1
|
Emura N, Wavreil FDM, Fries A, Yajima M. The evolutionary modifications of a GoLoco motif in the AGS protein facilitate micromere formation in the sea urchin embryo. eLife 2024; 13:RP100086. [PMID: 39714020 DOI: 10.7554/elife.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
The evolutionary introduction of asymmetric cell division (ACD) into the developmental program facilitates the formation of a new cell type, contributing to developmental diversity and, eventually, species diversification. The micromere of the sea urchin embryo may serve as one of those examples: an ACD at the 16-cell stage forms micromeres unique to echinoids among echinoderms. We previously reported that a polarity factor, activator of G-protein signaling (AGS), plays a crucial role in micromere formation. However, AGS and its associated ACD factors are present in all echinoderms and across most metazoans. This raises the question of what evolutionary modifications of AGS protein or its surrounding molecular environment contributed to the evolutionary acquisition of micromeres only in echinoids. In this study, we learned that the GoLoco motifs at the AGS C-terminus play critical roles in regulating micromere formation in sea urchin embryos. Further, other echinoderms' AGS or chimeric AGS that contain the C-terminus of AGS orthologs from various organisms showed varied localization and function in micromere formation. In contrast, the sea star or the pencil urchin orthologs of other ACD factors were consistently localized at the vegetal cortex in the sea urchin embryo, suggesting that AGS may be a unique variable factor that facilitates ACD diversity among echinoderms. Consistently, sea urchin AGS appears to facilitate micromere-like cell formation and accelerate the enrichment timing of the germline factor Vasa during early embryogenesis of the pencil urchin, an ancestral type of sea urchin. Based on these observations, we propose that the molecular evolution of a single polarity factor facilitates ACD diversity while preserving the core ACD machinery among echinoderms and beyond during evolution.
Collapse
Affiliation(s)
- Natsuko Emura
- Department of Molecular Biology, Cellular Biology, Biochemistry, Brown University, Providence, United States
| | - Florence D M Wavreil
- Department of Molecular Biology, Cellular Biology, Biochemistry, Brown University, Providence, United States
| | - Annaliese Fries
- Department of Molecular Biology, Cellular Biology, Biochemistry, Brown University, Providence, United States
| | - Mamiko Yajima
- Department of Molecular Biology, Cellular Biology, Biochemistry, Brown University, Providence, United States
| |
Collapse
|
2
|
Emura N, Wavreil FD, Fries A, Yajima M. The evolutionary modifications of a GoLoco motif in the AGS protein facilitate micromere formation in the sea urchin embryo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.30.601440. [PMID: 39005292 PMCID: PMC11244941 DOI: 10.1101/2024.06.30.601440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The evolutionary introduction of asymmetric cell division (ACD) into the developmental program facilitates the formation of a new cell type, contributing to developmental diversity and, eventually, to species diversification. The micromere of the sea urchin embryo may serve as one of those examples: An ACD at the 16-cell stage forms micromeres unique to echinoids among echinoderms. We previously reported that a polarity factor, Activator of G-protein Signaling (AGS), plays a crucial role in micromere formation. However, AGS and its associated ACD factors are present in all echinoderms and across most metazoans. This raises the question of what evolutionary modifications of AGS protein or its surrounding molecular environment contributed to the evolutionary acquisition of micromeres only in echinoids. In this study, we learned that the GoLoco motifs at the AGS C-terminus play critical roles in regulating micromere formation in sea urchin embryos. Further, other echinoderms' AGS or chimeric AGS that contain the C-terminus of AGS orthologs from various organisms showed varied localization and function in micromere formation. In contrast, the sea star or the pencil urchin orthologs of other ACD factors were consistently localized at the vegetal cortex in the sea urchin embryo, suggesting that AGS may be a unique variable factor that facilitates ACD diversity among echinoderms. Consistently, sea urchin AGS appears to facilitate micromere-like cell formation and accelerate the enrichment timing of the germline factor Vasa during early embryogenesis of the pencil urchin, an ancestral type of sea urchin. Based on these observations, we propose that the molecular evolution of a single polarity factor facilitates ACD diversity while preserving the core ACD machinery among echinoderms and beyond during evolution.
Collapse
Affiliation(s)
| | | | - Annaliese Fries
- MCB Department, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI 02912, USA
| | - Mamiko Yajima
- MCB Department, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI 02912, USA
| |
Collapse
|
3
|
Post-transcriptional regulation of factors important for the germ line. Curr Top Dev Biol 2022; 146:49-78. [PMID: 35152986 DOI: 10.1016/bs.ctdb.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Echinoderms are a major model system for many general aspects of biology, including mechanisms of gene regulation. Analysis of transcriptional regulation (Gene regulatory networks, direct DNA-binding of proteins to specific cis-elements, and transgenesis) has contributed to our understanding of how an embryo works. This chapter looks at post-transcriptional gene regulation in the context of how the primordial germ cells are formed, and how the factors essential for this process are regulated. Important in echinoderms, as in many embryos, is that key steps of fate determination are made post-transcriptionally. This chapter highlights these steps uncovered in sea urchins and sea stars, and links them to a general theme of how the germ line may regulate its fate differently than many of the embryo's somatic cell lineages.
Collapse
|
4
|
Abstract
The micromeres of the sea urchin embryo are distinct from other blastomeres. After they arise through an asymmetric cell division at the 8- to 16-cell stage, micromeres immediately function as organizers. They also commit themselves to specific cell fates such as larval skeletogenic cells and primordial germ cells, while other blastomeres remain plastic and uncommitted at the 16-cell stage. In the phylum Echinodermata, only the sea urchin (class Echinoidea) embryo forms micromeres that serve as apparent organizers during early embryogenesis. Therefore, it is considered that micromeres are the derived features and that modification(s) of the developmental system allowed evolutionary introduction of this unique cell lineage. In this chapter, we summarize the both historic and recent observations that demonstrate unique properties of micromeres and discuss how this lineage of micromeres may have arisen during echinoderm evolution.
Collapse
Affiliation(s)
- Natsuko Emura
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, Providence, RI, United States
| | - Mamiko Yajima
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, Providence, RI, United States.
| |
Collapse
|
5
|
Wessel GM, Morita S, Oulhen N. Somatic cell conversion to a germ cell lineage: A violation or a revelation? JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:666-679. [PMID: 32445519 PMCID: PMC7680723 DOI: 10.1002/jez.b.22952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/29/2022]
Abstract
The germline is unique and immortal (or at least its genome is). It is able to perform unique jobs (meiosis) and is selected for genetic changes. Part of being this special also means that entry into the germline club is restricted and cells of the soma are always left out. However, the recent evidence from multiple animals now suggests that somatic cells may join the club and become germline cells in an animal when the original germline is removed. This "violation" may have garnered acceptance by the observation that iPScells, originating experimentally from somatic cells of an adult, can form reproductively successful eggs and sperm, all in vitro. Each of the genes and their functions used to induce pluripotentiality are found normally in the cell and the in vitro conditions to direct germline commitment replicate conditions in vivo. Here, we discuss evidence from three different animals: an ascidian, a segmented worm, and a sea urchin; and that the cells of a somatic cell lineage can convert into the germline in vivo. We discuss the consequences of such transitions and provide thoughts as how this process may have equal precision to the original germline formation of an embryo.
Collapse
Affiliation(s)
- Gary M. Wessel
- Department of Molecular and Cellular Biology, Brown University, Providence RI 02912 USA
| | - Shumpei Morita
- Department of Molecular and Cellular Biology, Brown University, Providence RI 02912 USA
| | - Nathalie Oulhen
- Department of Molecular and Cellular Biology, Brown University, Providence RI 02912 USA
| |
Collapse
|
6
|
Lin CY, Yu JK, Su YH. Evidence for BMP-mediated specification of primordial germ cells in an indirect-developing hemichordate. Evol Dev 2020; 23:28-45. [PMID: 33283431 DOI: 10.1111/ede.12361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/08/2020] [Accepted: 11/09/2020] [Indexed: 01/14/2023]
Abstract
Primordial germ cells (PGCs) are specified during development by either one of two major mechanisms, the preformation mode or the inductive mode. Because the inductive mode is widely employed by many bilaterians and early branching metazoan lineages, it has been postulated as an ancestral mechanism. However, among the deuterostome species that have been studied, invertebrate chordates use the preformation mode, while many vertebrate and echinoderm species are known to utilize an inductive mechanism, thus leaving the evolutionary history of PGC specification in the deuterostome lineage unclear. Hemichordates are the sister phylum of echinoderms, and together they form a clade called Ambulacraria that represents the closest group to the chordates. Thus, research in hemichordates is highly informative for resolving this issue. In this study, we investigate the developmental process of PGCs in an indirect-developing hemichordate, Ptychodera flava. We show that maternal transcripts of the conserved germline markers vasa, nanos, and piwi1 are ubiquitously distributed in early P. flava embryos, and these genes are coexpressed specifically in the dorsal hindgut starting from the gastrula stage. Immunostaining revealed that Vasa protein is concentrated toward the vegetal pole in early P. flava embryos, and it is restricted to cells in the dorsal hindgut of gastrulae and newly hatched larvae. The Vasa-positive cells later contribute to the developing trunk coeloms of the larvae and eventually reside in the adult gonads. We further show that bone morphogenetic protein (BMP) signaling is required to activate expression of the germline determinants in the gastrula hindgut, suggesting that PGC specification is induced by BMP signaling in P. flava. Our data support the hypothesis that the inductive mode is a conserved mechanism in Ambulacraria, which might even trace back to the common ancestor of Deuterostomes.
Collapse
Affiliation(s)
- Ching-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
7
|
Poon J, Fries A, Wessel GM, Yajima M. Evolutionary modification of AGS protein contributes to formation of micromeres in sea urchins. Nat Commun 2019; 10:3779. [PMID: 31439829 PMCID: PMC6706577 DOI: 10.1038/s41467-019-11560-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/18/2019] [Indexed: 02/01/2023] Open
Abstract
Evolution is proposed to result, in part, from acquisition of new developmental programs. One such example is the appearance of the micromeres in a sea urchin that form by an asymmetric cell division at the 4th embryonic cleavage and function as a major signaling center in the embryo. Micromeres are not present in other echinoderms and thus are considered as a derived feature, yet its acquisition mechanism is unknown. Here, we report that the polarity factor AGS and its associated proteins are responsible for micromere formation. Evolutionary modifications of AGS protein seem to have provided the cortical recruitment and binding of AGS to the vegetal cortex, contributing to formation of micromeres in the sea urchins. Indeed, introduction of sea urchin AGS into the sea star embryo induces asymmetric cell divisions, suggesting that the molecular evolution of AGS protein is key in the transition of echinoderms to micromere formation and the current developmental style of sea urchins not seen in other echinoderms.
Collapse
Affiliation(s)
- Jessica Poon
- MCB Department, Brown University, 185 Meeting Street, BOXG-L277, Providence, RI, 02912, USA
| | - Annaliese Fries
- MCB Department, Brown University, 185 Meeting Street, BOXG-L277, Providence, RI, 02912, USA
| | - Gary M Wessel
- MCB Department, Brown University, 185 Meeting Street, BOXG-L277, Providence, RI, 02912, USA
| | - Mamiko Yajima
- MCB Department, Brown University, 185 Meeting Street, BOXG-L277, Providence, RI, 02912, USA.
| |
Collapse
|
8
|
Oulhen N, Heyland A, Carrier TJ, Zazueta-Novoa V, Fresques T, Laird J, Onorato TM, Janies D, Wessel G. Regeneration in bipinnaria larvae of the bat star Patiria miniata induces rapid and broad new gene expression. Mech Dev 2016; 142:10-21. [PMID: 27555501 PMCID: PMC5154901 DOI: 10.1016/j.mod.2016.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/12/2016] [Accepted: 08/16/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND Some metazoa have the capacity to regenerate lost body parts. This phenomenon in adults has been classically described in echinoderms, especially in sea stars (Asteroidea). Sea star bipinnaria larvae can also rapidly and effectively regenerate a complete larva after surgical bisection. Understanding the capacity to reverse cell fates in the larva is important from both a developmental and biomedical perspective; yet, the mechanisms underlying regeneration in echinoderms are poorly understood. RESULTS Here, we describe the process of bipinnaria regeneration after bisection in the bat star Patiria miniata. We tested transcriptional, translational, and cell proliferation activity after bisection in anterior and posterior bipinnaria halves as well as expression of SRAP, reported as a sea star regeneration associated protease (Vickery et al., 2001b). Moreover, we found several genes whose transcripts increased in abundance following bisection, including: Vasa, dysferlin, vitellogenin 1 and vitellogenin 2. CONCLUSION These results show a transformation following bisection, especially in the anterior halves, of cell fate reassignment in all three germ layers, with clear and predictable changes. These results define molecular events that accompany the cell fate changes coincident to the regenerative response in echinoderm larvae.
Collapse
Affiliation(s)
- Nathalie Oulhen
- Brown University, Molecular Biology, Cell Biology, and Biochemistry, USA
| | - Andreas Heyland
- Brown University, Molecular Biology, Cell Biology, and Biochemistry, USA; University of Guelph, Integrative Biology, Canada.
| | - Tyler J Carrier
- Brown University, Molecular Biology, Cell Biology, and Biochemistry, USA; University of North Carolina at Charlotte, Department of Biological Sciences, USA
| | | | - Tara Fresques
- Brown University, Molecular Biology, Cell Biology, and Biochemistry, USA
| | - Jessica Laird
- Brown University, Molecular Biology, Cell Biology, and Biochemistry, USA
| | | | - Daniel Janies
- University of North Carolina at Charlotte, Department of Bioinformatics and Genomics, USA
| | - Gary Wessel
- Brown University, Molecular Biology, Cell Biology, and Biochemistry, USA.
| |
Collapse
|
9
|
Transcriptome analysis of male and female mature gonads of Japanese scallop Patinopecten yessonsis. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0449-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Fresques T, Swartz SZ, Juliano C, Morino Y, Kikuchi M, Akasaka K, Wada H, Yajima M, Wessel GM. The diversity of nanos expression in echinoderm embryos supports different mechanisms in germ cell specification. Evol Dev 2016; 18:267-78. [PMID: 27402572 PMCID: PMC4943673 DOI: 10.1111/ede.12197] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Specification of the germ cell lineage is required for sexual reproduction in all animals. However, the timing and mechanisms of germ cell specification is remarkably diverse in animal development. Echinoderms, such as sea urchins and sea stars, are excellent model systems to study the molecular and cellular mechanisms that contribute to germ cell specification. In several echinoderm embryos tested, the germ cell factor Vasa accumulates broadly during early development and is restricted after gastrulation to cells that contribute to the germ cell lineage. In the sea urchin, however, the germ cell factor Vasa is restricted to a specific lineage by the 32-cell stage. We therefore hypothesized that the germ cell specification program in the sea urchin/Euechinoid lineage has evolved to an earlier developmental time point. To test this hypothesis we determined the expression pattern of a second germ cell factor, Nanos, in four out of five extant echinoderm clades. Here we find that Nanos mRNA does not accumulate until the blastula stage or later during the development of all other echinoderm embryos except those that belong to the Echinoid lineage. Instead, Nanos is expressed in a restricted domain at the 32-128 cell stage in Echinoid embryos. Our results support the model that the germ cell specification program underwent a heterochronic shift in the Echinoid lineage. A comparison of Echinoid and non-Echinoid germ cell specification mechanisms will contribute to our understanding of how these mechanisms have changed during animal evolution.
Collapse
Affiliation(s)
- Tara Fresques
- Department of Molecular Biology, Cell Biology and Biochemistry, 185 Meeting Street, Brown University, Providence RI 02912
| | - S. Zachary Swartz
- Department of Molecular Biology, Cell Biology and Biochemistry, 185 Meeting Street, Brown University, Providence RI 02912
| | - Celina Juliano
- Department of Molecular Biology, Cell Biology and Biochemistry, 185 Meeting Street, Brown University, Providence RI 02912
- Department of Molecular and Cellular Biology, College of Biological Sciences, One Shields Avenue, University of California, Davis, Davis CA 95616
| | - Yoshiaki Morino
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Mani Kikuchi
- Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, Koajiro 1024, Misaki, Miura 238-0225, Japan
| | - Koji Akasaka
- Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, Koajiro 1024, Misaki, Miura 238-0225, Japan
| | - Hiroshi Wada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Mamiko Yajima
- Department of Molecular Biology, Cell Biology and Biochemistry, 185 Meeting Street, Brown University, Providence RI 02912
| | - Gary M. Wessel
- Department of Molecular Biology, Cell Biology and Biochemistry, 185 Meeting Street, Brown University, Providence RI 02912
| |
Collapse
|
11
|
Yakovlev KV. Localization of germ plasm-related structures during sea urchin oogenesis. Dev Dyn 2015; 245:56-66. [PMID: 26385846 DOI: 10.1002/dvdy.24348] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/12/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Animal germ cells have specific organelles that are similar to ribonucleoprotein complex, called germ plasm, which is accumulated in eggs. Germ plasm is essential for inherited mechanism of germ line segregation in early embryogenesis. Sea urchins have early germ line segregation in early embryogenesis. Nevertheless, organization of germ plasm-related organelles and their molecular composition are still unclear. Another issue is whether maternally accumulated germ plasm exists in the sea urchin eggs. RESULTS I analyzed intracellular localization of germ plasm during oogenesis in sea urchin Strongylocentrotus intermedius by using morphological approach and immunocytochemical detection of Vasa, a germ plasm marker. All ovarian germ cells have germ plasm-related organelles in the form of germ granules, Balbiani bodies, and perinuclear nuage found previously in germ cells in other animals. Maternal germ plasm is accumulated in late oogenesis at the cell periphery. Cytoskeletal drug treatment showed an association of Vasa-positive granules with actin filaments in the egg cortex. CONCLUSIONS All female germ cells of sea urchins have germ plasm-related organelles. Eggs have a maternally accumulated germ plasm associated with cortical cytoskeleton. These findings correlate with early segregation of germ line in sea urchins.
Collapse
Affiliation(s)
- Konstantin V Yakovlev
- Laboratory of Cytotechnology, A.V. Zhirmunsky Institute of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
12
|
Yajima M, Wessel GM. Essential elements for translation: the germline factor Vasa functions broadly in somatic cells. Development 2015; 142:1960-70. [PMID: 25977366 PMCID: PMC4460737 DOI: 10.1242/dev.118448] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 03/30/2015] [Indexed: 01/23/2023]
Abstract
Vasa is a conserved RNA-helicase found in the germ lines of all metazoans tested. Whereas Vasa presence is often indicated as a metric for germline determination in animals, it is also expressed in stem cells of diverse origin. Recent research suggests, however, that Vasa has a much broader function, including a significant role in cell cycle regulation. Results herein indicate that Vasa is utilized widely, and often induced transiently, during development in diverse somatic cells and adult precursor tissues. We identified that Vasa in the sea urchin is essential for: (1) general mRNA translation during embryogenesis, (2) developmental re-programming upon manipulations to the embryo and (3) larval wound healing. We also learned that Vasa interacted with mRNAs in the perinuclear area and at the spindle in an Importin-dependent manner during cell cycle progression. These results suggest that, when present, Vasa functions are essential to contributing to developmental regulation.
Collapse
Affiliation(s)
- Mamiko Yajima
- MCB Department, Brown University, 185 Meeting Street, BOX-GL173, Providence, RI 02912, USA
| | - Gary M Wessel
- MCB Department, Brown University, 185 Meeting Street, BOX-GL173, Providence, RI 02912, USA
| |
Collapse
|
13
|
Wessel GM, Brayboy L, Fresques T, Gustafson EA, Oulhen N, Ramos I, Reich A, Swartz SZ, Yajima M, Zazueta V. The biology of the germ line in echinoderms. Mol Reprod Dev 2014; 81:679-711. [PMID: 23900765 PMCID: PMC4102677 DOI: 10.1002/mrd.22223] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 07/23/2013] [Indexed: 12/16/2022]
Abstract
The formation of the germ line in an embryo marks a fresh round of reproductive potential. The developmental stage and location within the embryo where the primordial germ cells (PGCs) form, however, differs markedly among species. In many animals, the germ line is formed by an inherited mechanism, in which molecules made and selectively partitioned within the oocyte drive the early development of cells that acquire this material to a germ-line fate. In contrast, the germ line of other animals is fated by an inductive mechanism that involves signaling between cells that directs this specialized fate. In this review, we explore the mechanisms of germ-line determination in echinoderms, an early-branching sister group to the chordates. One member of the phylum, sea urchins, appears to use an inherited mechanism of germ-line formation, whereas their relatives, the sea stars, appear to use an inductive mechanism. We first integrate the experimental results currently available for germ-line determination in the sea urchin, for which considerable new information is available, and then broaden the investigation to the lesser-known mechanisms in sea stars and other echinoderms. Even with this limited insight, it appears that sea stars, and perhaps the majority of the echinoderm taxon, rely on inductive mechanisms for germ-line fate determination. This enables a strongly contrasted picture for germ-line determination in this phylum, but one for which transitions between different modes of germ-line determination might now be experimentally addressed.
Collapse
Affiliation(s)
- Gary M. Wessel
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Lynae Brayboy
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Tara Fresques
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Eric A. Gustafson
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Nathalie Oulhen
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Isabela Ramos
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Adrian Reich
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - S. Zachary Swartz
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Mamiko Yajima
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Vanessa Zazueta
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| |
Collapse
|
14
|
Wessel GM, Fresques T, Kiyomoto M, Yajima M, Zazueta V. Origin and development of the germ line in sea stars. Genesis 2014; 52:367-77. [PMID: 24648114 PMCID: PMC4116737 DOI: 10.1002/dvg.22772] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/14/2014] [Indexed: 12/17/2022]
Abstract
This review summarizes and integrates our current understanding of how sea stars make gametes. Although little is known of the mechanism of germ line formation in these animals, recent results point to specific cells and to cohorts of molecules in the embryos and larvae that may lay the ground work for future research efforts. A coelomic outpocketing forms in the posterior of the gut in larvae, referred to as the posterior enterocoel (PE), that when removed, significantly reduces the number of germ cell later in larval growth. This same PE structure also selectively accumulates several germ-line associated factors-vasa, nanos, piwi-and excludes factors involved in somatic cell fate. Since its formation is relatively late in development, these germ cells may form by inductive mechanisms. When integrated into the morphological observations of germ cells and gonad development in larvae, juveniles, and adults, the field of germ line determination appears to have a good model system to study inductive germ line determination to complement the recent work on the molecular mechanisms in mice. We hope this review will also guide investigators interested in germ line determination and regulation of the germ line into how these animals can help in this research field. The review is not intended to be comprehensive-sea star reproduction has been studied for over 100 years and many reviews are comprehensive in their coverage of, for example, seasonal growth of the gonads in response to light, nutrient, and temperature. Rather the intent of this review is to help the reader focus on new experimental results attached to the historical underpinnings of how the germ cell functions in sea stars with particular emphasis to clarify the important areas of priority for future research.
Collapse
Affiliation(s)
- Gary M. Wessel
- Department of Molecular and Cellular Biology, Brown University, Providence RI USA
| | - Tara Fresques
- Department of Molecular and Cellular Biology, Brown University, Providence RI USA
| | | | - Mamiko Yajima
- Department of Molecular and Cellular Biology, Brown University, Providence RI USA
| | - Vanesa Zazueta
- Department of Molecular and Cellular Biology, Brown University, Providence RI USA
| |
Collapse
|
15
|
Fresques T, Zazueta-Novoa V, Reich A, Wessel GM. Selective accumulation of germ-line associated gene products in early development of the sea star and distinct differences from germ-line development in the sea urchin. Dev Dyn 2014; 243:568-87. [PMID: 24038550 PMCID: PMC3996927 DOI: 10.1002/dvdy.24038] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/12/2013] [Accepted: 08/16/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Echinodermata is a diverse phylum, a sister group to chordates, and contains diverse organisms that may be useful to understand varied mechanisms of germ-line specification. RESULTS We tested 23 genes in development of the sea star Patiria miniata that fall into five categories: (1) Conserved germ-line factors; (2) Genes involved in the inductive mechanism of germ-line specification; (3) Germ-line associated genes; (4) Molecules involved in left-right asymmetry; and (5) Genes involved in regulation and maintenance of the genome during early embryogenesis. Overall, our results support the contention that the posterior enterocoel is a source of the germ line in the sea star P. miniata. CONCLUSIONS The germ line in this organism appears to be specified late in embryogenesis, and in a pattern more consistent with inductive interactions amongst cells. This is distinct from the mechanism seen in sea urchins, a close relative of the sea star clad. We propose that P. miniata may serve as a valuable model to study inductive mechanisms of germ-cell specification and when compared with germ-line formation in the sea urchin S. purpuratus may reveal developmental transitions that occur in the evolution of inherited and inductive mechanisms of germ-line specification.
Collapse
Affiliation(s)
| | | | - Adrian Reich
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence RI 02912 USA
| | - Gary M. Wessel
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence RI 02912 USA
| |
Collapse
|
16
|
Byrum CA, Wikramanayake AH. Nuclearization of β-catenin in ectodermal precursors confers organizer-like ability to induce endomesoderm and pattern a pluteus larva. EvoDevo 2013; 4:31. [PMID: 24180614 PMCID: PMC3835408 DOI: 10.1186/2041-9139-4-31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 09/26/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In many bilaterians, asymmetric activation of canonical Wnt (cWnt) signaling at the posterior pole is critical for anterior-posterior (AP) body axis formation. In 16-cell stage sea urchins, nuclearization of β-catenin in micromeres activates a gene regulatory network that defines body axes and induces endomesoderm. Transplanting micromeres to the animal pole of a host embryo induces ectopic endomesoderm in the mesomeres (ectoderm precursors) whereas inhibiting cWnt signaling blocks their endomesoderm-inducing activity and the micromeres become ectoderm-like. We have tested whether ectopic activation of cWnt signaling in mesomeres is sufficient to impart the cells with organizer-like abilities, allowing them to pattern normal embryonic body axes when recombined with a field of mesomeres. RESULTS Fertilized eggs were microinjected with constitutively active Xenopus β-catenin (actβ-cat) mRNA and allowed to develop until the 16-cell stage. Two mesomeres from injected embryos were then recombined with isolated animal halves (AH) from uninjected 16-cell stage embryos. Control chimeras produced animalized phenotypes (hollow balls of ectoderm) and rarely formed skeletogenic mesoderm (SM)-derived spicules, endoderm or pigment cells, a type of non-skeletogenic mesoderm (NSM). In contrast, over half of the 0.5 pg/pL actβ-cat mesomere/AH chimeras formed a partial or complete gut (exhibiting AP polarity), contained mesenchyme-like cells similar to SM, and produced pigment cells. At three days, chimeras formed plutei with normal embryonic body axes. When fates of the actβ-cat mRNA-injected mesomeres were tracked, we found that injected mesomeres formed mesenchyme-like and pigment cells, but endoderm was induced. Higher concentrations of actβ-cat mRNA were less likely to induce endoderm or pigment cells, but had similar mesenchyme-like cell production to 0.5 pg/pL actβ-cat mesomere/AH chimeras. CONCLUSIONS Our results show that nuclear β-catenin is sufficient to endow naïve cells with the ability to act as an organizing center and that β-catenin has both cell-autonomous and non-autonomous effects on cell fate specification in a concentration-dependent manner. These results are consistent with the hypothesis that a shift in the site of early cWnt signaling in cleaving embryos could have modified polarity of the main body axes during metazoan evolution.
Collapse
Affiliation(s)
- Christine A Byrum
- Department of Biology, College of Charleston, 58 Coming Street, Room 214, Charleston, SC 29401, USA
- Department of Biology, 2538 The Mall, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Athula H Wikramanayake
- Department of Biology, The University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA
- Department of Biology, 2538 The Mall, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
17
|
Yu L, Yan M, Sui J, Sheng WQ, Zhang ZF. Gonadogenesis and expression pattern of the vasa
gene in the sea cucumber Apostichopus japonicus
during early development. Mol Reprod Dev 2013; 80:744-52. [DOI: 10.1002/mrd.22207] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/04/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Li Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education; College of Marine Life Sciences, Ocean University of China; Qingdao China
| | - Meng Yan
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education; College of Marine Life Sciences, Ocean University of China; Qingdao China
| | - Juan Sui
- Chinese Academy of Fishery Sciences Yellow Sea Fishery Research Institute; Qingdao China
| | - Wan-Qiang Sheng
- Department of Biological Sciences; National University of Singapore; Kent Ridge Singapore
| | - Zhi-Feng Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education; College of Marine Life Sciences, Ocean University of China; Qingdao China
| |
Collapse
|
18
|
Giangrande A, Licciano M. Regeneration and clonality in Metazoa. The price to pay for evolving complexity. INVERTEBR REPROD DEV 2013. [DOI: 10.1080/07924259.2013.793622] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Campanale JP, Hamdoun A. Programmed reduction of ABC transporter activity in sea urchin germline progenitors. Development 2012; 139:783-92. [PMID: 22274698 PMCID: PMC3265063 DOI: 10.1242/dev.076752] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2011] [Indexed: 12/15/2022]
Abstract
ATP-binding cassette (ABC) transporters protect embryos and stem cells from mutagens and pump morphogens that control cell fate and migration. In this study, we measured dynamics of ABC transporter activity during formation of sea urchin embryonic cells necessary for the production of gametes, termed the small micromeres. Unexpectedly, we found small micromeres accumulate 2.32 times more of the ABC transporter substrates calcein-AM, CellTrace RedOrange, BoDipy-verapamil and BoDipy-vinblastine, than any other cell in the embryo, indicating a reduction in multidrug efflux activity. The reduction in small micromere ABC transporter activity is mediated by a pulse of endocytosis occurring 20-60 minutes after the appearance of the micromeres--the precursors of the small micromeres. Treating embryos with phenylarsine oxide, an inhibitor of endocytosis, prevents the reduction of transporter activity. Tetramethylrhodamine dextran and cholera toxin B uptake experiments indicate that micromeres have higher rates of bulk and raft-associated membrane endocytosis during the window of transporter downregulation. We hypothesized that this loss of efflux transport could be required for the detection of developmental signaling molecules such as germ cell chemoattractants. Consistent with this hypothesis, we found that the inhibition of ABCB and ABCC-types of efflux transporters disrupts the ordered distribution of small micromeres to the left and right coelomic pouches. These results point to tradeoffs between signaling and the protective functions of the transporters.
Collapse
Affiliation(s)
- Joseph P. Campanale
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0202, USA
| | - Amro Hamdoun
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0202, USA
| |
Collapse
|
20
|
Wu HR, Chen YT, Su YH, Luo YJ, Holland LZ, Yu JK. Asymmetric localization of germline markers Vasa and Nanos during early development in the amphioxus Branchiostoma floridae. Dev Biol 2011; 353:147-59. [DOI: 10.1016/j.ydbio.2011.02.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 02/15/2011] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
|
21
|
Yajima M, Wessel GM. Small micromeres contribute to the germline in the sea urchin. Development 2011; 138:237-43. [PMID: 21177341 PMCID: PMC3005600 DOI: 10.1242/dev.054940] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2010] [Indexed: 11/20/2022]
Abstract
Many indirect developing animals create specialized multipotent cells in early development to construct the adult body and perhaps to hold the fate of the primordial germ cells. In sea urchin embryos, small micromeres formed at the fifth division appear to be such multipotent cells: they are relatively quiescent in embryos, but contribute significantly to the coelomic sacs of the larvae, from which the major tissues of the adult rudiment are derived. These cells appear to be regulated by a conserved gene set that includes the classic germline lineage genes vasa, nanos and piwi. In vivo lineage mapping of the cells awaits genetic manipulation of the lineage, but previous research has demonstrated that the germline is not specified at the fourth division because animals are fertile even when micromeres, the parent blastomeres of small micromeres, are deleted. Here, we have deleted small micromeres at the fifth division and have raised the resultant larvae to maturity. These embryos developed normally and did not overexpress Vasa, as did embryos from a micromere deletion, implying the compensatory gene regulatory network was not activated in small micromere-deleted embryos. Adults from control and micromere-deleted embryos developed gonads and visible gametes, whereas small micromere-deleted animals formed small gonads that lacked gametes. Quantitative PCR results indicate that small micromere-deleted animals produce background levels of germ cell products, but not specifically eggs or sperm. These results suggest that germline specification depends on the small micromeres, either directly as lineage products, or indirectly by signaling mechanisms emanating from the small micromeres or their descendants.
Collapse
Affiliation(s)
- Mamiko Yajima
- MCB Department, Brown University, 185 Meeting Street, BOX-GL173, Providence, RI 02912, USA
| | - Gary M. Wessel
- MCB Department, Brown University, 185 Meeting Street, BOX-GL173, Providence, RI 02912, USA
| |
Collapse
|
22
|
Abstract
The germline of multicellular animals is segregated from somatic tissues, which is an essential developmental process for the next generation. Although certain ecdysozoans and chordates segregate their germline during embryogenesis, animals from other taxa segregate their germline after embryogenesis from multipotent progenitor cells. An overlapping set of genes, including vasa, nanos and piwi, operate in both multipotent precursors and in the germline. As we propose here, this conservation implies the existence of an underlying germline multipotency program in these cell types that has a previously underappreciated and conserved function in maintaining multipotency.
Collapse
Affiliation(s)
- Celina E. Juliano
- Department of Molecular and Cellular Biology, Brown University, Providence, RI 02912, USA
| | - S. Zachary Swartz
- Department of Molecular and Cellular Biology, Brown University, Providence, RI 02912, USA
| | - Gary M. Wessel
- Department of Molecular and Cellular Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
23
|
Alié A, Leclère L, Jager M, Dayraud C, Chang P, Le Guyader H, Quéinnec E, Manuel M. Somatic stem cells express Piwi and Vasa genes in an adult ctenophore: ancient association of "germline genes" with stemness. Dev Biol 2010; 350:183-97. [PMID: 21036163 DOI: 10.1016/j.ydbio.2010.10.019] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 10/15/2010] [Accepted: 10/15/2010] [Indexed: 01/26/2023]
Abstract
Stem cells are essential for animal development and adult tissue homeostasis, and the quest for an ancestral gene fingerprint of stemness is a major challenge for evolutionary developmental biology. Recent studies have indicated that a series of genes, including the transposon silencer Piwi and the translational activator Vasa, specifically involved in germline determination and maintenance in classical bilaterian models (e.g., vertebrates, fly, nematode), are more generally expressed in adult multipotent stem cells in other animals like flatworms and hydras. Since the progeny of these multipotent stem cells includes both somatic and germinal derivatives, it remains unclear whether Vasa, Piwi, and associated genes like Bruno and PL10 were ancestrally linked to stemness, or to germinal potential. We have investigated the expression of Vasa, two Piwi paralogues, Bruno and PL10 in Pleurobrachia pileus, a member of the early-diverging phylum Ctenophora, the probable sister group of cnidarians. These genes were all expressed in the male and female germlines, and with the exception of one of the Piwi paralogues, they showed similar expression patterns within somatic territories (tentacle root, comb rows, aboral sensory complex). Cytological observations and EdU DNA-labelling and long-term retention experiments revealed concentrations of stem cells closely matching these gene expression areas. These stem cell pools are spatially restricted, and each specialised in the production of particular types of somatic cells. These data unveil important aspects of cell renewal within the ctenophore body and suggest that Piwi, Vasa, Bruno, and PL10 belong to a gene network ancestrally acting in two distinct contexts: (i) the germline and (ii) stem cells, whatever the nature of their progeny.
Collapse
Affiliation(s)
- Alexandre Alié
- Université Pierre et Marie Curie, Paris 6, UMR 7138 CNRS MNHN IRD, Case 05, 7 quai St Bernard, 75005 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|