patients (23%) required dialysis. Among the PH1 patients, the predominant symptom at onset in adults was renal colic (79% of cases), whereas symptoms in children were more diverse (renal colic in 17% of cases). The diagnostic delay was significantly shorter in children compared with adults [median (interquartile range)]: 1.2 (0.1-3.0) versus 30 (17-36) years, respectively (P < .0001). RNA interference was utilized in 23 patients (58%). Five individuals (13%) underwent double liver-kidney transplantation, and five (13%) received isolated kidney transplantation, with lumasiran therapy in four patients. For PH2 and PH3 patients, the diagnostic delay ranges from 0 to 3 years, with renal colic as first symptom in 33% of cases. Conclusion This extensive and recent cohort of PH underscores the considerable delay in diagnosing PH, particularly in adults, even in a country with a dedicated organization for enhancing the overall management of rare diseases. These findings reinforce the imperative for increased awareness among relevant specialties regarding the evaluation of urolithiasis.
Collapse
Affiliation(s)
- Romain Pszczolinski
- Service de néphrologie-dialyse-transplantation, Hôpitaux universitaires de Strasbourg, Strasbourg, France
| | - Cécile Acquaviva
- Service de biochimie et biologie moléculaire, CHU de Lyon HCL – GH Est, Lyon, France
| | | | - Nathalie Biebuyck
- Service de néphrologie pédiatrique, Hôpital Necker-Enfants malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Stéphane Burtey
- Service de néphrologie et de transplantation rénale, Hôpital de la Conception, Assistance Publique-Hôpitaux de Marseille, Marseille, France
- C2VN, Aix-Marseille Université/INSERM/INRAE, Marseille, France
| | - Karine Clabault
- Service de néphrologie, Hôpital Privé de l'Estuaire, Le Havre, France
| | - Claire Dossier
- Service de néphrologie pédiatrique, Hôpital Robert-Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Matthieu Guillet
- Service de néphrologie, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Floriane Hemery
- Service de pédiatrie, CHU de Montpellier, Montpellier, France
| | - Emmanuel Letavernier
- Service d'Explorations fonctionnelles multidisciplinaires, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Caroline Rousset-Rouvière
- Service de pédiatrie multidisciplinaire, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Justine Bacchetta
- Service de néphrologie-rhumatologie-dermatologie pédiatriques, CHU de Lyon HCL – GH Est-Hôpital Femme Mère Enfant, Lyon, France
| | - Bruno Moulin
- Service de néphrologie-dialyse-transplantation, Hôpitaux universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
6
|
Wu J, Song J, He Y, Zhong C, Yang Q, Li Q, Wang M. Case series and literature review of primary hyperoxaluria type 1 in Chinese patients. Urolithiasis 2023; 51:123. [PMID: 37874369 PMCID: PMC10598140 DOI: 10.1007/s00240-023-01494-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/20/2023] [Indexed: 10/25/2023]
Abstract
Based on the single-center case reports and all reported patients with primary hyperoxaluria type 1 (PH1) in China, this study discussed the clinical and genetic characteristics of this disease retrospectively. We reported and validated a novel genetic variation c.302 T > G: the clinical phenotypes of the two siblings were similar, in which both had onset in infancy, mainly manifested as renal insufficiency, and died within 6 months out of end-stage renal disease. The literature review is the first to summarize the Chinese patients with PH1 up to now. Forty-eight Chinese patients were included, containing 7 adults and 41 children. The median onset age was 51 months, and the ratio of male to female was 2.69:1. It showed a poor prognosis: 51.1% of Chinese primary hyperoxaluria type 1 patients suffered from end-stage renal disease, and 38.9% of patients died. Urolithiasis was the most common clinical manifestation both in adults and children, while infant-onset patients generally presented with renal insufficiency and had a higher mortality of 75.0%. One hundred and forty-nine AGXT mutant alleles are currently known in the Chinese population, c.33dupC and c.815_816insGA were the most common AGXT genes, accounting for 12.0% and 10.1% of allele frequencies, respectively. The exons 1, 2, 6, and 8 were the most common locations of gene variants, accounting for 78% of all variants, which will be promising targets of DNA sequencing for primary hyperoxaluria type 1.
Collapse
Affiliation(s)
- Jiayu Wu
- Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jing Song
- Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yanzhao He
- University of Leeds, Woodhouse, Leeds, LS2 9JT, UK
| | - Cheng Zhong
- Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Qin Yang
- Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Qiu Li
- Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Mo Wang
- Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
7
|
Metry EL, Garrelfs SF, Deesker LJ, Acquaviva C, D’Ambrosio V, Bacchetta J, Beck BB, Cochat P, Collard L, Hogan J, Ferraro PM, Franssen CF, Harambat J, Hulton SA, Lipkin GW, Mandrile G, Martin-Higueras C, Mohebbi N, Moochhala SH, Neuhaus TJ, Prikhodina L, Salido E, Topaloglu R, Oosterveld MJ, Groothoff JW, Peters-Sengers H. Determinants of Kidney Failure in Primary Hyperoxaluria Type 1: Findings of the European Hyperoxaluria Consortium. Kidney Int Rep 2023; 8:2029-2042. [PMID: 37849991 PMCID: PMC10577369 DOI: 10.1016/j.ekir.2023.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 10/19/2023] Open
Abstract
Introduction Primary hyperoxaluria type 1 (PH1) has a highly heterogeneous disease course. Apart from the c.508G>A (p.Gly170Arg) AGXT variant, which imparts a relatively favorable outcome, little is known about determinants of kidney failure. Identifying these is crucial for disease management, especially in this era of new therapies. Methods In this retrospective study of 932 patients with PH1 included in the OxalEurope registry, we analyzed genotype-phenotype correlations as well as the impact of nephrocalcinosis, urolithiasis, and urinary oxalate and glycolate excretion on the development of kidney failure, using survival and mixed model analyses. Results The risk of developing kidney failure was the highest for 175 vitamin-B6 unresponsive ("null") homozygotes and lowest for 155 patients with c.508G>A and c.454T>A (p.Phe152Ile) variants, with a median age of onset of kidney failure of 7.8 and 31.8 years, respectively. Fifty patients with c.731T>C (p.Ile244Thr) homozygote variants had better kidney survival than null homozygotes (P = 0.003). Poor outcomes were found in patients with other potentially vitamin B6-responsive variants. Nephrocalcinosis increased the risk of kidney failure significantly (hazard ratio [HR] 3.17 [2.03-4.94], P < 0.001). Urinary oxalate and glycolate measurements were available in 620 and 579 twenty-four-hour urine collections from 117 and 87 patients, respectively. Urinary oxalate excretion, unlike glycolate, was higher in patients who subsequently developed kidney failure (P = 0.034). However, the 41% intraindividual variation of urinary oxalate resulted in wide confidence intervals. Conclusion In conclusion, homozygosity for AGXT null variants and nephrocalcinosis were the strongest determinants for kidney failure in PH1.
Collapse
Affiliation(s)
- Elisabeth L. Metry
- Department of Pediatric Nephrology, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sander F. Garrelfs
- Department of Pediatric Nephrology, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisa J. Deesker
- Department of Pediatric Nephrology, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Cecile Acquaviva
- Service de Biochimie et Biologie Moléculaire, UM Pathologies Héréditaires du Métabolisme et du Globule Rouge, Hospices Civils de Lyon, France
| | - Viola D’Ambrosio
- Department of Nephrology, Catholic University of the Sacred Heart, Rome, Italy
| | - Justine Bacchetta
- Centre de Référence des Maladies Rares Néphrogones, Hospices Civils de Lyon et Université Claude-Bernard Lyon 1, Lyon, France
| | - Bodo B. Beck
- Institute of Human Genetics, Center for Molecular Medicine Cologne, University Hospital of Cologne, Cologne, Germany
- Center for Rare and Hereditary Kidney Disease Cologne, University Hospital of Cologne, Cologne, Germany
| | - Pierre Cochat
- Centre de Référence des Maladies Rares Néphrogones, Hospices Civils de Lyon et Université Claude-Bernard Lyon 1, Lyon, France
| | - Laure Collard
- Department of Pediatric Nephrology, Center Hospitalier Universitaire Liège, Liège, Belgium
| | - Julien Hogan
- Department of Pediatric Nephrology, Assistance Publique–Hôpitaux de Paris Robert-Debré, University of Paris, Paris, France
| | | | - Casper F.M. Franssen
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jérôme Harambat
- Department of Pediatrics, Pediatric Nephrology Unit, Bordeaux University Hospital, Bordeaux, France
| | - Sally-Anne Hulton
- Department of Nephrology, Birmingham Women’s and Children’s Hospital NHS Foundation Trust, Birmingham, UK
| | - Graham W. Lipkin
- Department of Nephrology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Giorgia Mandrile
- Genetic Unit and Thalassemia Center, San Luigi University Hospital, Orbassano, Italy
| | - Cristina Martin-Higueras
- Institute of Biomedical Technology, CIBERER, University of Laguna, San Cristóbal de La Laguna, Spain
| | - Nilufar Mohebbi
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | | | - Thomas J. Neuhaus
- Department of Pediatrics, Children’s Hospital Lucerne, Lucerne, Switzerland
| | - Larisa Prikhodina
- Department of Inherited and Acquired Kidney Diseases, Veltishev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University, Moscow, Russia
| | - Eduardo Salido
- Department of Pathology, Center for Biomedical Research on Rare Diseases, Hospital Universitario Canarias, Universidad La Laguna, Tenerife, Spain
| | - Rezan Topaloglu
- Division of Pediatric Nephrology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Michiel J.S. Oosterveld
- Department of Pediatric Nephrology, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaap W. Groothoff
- Department of Pediatric Nephrology, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hessel Peters-Sengers
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Groothoff JW, Metry E, Deesker L, Garrelfs S, Acquaviva C, Almardini R, Beck BB, Boyer O, Cerkauskiene R, Ferraro PM, Groen LA, Gupta A, Knebelmann B, Mandrile G, Moochhala SS, Prytula A, Putnik J, Rumsby G, Soliman NA, Somani B, Bacchetta J. Clinical practice recommendations for primary hyperoxaluria: an expert consensus statement from ERKNet and OxalEurope. Nat Rev Nephrol 2023; 19:194-211. [PMID: 36604599 DOI: 10.1038/s41581-022-00661-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2022] [Indexed: 01/06/2023]
Abstract
Primary hyperoxaluria (PH) is an inherited disorder that results from the overproduction of endogenous oxalate, leading to recurrent kidney stones, nephrocalcinosis and eventually kidney failure; the subsequent storage of oxalate can cause life-threatening systemic disease. Diagnosis of PH is often delayed or missed owing to its rarity, variable clinical expression and other diagnostic challenges. Management of patients with PH and kidney failure is also extremely challenging. However, in the past few years, several new developments, including new outcome data from patients with infantile oxalosis, from transplanted patients with type 1 PH (PH1) and from patients with the rarer PH types 2 and 3, have emerged. In addition, two promising therapies based on RNA interference have been introduced. These developments warrant an update of existing guidelines on PH, based on new evidence and on a broad consensus. In response to this need, a consensus development core group, comprising (paediatric) nephrologists, (paediatric) urologists, biochemists and geneticists from OxalEurope and the European Rare Kidney Disease Reference Network (ERKNet), formulated and graded statements relating to the management of PH on the basis of existing evidence. Consensus was reached following review of the recommendations by representatives of OxalEurope, ESPN, ERKNet and ERA, resulting in 48 practical statements relating to the diagnosis and management of PH, including consideration of conventional therapy (conservative therapy, dialysis and transplantation), new therapies and recommendations for patient follow-up.
Collapse
Affiliation(s)
- Jaap W Groothoff
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| | - Ella Metry
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisa Deesker
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sander Garrelfs
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Cecile Acquaviva
- Service de Biochimie et Biologie Moléculaire, UM Pathologies Héréditaires du Métabolisme et du Globule Rouge, Hospices Civils de Lyon, Lyon, France
| | - Reham Almardini
- Department of Pediatric Nephrology, Princes Rahma Children Teaching Hospital, Applied Balqa University, Medical School, Amman, Jordan
| | - Bodo B Beck
- Institute of Human Genetics, Center for Molecular Medicine Cologne, and Center for Rare and Hereditary Kidney Disease, Cologne, University Hospital of Cologne, Cologne, Germany
| | - Olivia Boyer
- Néphrologie Pédiatrique, Centre de Référence MARHEA, Institut Imagine, Université Paris Cité, Hôpital Necker - Enfants Malades, Paris, France
| | - Rimante Cerkauskiene
- Clinic of Paediatrics, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Pietro Manuel Ferraro
- Chronic Kidney Disease Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luitzen A Groen
- Department of Pediatric Urology, Amsterdam UMC University of Amsterdam, Amsterdam, The Netherlands
| | - Asheeta Gupta
- Department of Nephrology, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Bertrand Knebelmann
- Faculté de Santé, UFR de Médecine, AP-HP Centre-Universite de Paris, Departement Néphrologie, Dialyse, Transplantation Adultes, Paris, France
| | - Giorgia Mandrile
- Medical Genetics Unit and Thalassemia Center, San Luigi University Hospital, University of Torino, Orbassano, Italy
| | | | - Agnieszka Prytula
- Department of Paediatric Nephrology and Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Jovana Putnik
- Department of Pediatric Nephrology, Mother and Child Health Care Institute of Serbia "Dr Vukan Čupić", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Gill Rumsby
- Kintbury, UK, formerly Department of Clinical Biochemistry, University College London Hospitals NHS Foundation Trust, London, UK
| | - Neveen A Soliman
- Center of Pediatric Nephrology & Transplantation, Kasr Al Ainy Medical School, Cairo University, Cairo, Egypt
| | - Bhaskar Somani
- Department of Urology, University Hospital Southampton NHS Trust, Southampton, UK
| | - Justine Bacchetta
- Reference Center for Rare Renal Diseases, Pediatric Nephrology-Rheumatology-Dermatology Unit, Femme Mere Enfant Hospital, Hospices Civils de Lyon, INSERM 1033 Unit, Lyon 1 University, Bron, France
| |
Collapse
|
9
|
Mandrile G, Beck B, Acquaviva C, Rumsby G, Deesker L, Garrelfs S, Gupta A, Bacchetta J, Groothoff J. Genetic assessment in primary hyperoxaluria: why it matters. Pediatr Nephrol 2023; 38:625-634. [PMID: 35695965 PMCID: PMC9842587 DOI: 10.1007/s00467-022-05613-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/23/2022] [Accepted: 04/29/2022] [Indexed: 01/21/2023]
Abstract
Accurate diagnosis of primary hyperoxaluria (PH) has important therapeutic consequences. Since biochemical assessment can be unreliable, genetic testing is a crucial diagnostic tool for patients with PH to define the disease type. Patients with PH type 1 (PH1) have a worse prognosis than those with other PH types, despite the same extent of oxalate excretion. The relation between genotype and clinical phenotype in PH1 is extremely heterogeneous with respect to age of first symptoms and development of kidney failure. Some mutations are significantly linked to pyridoxine-sensitivity in PH1, such as homozygosity for p.G170R and p.F152I combined with a common polymorphism. Although patients with these mutations display on average better outcomes, they may also present with CKD stage 5 in infancy. In vitro studies suggest pyridoxine-sensitivity for some other mutations, but confirmatory clinical data are lacking (p.G47R, p.G161R, p.I56N/major allele) or scarce (p.I244T). These studies also suggest that other vitamin B6 derivatives than pyridoxine may be more effective and should be a focus for clinical testing. PH patients displaying the same mutation, even within one family, may have completely different clinical outcomes. This discordance may be caused by environmental or genetic factors that are unrelated to the effect of the causative mutation(s). No relation between genotype and clinical or biochemical phenotypes have been found so far in PH types 2 and 3. This manuscript reviews the current knowledge on the genetic background of the three types of primary hyperoxaluria and its impact on clinical management, including prenatal diagnosis.
Collapse
Affiliation(s)
- Giorgia Mandrile
- Medical Genetics Unit and Thalassemia Center, San Luigi University Hospital, University of Torino, Orbassano, TO, Italy
| | - Bodo Beck
- Institute of Human Genetics, Center for Molecular Medicine Cologne, and Center for Rare and Hereditary Kidney Disease, University Hospital of Cologne, CologneCologne, Germany
| | - Cecile Acquaviva
- Service de Biochimie Et Biologie Moléculaire, Hospices Civils de Lyon, UM Pathologies Héréditaires du Métabolisme Et du Globule Rouge, Lyon, France
| | - Gill Rumsby
- Department of Clinical Biochemistry, University College London Hospitals NHS Foundation Trust | UCLH, Kintbury, UK
| | - Lisa Deesker
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Sander Garrelfs
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Asheeta Gupta
- Department of Nephrology, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Justine Bacchetta
- Reference Center for Rare Renal Diseases, Pediatric Nephrology-Rheumatology-Dermatology Unit, Hospices Civils de Lyon, Femme Mere Enfant Hospital, Lyon 1 University, Bron, France
| | - Jaap Groothoff
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
10
|
Somers MJG. Primary Hyperoxaluria: A Need for New Perspectives in an Era of New Therapies. Am J Kidney Dis 2023; 81:131-133. [PMID: 36184293 DOI: 10.1053/j.ajkd.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 01/25/2023]
Affiliation(s)
- Michael J G Somers
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
11
|
Abid A, Raza A, Khan AR, Firasat S, Shahid S, Hashmi S, Zafar MN, Sultan S, Khaliq S, Rizvi SAUH. Primary hyperoxaluria: Comprehensive mutation screening of the disease causing genes and spectrum of disease-associated pathogenic variants. Clin Genet 2023; 103:53-66. [PMID: 36185032 DOI: 10.1111/cge.14240] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 12/13/2022]
Abstract
The primary hyperoxalurias are rare disorders of glyoxylate metabolism. Accurate diagnosis is essential for therapeutic and management strategies. We conducted a molecular study on patients suffering from recurrent calcium-oxalate stones and nephrocalcinosis and screened primary hyperoxaluria causing genes in a large cohort of early-onset cases. Disease-associated pathogenic-variants were defined as missense, nonsense, frameshift-indels, and splice-site variants with a reported minor allele frequency <1% in controls. We found pathogenic-variants in 34% of the cases. Variants in the AGXT gene causing PH-I were identified in 81% of the mutation positive cases. PH-II-associated variants in the GRHPR gene are found in 15% of the pediatric PH-positive population. Only 3% of the PH-positive cases have pathogenic-variants in the HOGA1 gene, responsible to cause PH-III. A population-specific AGXT gene variant c.1049G>A; p.Gly350Asp accounts for 22% of the PH-I-positive patients. Pathogenicity of the identified variants was evaluated by in-silico tools and ACMG guidelines. We have devised a rapid and low-cost approach for the screening of PH by using targeted-NGS highlighting the importance of an accurate and cost-effective screening platform. This is the largest study in Pakistani pediatric patients from South-Asian region that also expands the mutation spectrum of the three known genes.
Collapse
Affiliation(s)
- Aiysha Abid
- Centre for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Ali Raza
- Centre for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Abdul Rafay Khan
- Centre for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Sadaf Firasat
- Centre for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Saba Shahid
- Molecular Diagnostic Laboratory, Al Qassimi Hospital, Sharjah, UAE
| | - Seema Hashmi
- Department of Pediatric Nephrology, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Mirza Naqi Zafar
- Department of Pathology, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Sajid Sultan
- Department of Pediatric Urology, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Shagufta Khaliq
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore, Pakistan
| | | |
Collapse
|
12
|
Deesker LJ, Garrelfs SF, Mandrile G, Oosterveld MJ, Cochat P, Deschênes G, Harambat J, Hulton SA, Gupta A, Hoppe B, Beck BB, Collard L, Topaloglu R, Prikhodina L, Salido E, Neuhaus T, Groothoff JW, Bacchetta J. Improved Outcome of Infantile Oxalosis Over Time in Europe: Data From the OxalEurope Registry. Kidney Int Rep 2022; 7:1608-1618. [PMID: 35812297 PMCID: PMC9263236 DOI: 10.1016/j.ekir.2022.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Infantile oxalosis is the most severe form of primary hyperoxaluria type 1 (PH1), with onset of end-stage kidney disease (ESKD) during infancy. We aimed to analyze the outcome of these patients as our current understanding is limited owing to a paucity of reports. METHODS A retrospective registry study was conducted using data from the OxalEurope registry. All PH1 patients with ESKD onset at age <1 year were analyzed. RESULTS We identified 95 patients born between 1980 and 2018 with infantile oxalosis. Median (interquartile range [IQR]) age at ESKD was 0.4 (0.3-0.5) year. There were 4 patients diagnosed by family screening who developed ESKD despite early diagnosis. There were 11 patients who had biallelic missense mutations associated with vitamin B6 responsiveness. Of 89 patients, 27 (30%) died at a median age of 1.4 (0.6-2.0) years (5-year patient survival of 69%). Systemic oxalosis was described in 54 of 56 screened patients (96%). First transplantation was performed at a median age of 1.7 (1.3-2.9) years. In 42 cases, this procedure was a combined liver-kidney transplantation (LKTx), and in 23 cases, liver transplantations (LTx) was part of a sequential procedure. Survival rates of both strategies were similar. Patient survival was significantly higher in patients born after 2000. Intrafamilial phenotypic variability was present in 14 families of patients with infantile oxalosis. CONCLUSION Nearly all screened patients with infantile oxalosis developed systemic disease. Mortality is still high but has significantly improved over time and might further improve under new therapies. The intrafamilial phenotypic variability warrants further investigation.
Collapse
Affiliation(s)
- Lisa J. Deesker
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Correspondence: Lisa J. Deesker, Department of Pediatric Nephrology, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Sander F. Garrelfs
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Giorgia Mandrile
- Medical Genetics Unit, San Luigi University Hospital, University of Torino, Orbassano (TO), Italy
- Thalassemia Center, San Luigi University Hospital, University of Torino, Orbassano (TO), Italy
| | - Michiel J.S. Oosterveld
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Pierre Cochat
- Department of Pediatric Nephrology, Hospices Civils de Lyon and University de Lyon, Lyon, France
| | - Georges Deschênes
- Department of Pediatric Nephrology, Paris University Hospital Robert Debré, Paris, France
| | - Jérôme Harambat
- Department of Pediatrics, Pediatric Nephrology Unit, Bordeaux University Hospital, Bordeaux, France
| | - Sally-Anne Hulton
- Department of Nephrology, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| | - Asheeta Gupta
- Department of Nephrology, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| | - Bernd Hoppe
- Department of Pediatric Nephrology, Children’s Hospital of the University of Bonn, Bonn, Germany
| | - Bodo B. Beck
- Institute of Human Genetics, Center for Molecular Medicine Cologne, University Hospital of Cologne, Cologne, Germany
- Center for Rare and hereditary Kidney Disease, Cologne, University Hospital of Cologne, Cologne, Germany
| | - Laure Collard
- Pediatric Nephrology unit, Department of Pediatrics, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Rezan Topaloglu
- Department of Pediatric Nephrology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Larisa Prikhodina
- Department of Inherited and Acquired Kidney Diseases, Research and Clinical Institute for Pediatrics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Eduardo Salido
- Department of Pathology, Centre for Biomedical Research on Rare Diseases, Hospital Universitario Canarias, Universidad La Laguna, Tenerife, Spain
| | - Thomas Neuhaus
- Department of Pediatrics, Children's Hospital Lucerne, Lucerne, Switzerland
| | - Jaap W. Groothoff
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Justine Bacchetta
- Department of Pediatric Nephrology, Hospices Civils de Lyon and University de Lyon, Lyon, France
| |
Collapse
|
13
|
Gupta A, Somers MJG, Baum MA. Treatment of primary hyperoxaluria type 1. Clin Kidney J 2022; 15:i9-i13. [PMID: 35592620 PMCID: PMC9113429 DOI: 10.1093/ckj/sfab232] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
Supportive treatment for primary hyperoxaluria type 1 (PH1) focuses on high fluid intake and crystallization inhibitors. A subset of patients with specific PH1 genotypes (c.508G>A and c.454T>A) will respond to pyridoxine, defined as a >30% reduction in urinary oxalate excretion. Response to pyridoxine is variable and in some patients, urinary oxalate may normalize. The first focused treatment for PH1 using an RNA interference agent to reduce urinary oxalate was approved in 2020, and such therapies may significantly alter treatment approaches and long-term outcomes in PH1. Currently PH1 often presents with kidney function impairment and frequently results in end-stage kidney disease (ESKD). With kidney dysfunction, urinary oxalate clearance decreases and multisystem deposition of oxalate (oxalosis) occurs, commonly in bones, eyes, heart and skin. Once plasma oxalate levels exceed 30 µmol/L, aggressive haemodialysis is indicated to prevent oxalosis, even if the glomerular filtration rate (GFR) remains better than for typical dialysis initiation. Peritoneal dialysis alone does not achieve the needed oxalate clearance. Dialysis is a bridge to future transplantation. Liver transplantation restores hepatic alanine-glyoxylate transaminase enzyme activity, allowing glyoxylate detoxification and preventing further oxalosis. The native liver must be removed as part of this process to avoid ongoing pathologic oxalate production. The timing and type of liver transplantation are dependent on pyridoxine sensitivity, age, weight, residual GFR and evidence of systemic oxalate deposition in extrarenal organs. Liver transplant can be isolated or combined with kidney transplantation in a sequential or simultaneous fashion. Isolated kidney transplantation is generally reserved for pyridoxine-sensitive patients only. Although liver transplantation is curative for PH1 and kidney transplantation treats ESKD, ensuing necessary immunosuppression and potential allograft dysfunction impart significant long-term risks.
Collapse
Affiliation(s)
- Asheeta Gupta
- Consultant Paediatric Nephrologist, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Michael J G Somers
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michelle A Baum
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Fargue S, Acquaviva Bourdain C. Primary hyperoxaluria type 1: pathophysiology and genetics. Clin Kidney J 2022; 15:i4-i8. [PMID: 35592619 PMCID: PMC9113437 DOI: 10.1093/ckj/sfab217] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 11/30/2022] Open
Abstract
Primary hyperoxaluria type 1 (PH1) is a rare genetic form of calcium oxalate kidney stone disease. It is caused by a deficiency in the liver-specific enzyme, alanine:glyoxylate aminotransferase (AGT), a pyridoxal-5'-phosphate (PLP)-dependent enzyme involved in the metabolism of glyoxylate. The excessive endogenous synthesis of oxalate that ensues leads to hyperoxaluria, and the crystallization of the poorly soluble calcium salt of oxalate is responsible for a severe kidney stone disease, which can progress to end-stage renal disease, systemic deposition of oxalate and death. Knowledge about metabolic precursors of glyoxylate and oxalate, molecular pathology of AGT and analytical methods for diagnosis and clinical assessment have allowed a better understanding of the mechanisms underlying PH1 and opened the door to new therapeutic strategies.
Collapse
Affiliation(s)
- Sonia Fargue
- University of Alabama at Birmingham, Department of Urology, Birmingham, AL, USA
| | - Cécile Acquaviva Bourdain
- Service de Biochimie et Biologie Moléculaire, Unité Maladies Héréditaires du Métabolisme, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
| |
Collapse
|
15
|
Cornell LD, Amer H, Viehman JK, Mehta RA, Lieske JC, Lorenz EC, Heimbach JK, Stegall MD, Milliner DS. Posttransplant recurrence of calcium oxalate crystals in patients with primary hyperoxaluria: Incidence, risk factors, and effect on renal allograft function. Am J Transplant 2022; 22:85-95. [PMID: 34174139 PMCID: PMC8710184 DOI: 10.1111/ajt.16732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/30/2021] [Accepted: 06/19/2021] [Indexed: 01/25/2023]
Abstract
Primary hyperoxaluria (PH) is a metabolic defect that results in oxalate overproduction by the liver and leads to kidney failure due to oxalate nephropathy. As oxalate tissue stores are mobilized after transplantation, the transplanted kidney is at risk of recurrent disease. We evaluated surveillance kidney transplant biopsies for recurrent calcium oxalate (CaOx) deposits in 37 kidney transplants (29 simultaneous kidney and liver [K/L] transplants and eight kidney alone [K]) in 36 PH patients and 62 comparison transplants. Median follow-up posttransplant was 9.2 years (IQR: [5.3, 15.1]). The recurrence of CaOx crystals in surveillance biopsies in PH at any time posttransplant was 46% overall (41% in K/L, 62% in K). Higher CaOx crystal index (which accounted for biopsy sample size) was associated with higher plasma and urine oxalate following transplant (p < .01 and p < .02, respectively). There was a trend toward higher graft failure among PH patients with CaOx crystals on surveillance biopsies compared with those without (HR 4.43 [0.88, 22.35], p = .07). CaOx crystal deposition is frequent in kidney transplants in PH patients. The avoidance of high plasma oxalate and reduction of CaOx crystallization may decrease the risk of recurrent oxalate nephropathy following kidney transplantation in patients with PH. This study was approved by the IRB at Mayo Clinic.
Collapse
Affiliation(s)
- Lynn D. Cornell
- Division of Anatomic Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905
| | - Hatem Amer
- Division of Nephrology, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Jason K. Viehman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota 55905
| | - Ramila A. Mehta
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota 55905
| | - John C. Lieske
- Division of Nephrology, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Elizabeth C. Lorenz
- Division of Nephrology, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Julie K. Heimbach
- Division of Transplant Surgery, William J. von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota 55905
| | - Mark D. Stegall
- Division of Transplant Surgery, William J. von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota 55905
| | - Dawn S. Milliner
- Division of Nephrology, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | | |
Collapse
|
16
|
Shee K, Stoller ML. Perspectives in primary hyperoxaluria - historical, current and future clinical interventions. Nat Rev Urol 2021; 19:137-146. [PMID: 34880452 PMCID: PMC8652378 DOI: 10.1038/s41585-021-00543-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 12/19/2022]
Abstract
Primary hyperoxalurias are a devastating family of diseases leading to multisystem oxalate deposition, nephrolithiasis, nephrocalcinosis and end-stage renal disease. Traditional treatment paradigms are limited to conservative management, dialysis and combined transplantation of the kidney and liver, of which the liver is the primary source of oxalate production. However, transplantation is associated with many potential complications, including operative risks, graft rejection, post-transplant organ failure, as well as lifelong immunosuppressive medications and their adverse effects. New therapeutics being developed for primary hyperoxalurias take advantage of biochemical knowledge about oxalate synthesis and metabolism, and seek to specifically target these pathways with the goal of decreasing the accumulation and deposition of oxalate in the body. Primary hyperoxalurias are a devastating family of diseases that eventually lead to end-stage renal disease. In this Review, Shee and Stoller discuss current treatment paradigms for primary hyperoxalurias, new therapeutics and their mechanisms of action, and future directions for novel research in the field. Primary hyperoxalurias (PHs) are a devastating family of rare, autosomal-recessive genetic disorders that lead to multisystem oxalate deposition, nephrolithiasis, nephrocalcinosis and end-stage renal disease. Traditional treatment paradigms are limited to conservative management, dialysis and inevitably transplantation of the kidney and liver, which is associated with high morbidity and the need for lifelong immunosuppression. New therapeutics being developed for PHs take advantage of biochemical knowledge about oxalate synthesis and metabolism to specifically target these pathways, with the goal of decreasing the accumulation and deposition of plasma oxalate in the body. New therapeutics can be divided into classes, and include substrate reduction therapy, intestinal oxalate degradation, chaperone therapy, enzyme restoration therapy and targeting of the inflammasome. Lumasiran, a mRNA therapeutic targeting glycolate oxidase, was the first primary hyperoxaluria-specific therapeutic approved by the European Medicines Agency and the FDA in 2020. Future work includes further clinical trials for promising therapeutics in the pipeline, identification of biomarkers of response to PH-directed therapy, optimization of drug development and delivery of new therapeutics.
Collapse
Affiliation(s)
- Kevin Shee
- Department of Urology, UCSF, San Francisco, CA, USA.
| | | |
Collapse
|
17
|
|
18
|
Metry EL, Garrelfs SF, Peters-Sengers H, Hulton SA, Acquaviva C, Bacchetta J, Beck BB, Collard L, Deschênes G, Franssen C, Kemper MJ, Lipkin GW, Mandrile G, Mohebbi N, Moochhala SH, Oosterveld MJ, Prikhodina L, Hoppe B, Cochat P, Groothoff JW. Long-Term Transplantation Outcomes in Patients With Primary Hyperoxaluria Type 1 Included in the European Hyperoxaluria Consortium (OxalEurope) Registry. Kidney Int Rep 2021; 7:210-220. [PMID: 35155860 PMCID: PMC8821040 DOI: 10.1016/j.ekir.2021.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
Introduction In primary hyperoxaluria type 1 (PH1), oxalate overproduction frequently causes kidney stones, nephrocalcinosis, and kidney failure. As PH1 is caused by a congenital liver enzyme defect, combined liver–kidney transplantation (CLKT) has been recommended in patients with kidney failure. Nevertheless, systematic analyses on long-term transplantation outcomes are scarce. The merits of a sequential over combined procedure regarding kidney graft survival remain unclear as is the place of isolated kidney transplantation (KT) for patients with vitamin B6-responsive genotypes. Methods We used the OxalEurope registry for retrospective analyses of patients with PH1 who underwent transplantation. Analyses of crude Kaplan–Meier survival curves and adjusted relative hazards from the Cox proportional hazards model were performed. Results A total of 267 patients with PH1 underwent transplantation between 1978 and 2019. Data of 244 patients (159 CLKTs, 48 isolated KTs, 37 sequential liver–KTs [SLKTs]) were eligible for comparative analyses. Comparing CLKTs with isolated KTs, adjusted mortality was similar in patients with B6-unresponsive genotypes but lower after isolated KT in patients with B6-responsive genotypes (adjusted hazard ratio 0.07, 95% CI: 0.01–0.75, P = 0.028). CLKT yielded higher adjusted event-free survival and death-censored kidney graft survival in patients with B6-unresponsive genotypes (P = 0.025, P < 0.001) but not in patients with B6-responsive genotypes (P = 0.145, P = 0.421). Outcomes for 159 combined procedures versus 37 sequential procedures were comparable. There were 12 patients who underwent pre-emptive liver transplantation (PLT) with poor outcomes. Conclusion The CLKT or SLKT remains the preferred transplantation modality in patients with PH1 with B6-unresponsive genotypes, but isolated KT could be an alternative approach in patients with B6-responsive genotypes.
Collapse
|
19
|
Transplantation outcomes in patients with primary hyperoxaluria: a systematic review. Pediatr Nephrol 2021; 36:2217-2226. [PMID: 33830344 PMCID: PMC8260423 DOI: 10.1007/s00467-021-05043-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/16/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Primary hyperoxaluria type 1 (PH1) is characterized by hepatic overproduction of oxalate and often results in kidney failure. Liver-kidney transplantation is recommended, either combined (CLKT) or sequentially performed (SLKT). The merits of SLKT and the place of an isolated kidney transplant (KT) in selected patients are unsettled. We systematically reviewed the literature focusing on patient and graft survival rates in relation to the chosen transplant strategy. METHODS We searched MEDLINE and Embase using a broad search string, consisting of the terms 'transplantation' and 'hyperoxaluria'. Studies reporting on at least four transplanted patients were selected for quality assessment and data extraction. RESULTS We found 51 observational studies from 1975 to 2020, covering 756 CLKT, 405 KT and 89 SLKT, and 51 pre-emptive liver transplantations (PLT). Meta-analysis was impossible due to reported survival probabilities with varying follow-up. Two individual high-quality studies showed an evident kidney graft survival advantage for CLKT versus KT (87% vs. 14% at 15 years, p<0.05) with adjusted HR for graft failure of 0.14 (95% confidence interval: 0.05-0.41), while patient survival was similar. Three other high-quality studies reported 5-year kidney graft survival rates of 48-89% for CLKT and 14-45% for KT. PLT and SLKT yielded 1-year patient and graft survival rates up to 100% in small cohorts. CONCLUSIONS Our study suggests that CLKT leads to superior kidney graft survival compared to KT. However, evidence for merits of SLKT or for KT in pyridoxine-responsive patients was scarce, which warrants further studies, ideally using data from a large international registry.
Collapse
|
20
|
Murad H, Alhalabi MB, Dabboul A, Alfakseh N, Nweder MS, Zghib Y, Wannous H. Molecular analysis of the AGXT gene in Syrian patients suspected with primary hyperoxaluria type 1. BMC Med Genomics 2021; 14:146. [PMID: 34082749 PMCID: PMC8176596 DOI: 10.1186/s12920-021-00996-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Characterization of the molecular basis of primary hyperoxaluria type 1 (PH-1) in Syria has been accomplished through the analysis of 90 unrelated chromosomes from 45 Syrians patients with PH-1 from different regions. METHODS Alanine glyoxylate aminotransferase (AGXT) gene mutations have been analyzed by using molecular detection methods based on the direct DNA sequencing for all exons of the AGXT gene. RESULTS Seventeen pathogenic mutations were detected in our patients. Six mutations were novels. The three most frequent mutations were c.33_34insC (p.Lys12fs) in Exon 1, c.584 T < G; p.Met195Arg in exon 5 and c.1007 T > A (p.Val336Asp) in exon 10, with a frequency of 33.3%, 12.2%, and 11.1%, respectively. CONCLUSION DNA sequencing used in this study can offer a useful method to investigate the mutations in Syrian PH-1 patients, and could offer an accurate tool for prenatal diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Hossam Murad
- Human Genetics Division, Molecular Biology and Biotechnology Department, Human Genetics Division, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria.
| | - Mohamad Baseel Alhalabi
- Human Genetics Division, Molecular Biology and Biotechnology Department, Human Genetics Division, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria
| | - Amir Dabboul
- Human Genetics Division, Molecular Biology and Biotechnology Department, Human Genetics Division, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria
| | - Nour Alfakseh
- Human Genetics Division, Molecular Biology and Biotechnology Department, Human Genetics Division, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria
| | - Mohamad Sayah Nweder
- Human Genetics Division, Molecular Biology and Biotechnology Department, Human Genetics Division, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria
| | | | - Hala Wannous
- Chlidien's Hospital of Damascus, Damascus, Syria
| |
Collapse
|
21
|
Lin JA, Liao X, Wu W, Xiao L, Liu L, Qiu J. Clinical analysis of 13 children with primary hyperoxaluria type 1. Urolithiasis 2021; 49:425-431. [PMID: 33721035 PMCID: PMC8416882 DOI: 10.1007/s00240-021-01249-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/27/2021] [Indexed: 12/01/2022]
Abstract
A retrospective statistical analysis of primary hyperoxaluria type 1 (PH1) in children from June 2016 to May 2019 was carried out to discover its clinical and molecular biological characteristics. Patients were divided into two groups (infant and noninfant) according to clinic type. There were 13 pediatric patients (male:female = 6:7) with PH1 in the cohort from 11 families (four of which were biological siblings from two families), whose median age of symptom onset was 12 months and median confirmed diagnosis age was 14 months. Infant type (6 patients) was the most common type. The infant type mortality rate (100%) was higher than the noninfant (14.3%) (p = 0.029). The incidence of renal failure in infant patients was 67%, while the noninfant was 14.3%. 8 of 10 patients with nephrocalcinosis (NC) (76.92%, 10/13) were diagnosed by radiological imaging examinations, including X-ray (3 patients), CT (4 patients) and MRI (1 patient). NC was an independent risk factor for renal insufficiency [OR 3.33, 95% CI (0.7-1.2)], p < 0.05). Nine types of AGXT gene mutations were found; 1 type, c.190A > T, were first reported here. The most common AGXT gene mutation was c.679_680del, which occurred in exon 6 (5 patients). The infant type is the most common type of pediatric PH, with a relatively higher ratio of renal failure at symptom onset and poor prognosis. NC is an independent risk factor leading to renal failure, and radiological imaging examination is recommended for patients with abnormal ultrasound examination to identify NC. AGXT gene detection is important for the diagnosis and treatment of PH1 in children.
Collapse
Affiliation(s)
- Jin-Ai Lin
- Department of Nephrology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Xin Liao
- Department of Nephrology, Guangzhou Women and Children's Medical Center, Guangzhou, China.
| | - Wenlin Wu
- Department of Nephrology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Lixia Xiao
- Department of Nephrology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Longshan Liu
- Department of Organ Transplantation, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Jiang Qiu
- Department of Organ Transplantation, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
22
|
Ahmed AA, Edegbe J, Rilinger JF, Garg U. An Infant Presenting with Seizures and Renal Failure. Clin Chem 2020; 67:444-446. [PMID: 33523221 DOI: 10.1093/clinchem/hvaa265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/14/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Atif A Ahmed
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO.,University of Missouri, Kansas City, MO
| | | | - Jay F Rilinger
- University of Missouri, Kansas City, MO.,Pediatric Critical Care Medicine, Children's Mercy Hospital, Kansas City, MO
| | - Uttam Garg
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO.,University of Missouri, Kansas City, MO
| |
Collapse
|
23
|
Letko A, Dijkman R, Strugnell B, Häfliger IM, Paris JM, Henderson K, Geraghty T, Orr H, Scholes S, Drögemüller C. Deleterious AGXT Missense Variant Associated with Type 1 Primary Hyperoxaluria (PH1) in Zwartbles Sheep. Genes (Basel) 2020; 11:E1147. [PMID: 33003365 PMCID: PMC7600965 DOI: 10.3390/genes11101147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/15/2020] [Accepted: 09/26/2020] [Indexed: 11/23/2022] Open
Abstract
Severe oxalate nephropathy has been previously reported in sheep and is mostly associated with excessive oxalate in the diet. However, a rare native Dutch breed (Zwartbles) seems to be predisposed to an inherited juvenile form of primary hyperoxaluria and no causative genetic variant has been described so far. This study aims to characterize the phenotype and genetic etiology of the inherited metabolic disease observed in several purebred Zwartbles sheep. Affected animals present with a wide range of clinical signs including condition loss, inappetence, malaise, and, occasionally, respiratory signs, as well as an apparent sudden unexpected death. Histopathology revealed widespread oxalate crystal deposition in kidneys of the cases. Whole-genome sequencing of two affected sheep identified a missense variant in the ovine AGXT gene (c.584G>A; p.Cys195Tyr). Variants in AGXT are known to cause type I primary hyperoxaluria in dogs and humans. Herein, we present evidence that the observed clinicopathological phenotype can be described as a form of ovine type I primary hyperoxaluria. This disorder is explained by a breed-specific recessively inherited pathogenic AGXT variant. Genetic testing enables selection against this fatal disorder in Zwartbles sheep as well as more precise diagnosis in animals with similar clinical phenotype. Our results have been incorporated in the Online Mendelian Inheritance in Animals (OMIA) database (OMIA 001672-9940).
Collapse
Affiliation(s)
- Anna Letko
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (A.L.); (I.M.H.); (J.M.P.)
| | | | - Ben Strugnell
- Farm Post Mortems Ltd., Hamsterley, Bishop Auckland, County Durham DL13 3QF, UK;
| | - Irene M. Häfliger
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (A.L.); (I.M.H.); (J.M.P.)
| | - Julia M. Paris
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (A.L.); (I.M.H.); (J.M.P.)
| | - Katrina Henderson
- SRUC Consulting Veterinary Services, Pentlands Science Park, Bush Estate Loan, Penicuik, Midlothian EH26 0PZ, UK; (K.H.); (T.G.); (H.O.); (S.S.)
| | - Tim Geraghty
- SRUC Consulting Veterinary Services, Pentlands Science Park, Bush Estate Loan, Penicuik, Midlothian EH26 0PZ, UK; (K.H.); (T.G.); (H.O.); (S.S.)
| | - Hannah Orr
- SRUC Consulting Veterinary Services, Pentlands Science Park, Bush Estate Loan, Penicuik, Midlothian EH26 0PZ, UK; (K.H.); (T.G.); (H.O.); (S.S.)
| | - Sandra Scholes
- SRUC Consulting Veterinary Services, Pentlands Science Park, Bush Estate Loan, Penicuik, Midlothian EH26 0PZ, UK; (K.H.); (T.G.); (H.O.); (S.S.)
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (A.L.); (I.M.H.); (J.M.P.)
| |
Collapse
|
24
|
Taguchi K, Cho SY, Ng AC, Usawachintachit M, Tan YK, Deng YL, Shen CH, Gyawali P, Alenezi H, Basiri A, Bou S, Djojodemedjo T, Sarica K, Shi L, Singam P, Singh SK, Yasui T. The Urological Association of Asia clinical guideline for urinary stone disease. Int J Urol 2019; 26:688-709. [PMID: 31016804 DOI: 10.1111/iju.13957] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 03/04/2019] [Indexed: 12/12/2022]
Abstract
The Urological Association of Asia, consisting of 25 member associations and one affiliated member since its foundation in 1990, has planned to develop Asian guidelines for all urological fields. The field of stone diseases is the third of its guideline projects. Because of the different climates, and social, economic and ethnic environments, the clinical practice for urinary stone diseases widely varies among the Asian countries. The committee members of the Urological Association of Asia on the clinical guidelines for urinary stone disease carried out a surveillance study to better understand the diversity of the treatment strategy among different regions and subsequent systematic literature review through PubMed and MEDLINE database between 1966 and 2017. Levels of evidence and grades of recommendation for each management were decided according to the relevant strategy. Each clinical question and answer were thoroughly reviewed and discussed by all committee members and their colleagues, with suggestions from expert representatives of the American Urological Association and European Association of Urology. However, we focused on the pragmatic care of patients and our own evidence throughout Asia, which included recent surgical trends, such as miniaturized percutaneous nephrolithotomy and endoscopic combined intrarenal surgery. This guideline covers all fields of stone diseases, from etiology to recurrence prevention. Here, we present a short summary of the first version of the guideline - consisting 43 clinical questions - and overview its key practical issues.
Collapse
Affiliation(s)
- Kazumi Taguchi
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Sung Yong Cho
- Department of Urology, Seoul Metropolitan Government - Seoul National University Boramae Medical Center, Seoul, Korea.,Seoul National University Hospital, Seoul, Korea
| | - Anthony Cf Ng
- SH Ho Urology Center, Department of Surgery, The Chinese University of Hong Kong, Hong Kong
| | - Manint Usawachintachit
- Division of Urology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Yung-Khan Tan
- Urohealth Medical Clinic, Mt Elizabeth Hospital, Singapore
| | - Yao Liang Deng
- Department of Urology, Langdong Hospital and The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Cheng-Huang Shen
- Department of Urology, Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Prem Gyawali
- Department of Urology, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | | | - Abbas Basiri
- Department of Urology, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sopheap Bou
- Department of Urology, Royal Phnom Penh Hospital, Phnom Penh, Cambodia
| | - Tarmono Djojodemedjo
- Department of Urology, Soetomo General Academia Hospital/Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Kemal Sarica
- Department of Urology, Kafkas University Medical School, Kars, Turkey
| | - Lei Shi
- Department of Urology, Yantai Yuhuangding Hospital and Medical School, Qingdao University, Yantai, China
| | | | - Shrawan Kumar Singh
- Department of Urology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Takahiro Yasui
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
25
|
Lu X, Chen W, Li L, Zhu X, Huang C, Liu S, Yang Y, Zhao Y. Two Novel AGXT Mutations Cause the Infantile Form of Primary Hyperoxaluria Type I in a Chinese Family: Research on Missed Mutation. Front Pharmacol 2019; 10:85. [PMID: 30787879 PMCID: PMC6372570 DOI: 10.3389/fphar.2019.00085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 01/21/2019] [Indexed: 11/13/2022] Open
Abstract
Primary hyperoxaluria type 1 (PH1) is a rare metabolic disorder characterized by a defect in the liver-specific peroxisomal enzyme alanine-glyoxylate and serine-pyruvate aminotransferase (AGT). This disorder results in hyperoxaluria, recurrent urolithiasis, and nephrocalcinosis. Three forms of PH1 have been reported. Data on the infantile form of PH1 are currently limited in literature. Despite the fact that China is the most populated country in the world, only a few AGXT mutations have been reported in several Chinese PH1 patients. In the present study, we investigated a Chinese family in which two siblings are affected by the infantile form of PH1. Sanger sequencing was carried out on the proband, but the results were misleading. Two novel missense mutations (c.517T > C/p.Cys173Arg and c.667A > C/p.Ser223Arg) of the AGXT gene were successfully detected through whole-exome sequencing. These two mutations occurred in the highly conserved residues of the AGT. Four software programs predicted both mutations as the cause of the disease. A postmortem examination was performed and revealed the occurrence of global nephrocalcinosis on both kidneys. The crystals were collected and analyzed as calcium oxalate monohydrate. This study extends the knowledge on the clinical phenotype-genotype correlation of the AGXT mutation. That is, (i) two novel missense mutations were identified for the infantile form of PH1 and (ii) the same AGXT genotype caused the same infantile form of PH1 within the family.
Collapse
Affiliation(s)
- Xiulan Lu
- The Laboratory of Genetics and Metabolism, Hunan Children’s Research Institute (HCRI), Hunan Children’s Hospital, University of South China, Changsha, China
- Pediatric Intensive Care Unit, Hunan Children’s Hospital, University of South China, Changsha, China
| | - Weijian Chen
- The Laboratory of Genetics and Metabolism, Hunan Children’s Research Institute (HCRI), Hunan Children’s Hospital, University of South China, Changsha, China
- Department of Pathology, Hunan Children’s Hospital, University of South China, Changsha, China
| | - Liping Li
- The Laboratory of Genetics and Metabolism, Hunan Children’s Research Institute (HCRI), Hunan Children’s Hospital, University of South China, Changsha, China
| | - Xinyuan Zhu
- The Laboratory of Genetics and Metabolism, Hunan Children’s Research Institute (HCRI), Hunan Children’s Hospital, University of South China, Changsha, China
| | - Caizhi Huang
- The Laboratory of Genetics and Metabolism, Hunan Children’s Research Institute (HCRI), Hunan Children’s Hospital, University of South China, Changsha, China
| | | | - Yongjia Yang
- The Laboratory of Genetics and Metabolism, Hunan Children’s Research Institute (HCRI), Hunan Children’s Hospital, University of South China, Changsha, China
| | - Yaowang Zhao
- The Laboratory of Genetics and Metabolism, Hunan Children’s Research Institute (HCRI), Hunan Children’s Hospital, University of South China, Changsha, China
- Department of Urinary Surgery, Hunan Children’s Hospital, University of South China, Changsha, China
| |
Collapse
|
26
|
Bruel A, Bacchetta J, Ginhoux T, Rodier-Bonifas C, Sellier-Leclerc AL, Fromy B, Cochat P, Sigaudo-Roussel D, Dubourg L. Skin microvascular dysfunction as an early cardiovascular marker in primary hyperoxaluria type I. Pediatr Nephrol 2019; 34:319-327. [PMID: 30276532 DOI: 10.1007/s00467-018-4081-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/03/2018] [Accepted: 09/03/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Primary hyperoxaluria type 1 (PH1) is an orphan inborn error of oxalate metabolism leading to hyperoxaluria, progressive renal failure, oxalate deposition, and increased cardiovascular complications. As endothelial dysfunction and arterial stiffness are early markers of cardiovascular risk, we investigated early endothelial and vascular dysfunction in young PH1 patients either under conservative treatment (PH1-Cons) or after combined kidney liver transplantation (PH1-T) in comparison to healthy controls (Cont-H) and patients with a past of renal transplantation (Cont-T). METHODS Skin microvascular function was non-invasively assessed by laser Doppler flowmetry before and after stimulation by current, thermal, or pharmacological (nitroprussiate (SNP) or acetylcholine (Ach)) stimuli in young PH1 patients and controls. RESULTS Seven PH1-Cons (6 F, median age 18.2) and 6 PH1-T (2 F, median age 13.3) were compared to 96 Cont-H (51 F, median age 14.2) and 6 Cont-T (4 F, median age 14.5). The endothelium-independent vasodilatation (SNP) was severely decreased in PH1-T compared to Cont-H. Ach, current-induced vasodilatation (CIV), and thermal response was increased in PH1-Cons and Cont-T compared to controls. CONCLUSIONS PH1-T patients displayed severely decreased smooth muscle capacity to vasodilate. An exacerbated endothelial-dependent vasodilation suggests a role for silent inflammation in the early dysfunction of microcirculation observed in PH1-Cons and Cont-T.
Collapse
Affiliation(s)
- Alexandra Bruel
- Centre de Référence des Maladies Rénales Rares, Service de Néphrologie et Rhumatologie Pédiatriques, Hospices Civils de Lyon, Lyon, France.,Service de Pédiatrie, Hôpital Mère et Enfants, Centre hospitalo-universitaire de Nantes, Nantes, France
| | - Justine Bacchetta
- Centre de Référence des Maladies Rénales Rares, Service de Néphrologie et Rhumatologie Pédiatriques, Hospices Civils de Lyon, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France
| | - Tiphanie Ginhoux
- EPICIME-CIC 1407 de Lyon, Inserm, Service de Pharmacologie Clinique, CHU-Lyon, Lyon, France
| | - Christelle Rodier-Bonifas
- Service d'ophtalmologie, Groupement Hospitalier Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Anne-Laure Sellier-Leclerc
- Centre de Référence des Maladies Rénales Rares, Service de Néphrologie et Rhumatologie Pédiatriques, Hospices Civils de Lyon, Lyon, France
| | - Bérengère Fromy
- Laboratory of Tissue Biology and Therapeutic Engineering, UMR 5305 CNRS, University Claude Bernard Lyon 1, Villeurbanne, France
| | - Pierre Cochat
- Centre de Référence des Maladies Rénales Rares, Service de Néphrologie et Rhumatologie Pédiatriques, Hospices Civils de Lyon, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Laboratory of Tissue Biology and Therapeutic Engineering, UMR 5305 CNRS, University Claude Bernard Lyon 1, Villeurbanne, France
| | - Dominique Sigaudo-Roussel
- Laboratory of Tissue Biology and Therapeutic Engineering, UMR 5305 CNRS, University Claude Bernard Lyon 1, Villeurbanne, France
| | - Laurence Dubourg
- Centre de Référence des Maladies Rénales Rares, Service de Néphrologie et Rhumatologie Pédiatriques, Hospices Civils de Lyon, Lyon, France. .,Université Claude Bernard Lyon 1, Lyon, France. .,Laboratory of Tissue Biology and Therapeutic Engineering, UMR 5305 CNRS, University Claude Bernard Lyon 1, Villeurbanne, France. .,Néphrologie, Dialyse, Hypertension et Exploration Fonctionnelle Rénale, Groupement Hospitalier Edouard Herriot, Hospices Civils de Lyon, Lyon, France.
| |
Collapse
|
27
|
Mann N, Braun DA, Amann K, Tan W, Shril S, Connaughton DM, Nakayama M, Schneider R, Kitzler TM, van der Ven AT, Chen J, Ityel H, Vivante A, Majmundar AJ, Daga A, Warejko JK, Lovric S, Ashraf S, Jobst-Schwan T, Widmeier E, Hugo H, Mane SM, Spaneas L, Somers MJG, Ferguson MA, Traum AZ, Stein DR, Baum MA, Daouk GH, Lifton RP, Manzi S, Vakili K, Kim HB, Rodig NM, Hildebrandt F. Whole-Exome Sequencing Enables a Precision Medicine Approach for Kidney Transplant Recipients. J Am Soc Nephrol 2019; 30:201-215. [PMID: 30655312 DOI: 10.1681/asn.2018060575] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Whole-exome sequencing (WES) finds a CKD-related mutation in approximately 20% of patients presenting with CKD before 25 years of age. Although provision of a molecular diagnosis could have important implications for clinical management, evidence is lacking on the diagnostic yield and clinical utility of WES for pediatric renal transplant recipients. METHODS To determine the diagnostic yield of WES in pediatric kidney transplant recipients, we recruited 104 patients who had received a transplant at Boston Children's Hospital from 2007 through 2017, performed WES, and analyzed results for likely deleterious variants in approximately 400 genes known to cause CKD. RESULTS By WES, we identified a genetic cause of CKD in 34 out of 104 (32.7%) transplant recipients. The likelihood of detecting a molecular genetic diagnosis was highest for patients with urinary stone disease (three out of three individuals), followed by renal cystic ciliopathies (seven out of nine individuals), steroid-resistant nephrotic syndrome (nine out of 21 individuals), congenital anomalies of the kidney and urinary tract (ten out of 55 individuals), and chronic glomerulonephritis (one out of seven individuals). WES also yielded a molecular diagnosis for four out of nine individuals with ESRD of unknown etiology. The WES-related molecular genetic diagnosis had implications for clinical care for five patients. CONCLUSIONS Nearly one third of pediatric renal transplant recipients had a genetic cause of their kidney disease identified by WES. Knowledge of this genetic information can help guide management of both transplant patients and potential living related donors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Shrikant M Mane
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut; and
| | | | | | | | | | | | | | | | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut; and.,Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, New York
| | - Shannon Manzi
- Department of Genetics and Genomics, Department of Pharmacy, and
| | - Khashayar Vakili
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Heung Bae Kim
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | |
Collapse
|
28
|
Fernández-Higuero JÁ, Betancor-Fernández I, Mesa-Torres N, Muga A, Salido E, Pey AL. Structural and functional insights on the roles of molecular chaperones in the mistargeting and aggregation phenotypes associated with primary hyperoxaluria type I. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 114:119-152. [PMID: 30635080 DOI: 10.1016/bs.apcsb.2018.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To carry out their biological function in cells, proteins must be folded and targeted to the appropriate subcellular location. These processes are controlled by a vast collection of interacting proteins collectively known as the protein homeostasis network, in which molecular chaperones play a prominent role. Protein homeostasis can be impaired by inherited mutations leading to genetic diseases. In this chapter, we focus on a particular disease, primary hyperoxaluria type 1 (PH1), in which disease-associated mutations exacerbate protein aggregation in the cell and mistarget the peroxisomal alanine:glyoxylate aminotransferase (AGT) protein to mitochondria, in part due to native state destabilization and enhanced interaction with Hsp60, 70 and 90 chaperone systems. After a general introduction of molecular chaperones and PH1, we review our current knowledge on the structural and energetic features of PH1-causing mutants that lead to these particular pathogenic mechanisms. From this perspective, and in the context of the key role of molecular chaperones in PH1 pathogenesis, we present and discuss current and future perspectives for pharmacological treatments for this disease.
Collapse
Affiliation(s)
- José Ángel Fernández-Higuero
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Isabel Betancor-Fernández
- Centre for Biomedical Research on Rare Diseases (CIBERER), Hospital Universitario de Canarias, ITB, University of La Laguna, Tenerife, Spain
| | - Noel Mesa-Torres
- Department of Physical Chemistry, University of Granada, Granada, Spain
| | - Arturo Muga
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Eduardo Salido
- Centre for Biomedical Research on Rare Diseases (CIBERER), Hospital Universitario de Canarias, ITB, University of La Laguna, Tenerife, Spain
| | - Angel L Pey
- Department of Physical Chemistry, University of Granada, Granada, Spain.
| |
Collapse
|
29
|
Du DF, Li QQ, Chen C, Shi SM, Zhao YY, Jiang JP, Wang DW, Guo H, Zhang WJ, Chen ZS. Updated Genetic Testing of Primary Hyperoxaluria Type 1 in a Chinese Population: Results from a Single Center Study and a Systematic Review. Curr Med Sci 2018; 38:749-757. [PMID: 30341509 DOI: 10.1007/s11596-018-1941-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/06/2018] [Indexed: 11/27/2022]
Abstract
Primary hyperoxaluria type 1 (PH1) is a rare but devastating autosomal recessive inherited disease caused by mutations in gene AGXT. Pathogenic mutations of AGXT were mostly reported in Caucasian but infrequently in Asian, especially in Chinese. To update the genotypes of PH1 in the Chinese population, we collected and identified 7 Chinese probands with PH1 from 2013 to 2017 in our center, five of whom had delayed diagnosis and failed in kidney transplantation. Samples of peripheral blood DNA from the 7 patients and their family members were collected and sequencing analysis was performed to test the mutations of gene AGXT. Western blotting and enzyme activity analysis were conducted to evaluate the function of the mutations. Furthermore, a systematic review from 1998 to 2017 was performed to observe the genetic characteristics between Chinese and Caucasian. The results showed that a total of 12 mutations were identified in the 7 pedigrees. To the best of our knowledge, 2 novel variants of AGXT, p.Gly41Trp and p.Leu33Met, were first reported. Bioinformatics and functional analysis showed that only 7 mutations led to a reduced expression of alanine-glyoxylate amino transferase (AGT) at a protein level. The systematic review revealed significant population heterogeneity in PH1. In conclusion, new genetic subtypes and genetic characteristics of PH1 are updated in the Chinese population. Furthermore, a genotype-phenotype correlation is found in PH1.
Collapse
Affiliation(s)
- Dun-Feng Du
- Institute of Organ Transplantation, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Health/Education, Wuhan, 430030, China
| | - Qian-Qian Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chen Chen
- Institute of Hypertension, Departments of Internal Medicine and Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shu-Mei Shi
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuan-Yuan Zhao
- Institute of Organ Transplantation, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Health/Education, Wuhan, 430030, China
| | - Ji-Pin Jiang
- Institute of Organ Transplantation, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Health/Education, Wuhan, 430030, China
| | - Dao-Wen Wang
- Institute of Hypertension, Departments of Internal Medicine and Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui Guo
- Institute of Organ Transplantation, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Health/Education, Wuhan, 430030, China
| | - Wei-Jie Zhang
- Institute of Organ Transplantation, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Organ Transplantation, Ministry of Health/Education, Wuhan, 430030, China.
| | - Zhi-Shui Chen
- Institute of Organ Transplantation, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Organ Transplantation, Ministry of Health/Education, Wuhan, 430030, China.
| |
Collapse
|
30
|
Mbarek IB, Mdimeg S, Moussa A, Zellama D, Kaarout H, Abdelmoula J, Achour A, Abroug S, Omezzine A, Bouslama A. Unusual clinical outcome of primary Hyperoxaluria type 1 in Tunisian patients carrying 33_34InsC mutation. BMC Nephrol 2017; 18:195. [PMID: 28619084 PMCID: PMC5472968 DOI: 10.1186/s12882-017-0612-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 06/07/2017] [Indexed: 12/21/2022] Open
Abstract
Background Primary hyperoxaluria type 1 (PH1), is a rare and heterogeneous disease and one of major causes of renal insufficiency in Tunisia, caused by mutations in the AGXT gene. 33-34InsC mutation, was mainly described in children with a severe clinical feature leading to early death, but it was uncommonly reported in adult patients. Methods Common mutations in AGXT were tested using PCR/RFLP technique in 111 patients (68 adult, 43 children) with suspected PH1. Results We described 16 cases (eight adult and eight children) with a 33-34InsC mutation with a median age of 24 years [6 months - 73 years]. All children were in end stage renal disease (ESRD) at the median age of 3 years due to lithiasis and/or nephrocalcinosis. Unfortunately, 75% of them died with a median age of 2.5 years. For the majority of adults only spontaneous elimination of urolithiasis were noted, 37.5% preserved until now a normal renal function and 62.5% of them reached ESRD at the median age of 55.8 ± 12.31 years old. Conclusion In this study 33-34InsC mutation gives a controversial clinical effect in children and adults. The implication of other genetic and/or environmental factors can play a crucial role in determining the ultimate phenotype.
Collapse
Affiliation(s)
- Ibtihel Benhaj Mbarek
- Biochemistry Department, LR12 SP11, Sahloul University Hospital, 4054, Sousse, Tunisia.
| | - Saoussen Mdimeg
- Biochemistry Department, LR12 SP11, Sahloul University Hospital, 4054, Sousse, Tunisia
| | - Amira Moussa
- Biochemistry Department, LR12 SP11, Sahloul University Hospital, 4054, Sousse, Tunisia
| | - Dorsaf Zellama
- Nephrology Department, LR12 SP11, Sahloul University Hospital, 4054, Sousse, Tunisia
| | - Hayat Kaarout
- Internal Medicine A Department, Charles Nicolle University Hospital, Tunis, Tunisia
| | - Jaouida Abdelmoula
- Biochemistry Department, Charles Nicolle University Hospital, Tunis, Tunisia
| | - Abdellatif Achour
- Nephrology Department, LR12 SP11, Sahloul University Hospital, 4054, Sousse, Tunisia
| | - Saoussen Abroug
- Pediatric Department, LR12 SP11, Sahloul University Hospital, 4054, Sousse, Tunisia
| | - Asma Omezzine
- Biochemistry Department, LR12 SP11, Sahloul University Hospital, 4054, Sousse, Tunisia.,Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Ali Bouslama
- Biochemistry Department, LR12 SP11, Sahloul University Hospital, 4054, Sousse, Tunisia.,Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| |
Collapse
|
31
|
M'dimegh S, Omezzine A, M'barek I, Moussa A, Mabrouk S, Kaarout H, Souche G, Chemli J, Aloui S, Aquaviva-Bourdain C, Achour A, Abroug S, Bouslama A. Mutational Analysis of Agxt in Tunisian Population with Primary Hyperoxaluria Type 1. Ann Hum Genet 2016; 81:1-10. [PMID: 27935012 DOI: 10.1111/ahg.12178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/10/2016] [Indexed: 01/25/2023]
Abstract
BACKGROUND Primary hyperoxaluria type 1 (PH1) is an autosomal recessive metabolic disorder caused by inherited mutations in the AGXT gene encoding liver peroxisomal alanine:glyoxylate aminotransferase (AGT). PH1 is a clinically and genetically heterogeneous disorder. The aim of our study was to analyze and characterize the mutational spectrum of PH1 in Tunisian patients. MATERIALS AND METHODS Molecular studies of 146 Tunisian patients suspected with PH were performed by PCR/Restriction fragment length polymorphism (RFLP) to detect seven mutations described as the most common. Direct sequencing for the 11 exons was performed in patients in whom any mutation was not identified. RESULTS The genetic diagnosis of PH1 was confirmed in 62.3% of patients. The first molecular approach based on PCR/restriction enzyme test was positive in 37.6% of patients, whereas the second molecular approach based on whole gene sequencing was successful in 24% of cases. Twelve pathogenic mutations were detected in our cohort. Two mutations were novel, and five were detected for the first time in Tunisians. The three most frequent mutations were p.Ile244Thr, p.Gly190Arg, and c.33dupC, with a frequency of 43.4%, 21.4%, and 13.1%, respectively. CONCLUSION The two novel mutations detected in our study extend the spectrum of known AGXT gene mutations. The screen for the mutations identified in this study can provide a useful, cost-effective, and first-line investigation in Tunisian PH1 patients.
Collapse
Affiliation(s)
- Saoussen M'dimegh
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| | - Asma Omezzine
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| | - Ibtihel M'barek
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| | - Amira Moussa
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| | - Sameh Mabrouk
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| | - Hayet Kaarout
- Internal Medicine A Department, Charles Nicolle University Hospital, Tunis, Tunisia
| | - Geneviéve Souche
- Laboratory of Inborn Metabolic Diseases, Centre de Biologie Est, Hospices Civils de Lyon, Lyon, France
| | - Jalel Chemli
- Pediatric Department, Sahloul University Hospital, Sousse, Tunisia
| | - Sabra Aloui
- Nephrology Department, Fatouma Bourguiba University Hospital, Monastir, Tunisia
| | - Cécile Aquaviva-Bourdain
- Laboratory of Inborn Metabolic Diseases, Centre de Biologie Est, Hospices Civils de Lyon, Lyon, France
| | | | - Saoussen Abroug
- Pediatric Department, Sahloul University Hospital, Sousse, Tunisia
| | - Ali Bouslama
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| |
Collapse
|
32
|
Isiyel E, Ezgu SAB, Caliskan S, Akman S, Akil I, Tabel Y, Akinci N, Ozdogan EB, Ozel A, Eroglu FK, Ezgu FS. Molecular analysis of the AGXT gene in patients suspected with hyperoxaluria type 1 and three novel mutations from Turkey. Mol Genet Metab 2016; 119:311-316. [PMID: 27915025 DOI: 10.1016/j.ymgme.2016.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/30/2016] [Accepted: 10/31/2016] [Indexed: 12/22/2022]
Abstract
Primary hyperoxaluria type 1 (PH1) is a rare, autosomal recessive disease, caused by the defect of AGXT gene encoding hepatic peroxisomal alanine glyoxylateaminotransferase (AGT). This enzyme is responsible for the conversion of glyoxylate to glycine. The diagnosis of PH1 should be suspected in infants and children with nephrocalcinosis or nephrolithiasis. Early diagnosis and treatment is crucial in preventing disease progression to end stage kidney disease (ESKD). In this study, AGXT gene sequence analyses were performed in 82 patients who were clinically suspected (hyperoxaluria and nephrolithiasis or nephrocalcinosis with or without renal impairment) to have PH1. Disease causing mutations have been found in fifteen patients from thirteen families (18%). Novel mutations have been found (c.458T>A (p.L153X), c.733_734delAA (p.Lys245Valfs*11), c.52 C>T (p.L18F)) in three of 13 families. There were 3-year lag time between initial symptoms and the time of PH1 is suspected; additionally, 5.5-year lag time between initial symptoms and definitive diagnosis. Consanguinity was detected in 77% of the patients with mutation. After genetic diagnosis, one patient received combined kidney and liver transplantation. AGXT gene sequencing is now the choice of diagnosis of PH1 due to its non-invasive nature compared to liver enzyme assay. Early diagnosis and accurate treatment in PH1 is important for better patient outcomes.
Collapse
Affiliation(s)
- Emel Isiyel
- Department of Pediatric Nephrology, Gazi University Medical Faculty, Turkey.
| | | | - Salim Caliskan
- Department of Pediatric Nephrology, Istanbul University Cerrahpasa Medical Faculty, Turkey
| | - Sema Akman
- Department of Pediatric Nephrology, Akdeniz University Medical Faculty, Turkey
| | - Ipek Akil
- Department of Pediatric Nephrology, Celal Bayar University Medical Faculty, Turkey
| | - Yilmaz Tabel
- Department of Pediatric Nephrology, Inonu University Medical Faculty, Turkey
| | - Nurver Akinci
- Department of Pediatric Nephrology, Sisli Etfal Training and Research Hospital, Turkey
| | - Elif Bahat Ozdogan
- Department of Pediatric Nephrology, Karadeniz Technical University Medical Faculty, Turkey
| | - Ahmet Ozel
- Department of Pediatric Nephrology, Konya Training and Research Hospital, Turkey
| | - Fehime Kara Eroglu
- Department of Pediatric Nephrology, Hacettepe University Medical Faculty, Turkey
| | - Fatih S Ezgu
- Department of Pediatric Metabolic Disorders and Pediatric Genetics, Gazi University Medical Faculty, Turkey
| |
Collapse
|
33
|
Effects of alanine:glyoxylate aminotransferase variants and pyridoxine sensitivity on oxalate metabolism in a cell-based cytotoxicity assay. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1055-62. [PMID: 26854734 DOI: 10.1016/j.bbadis.2016.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 12/20/2022]
Abstract
The hereditary kidney stone disease primary hyperoxaluria type 1 (PH1) is caused by a functional deficiency of the liver-specific, peroxisomal, pyridoxal-phosphate-dependent enzyme, alanine:glyoxylate aminotransferase (AGT). One third of PH1 patients, particularly those expressing the p.[(Pro11Leu; Gly170Arg; Ile340Met)] mutant allele, respond clinically to pharmacological doses of pyridoxine. To gain further insight into the metabolic effects of AGT dysfunction in PH1 and the effect of pyridoxine, we established an "indirect" glycolate cytotoxicity assay using CHO cells expressing glycolate oxidase (GO) and various normal and mutant forms of AGT. In cells expressing GO the great majority of glycolate was converted to oxalate and glyoxylate, with the latter causing the greater decrease in cell survival. Co-expression of normal AGTs and some, but not all, mutant AGT variants partially counteracted this cytotoxicity and led to decreased synthesis of oxalate and glyoxylate. Increasing the extracellular pyridoxine up to 0.3μM led to an increased metabolic effectiveness of normal AGTs and the AGT-Gly170Arg variant. The increased survival seen with AGT-Gly170Arg was paralleled by a 40% decrease in oxalate and glyoxylate levels. These data support the suggestion that the effectiveness of pharmacological doses of pyridoxine results from an improved metabolic effectiveness of AGT; that is the increased rate of transamination of glyoxylate to glycine. The indirect glycolate toxicity assay used in the present study has potential to be used in cell-based drug screening protocols to identify chemotherapeutics that might enhance or decrease the activity and metabolic effectiveness of AGT and GO, respectively, and be useful in the treatment of PH1.
Collapse
|
34
|
Ben-Shalom E, Frishberg Y. Primary hyperoxalurias: diagnosis and treatment. Pediatr Nephrol 2015; 30:1781-91. [PMID: 25519509 DOI: 10.1007/s00467-014-3030-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/21/2014] [Accepted: 12/02/2014] [Indexed: 01/22/2023]
Abstract
Primary hyperoxalurias (PH) comprise a group of three distinct metabolic diseases caused by derangement of glyoxylate metabolism in the liver. Recent years have seen advances in several aspects of PH research. This paper reviews current knowledge of the genetic and biochemical basis of PH, the specific epidemiology and clinical presentation of each type, and therapeutic approaches in different disease stages. Potential future specific therapies are discussed.
Collapse
Affiliation(s)
- Efrat Ben-Shalom
- Division of Pediatric Nephrology, Shaare Zedek Medical Center, P.O.Box 3235, Jerusalem, Israel
| | | |
Collapse
|
35
|
Bollée G, Cochat P, Daudon M. Recurrence of crystalline nephropathy after kidney transplantation in APRT deficiency and primary hyperoxaluria. Can J Kidney Health Dis 2015; 2:31. [PMID: 26380104 PMCID: PMC4570695 DOI: 10.1186/s40697-015-0069-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 07/24/2015] [Indexed: 01/25/2023] Open
Abstract
Purpose of review To provide transplant physicians with a summary of the pathogenesis and diagnosis of adenine phosphoribosyl transferase (APRT) deficiency and primary hyperoxaluria and, focussed on kidney transplantation, and to discuss interventions aimed at preventing and treating the recurrence of crystalline nephropathy in renal transplant recipients. Source of information Pubmed literature search. Setting Primary hyperoxaluria and APRT deficiency are rare inborn errors of human metabolism. The hallmark of these diseases is the overproduction and urinary excretion of compounds (2,8 dihydroxyadenine in APRT deficiency, oxalate in primary hyperoxaluria) that form urinary crystals. Although recurrent urolithiasis represents the main clinical feature of these diseases, kidney injury can occur as a result of crystal precipitation within the tubules and interstitium, a condition referred to as crystalline nephropathy. Some patients develop end-stage renal disease (ESRD) and may become candidates for kidney transplantation. Since kidney transplantation does not correct the underlying metabolic defect, transplant recipients have a high risk of recurrence of crystalline nephropathy, which can lead to graft loss. In some instances, the disease remains undiagnosed until after the occurrence of ESRD or even after kidney transplantation. Key messages Patients with APRT deficiency or primary hyperoxaluria may develop ESRD as a result of crystalline nephropathy. In the absence of diagnosis and adequate management, the disease is likely to recur after kidney transplantation, which often leads to rapid loss of renal allograft function. Primary hyperoxaluria, but not APRT deficiency, becomes a systemic disease at low GFR with oxalate deposition leading to malfunction in non-renal organs (systemic oxalosis). We suggest that these diagnoses should be considered in patients with low glomerular filtration rate (GFR) and a history of kidney stones. In APRT deficiency, stones may be confused with uric acid stones, unless specialized techniques are used (infrared spectroscopy or X-ray crystallography for urinary crystals or stone analysis; Fourier transform infrared microscopy for crystals in kidney biopsy). Where these are unavailable, and for confirmation, the diagnosis can be made by measurement of enzyme activity in red blood cell lysates or by genetic testing. In patients with primary hyperoxaluria, levels of urinary and plasma oxalate; and the presence of nearly pure calcium oxalate monohydrate in stones, which often also have an unusually pale colour and unorganized structure, increase diagnostic suspicion. Molecular genetic testing is the criterion measure. Lifelong allopurinol therapy, with high fluid intake if appropriate, may stabilize kidney function in APRT deficiency; if ESRD has occurred or is near, results with kidney transplantation after initiation of allopurinol are excellent. In primary hyperoxaluria recognized before ESRD, pyridoxine treatment and high fluid intake may lead to a substantial decrease in urinary calcium oxalate supersaturation and prevent renal failure. In non-responsive patients or those recognized later in their disease, liver transplantation cures the underlying defect and should be considered when the GFR falls below 30 ml/min/1.73 m2; in those which or near ESRD, liver transplantation and intensive dialysis before kidney transplantation may be considered to reduce the total body oxalate burden before kidney transplantation. Limitations The availability of diagnostic tests varies between countries and centres. Data on long term outcomes after kidney transplantation are limited, especially for APRT deficiency patients. Implications Increasing transplant physicians knowledge of APRT deficiency and primary hyperoxaluria should enable them to implement adequate diagnostic and therapeutic interventions, thereby achieving good outcomes after kidney transplantation.
Collapse
Affiliation(s)
- Guillaume Bollée
- Division of Nephrology and Research Centre of the Centre Hospitalier de l'Université de Montréal and Université de Montréal, Montréal, Québec Canada ; Division of Nephrology, Hôpital Notre Dame, 1560 Sherbrooke Street East, Montreal, QC H2L 4 M1 Canada
| | - Pierre Cochat
- Centre de Référence des Maladies Rénales Rares, Hospices Civils de Lyon and Université Claude-Bernard Lyon 1, Lyon, France
| | - Michel Daudon
- Service d'Explorations Fonctionnelles, AP-HP, Hôpital Tenon, Paris, France
| |
Collapse
|
36
|
Oppici E, Fargue S, Reid ES, Mills PB, Clayton PT, Danpure CJ, Cellini B. Pyridoxamine and pyridoxal are more effective than pyridoxine in rescuing folding-defective variants of human alanine:glyoxylate aminotransferase causing primary hyperoxaluria type I. Hum Mol Genet 2015. [DOI: 10.1093/hmg/ddv276] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
37
|
Bhasin B, Ürekli HM, Atta MG. Primary and secondary hyperoxaluria: Understanding the enigma. World J Nephrol 2015; 4:235-244. [PMID: 25949937 PMCID: PMC4419133 DOI: 10.5527/wjn.v4.i2.235] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/29/2014] [Accepted: 02/09/2015] [Indexed: 02/05/2023] Open
Abstract
Hyperoxaluria is characterized by an increased urinary excretion of oxalate. Primary and secondary hyperoxaluria are two distinct clinical expressions of hyperoxaluria. Primary hyperoxaluria is an inherited error of metabolism due to defective enzyme activity. In contrast, secondary hyperoxaluria is caused by increased dietary ingestion of oxalate, precursors of oxalate or alteration in intestinal microflora. The disease spectrum extends from recurrent kidney stones, nephrocalcinosis and urinary tract infections to chronic kidney disease and end stage renal disease. When calcium oxalate burden exceeds the renal excretory ability, calcium oxalate starts to deposit in various organ systems in a process called systemic oxalosis. Increased urinary oxalate levels help to make the diagnosis while plasma oxalate levels are likely to be more accurate when patients develop chronic kidney disease. Definitive diagnosis of primary hyperoxaluria is achieved by genetic studies and if genetic studies prove inconclusive, liver biopsy is undertaken to establish diagnosis. Diagnostic clues pointing towards secondary hyperoxaluria are a supportive dietary history and tests to detect increased intestinal absorption of oxalate. Conservative treatment for both types of hyperoxaluria includes vigorous hydration and crystallization inhibitors to decrease calcium oxalate precipitation. Pyridoxine is also found to be helpful in approximately 30% patients with primary hyperoxaluria type 1. Liver-kidney and isolated kidney transplantation are the treatment of choice in primary hyperoxaluria type 1 and type 2 respectively. Data is scarce on role of transplantation in primary hyperoxaluria type 3 where there are no reports of end stage renal disease so far. There are ongoing investigations into newer modalities of diagnosis and treatment of hyperoxaluria. Clinical differentiation between primary and secondary hyperoxaluria and further between the types of primary hyperoxaluria is very important because of implications in treatment and diagnosis. Hyperoxaluria continues to be a challenging disease and a high index of clinical suspicion is often the first step on the path to accurate diagnosis and management.
Collapse
|
38
|
Primary hyperoxaluria type 1 in 18 children: genotyping and outcome. Int J Nephrol 2015; 2015:634175. [PMID: 25918646 PMCID: PMC4396551 DOI: 10.1155/2015/634175] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 03/16/2015] [Accepted: 03/16/2015] [Indexed: 01/28/2023] Open
Abstract
Background. Primary hyperoxaluria belongs to a group of rare metabolic disorders with autosomal recessive inheritance. It results from genetic mutations of the AGXT gene, which is more common due to higher consanguinity rates in the developing countries. Clinical features at presentation are heterogeneous even in children from the same family; this study was conducted to determine the clinical characteristics, type of AGXT mutation, and outcome in children diagnosed with PH1 at a tertiary referral center in Oman. Method. Retrospective review of children diagnosed with PH1 at a tertiary hospital in Oman from 2000 to 2013. Result. Total of 18 children were identified. Females composed 61% of the children with median presentation age of 7 months. Severe renal failure was initial presentation in 39% and 22% presented with nephrocalcinosis and/or renal calculi. Family screening diagnosed 39% of patients. Fifty percent of the children underwent hemodialysis. 28% of children underwent organ transplantation. The most common mutation found in Omani children was c.33-34insC mutation in the AGXT gene. Conclusion. Due to consanguinity, PH1 is a common cause of ESRD in Omani children. Genetic testing is recommended to help in family counseling and helps in decreasing the incidence and disease burden; it also could be utilized for premarital screening.
Collapse
|
39
|
Hopp K, Cogal AG, Bergstralh EJ, Seide BM, Olson JB, Meek AM, Lieske JC, Milliner DS, Harris PC. Phenotype-Genotype Correlations and Estimated Carrier Frequencies of Primary Hyperoxaluria. J Am Soc Nephrol 2015; 26:2559-70. [PMID: 25644115 DOI: 10.1681/asn.2014070698] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/13/2014] [Indexed: 12/11/2022] Open
Abstract
Primary hyperoxaluria (PH) is a rare autosomal recessive disease characterized by oxalate accumulation in the kidneys and other organs. Three loci have been identified: AGXT (PH1), GRHPR (PH2), and HOGA1 (PH3). Here, we compared genotype to phenotype in 355 patients in the Rare Kidney Stone Consortium PH registry and calculated prevalence using publicly available whole-exome data. PH1 (68.4% of families) was the most severe PH type, whereas PH3 (11.0% of families) showed the slowest decline in renal function but the earliest symptoms. A group of patients with disease progression similar to that of PH3, but for whom no mutation was detected (11.3% of families), suggested further genetic heterogeneity. We confirmed that the AGXT p.G170R mistargeting allele resulted in a milder PH1 phenotype; however, other potential AGXT mistargeting alleles caused more severe (fully penetrant) disease. We identified the first PH3 patient with ESRD; a homozygote for two linked, novel missense mutations. Population analysis suggested that PH is an order of magnitude more common than determined from clinical cohorts (prevalence, approximately 1:58,000; carrier frequency, approximately 1:70). We estimated PH to be approximately three times less prevalent among African Americans than among European Americans because of a limited number of common European origin alleles. PH3 was predicted to be as prevalent as PH1 and twice as common as PH2, indicating that PH3 (and PH2) cases are underdiagnosed and/or incompletely penetrant. These results highlight a role for molecular analyses in PH diagnostics and prognostics and suggest that wider analysis of the idiopathic stone-forming population may be beneficial.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dawn S Milliner
- Division of Nephrology and Hypertension, Division of Pediatric Nephrology, Mayo Clinic, Rochester, Minnesota
| | - Peter C Harris
- Division of Nephrology and Hypertension, Department of Biochemistry and Molecular Biology, and
| | | |
Collapse
|
40
|
Mesa-Torres N, Salido E, Pey AL. The lower limits for protein stability and foldability in primary hyperoxaluria type I. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2355-65. [PMID: 25461797 DOI: 10.1016/j.bbapap.2014.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/29/2014] [Accepted: 10/10/2014] [Indexed: 01/12/2023]
Abstract
Mutational effects on protein stability and foldability are important to understand conformational diseases and protein evolution. In this work, we perform a comprehensive investigation on the energetic basis underlying mutational effects on the stability of human alanine:glyoxylate aminotransferase (AGT). We study twenty two variants whose kinetic stabilities span over eleven orders of magnitude and are classified into two groups: i) ten naturally-occurring variants, including the most common mutations causing primary hyperoxaluria type I (PH1); and ii) twelve consensus variants obtained by sequence-alignment statistics. We show that AGT dimer stability determines denaturation rates, and mutations modulate stability by changes in the effective thermodynamic stability, the aggregation propensity of partially/globally unfolded states and subtle energetic changes in the rate-limiting denaturation step. In combination with our previous expression analyses in eukaryotic cells, we propose the existence of two lower limits for AGT stability, one linked to optimal folding efficiency (close to the major allele stability) and the other setting a minimal efficiency compatible with glyoxylate detoxification in vivo (close to the minor allele stability). These lower limits could explain the high prevalence of misfolding as a disease mechanism in PH1 and support the use of pharmacological ligands aimed to increase AGT stability as therapies for this disease.
Collapse
Affiliation(s)
- Noel Mesa-Torres
- Departamento de Química-Física, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain
| | - Eduardo Salido
- Hospital Universitario de Canarias, Universidad La Laguna, Centre for Biomedical Research on Rare Diseases (CIBERER), Tenerife E-38320, Spain
| | - Angel L Pey
- Departamento de Química-Física, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain.
| |
Collapse
|
41
|
Data from a large European study indicate that the outcome of primary hyperoxaluria type 1 correlates with the AGXT mutation type. Kidney Int 2014; 86:1197-204. [PMID: 24988064 DOI: 10.1038/ki.2014.222] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 05/02/2014] [Accepted: 05/08/2014] [Indexed: 11/09/2022]
Abstract
Primary hyperoxaluria type 1 displays a heterogeneous phenotype, likely to be affected by genetic and non-genetic factors, including timeliness of diagnosis and quality of care. As previous genotype-phenotype studies were hampered by limited patient numbers the European OxalEurope Consortium was constituted. This preliminary retrospective report is based on 526 patients of which 410 have the AGXT genotype defined. We grouped mutations by the predicted effect as null, missense leading to mistargeting (G170R), and other missense, and analyzed their phenotypic correlations. Median age of end-stage renal disease increased from 9.9 for 88 homozygous null patients, 11.5 for 42 heterozygous null/missense, 16.9 for 116 homozygous missense patients, 25.1 for 61 G170R/null patients, 31.2 for 32 G170R/missense patients, and 33.9 years for 71 homozygous G170R patients. The outcome of some recurrent missense mutations (p.I244T, p.F152I, p.M195R, p.D201E, p.S81L, p.R36C) and an unprecedented number of G170R homozygotes is described in detail. Diagnosis is still delayed and actions aimed at increasing awareness of primary hyperoxaluria type 1 are recommended. Thus, in addition to G170R, other causative mutations are associated with later onset of end-stage renal disease. The OxalEurope registry will provide necessary tools for characterizing those genetic and non-genetic factors through a combination of genetic, functional, and biostatistical approaches.
Collapse
|
42
|
Lorenz EC, Lieske JC, Seide BM, Meek AM, Olson JB, Bergstralh EJ, Milliner DS. Sustained pyridoxine response in primary hyperoxaluria type 1 recipients of kidney alone transplant. Am J Transplant 2014; 14:1433-8. [PMID: 24797341 PMCID: PMC4543374 DOI: 10.1111/ajt.12706] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/16/2014] [Accepted: 02/06/2014] [Indexed: 01/25/2023]
Abstract
Combined liver kidney transplant is the preferred transplant option for most patients with primary hyperoxaluria type 1 (PH1) given that it removes the hepatic source of oxalate production and improves renal allograft survival. However, PH1 patients homozygous for the G170R mutation can develop normal urine oxalate levels with pyridoxine therapy and may be candidates for kidney alone transplant (KTx). We examined the efficacy of pyridoxine therapy following KTx in five patients homozygous for G170R transplanted between September 1999 and July 2013. All patients were maintained on pyridoxine posttransplant. Median age at transplant was 39 years (range 33-67 years). Median follow-up posttransplant was 8.5 years (range 0.2-13.9 years). At the end of follow-up, four grafts were functioning. One graft failed 13.9 years posttransplant due to recurrent oxalate nephropathy following an acute medical illness. After tissue oxalate stores had cleared, posttransplant urine oxalate levels were <0.5 mmol/24 h the majority of times checked. Calcium oxalate crystals were noted in only 3/13 allograft biopsies. This series suggests that a subgroup of PH1 patients demonstrate sustained response to pyridoxine therapy following KTx. Therefore, pyridoxine combined with KTx should be considered for PH1 patients with a homozygous G170R mutation.
Collapse
Affiliation(s)
- Elizabeth C Lorenz
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - John C Lieske
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Barbara M Seide
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Alicia M Meek
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Julie B Olson
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Eric J Bergstralh
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Dawn S Milliner
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
43
|
The chaperone role of the pyridoxal 5′-phosphate and its implications for rare diseases involving B6-dependent enzymes. Clin Biochem 2014; 47:158-65. [DOI: 10.1016/j.clinbiochem.2013.11.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/28/2013] [Accepted: 11/30/2013] [Indexed: 02/06/2023]
|
44
|
Hoyer-Kuhn H, Kohbrok S, Volland R, Franklin J, Hero B, Beck BB, Hoppe B. Vitamin B6 in primary hyperoxaluria I: first prospective trial after 40 years of practice. Clin J Am Soc Nephrol 2014; 9:468-77. [PMID: 24385516 DOI: 10.2215/cjn.06820613] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Primary hyperoxaluria type I (PH I) is caused by deficiency of the liver-specific enzyme alanine-glyoxylate:aminotransferase (AGT). Many mutations are known to perturb AGT protein folding. Vitamin B6 (B6) is the only specific drug available for treatment. Although B6 has been used for >40 years, controlled data on B6 efficacy are lacking. Therefore, this study investigated the absolute and relative change of urinary oxalate (Uox) excretion under increasing dosages of B6, the first prospective trial to do so. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS B6 response was studied in 12 patients (7 male patients) with genetically confirmed PH I (3 Gly170Arg homozygous, 5 compound Gly170Arg and/or Phe152Ile heterozygous, and 4 negative for Gly170Arg and/or Phe152Ile mutations) and noncompromised renal function. Efficacy was defined as a 30% relative reduction in Uox excretion. B6 was administered orally starting at 5 mg/kg body weight per day and given in increments of 5 mg/kg every 6 weeks, up to a final dosage of 20 mg/kg per day at week 24. Uox and serum B6 levels were measured every 6 weeks. RESULTS Mean relative Uox reduction was 25.5%. Uox declined from 2.09±0.55 (mean±SD) at baseline to 1.52±0.60 mmol/1.73 m(2) per day (P=0.01) at week 24. Serum B6 levels increased from 22.5±8.7 to 1217±776 ng/ml (P<0.001). Six patients showed a ≥30% relative reduction of Uox at week 24. CONCLUSION This first prospective trial confirmed B6 efficacy in 50% of patients (three of three homozygous, one of five heterozygous, and two of four patients negative for the Gly170Arg and/or Phe152Ile mutations). Interestingly, no complete biochemical remission was observed, even in the homozygous Gly170Arg study participants. Future trials are necessary to learn more about genotype-related B6 response and B6 metabolism.
Collapse
Affiliation(s)
- Heike Hoyer-Kuhn
- Division of Pediatric Nephrolgy and, †Pediatric Clinical Trial Unit, Department of Pediatrics and Adolescents Medicine, University Hospital Cologne, Cologne, Germany;, ‡Institute of Medical Statistics, Informatics and Epidemiology, and, §Institute of Human Genetics, University of Cologne, Cologne, Germany, ‖Department of Pediatrics, Division of Pediatric Nephrology, University Hospital Bonn, Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Akın Y, Uçar M, Yücel S. Current medical treatment in pediatric urolithiasis. Turk J Urol 2013; 39:253-63. [PMID: 26328120 DOI: 10.5152/tud.2013.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 04/30/2013] [Indexed: 11/22/2022]
Abstract
Although the prevalence of urolithiasis is nearly 2-3% in childhood, the risk of recurrence may range from 6.5-54%. There has been an increase in urinary stone disease among pediatric age groups, and stone disease has a multifactorial etiology. After the diagnosis, detailed metabolic evaluation is required. High recurrence rates, therapeutic irregularities and deficiency in diagnosis may lead to comorbidities such as loss of kidney function. Following diagnosis, the requirement for surgery, such as stone extraction and correction of anatomical anomalies, is determined. Medical and supportive treatments are also needed to prevent recurrence and urinary tract infections and to preserve renal function. Supportive care includes increased fluid intake and dietary modifications. Medical treatment is dependent on the cause of the urinary stone disease. The morbidities associated with pediatric urolithiasis can be prevented by early diagnosis, detailed metabolic analysis, regular follow-up and medical treatment protocols.
Collapse
Affiliation(s)
- Yiğit Akın
- Department of Urology, Faculty of Medicine, Erzincan University, Erzincan, Turkey
| | - Murat Uçar
- Department of Urology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Selçuk Yücel
- Department of Urology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
46
|
Cochat P, Groothoff J. Primary hyperoxaluria type 1: practical and ethical issues. Pediatr Nephrol 2013; 28:2273-81. [PMID: 23494551 DOI: 10.1007/s00467-013-2444-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 02/04/2013] [Accepted: 02/05/2013] [Indexed: 02/06/2023]
Abstract
Primary hyperoxaluria type 1 (PH1) is a rare inborn error of glyoxylate metabolism of autosomal recessive inheritance, leading to progressive systemic oxalate storage (named 'oxalosis') with a high rate of morbidity and mortality, as well as an unacceptable quality of life for most patients. The adverse outcome, however, is partly due to issues that can be overcome. First, the diagnosis of PH is often delayed due to a general lack of knowledge of the disease among physicians. This accounts specifically for patients with pyridoxine sensitive PH, a group that is paradoxically most easy to treat. Second, lack of adherence to a strict conduction of conservative treatment and optimal urological management may enhance an adverse outcome of the disease. Third, specific techniques to establish PH1 and specific therapies are currently often not available in several low-resources countries with a high prevalence of PH. The management of patients with advanced disease is extremely difficult and warrants a tailor-made approach in most cases. Comprehensive programs for education of local physicians, installation of national centers of expertise, European support of low-resources countries for the management of PH patients and intensified international collaboration on the management of current patients, as well as on conduction of clinical studies, may further improve outcome of PH.
Collapse
Affiliation(s)
- Pierre Cochat
- Centre de référence des maladies rénales rares & EPICIME, Hospices Civils de Lyon & Université Claude-Bernard Lyon 1, Lyon, France,
| | | |
Collapse
|
47
|
Pey AL. Protein homeostasis disorders of key enzymes of amino acids metabolism: mutation-induced protein kinetic destabilization and new therapeutic strategies. Amino Acids 2013; 45:1331-41. [PMID: 24178766 DOI: 10.1007/s00726-013-1609-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 10/19/2013] [Indexed: 12/31/2022]
Abstract
Many inborn errors of amino acids metabolism are caused by single point mutations affecting the ability of proteins to fold properly (i.e., protein homeostasis), thus leading to enzyme loss-of-function. Mutations may affect protein homeostasis by altering intrinsic physical properties of the polypeptide (folding thermodynamics, and rates of folding/unfolding/misfolding) as well as the interaction of partially folded states with elements of the protein homeostasis network (such as molecular chaperones and proteolytic machineries). Understanding these mutational effects on protein homeostasis is required to develop new therapeutic strategies aimed to target specific features of the mutant polypeptide. Here, I review recent work in three different diseases of protein homeostasis associated to inborn errors of amino acids metabolism: phenylketonuria, inherited homocystinuria and primary hyperoxaluria type I. These three different genetic disorders involve proteins operating in different cell organelles and displaying different structural complexities. Mutations often decrease protein kinetic stability of the native state (i.e., its half-life for irreversible denaturation), which can be studied using simple kinetic models amenable to biophysical and biochemical characterization. Natural ligands and pharmacological chaperones are shown to stabilize mutant enzymes, thus supporting their therapeutic application to overcome protein kinetic destabilization. The role of molecular chaperones in protein folding and misfolding is also discussed as well as their potential pharmacological modulation as promising new therapeutic approaches. Since current available treatments for these diseases are either burdening or only successful in a fraction of patients, alternative treatments must be considered covering studies from protein structure and biophysics to studies in animal models and patients.
Collapse
Affiliation(s)
- Angel L Pey
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, 18071, Granada, Spain,
| |
Collapse
|
48
|
Mesa-Torres N, Fabelo-Rosa I, Riverol D, Yunta C, Albert A, Salido E, Pey AL. The role of protein denaturation energetics and molecular chaperones in the aggregation and mistargeting of mutants causing primary hyperoxaluria type I. PLoS One 2013; 8:e71963. [PMID: 24205397 PMCID: PMC3796444 DOI: 10.1371/journal.pone.0071963] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/05/2013] [Indexed: 11/24/2022] Open
Abstract
Primary hyperoxaluria type I (PH1) is a conformational disease which result in the loss of alanine:glyoxylate aminotransferase (AGT) function. The study of AGT has important implications for protein folding and trafficking because PH1 mutants may cause protein aggregation and mitochondrial mistargeting. We herein describe a multidisciplinary study aimed to understand the molecular basis of protein aggregation and mistargeting in PH1 by studying twelve AGT variants. Expression studies in cell cultures reveal strong protein folding defects in PH1 causing mutants leading to enhanced aggregation, and in two cases, mitochondrial mistargeting. Immunoprecipitation studies in a cell-free system reveal that most mutants enhance the interactions with Hsc70 chaperones along their folding process, while in vitro binding experiments show no changes in the interaction of folded AGT dimers with the peroxisomal receptor Pex5p. Thermal denaturation studies by calorimetry support that PH1 causing mutants often kinetically destabilize the folded apo-protein through significant changes in the denaturation free energy barrier, whereas coenzyme binding overcomes this destabilization. Modeling of the mutations on a 1.9 Å crystal structure suggests that PH1 causing mutants perturb locally the native structure. Our work support that a misbalance between denaturation energetics and interactions with chaperones underlie aggregation and mistargeting in PH1, suggesting that native state stabilizers and protein homeostasis modulators are potential drugs to restore the complex and delicate balance of AGT protein homeostasis in PH1.
Collapse
Affiliation(s)
- Noel Mesa-Torres
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Israel Fabelo-Rosa
- Centre for Biomedical Research on Rare Diseases, Instituto Tecnologías Biomédicas, University of La Laguna, Tenerife, Spain
| | - Debora Riverol
- Centre for Biomedical Research on Rare Diseases, Instituto Tecnologías Biomédicas, University of La Laguna, Tenerife, Spain
| | - Cristina Yunta
- Department of Crystallography and Structural Biology, Instituto de Química Física “Rocasolano”, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Armando Albert
- Department of Crystallography and Structural Biology, Instituto de Química Física “Rocasolano”, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Eduardo Salido
- Centre for Biomedical Research on Rare Diseases, Instituto Tecnologías Biomédicas, University of La Laguna, Tenerife, Spain
- * E-mail: (ES); (ALP)
| | - Angel L. Pey
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
- * E-mail: (ES); (ALP)
| |
Collapse
|
49
|
Affiliation(s)
- Pierre Cochat
- Centre de Référence des Maladies Rénales Rares Néphrogones, Lyon, France.
| | | |
Collapse
|
50
|
Protein homeostasis defects of alanine-glyoxylate aminotransferase: new therapeutic strategies in primary hyperoxaluria type I. BIOMED RESEARCH INTERNATIONAL 2013; 2013:687658. [PMID: 23956997 PMCID: PMC3730394 DOI: 10.1155/2013/687658] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 05/23/2013] [Indexed: 11/30/2022]
Abstract
Alanine-glyoxylate aminotransferase catalyzes the transamination between L-alanine and glyoxylate to produce pyruvate and glycine using pyridoxal 5′-phosphate (PLP) as cofactor. Human alanine-glyoxylate aminotransferase is a peroxisomal enzyme expressed in the hepatocytes, the main site of glyoxylate detoxification. Its deficit causes primary hyperoxaluria type I, a rare but severe inborn error of metabolism. Single amino acid changes are the main type of mutation causing this disease, and considerable effort has been dedicated to the understanding of the molecular consequences of such missense mutations. In this review, we summarize the role of protein homeostasis in the basic mechanisms of primary hyperoxaluria. Intrinsic physicochemical properties of polypeptide chains such as thermodynamic stability, folding, unfolding, and misfolding rates as well as the interaction of different folding states with protein homeostasis networks are essential to understand this disease. The view presented has important implications for the development of new therapeutic strategies based on targeting specific elements of alanine-glyoxylate aminotransferase homeostasis.
Collapse
|