1
|
Ouellet-Fagg CL, Easton AA, Parsons KJ, Danzmann RG, Ferguson MM. Complex and Dynamic Gene-by-Age and Gene-by-Environment Interactions Underlie Functional Morphological Variation in Adaptive Divergence in Arctic Charr (Salvelinus alpinus). Evol Dev 2025; 27:e70000. [PMID: 39723482 DOI: 10.1111/ede.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/20/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024]
Abstract
The evolution of adaptive phenotypic divergence requires heritable genetic variation. However, it is underappreciated that trait heritability is molded by developmental processes interacting with the environment. We hypothesized that the genetic architecture of divergent functional traits was dependent on age and foraging environment. Thus, we induced plasticity in full-sib families of Arctic charr (Salvelinus alpinus) morphs from two Icelandic lakes by mimicking prey variation in the wild. We characterized variation in body shape and size at two ages and investigated their genetic architecture with quantitative trait locus (QTL) analysis. Age had a greater effect on body shape than diet in most families, suggesting that development strongly influences phenotypic variation available for selection. Consistent with our hypothesis, multiple QTL were detected for all traits and their location depended on age and diet. Many of the genome-wide QTL were located within a subset of duplicated chromosomal regions suggesting that ancestral whole genome duplication events have played a role in the genetic control of functional morphological variation in the species. Moreover, the detection of two body shape QTL after controlling for the effects of age provides additional evidence for genetic variation in the plastic response of morphological traits to environmental variation. Thus, functional morphological traits involved in phenotypic divergence are molded by complex genetic interactions with development and environment.
Collapse
Affiliation(s)
| | - Anne A Easton
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- Ontario Aquaculture Research Centre, Office of Research, University of Guelph, Elora, Ontario, Canada
| | - Kevin J Parsons
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, Scotland
| | - Roy G Danzmann
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Moira M Ferguson
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
2
|
Ouellet-Fagg CL, Easton AA, Parsons KJ, Nugent CM, Danzmann RG, Ferguson MM. The evolution of genomic organization through chromosomal rearrangements in Arctic charr ( Salvelinus alpinus). Genome 2025; 68:1-19. [PMID: 40338075 DOI: 10.1139/gen-2024-0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Chromosomal rearrangements (CRs) can play an important role in evolutionary diversification by preserving linkage among favourable alleles through reduced recombination and/or by reducing hybrid fitness due to genomic incompatibilities. Our goal was to determine to what extent CRs contribute to known patterns of genetic variation in Arctic charr (Salvelinus alpinus). To address this goal, we compared genetic linkage maps to identify whole arm CRs and smaller scale structural variants (SVs) such as translocations/transpositions and inversions found in groups of populations that reflect the temporal sequence of geographic isolation events. If CRs contribute to genetic differentiation, we expected that CRs would be specific to glacial lineages, geographic clusters of populations within lineages, and sympatric morphs. We detected fusions and fissions of whole chromosome arms and SV involving translocations/transpositions of the sex-determining gene (sdY) and inversions. Several CRs were shared across populations from the Arctic and Atlantic glacial lineages, Canadian and Icelandic populations within the Atlantic lineage, between two Icelandic populations and sympatric morphs within Icelandic populations, suggesting that their origin predates geographic isolation in glacial refugia. Other CRs were specific to single populations, which suggests a more recent origin of these variants in refugia, during post-glacial recolonization and/or in contemporary populations. Thus, CRs contribute relatively little to known patterns of genetic differentiation at different geographic scales but represent a pool of standing genetic variation for evolution.
Collapse
Affiliation(s)
| | - Anne A Easton
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Kevin J Parsons
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, Scotland
| | - Cameron M Nugent
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Roy G Danzmann
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Moira M Ferguson
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
3
|
Tetrault E, Aaronson B, Gilbert MC, Albertson RC. Foraging-induced craniofacial plasticity is associated with an early, robust and dynamic transcriptional response. Proc Biol Sci 2024; 291:20240215. [PMID: 38654651 PMCID: PMC11040245 DOI: 10.1098/rspb.2024.0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024] Open
Abstract
Phenotypic plasticity is the ability of a single genotype to vary its phenotype in response to the environment. Plasticity of the skeletal system in response to mechanical input is widely studied, but the timing of its transcriptional regulation is not well understood. Here, we used the cichlid feeding apparatus to examine the transcriptional dynamics of skeletal plasticity over time. Using three closely related species that vary in their ability to remodel bone and a panel of 11 genes, including well-studied skeletal differentiation markers and newly characterized environmentally sensitive genes, we examined plasticity at one, two, four and eight weeks following the onset of alternate foraging challenges. We found that the plastic species exhibited environment-specific bursts in gene expression beginning at one week, followed by a sharp decline in levels, while the species with more limited plasticity exhibited consistently low levels of gene expression. This trend held across nearly all genes, suggesting that it is a hallmark of the larger plasticity regulatory network. We conclude that plasticity of the cichlid feeding apparatus is not the result of slowly accumulating gene expression difference over time, but rather is stimulated by early bursts of environment-specific gene expression followed by a return to homeostatic levels.
Collapse
Affiliation(s)
- Emily Tetrault
- Molecular and Cell Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Ben Aaronson
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Michelle C. Gilbert
- Department of Biology, Pennsylvania State University, State College, PA 16802, USA
| | - R. Craig Albertson
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
4
|
Lubin FR, Réalis-Doyelle E, Espinat L, Guillard J, Raffard A. Heat shocks during egg incubation led to developmental, morphological, and behavioral differences in Arctic charr (Salvelinus alpinus). JOURNAL OF FISH BIOLOGY 2024; 104:1202-1212. [PMID: 38263640 DOI: 10.1111/jfb.15663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024]
Abstract
Temperature variation is affecting fish biodiversity worldwide, causing changes in geographic distribution, phenotypic structure, and even species extinction. Incubation is a critical stage for stenothermic species, which are vulnerable to large temperature fluctuations, and its effects on the phenotype at later developmental stages are understudied, despite the fact that the phenotype being essential for organism ecology and evolution. In this study, we tested the effects of heat shocks during the embryonic period on the phenotype of Arctic charr (Salvelinus alpinus). We repeatedly quantified multiple phenotypic traits, including morphology, development, and behavior, over a period of 4 months, from hatching to juvenile stage in individuals that had experienced heat shocks (+ 5°C on 24 h, seven times) during their embryonic stage and those that had not. We found that heat shocks led to smaller body size at hatching and a lower sociability. Interestingly, these effects weakened throughout the development of individuals and even reversed in the case of body size. We also found an accelerated growth rate and a higher body condition in the presence of heat shocks. Our study provides evidence that heat shocks experienced during incubation can have long-lasting effects on an individual's phenotype. This highlights the importance of the incubation phase for the development of ectothermic organisms and suggests that temperature fluctuations may have significant ecological and evolutionary implications for Arctic charr. Given the predicted increase in extreme events and the unpredictability of temperature fluctuations, it is critical to further investigate their effects on development by examining fluctuations that vary in frequency and intensity.
Collapse
Affiliation(s)
- François-Raphaël Lubin
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, Thonon-les-Bains, France
- Pole ECLA (OFB, INRAE, USMB), Thonon-les-Bains, France
| | | | - Laurent Espinat
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, Thonon-les-Bains, France
| | - Jean Guillard
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, Thonon-les-Bains, France
| | - Allan Raffard
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, Thonon-les-Bains, France
| |
Collapse
|
5
|
Dellinger M, Steele SE, Sprockel E, Philip J, Pálsson A, Benhaïm D. Variation in personality shaped by evolutionary history, genotype and developmental plasticity in response to feeding modalities in the Arctic charr. Proc Biol Sci 2023; 290:20232302. [PMID: 38087921 PMCID: PMC10716646 DOI: 10.1098/rspb.2023.2302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Animal personality has been shown to be influenced by both genetic and environmental factors and shaped by natural selection. Currently, little is known about mechanisms influencing the development of personality traits. This study examines the extent to which personality development is genetically influenced and/or environmentally responsive (plastic). We also investigated the role of evolutionary history, assessing whether personality traits could be canalized along a genetic and ecological divergence gradient. We tested the plastic potential of boldness in juveniles of five Icelandic Arctic charr morphs (Salvelinus alpinus), including two pairs of sympatric morphs, displaying various degrees of genetic and ecological divergence from the ancestral anadromous charr, split between treatments mimicking benthic versus pelagic feeding modalities. We show that differences in mean boldness are mostly affected by genetics. While the benthic treatment led to bolder individuals overall, the environmental effect was rather weak, suggesting that boldness lies under strong genetic influence with reduced plastic potential. Finally, we found hints of differences by morphs in boldness canalization through reduced variance and plasticity, and higher consistency in boldness within morphs. These findings provide new insights on how behavioural development may impact adaptive diversification.
Collapse
Affiliation(s)
- Marion Dellinger
- Department of Aquaculture and Fish Biology, Hólar University, Hólar, Iceland
- Institute of Life and Environmental Sciences, School of Engineering and Natural Sciences, University of Iceland, Reykjavík, Iceland
| | - Sarah E. Steele
- Institute of Life and Environmental Sciences, School of Engineering and Natural Sciences, University of Iceland, Reykjavík, Iceland
- Canadian Museum of Nature, Ottawa, Canada
| | - Evert Sprockel
- Department of Aquaculture and Fish Biology, Hólar University, Hólar, Iceland
- HAS University of Applied Sciences, 's-Hertogenbosch, The Netherlands
| | - Joris Philip
- Department of Aquaculture and Fish Biology, Hólar University, Hólar, Iceland
- Scottish Centre for Ecology and the Natural Environment, University of Glasgow, Glasgow, UK
| | - Arnar Pálsson
- Institute of Life and Environmental Sciences, School of Engineering and Natural Sciences, University of Iceland, Reykjavík, Iceland
| | - David Benhaïm
- Department of Aquaculture and Fish Biology, Hólar University, Hólar, Iceland
| |
Collapse
|
6
|
Horta-Lacueva QJB, Jónsson ZO, Thorholludottir DAV, Hallgrímsson B, Kapralova KH. Rapid and biased evolution of canalization during adaptive divergence revealed by dominance in gene expression variability during Arctic charr early development. Commun Biol 2023; 6:897. [PMID: 37652977 PMCID: PMC10471602 DOI: 10.1038/s42003-023-05264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/21/2023] [Indexed: 09/02/2023] Open
Abstract
Adaptive evolution may be influenced by canalization, the buffering of developmental processes from environmental and genetic perturbations, but how this occurs is poorly understood. Here, we explore how gene expression variability evolves in diverging and hybridizing populations, by focusing on the Arctic charr (Salvelinus alpinus) of Thingvallavatn, a classic case of divergence between feeding habitats. We report distinct profiles of gene expression variance for both coding RNAs and microRNAs between the offspring of two contrasting morphs (benthic/limnetic) and their hybrids reared in common conditions and sampled at two key points of cranial development. Gene expression variance in the hybrids is substantially affected by maternal effects, and many genes show biased expression variance toward the limnetic morph. This suggests that canalization, as inferred by gene expression variance, can rapidly diverge in sympatry through multiple gene pathways, which are associated with dominance patterns possibly biasing evolutionary trajectories and mitigating the effects of hybridization on adaptive evolution.
Collapse
Affiliation(s)
- Quentin Jean-Baptiste Horta-Lacueva
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland.
- Department of Biology, Lund University, Lund, Sweden.
| | | | - Dagny A V Thorholludottir
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
- University of Veterinary Medicine Vienna, Institute of Population Genetics, Vienna, Austria
| | - Benedikt Hallgrímsson
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Kalina Hristova Kapralova
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland.
- The Institute for Experimental Pathology at Keldur, University of Iceland, Reykjavík, Iceland.
| |
Collapse
|
7
|
The Dynamic Ontogenetic Shape Patterns of Adaptive Divergence and Sexual Dimorphism. Evol Biol 2023. [DOI: 10.1007/s11692-022-09592-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AbstractThe interplay between ecological diversification and sexual dimorphism has been largely overlooked in the literature. Sexually dimorphic species which are also undergoing adaptive radiations are ideal for filling this knowledge gap. The Arctic charr in lake Thingvallavatn is one such system: it is a sexually dimorphic species which has recently diverged along the benthic-limnetic ecological axis. In a long-running common-garden experiment we studied the shape variation throughout ontogeny of intra- and inter- morph crosses of benthic and limnetic charr from the lake. We found that shape differences between ecomorphs and sexes had a genetic component. Prior to the onset of sexual maturation, shape differences were attributable to cross type and were related to adaptations to benthic and limnetic niches, i.e., shorter lower jaws and rounder snouts in the benthic and evenly protruding snouts and pointier snouts in the limnetic. Reciprocal hybrids showed intermediate, transgressive and/or maternal morphologies. However, after the onset of sexual maturation larger morphological differences occurred between sexes than among cross types. Taken together, our results demonstrate that the interplay between ecological diversification and sexual dimorphism is complex and dynamic throughout ontogeny, and that long-term common garden experiments are immensely valuable for studying shape dynamics in different evolutionary scenarios.
Collapse
|
8
|
Horta-Lacueva QJB, Snorrason SS, Morrissey MB, Leblanc CAL, Kapralova KH. Multivariate analysis of morphology, behaviour, growth and developmental timing in hybrids brings new insights into the divergence of sympatric Arctic charr morphs. BMC Ecol Evol 2021; 21:170. [PMID: 34493202 PMCID: PMC8422654 DOI: 10.1186/s12862-021-01904-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Studying the development of fitness related traits in hybrids from populations diverging in sympatry is a fundamental approach to understand the processes of speciation. However, such traits are often affected by covariance structures that complicate the comprehension of these processes, especially because the interactive relationships between traits of different nature (e.g. morphology, behaviour, life-history) remain largely unknown in this context. In a common garden setup, we conducted an extensive examination of a large suit of traits putatively involved in the divergence of two morphs of Arctic charr (Salvelinus alpinus), and investigated the consequences of potential patterns of trait covariance on the phenotype of their hybrids. These traits were measured along ontogeny and involved growth, yolk sac resorption, developmental timing (hatching and the onset of exogeneous feeding), head morphology and feeding behaviour. RESULTS Growth trajectories provided the strongest signal of phenotypic divergence between the two charr. Strikingly, the first-generation hybrids did not show intermediate nor delayed growth but were similar to the smallest morph, suggesting parental biases in the inheritance of growth patterns. However, we did not observe extensive multivariate trait differences between the two morphs and their hybrids. Growth was linked to head morphology (suggesting that morphological variations in early juveniles relate to simple allometric effects) but this was the only strong signal of covariance observed between all the measured traits. Furthermore, we did not report evidence for differences in overall phenotypic variance between morphs, nor for enhanced phenotypic variability in their hybrids. CONCLUSION Our study shed light on the multivariate aspect of development in a context of adaptive divergence. The lack of evidence for the integration of most traits into a single covariance structure suggested that phenotypic constraints may not always favour nor impede divergence toward ecological niches differing in numerous physical and ecological variables, as observed in the respective habitats of the two charr. Likewise, the role of hybridization as a disruptive agent of trait covariance may not necessarily be significant in the evolution of populations undergoing resource polymorphism.
Collapse
Affiliation(s)
- Quentin J-B Horta-Lacueva
- Institute of Life and Environmental Sciences, University of Iceland, Askja - Náttúrufræðihús, Sturlugötu 7, 102, Reykjavík, Iceland.
| | - Sigurður S Snorrason
- Institute of Life and Environmental Sciences, University of Iceland, Askja - Náttúrufræðihús, Sturlugötu 7, 102, Reykjavík, Iceland
| | - Michael B Morrissey
- School of Biology, University of St Andrews, Sir Harold Mitchell Building, Greenside Place, St Andrews, UK
| | - Camille A-L Leblanc
- Department of Aquaculture and Fish Biology, Hólar University, Háeyri 1, 550, Sauðárkrókur, Iceland
| | - Kalina H Kapralova
- Institute of Life and Environmental Sciences, University of Iceland, Askja - Náttúrufræðihús, Sturlugötu 7, 102, Reykjavík, Iceland
| |
Collapse
|
9
|
Brachmann MK, Parsons K, Skúlason S, Ferguson MM. The interaction of resource use and gene flow on the phenotypic divergence of benthic and pelagic morphs of Icelandic Arctic charr ( Salvelinus alpinus). Ecol Evol 2021; 11:7315-7334. [PMID: 34188815 PMCID: PMC8216915 DOI: 10.1002/ece3.7563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 02/09/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Conceptual models of adaptive divergence and ecological speciation in sympatry predict differential resource use, phenotype-environment correlations, and reduced gene flow among diverging phenotypes. While these predictions have been assessed in past studies, connections among them have rarely been assessed collectively. We examined relationships among phenotypic, ecological, and genetic variation in Arctic charr (Salvelinus alpinus) from six Icelandic localities that have undergone varying degrees of divergence into sympatric benthic and pelagic morphs. We characterized morphological variation with geometric morphometrics, tested for differential resource use between morphs using stable isotopes, and inferred the amount of gene flow from single nucleotide polymorphisms. Analysis of stable isotopic signatures indicated that sympatric morphs showed similar difference in resource use across populations, likely arising from the common utilization of niche space within each population. Carbon isotopic signature was also a significant predictor of individual variation in body shape and size, suggesting that variation in benthic and pelagic resource use is associated with phenotypic variation. The estimated percentage of hybrids between sympatric morphs varied across populations (from 0% to 15.6%) but the majority of fish had genotypes (ancestry coefficients) characteristic of pure morphs. Despite evidence of reduced gene flow between sympatric morphs, we did not detect the expected negative relationship between divergence in resource use and gene flow. Three lakes showed the expected pattern, but morphs in the fourth showed no detectable hybridization and had relatively low differences in resource use between them. This coupled with the finding that resource use and genetic differentiation had differential effects on body shape variation across populations suggests that reproductive isolation maintains phenotypic divergence between benthic and pelagic morphs when the effects of resource use are relatively low. Our ability to assess relationships between phenotype, ecology, and genetics deepens our understanding of the processes underlying adaptive divergence in sympatry.
Collapse
Affiliation(s)
| | - Kevin Parsons
- Institute of Biodiversity, Animal Health and Comparative MedicineSchool of Life ScienceUniversity of GlasgowGlasgowUK
| | - Skúli Skúlason
- Department of Aquaculture and Fish BiologyHólar UniversitySaudárkrókurIceland
- Icelandic Museum of Natural HistoryReykjavíkIceland
| | | |
Collapse
|
10
|
Campbell CS, Adams CE, Bean CW, Pilakouta N, Parsons KJ. Evolvability under climate change: Bone development and shape plasticity are heritable and correspond with performance in Arctic charr (Salvelinus alpinus). Evol Dev 2021; 23:333-350. [PMID: 34010514 DOI: 10.1111/ede.12379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 03/18/2021] [Accepted: 03/28/2021] [Indexed: 01/29/2023]
Abstract
Environmental conditions can impact the development of phenotypes and in turn the performance of individuals. Climate change, therefore, provides a pressing need to extend our understanding of how temperature will influence phenotypic variation. To address this, we assessed the impact of increased temperatures on ecologically significant phenotypic traits in Arctic charr (Salvelinus alpinus). We raised Arctic charr at 5°C and 9°C to simulate a predicted climate change scenario and examined temperature-induced variation in ossification, bone metabolism, skeletal morphology, and escape response. Fish reared at 9°C exhibited less cartilage and bone development at the same developmental stage, but also higher bone metabolism in localized regions. The higher temperature treatment also resulted in significant differences in craniofacial morphology, changes in the degree of variation, and fewer vertebrae. Both temperature regime and vertebral number affected escape response performance, with higher temperature leading to decreased latency. These findings demonstrate that climate change has the potential to impact development through multiple routes with the potential for plasticity and the release of cryptic genetic variation to have strong impacts on function through ecological performance and survival.
Collapse
Affiliation(s)
- Calum S Campbell
- Institute of Biodiversity, Animal Health, and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Colin E Adams
- Institute of Biodiversity, Animal Health, and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Colin W Bean
- Institute of Biodiversity, Animal Health, and Comparative Medicine, University of Glasgow, Glasgow, UK.,NatureScot, Clydebank, UK
| | - Natalie Pilakouta
- Institute of Biodiversity, Animal Health, and Comparative Medicine, University of Glasgow, Glasgow, UK.,School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Kevin J Parsons
- Institute of Biodiversity, Animal Health, and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
11
|
Lofeu L, Anelli V, Straker LC, Kohlsdorf T. Developmental plasticity reveals hidden fish phenotypes and enables morphospace diversification. Evolution 2021; 75:1170-1188. [PMID: 33783852 DOI: 10.1111/evo.14221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 03/04/2021] [Accepted: 03/15/2021] [Indexed: 01/01/2023]
Abstract
The establishment of a given phenotype is only one expression from a range of hidden developmental possibilities. Developmental plasticity at hidden reaction norms might elicit phenotypic diversification under new developmental environments. Current discussion benefits from empirical analyses that integrate multiple environmental stimuli to evaluate how plastic responses may shape phenotypic variation. We raised Megaleporinus macrocephalus fish in different environmental settings to address contributions of developmental plasticity for emergence of new phenotypes and subsequent morphospace diversification. Plastic morphotypes were evaluated at two complementary scales, the M. macrocephalus morphospace and the higher taxonomic level of Anostomidae family. Morphospace analyses demonstrated that developmental plasticity quickly releases distinct head morphotypes that were hidden in the parental monomorphic population. Plastic morphotypes occupied discrete and previously unfilled morphospace regions, a result obtained from comparisons with a control population and in analyses including several Anostomidae species. Plastic responses involved adjustments in shape and relative position of head bonesets, and fish raised under specific environmental combinations rescued phenotypic patterns described for different genera. Therefore, developmental plasticity possibly contributes to adaptive radiation in Anostomidae. Results illustrate how plastic responses enable morphospace diversification and contribute to evolution.
Collapse
Affiliation(s)
- Leandro Lofeu
- Department of Biology - FFCLRP, University of São Paulo, São Paulo, 14040-900, Brazil
| | - Vinicius Anelli
- Department of Biology - FFCLRP, University of São Paulo, São Paulo, 14040-900, Brazil
| | - Lorian Cobra Straker
- Centro Nacional de Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Tiana Kohlsdorf
- Department of Biology - FFCLRP, University of São Paulo, São Paulo, 14040-900, Brazil
| |
Collapse
|
12
|
Navon D, Hatini P, Zogbaum L, Albertson RC. The genetic basis of coordinated plasticity across functional units in a Lake Malawi cichlid mapping population. Evolution 2021; 75:672-687. [PMID: 33438760 DOI: 10.1111/evo.14157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 11/28/2022]
Abstract
Adaptive radiations are often stereotypical, as populations repeatedly specialize along conserved environmental axes. Phenotypic plasticity may be similarly stereotypical, as individuals respond to environmental cues. These parallel patterns of variation, which are often consistent across traits, have led researchers to propose that plasticity can facilitate predictable patterns of evolution along environmental gradients. This "flexible stem" model of evolution raises questions about the genetic nature of plasticity, including how complex is the genetic basis for plasticity? Is plasticity across traits mediated by many distinct loci, or few "global" regulators? To address these questions, we reared a hybrid cichlid mapping population on alternate diet regimes mimicking an important environmental axis. We show that plasticity across an array of ecologically relevant traits is generally morphologically integrated, such that traits respond in a coordinated manner, especially those with overlapping function. Our genetic data are more ambiguous. While our mapping experiment provides little evidence for global genetic regulators of plasticity, these data do contain a genetic signal for the integration of plasticity across traits. Overall, our data suggest a compromise between genetic modularity, whereby plasticity may evolve independently across traits, and low level but widespread genetic integration, establishing the potential for plasticity to experience coordinated evolution.
Collapse
Affiliation(s)
- Dina Navon
- Graduate Program in Organismal & Evolutionary Biology, University of Massachusetts Amherst, Amherst, Massachusetts, 01003.,Rutgers University Human Genetics Institute, Piscataway, New Jersey, 08854
| | - Paul Hatini
- Department of Biology, Morrill Science Center, University of Massachusetts Amherst, Amherst, Massachusetts, 01003
| | - Lily Zogbaum
- Biology Department, Swarthmore College, Swarthmore, Pennsylvania, 19081
| | - R Craig Albertson
- Graduate Program in Organismal & Evolutionary Biology, University of Massachusetts Amherst, Amherst, Massachusetts, 01003.,Department of Biology, Morrill Science Center, University of Massachusetts Amherst, Amherst, Massachusetts, 01003
| |
Collapse
|
13
|
Abstract
The generation of variation is paramount for the action of natural selection. Although biologists are now moving beyond the idea that random mutation provides the sole source of variation for adaptive evolution, we still assume that variation occurs randomly. In this review, we discuss an alternative view for how phenotypic plasticity, which has become well accepted as a source of phenotypic variation within evolutionary biology, can generate nonrandom variation. Although phenotypic plasticity is often defined as a property of a genotype, we argue that it needs to be considered more explicitly as a property of developmental systems involving more than the genotype. We provide examples of where plasticity could be initiating developmental bias, either through direct active responses to similar stimuli across populations or as the result of programmed variation within developmental systems. Such biased variation can echo past adaptations that reflect the evolutionary history of a lineage but can also serve to initiate evolution when environments change. Such adaptive programs can remain latent for millions of years and allow development to harbor an array of complex adaptations that can initiate new bouts of evolution. Specifically, we address how ideas such as the flexible stem hypothesis and cryptic genetic variation overlap, how modularity among traits can direct the outcomes of plasticity, and how the structure of developmental signaling pathways is limited to a few outcomes. We highlight key questions throughout and conclude by providing suggestions for future research that can address how plasticity initiates and harbors developmental bias.
Collapse
Affiliation(s)
- Kevin J. Parsons
- Institute of Biodiversity, Animal Health, and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Kirsty McWhinnie
- Institute of Biodiversity, Animal Health, and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Natalie Pilakouta
- Institute of Biodiversity, Animal Health, and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Lynsey Walker
- Institute of Biodiversity, Animal Health, and Comparative MedicineUniversity of GlasgowGlasgowUK
| |
Collapse
|
14
|
Závorka L, Larranaga N, Lovén Wallerius M, Näslund J, Koeck B, Wengström N, Cucherousset J, Johnsson JI. Within-stream phenotypic divergence in head shape of brown trout associated with invasive brook trout. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Competition with a non-native species can lead to morphological changes in native organisms induced by phenotypic plasticity, and by selection against individuals that do not adjust their morphology to the novel selection pressure. The morphological changes in native organisms are often associated with rapid behavioural responses to competition with the invader. However, knowledge of the interaction between the behaviour and morphology of native organisms competing with a non-native species remains scarce. Here, we investigated the effect of competition with non-native brook trout Salvelinus fontinalis on head shape of native brown trout Salmo trutta in a stream system where changes in diet and territorial behaviour of sympatric brown trout have previously been demonstrated. We found that sympatric brown trout had smaller eyes, shorter lower jaws and more terminal mouth than allopatric conspecifics. These differences in head shape were highly repeatable over a period of 12 months. Apparent survival indicated that the selection on head shape of brown trout was weaker in the sympatric than in the allopatric stretch of the stream. The results suggest that these changes reinforce divergences of foraging strategies between the allopatric and sympatric brown trout, which can negatively affect their population dynamics and trophic function in the food-web.
Collapse
Affiliation(s)
- Libor Závorka
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow UK
| | - Nicolas Larranaga
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Lovén Wallerius
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Joacim Näslund
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Barbara Koeck
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow UK
| | - Niklas Wengström
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- The Swedish Anglers Association, Gothenburg, Sweden
| | - Julien Cucherousset
- Laboratoire Evolution et Diversité Biologique (EDB UMR 5174), Université de Toulouse, CNRS, ENFA, UPS, Toulouse, France
| | - Jörgen I Johnsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
15
|
Nakano S, Fausch KD, Koizumi I, Kanno Y, Taniguchi Y, Kitano S, Miyake Y. Evaluating a pattern of ecological character displacement: charr jaw morphology and diet diverge in sympatry versus allopatry across catchments in Hokkaido, Japan. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AbstractSimilar species that overlap in sympatry may diverge in characters related to resource use as a result of evolution or phenotypic plasticity. Dolly Varden charr (Salvelinus malma) and whitespotted charr (S. leucomaenis) overlap along streams in Hokkaido, Japan, and compete by interference for invertebrate drift-foraging positions. Previous research has shown that as drift declines during summer, Dolly Varden shift foraging modes to capture benthic prey, a behaviour facilitated by their subterminal jaw morphology. We compare body and jaw morphology of Dolly Varden in sympatry vs. allopatry in two locations to test for character displacement. Statistical analysis showed significant divergence in characters related to foraging, which was correlated with variation in individual charr diets. Dolly Varden in sympatry had shorter heads and lower jaws than in allopatry, and even within sites charr with these characteristics fed less on drifting terrestrial invertebrates but more on benthic aquatic invertebrates. Those in allopatry had longer heads and lower jaws, and fed more on terrestrial invertebrates. The close proximity of sites in one stream suggests that Dolly Varden may display phenotypic plasticity similar to other charr, allowing rapid responses in morphology to the presence of competitors. These morphological shifts probably help them maintain positive fitness when competing with whitespotted charr in Hokkaido streams.
Collapse
Affiliation(s)
- Shigeru Nakano
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan, and Tomakomai Forest Research Station, Hokkaido University Forests, Tomakomai, Hokkaido, Japan
| | - Kurt D Fausch
- Department of Fish, Wildlife, and Conservation Biology, and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Itsuro Koizumi
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yoichiro Kanno
- Department of Fish, Wildlife, and Conservation Biology, and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | | | - Satoshi Kitano
- Nagano Environmental Conservation Research Institute, Kitago, Nagano, Japan
| | - Yo Miyake
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| |
Collapse
|
16
|
Guðbrandsson J, Kapralova KH, Franzdóttir SR, Bergsveinsdóttir ÞM, Hafstað V, Jónsson ZO, Snorrason SS, Pálsson A. Extensive genetic differentiation between recently evolved sympatric Arctic charr morphs. Ecol Evol 2019; 9:10964-10983. [PMID: 31641448 PMCID: PMC6802010 DOI: 10.1002/ece3.5516] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/22/2022] Open
Abstract
The availability of diverse ecological niches can promote adaptation of trophic specializations and related traits, as has been repeatedly observed in evolutionary radiations of freshwater fish. The role of genetics, environment, and history in ecologically driven divergence and adaptation, can be studied on adaptive radiations or populations showing ecological polymorphism. Salmonids, especially the Salvelinus genus, are renowned for both phenotypic diversity and polymorphism. Arctic charr (Salvelinus alpinus) invaded Icelandic streams during the glacial retreat (about 10,000 years ago) and exhibits many instances of sympatric polymorphism. Particularly, well studied are the four morphs in Lake Þingvallavatn in Iceland. The small benthic (SB), large benthic (LB), planktivorous (PL), and piscivorous (PI) charr differ in many regards, including size, form, and life history traits. To investigate relatedness and genomic differentiation between morphs, we identified variable sites from RNA-sequencing data from three of those morphs and verified 22 variants in population samples. The data reveal genetic differences between the morphs, with the two benthic morphs being more similar and the PL-charr more genetically different. The markers with high differentiation map to all linkage groups, suggesting ancient and pervasive genetic separation of these three morphs. Furthermore, GO analyses suggest differences in collagen metabolism, odontogenesis, and sensory systems between PL-charr and the benthic morphs. Genotyping in population samples from all four morphs confirms the genetic separation and indicates that the PI-charr are less genetically distinct than the other three morphs. The genetic separation of the other three morphs indicates certain degree of reproductive isolation. The extent of gene flow between the morphs and the nature of reproductive barriers between them remain to be elucidated.
Collapse
Affiliation(s)
- Jóhannes Guðbrandsson
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavikIceland
- Marine and Freshwater Research InstituteReykjavikIceland
| | - Kalina H. Kapralova
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavikIceland
| | - Sigríður R. Franzdóttir
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavikIceland
- Biomedical CenterUniversity of IcelandReykjavikIceland
| | | | - Völundur Hafstað
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavikIceland
| | - Zophonías O. Jónsson
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavikIceland
- Biomedical CenterUniversity of IcelandReykjavikIceland
| | | | - Arnar Pálsson
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavikIceland
- Biomedical CenterUniversity of IcelandReykjavikIceland
| |
Collapse
|
17
|
Skúlason S, Parsons KJ, Svanbäck R, Räsänen K, Ferguson MM, Adams CE, Amundsen P, Bartels P, Bean CW, Boughman JW, Englund G, Guðbrandsson J, Hooker OE, Hudson AG, Kahilainen KK, Knudsen R, Kristjánsson BK, Leblanc CA, Jónsson Z, Öhlund G, Smith C, Snorrason SS. A way forward with eco evo devo: an extended theory of resource polymorphism with postglacial fishes as model systems. Biol Rev Camb Philos Soc 2019; 94:1786-1808. [PMID: 31215138 PMCID: PMC6852119 DOI: 10.1111/brv.12534] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/12/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022]
Abstract
A major goal of evolutionary science is to understand how biological diversity is generated and altered. Despite considerable advances, we still have limited insight into how phenotypic variation arises and is sorted by natural selection. Here we argue that an integrated view, which merges ecology, evolution and developmental biology (eco evo devo) on an equal footing, is needed to understand the multifaceted role of the environment in simultaneously determining the development of the phenotype and the nature of the selective environment, and how organisms in turn affect the environment through eco evo and eco devo feedbacks. To illustrate the usefulness of an integrated eco evo devo perspective, we connect it with the theory of resource polymorphism (i.e. the phenotypic and genetic diversification that occurs in response to variation in available resources). In so doing, we highlight fishes from recently glaciated freshwater systems as exceptionally well-suited model systems for testing predictions of an eco evo devo framework in studies of diversification. Studies on these fishes show that intraspecific diversity can evolve rapidly, and that this process is jointly facilitated by (i) the availability of diverse environments promoting divergent natural selection; (ii) dynamic developmental processes sensitive to environmental and genetic signals; and (iii) eco evo and eco devo feedbacks influencing the selective and developmental environments of the phenotype. We highlight empirical examples and present a conceptual model for the generation of resource polymorphism - emphasizing eco evo devo, and identify current gaps in knowledge.
Collapse
Affiliation(s)
- Skúli Skúlason
- Department of Aquaculture and Fish BiologyHólar UniversitySauðárkrókur, 551Iceland
- Icelandic Museum of Natural History, Brynjólfsgata 5ReykjavíkIS‐107Iceland
| | - Kevin J. Parsons
- Institute of Biodiversity, Animal Health & Comparative MedicineUniversity of GlasgowGlasgow, G12 8QQU.K.
| | - Richard Svanbäck
- Animal Ecology, Department of Ecology and Genetics, Science for Life LaboratoryUppsala University, Norbyvägen 18DUppsala, SE‐752 36Sweden
| | - Katja Räsänen
- Department of Aquatic EcologyEAWAG, Swiss Federal Institute of Aquatic Science and Technology, and Institute of Integrative Biology, ETH‐Zurich, Ueberlandstrasse 133CH‐8600DübendorfSwitzerland
| | - Moira M. Ferguson
- Department of Integrative BiologyUniversity of GuelphGuelph, Ontario N1G 2W1Canada
| | - Colin E. Adams
- Scottish Centre for Ecology and the Natural Environment, IBAHCMUniversity of GlasgowGlasgow G12 8QQU.K.
| | - Per‐Arne Amundsen
- Freshwater Ecology Group, Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and EconomicsUniversity of TromsöTromsö, N‐9037Norway
| | - Pia Bartels
- Department of Ecology and Environmental ScienceUmeå UniversityUmeå, SE‐90187Sweden
| | - Colin W. Bean
- Scottish Natural Heritage, Caspian House, Mariner Court, Clydebank Business ParkClydebank, G81 2NRU.K.
| | - Janette W. Boughman
- Department of Integrative BiologyMichigan State UniversityEast Lansing, MI 48824U.S.A.
| | - Göran Englund
- Department of Ecology and Environmental ScienceUmeå UniversityUmeå, SE‐90187Sweden
| | - Jóhannes Guðbrandsson
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavik, 101Iceland
| | | | - Alan G. Hudson
- Department of Ecology and Environmental ScienceUmeå UniversityUmeå, SE‐90187Sweden
| | - Kimmo K. Kahilainen
- Inland Norway University of Applied Sciences, Department of Forestry and Wildlife Management, Campus Evenstad, Anne Evenstadvei 80Koppang, NO‐2480Norway
| | - Rune Knudsen
- Freshwater Ecology Group, Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and EconomicsUniversity of TromsöTromsö, N‐9037Norway
| | | | - Camille A‐L. Leblanc
- Department of Aquaculture and Fish BiologyHólar UniversitySauðárkrókur, 551Iceland
| | - Zophonías Jónsson
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavik, 101Iceland
| | - Gunnar Öhlund
- Department of Ecology and Environmental ScienceUmeå UniversityUmeå, SE‐90187Sweden
| | - Carl Smith
- School of BiologyUniversity of St Andrews, St. AndrewsFife, KY16 9AJU.K.
| | - Sigurður S. Snorrason
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavik, 101Iceland
| |
Collapse
|
18
|
Beck SV, Räsänen K, Ahi EP, Kristjánsson BK, Skúlason S, Jónsson ZO, Leblanc CA. Gene expression in the phenotypically plastic Arctic charr (Salvelinus alpinus): A focus on growth and ossification at early stages of development. Evol Dev 2018; 21:16-30. [PMID: 30474913 PMCID: PMC9285049 DOI: 10.1111/ede.12275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Gene expression during development shapes the phenotypes of individuals. Although embryonic gene expression can have lasting effects on developmental trajectories, few studies consider the role of maternal effects, such as egg size, on gene expression. Using qPCR, we characterize relative expression of 14 growth and/or skeletal promoting genes across embryonic development in Arctic charr (Salvelinus alpinus). We test to what extent their relative expression is correlated with egg size and size at early life‐stages within the study population. We predict smaller individuals to have higher expression of growth and skeletal promoting genes, due to less maternal resources (i.e., yolk) and prioritization of energy toward ossification. We found expression levels to vary across developmental stages and only three genes (Mmp9, Star, and Sgk1) correlated with individual size at a given developmental stage. Contrary to our hypothesis, expression of Mmp9 and Star showed a non‐linear relationship with size (at post fertilization and hatching, respectively), whilst Sgk1 was higher in larger embryos at hatching. Interestingly, these genes are also associated with craniofacial divergence of Arctic charr morphs. Our results indicate that early life‐stage variation in gene expression, concomitant to maternal effects, can influence developmental plasticity and potentially the evolution of resource polymorphism in fishes.
Collapse
Affiliation(s)
- Samantha V Beck
- Department of Aquaculture and Fish Biology, Hólar University College, Háskólinn á Hólum, Sauðárkrókur, Iceland.,Institute of Life- and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - Katja Räsänen
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Ehsan P Ahi
- Institute of Life- and Environmental Sciences, University of Iceland, Reykjavík, Iceland.,Institute of Zoology, University of Graz, Universitätsplatz 2, Graz, Austria
| | - Bjarni K Kristjánsson
- Department of Aquaculture and Fish Biology, Hólar University College, Háskólinn á Hólum, Sauðárkrókur, Iceland
| | - Skúli Skúlason
- Department of Aquaculture and Fish Biology, Hólar University College, Háskólinn á Hólum, Sauðárkrókur, Iceland
| | - Zophonías O Jónsson
- Institute of Life- and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - Camille A Leblanc
- Department of Aquaculture and Fish Biology, Hólar University College, Háskólinn á Hólum, Sauðárkrókur, Iceland
| |
Collapse
|
19
|
Guðbrandsson J, Franzdóttir SR, Kristjánsson BK, Ahi EP, Maier VH, Kapralova KH, Snorrason SS, Jónsson ZO, Pálsson A. Differential gene expression during early development in recently evolved and sympatric Arctic charr morphs. PeerJ 2018; 6:e4345. [PMID: 29441236 PMCID: PMC5807978 DOI: 10.7717/peerj.4345] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/19/2018] [Indexed: 02/06/2023] Open
Abstract
Phenotypic differences between closely related taxa or populations can arise through genetic variation or be environmentally induced, leading to altered transcription of genes during development. Comparative developmental studies of closely related species or variable populations within species can help to elucidate the molecular mechanisms related to evolutionary divergence and speciation. Studies of Arctic charr (Salvelinus alpinus) and related salmonids have revealed considerable phenotypic variation among populations and in Arctic charr many cases of extensive variation within lakes (resource polymorphism) have been recorded. One example is the four Arctic charr morphs in the ∼10,000 year old Lake Thingvallavatn, which differ in numerous morphological and life history traits. We set out to investigate the molecular and developmental roots of this polymorphism by studying gene expression in embryos of three of the morphs reared in a common garden set-up. We performed RNA-sequencing, de-novo transcriptome assembly and compared gene expression among morphs during an important timeframe in early development, i.e., preceding the formation of key trophic structures. Expectedly, developmental time was the predominant explanatory variable. As the data were affected by some form of RNA-degradation even though all samples passed quality control testing, an estimate of 3'-bias was the second most common explanatory variable. Importantly, morph, both as an independent variable and as interaction with developmental time, affected the expression of numerous transcripts. Transcripts with morph effect, separated the three morphs at the expression level, with the two benthic morphs being more similar. However, Gene Ontology analyses did not reveal clear functional enrichment of transcripts between groups. Verification via qPCR confirmed differential expression of several genes between the morphs, including regulatory genes such as AT-Rich Interaction Domain 4A (arid4a) and translin (tsn). The data are consistent with a scenario where genetic divergence has contributed to differential expression of multiple genes and systems during early development of these sympatric Arctic charr morphs.
Collapse
Affiliation(s)
- Jóhannes Guðbrandsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
- Freshwater Division, Marine and Freshwater Research Institute, Reykjavík, Iceland
| | - Sigríður Rut Franzdóttir
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
- Biomedical Center, University of Iceland, Reykjavík, Iceland
| | | | - Ehsan Pashay Ahi
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
- Karl-Franzens-Universität, Graz, Austria
| | - Valerie Helene Maier
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
- Biomedical Center, University of Iceland, Reykjavík, Iceland
| | | | | | - Zophonías Oddur Jónsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
- Biomedical Center, University of Iceland, Reykjavík, Iceland
| | - Arnar Pálsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
- Biomedical Center, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
20
|
Simonsen MK, Siwertsson A, Adams CE, Amundsen PA, Præbel K, Knudsen R. Allometric trajectories of body and head morphology in three sympatric Arctic charr ( Salvelinus alpinus (L.)) morphs. Ecol Evol 2017; 7:7277-7289. [PMID: 28944016 PMCID: PMC5606865 DOI: 10.1002/ece3.3224] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/26/2017] [Accepted: 06/01/2017] [Indexed: 01/01/2023] Open
Abstract
A study of body and head development in three sympatric reproductively isolated Arctic charr (Salvelinus alpinus (L.)) morphs from a subarctic lake (Skogsfjordvatn, northern Norway) revealed allometric trajectories that resulted in morphological differences. The three morphs were ecologically assigned to a littoral omnivore, a profundal benthivore and a profundal piscivore, and this was confirmed by genetic analyses (microsatellites). Principal component analysis was used to identify the variables responsible for most of the morphological variation of the body and head shape. The littoral omnivore and the profundal piscivore morph had convergent allometric trajectories for the most important head shape variables, developing bigger mouths and relatively smaller eyes with increasing head size. The two profundal morphs shared common trajectories for the variables explaining most of the body and head shape variation, namely head size relative to body size, placement of the dorsal and pelvic fins, eye size and mouth size. In contrast, the littoral omnivore and the profundal benthivore morphs were not on common allometric trajectories for any of the examined variables. The findings suggest that different selective pressures could have been working on traits related to their trophic niche such as habitat and diet utilization of the three morphs, with the two profundal morphs experiencing almost identical environmental conditions.
Collapse
Affiliation(s)
- Marianne Knutsdotter Simonsen
- Department of Arctic and Marine Biology Faculty of Biosciences, Fisheries and Economics UiT The Arctic University of Norway Tromsø Norway
| | - Anna Siwertsson
- Department of Arctic and Marine Biology Faculty of Biosciences, Fisheries and Economics UiT The Arctic University of Norway Tromsø Norway
| | - Colin Ean Adams
- Scottish Centre for Ecology and the Natural Environment IBAHCM, University of Glasgow Glasgow UK
| | - Per-Arne Amundsen
- Department of Arctic and Marine Biology Faculty of Biosciences, Fisheries and Economics UiT The Arctic University of Norway Tromsø Norway
| | - Kim Præbel
- Faculty of Biosciences, Fisheries and Economics The Norwegian College of Fishery Science UiT The Arctic University of Norway Tromsø Norway
| | - Rune Knudsen
- Department of Arctic and Marine Biology Faculty of Biosciences, Fisheries and Economics UiT The Arctic University of Norway Tromsø Norway
| |
Collapse
|
21
|
Cloyed CS, Eason PK. Niche partitioning and the role of intraspecific niche variation in structuring a guild of generalist anurans. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170060. [PMID: 28405403 PMCID: PMC5383860 DOI: 10.1098/rsos.170060] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/14/2017] [Indexed: 05/30/2023]
Abstract
Intra-population niche differences in generalist foragers have captured the interest of ecologists, because such individuality can have important ecological and evolutionary implications. Few researchers have investigated how these differences affect the relationships among ecologically similar, sympatric species. Using stable isotopes, stomach contents, morphology and habitat preference, we examined niche partitioning within a group of five anurans and determined whether variation within species could facilitate resource partitioning. Species partitioned their niches by trophic level and by foraging habitat. However, there was considerable intraspecific variation in trophic level, with larger individuals generally feeding at higher trophic levels. For species at intermediate trophic levels, smaller individuals overlapped in trophic level with individuals of smaller species and larger individuals overlapped with the smallest individuals from larger species. Species varied in carbon isotopes; species with enriched carbon isotope ratios foraged farther from ponds, whereas species with depleted carbon isotope values foraged closer to ponds. Our study shows that these species partition their niches by feeding at different trophic levels and foraging at different distances from ponds. The intraspecific variation in trophic level decreased the number of individuals from each species that overlapped in trophic level with individuals from other species, which can facilitate species coexistence.
Collapse
Affiliation(s)
- Carl S. Cloyed
- National Great Rivers Research and Education Center, East Alton, IL 62024, USA
- Department of Biology, Washington University in St Louis, St Louis, MO 63130, USA
| | - Perri K. Eason
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
22
|
Navon D, Olearczyk N, Albertson RC. Genetic and developmental basis for fin shape variation in African cichlid fishes. Mol Ecol 2016; 26:291-303. [DOI: 10.1111/mec.13905] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Dina Navon
- Graduate Program in Organismic and Evolutionary Biology University of Massachusetts Amherst MA 01003 USA
| | - Nathan Olearczyk
- Department of Biology University of Massachusetts 611 North Pleasant Street Room 221 Morrill Science Center Amherst MA 01003 USA
| | - R. Craig Albertson
- Department of Biology University of Massachusetts 611 North Pleasant Street Room 221 Morrill Science Center Amherst MA 01003 USA
| |
Collapse
|
23
|
Postnatal Dynamics of Developmental Stability and Canalization of Lizard Head Shape Under Different Environmental Conditions. Evol Biol 2016. [DOI: 10.1007/s11692-016-9377-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Ahi EP, Steinhäuser SS, Pálsson A, Franzdóttir SR, Snorrason SS, Maier VH, Jónsson ZO. Differential expression of the aryl hydrocarbon receptor pathway associates with craniofacial polymorphism in sympatric Arctic charr. EvoDevo 2015; 6:27. [PMID: 26388986 PMCID: PMC4574265 DOI: 10.1186/s13227-015-0022-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/04/2015] [Indexed: 12/03/2022] Open
Abstract
Background The developmental basis of craniofacial morphology hinges on interactions of numerous signalling systems. Extensive craniofacial variation in the polymorphic Arctic charr, a member of the salmonid family, from Lake Thingvallavatn (Iceland), offers opportunities to find and study such signalling pathways and their key regulators, thereby shedding light on the developmental pathways, and the genetics of trophic divergence. Results To identify genes involved in the craniofacial differences between benthic and limnetic Arctic charr, we used transcriptome data from different morphs, spanning early development, together with data on craniofacial expression patterns and skeletogenesis in model vertebrate species. Out of 20 genes identified, 7 showed lower gene expression in benthic than in limnetic charr morphs. We had previously identified a conserved gene network involved in extracellular matrix (ECM) organization and skeletogenesis, showing higher expression in developing craniofacial elements of benthic than in limnetic Arctic charr morphs. The present study adds a second set of genes constituting an expanded gene network with strong, benthic–limnetic differential expression. To identify putative upstream regulators, we performed knowledge-based motif enrichment analyses on the regulatory sequences of the identified genes which yielded potential binding sites for a set of known transcription factors (TFs). Of the 8 TFs that we examined using qPCR, two (Ahr2b and Ap2) were found to be differentially expressed between benthic and limnetic charr. Expression analysis of several known AhR targets indicated higher activity of the AhR pathway during craniofacial development in benthic charr morphotypes. Conclusion These results suggest a key role of the aryl hydrocarbon receptor (AhR) pathway in the observed craniofacial differences between distinct charr morphotypes. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0022-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Sophie S Steinhäuser
- Biomedical Center, University of Iceland, Vatnsmýrarvegur 16, 101 Reykjavik, Iceland
| | - Arnar Pálsson
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland ; Biomedical Center, University of Iceland, Vatnsmýrarvegur 16, 101 Reykjavik, Iceland
| | - Sigrídur Rut Franzdóttir
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Sigurdur S Snorrason
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Valerie H Maier
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland ; Biomedical Center, University of Iceland, Vatnsmýrarvegur 16, 101 Reykjavik, Iceland
| | - Zophonías O Jónsson
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland ; Biomedical Center, University of Iceland, Vatnsmýrarvegur 16, 101 Reykjavik, Iceland
| |
Collapse
|
25
|
Kapralova KH, Jónsson ZO, Palsson A, Franzdóttir SR, le Deuff S, Kristjánsson BK, Snorrason SS. Bones in motion: Ontogeny of craniofacial development in sympatric arctic charr morphs. Dev Dyn 2015; 244:1168-1178. [DOI: 10.1002/dvdy.24302] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 03/17/2015] [Accepted: 04/30/2015] [Indexed: 12/22/2022] Open
Affiliation(s)
- Kalina H. Kapralova
- Institute of Life and Environmental Sciences; University of Iceland; Reykjavik Iceland
| | - Zophonías O. Jónsson
- Institute of Life and Environmental Sciences; University of Iceland; Reykjavik Iceland
| | - Arnar Palsson
- Institute of Life and Environmental Sciences; University of Iceland; Reykjavik Iceland
| | | | | | | | - Sigurður S. Snorrason
- Institute of Life and Environmental Sciences; University of Iceland; Reykjavik Iceland
| |
Collapse
|
26
|
Gudbrandsson J, Ahi EP, Franzdottir SR, Kapralova KH, Kristjansson BK, Steinhaeuser SS, Maier VH, Johannesson IM, Snorrason SS, Jonsson ZO, Palsson A. The developmental transcriptome of contrasting Arctic charr (Salvelinus alpinus) morphs. F1000Res 2015; 4:136. [PMID: 27635217 PMCID: PMC5007756 DOI: 10.12688/f1000research.6402.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Species and populations with parallel evolution of specific traits can help illuminate how predictable adaptations and divergence are at the molecular and developmental level. Following the last glacial period, dwarfism and specialized bottom feeding morphology evolved rapidly in several landlocked Arctic charrSalvelinus alpinuspopulations in Iceland. To study the genetic divergence between small benthic morphs and limnetic morphs, we conducted RNA-sequencing charr embryos at four stages in early development. We studied two stocks with contrasting morphologies: the small benthic (SB) charr from Lake Thingvallavatn and Holar aquaculture (AC) charr.The data reveal significant differences in expression of several biological pathways during charr development. There was also an expression difference between SB- and AC-charr in genes involved in energy metabolism and blood coagulation genes. We confirmed differing expression of five genes in whole embryos with qPCR, includinglysozymeandnatterin-likewhich was previously identified as a fish-toxin of a lectin family that may be a putative immunopeptide. We also verified differential expression of 7 genes in the developing head that associated consistently with benthic v.s.limnetic morphology (studied in 4 morphs). Comparison of single nucleotide polymorphism (SNP) frequencies reveals extensive genetic differentiation between the SB and AC-charr (~1300 with more than 50% frequency difference). Curiously, three derived alleles in the otherwise conserved 12s and 16s mitochondrial ribosomal RNA genes are found in benthic charr.The data implicate multiple genes and molecular pathways in divergence of small benthic charr and/or the response of aquaculture charr to domestication. Functional, genetic and population genetic studies on more freshwater and anadromous populations are needed to confirm the specific loci and mutations relating to specific ecological traits in Arctic charr.
Collapse
|
27
|
Gudbrandsson J, Ahi EP, Franzdottir SR, Kapralova KH, Kristjansson BK, Steinhaeuser SS, Maier VH, Johannesson IM, Snorrason SS, Jonsson ZO, Palsson A. The developmental transcriptome of contrasting Arctic charr ( Salvelinus alpinus) morphs. F1000Res 2015; 4:136. [PMID: 27635217 PMCID: PMC5007756 DOI: 10.12688/f1000research.6402.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2016] [Indexed: 12/23/2022] Open
Abstract
Species and populations with parallel evolution of specific traits can help illuminate how predictable adaptations and divergence are at the molecular and developmental level. Following the last glacial period, dwarfism and specialized bottom feeding morphology evolved rapidly in several landlocked Arctic charr
Salvelinus alpinus populations in Iceland. To study the genetic divergence between small benthic morphs and limnetic morphs, we conducted RNA-sequencing charr embryos at four stages in early development. We studied two stocks with contrasting morphologies: the small benthic (SB) charr from Lake Thingvallavatn and Holar aquaculture (AC) charr. The data reveal significant differences in expression of several biological pathways during charr development. There was also an expression difference between SB- and AC-charr in genes involved in energy metabolism and blood coagulation genes. We confirmed differing expression of five genes in whole embryos with qPCR, including
lysozyme and
natterin-like which was previously identified as a fish-toxin of a lectin family that may be a putative immunopeptide. We also verified differential expression of 7 genes in the developing head that associated consistently with benthic v.s.limnetic morphology (studied in 4 morphs). Comparison of single nucleotide polymorphism (SNP) frequencies reveals extensive genetic differentiation between the SB and AC-charr (~1300 with more than 50% frequency difference). Curiously, three derived alleles in the otherwise conserved 12s and 16s mitochondrial ribosomal RNA genes are found in benthic charr. The data implicate multiple genes and molecular pathways in divergence of small benthic charr and/or the response of aquaculture charr to domestication. Functional, genetic and population genetic studies on more freshwater and anadromous populations are needed to confirm the specific loci and mutations relating to specific ecological traits in Arctic charr.
Collapse
Affiliation(s)
- Johannes Gudbrandsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Ehsan P Ahi
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Sigridur R Franzdottir
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Kalina H Kapralova
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | | | - S Sophie Steinhaeuser
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Valerie H Maier
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Isak M Johannesson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Sigurdur S Snorrason
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Zophonias O Jonsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Arnar Palsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| |
Collapse
|
28
|
Ahi EP, Kapralova KH, Pálsson A, Maier VH, Gudbrandsson J, Snorrason SS, Jónsson ZO, Franzdóttir SR. Transcriptional dynamics of a conserved gene expression network associated with craniofacial divergence in Arctic charr. EvoDevo 2014; 5:40. [PMID: 25419450 PMCID: PMC4240837 DOI: 10.1186/2041-9139-5-40] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/17/2014] [Indexed: 12/30/2022] Open
Abstract
Background Understanding the molecular basis of craniofacial variation can provide insights into key developmental mechanisms of adaptive changes and their role in trophic divergence and speciation. Arctic charr (Salvelinus alpinus) is a polymorphic fish species, and, in Lake Thingvallavatn in Iceland, four sympatric morphs have evolved distinct craniofacial structures. We conducted a gene expression study on candidates from a conserved gene coexpression network, focusing on the development of craniofacial elements in embryos of two contrasting Arctic charr morphotypes (benthic and limnetic). Results Four Arctic charr morphs were studied: one limnetic and two benthic morphs from Lake Thingvallavatn and a limnetic reference aquaculture morph. The presence of morphological differences at developmental stages before the onset of feeding was verified by morphometric analysis. Following up on our previous findings that Mmp2 and Sparc were differentially expressed between morphotypes, we identified a network of genes with conserved coexpression across diverse vertebrate species. A comparative expression study of candidates from this network in developing heads of the four Arctic charr morphs verified the coexpression relationship of these genes and revealed distinct transcriptional dynamics strongly correlated with contrasting craniofacial morphologies (benthic versus limnetic). A literature review and Gene Ontology analysis indicated that a significant proportion of the network genes play a role in extracellular matrix organization and skeletogenesis, and motif enrichment analysis of conserved noncoding regions of network candidates predicted a handful of transcription factors, including Ap1 and Ets2, as potential regulators of the gene network. The expression of Ets2 itself was also found to associate with network gene expression. Genes linked to glucocorticoid signalling were also studied, as both Mmp2 and Sparc are responsive to this pathway. Among those, several transcriptional targets and upstream regulators showed differential expression between the contrasting morphotypes. Interestingly, although selected network genes showed overlapping expression patterns in situ and no morph differences, Timp2 expression patterns differed between morphs. Conclusion Our comparative study of transcriptional dynamics in divergent craniofacial morphologies of Arctic charr revealed a conserved network of coexpressed genes sharing functional roles in structural morphogenesis. We also implicate transcriptional regulators of the network as targets for future functional studies. Electronic supplementary material The online version of this article (doi:10.1186/2041-9139-5-40) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Kalina Hristova Kapralova
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Arnar Pálsson
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland ; Biomedical Center, University of Iceland, Vatnsmýrarvegur 16, 101 Reykjavik, Iceland
| | - Valerie Helene Maier
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Jóhannes Gudbrandsson
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Sigurdur S Snorrason
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Zophonías O Jónsson
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland ; Biomedical Center, University of Iceland, Vatnsmýrarvegur 16, 101 Reykjavik, Iceland
| | - Sigrídur Rut Franzdóttir
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| |
Collapse
|
29
|
Küttner E, Parsons KJ, Easton AA, Skúlason S, Danzmann RG, Ferguson MM. Hidden genetic variation evolves with ecological specialization: the genetic basis of phenotypic plasticity in Arctic charr ecomorphs. Evol Dev 2014; 16:247-57. [PMID: 24920458 DOI: 10.1111/ede.12087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The genetic variance that determines phenotypic variation can change across environments through developmental plasticity and in turn play a strong role in evolution. Induced changes in genotype-phenotype relationships should strongly influence adaptation by exposing different sets of heritable variation to selection under some conditions, while also hiding variation. Therefore, the heritable variation exposed or hidden from selection is likely to differ among habitats. We used ecomorphs from two divergent populations of Arctic charr (Salvelinus alpinus) to test the prediction that genotype-phenotype relationships would change in relation to environment. If present over several generations this should lead to divergence in genotype-phenotype relationships under common conditions, and to changes in the amount and type of hidden genetic variance that can evolve. We performed a common garden experiment whereby two ecomorphs from each of two Icelandic lakes were reared under conditions that mimicked benthic and limnetic prey to induce responses in craniofacial traits. Using microsatellite based genetic maps, we subsequently detected QTL related to these craniofacial traits. We found substantial changes in the number and type of QTL between diet treatments and evidence that novel diet treatments can in some cases provide a higher number of QTL. These findings suggest that selection on phenotypic variation, which is both genetically and environmentally determined, has shaped the genetic architecture of adaptive divergence in Arctic charr. However, while adaptive changes are occurring in the genome there also appears to be an accumulation of hidden genetic variation for loci not expressed in the contemporary environment.
Collapse
Affiliation(s)
- Eva Küttner
- Department of Integrative Biology, University of Guelph, Guelph, 50 Stone Road West, ON, Canada, N1G 2W1
| | | | | | | | | | | |
Collapse
|
30
|
Wnt signalling underlies the evolution of new phenotypes and craniofacial variability in Lake Malawi cichlids. Nat Commun 2014; 5:3629. [PMID: 24699776 DOI: 10.1038/ncomms4629] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/12/2014] [Indexed: 02/07/2023] Open
Abstract
Progress towards understanding adaptive radiations at the mechanistic level is still limited with regard to the proximate molecular factors that both promote and constrain evolution. Here we focus on the craniofacial skeleton and show that expanded Wnt/β-catenin signalling early in ontogeny is associated with the evolution of phenotypic novelty and ecological opportunity in Lake Malawi cichlids. We demonstrate that the mode of action of this molecular change is to effectively lock into place an early larval phenotype, likely through accelerated rates of bone deposition. However, we demonstrate further that this change toward phenotypic novelty may in turn constrain evolutionary potential through the corresponding reduction in craniofacial plasticity at later stages of ontogeny. In all, our data implicate the Wnt pathway as an important mediator of craniofacial form and offer new insights into how developmental systems can evolve to both promote and constrain evolutionary change.
Collapse
|
31
|
Kapralova KH, Gudbrandsson J, Reynisdottir S, Santos CB, Baltanás VC, Maier VH, Snorrason SS, Palsson A. Differentiation at the MHCIIα and Cath2 loci in sympatric Salvelinus alpinus resource morphs in Lake Thingvallavatn. PLoS One 2013; 8:e69402. [PMID: 23894470 PMCID: PMC3722248 DOI: 10.1371/journal.pone.0069402] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 06/09/2013] [Indexed: 11/19/2022] Open
Abstract
Northern freshwater fish may be suitable for the genetic dissection of ecological traits because they invaded new habitats after the last ice age (∼10.000 years ago). Arctic charr (Salvelinus alpinus) colonizing streams and lakes in Iceland gave rise to multiple populations of small benthic morphotypes, often in sympatry with a pelagic morphotype. Earlier studies have revealed significant, but subtle, genetic differentiation between the three most common morphs in Lake Thingvallavatn. We conducted a population genetic screen on four immunological candidate genes Cathelicidin 2 (Cath2), Hepcidin (Hamp), Liver expressed antimicrobial peptide 2a (Leap-2a), and Major Histocompatibility Complex IIα (MHCIIα) and a mitochondrial marker (D-loop) among the three most common Lake Thingvallavatn charr morphs. Significant differences in allele frequencies were found between morphs at the Cath2 and MHCIIα loci. No such signal was detected in the D-loop nor in the other two immunological genes. In Cath2 the small benthic morph deviated from the other two (FST = 0.13), one of the substitutions detected constituting an amino acid replacement polymorphism in the antimicrobial peptide. A more striking difference was found in the MHCIIα. Two haplotypes were very common in the lake, and their frequency differed greatly between the morphotypes (from 22% to 93.5%, FST = 0.67). We then expanded our study by surveying the variation in Cath2 and MHCIIα in 9 Arctic charr populations from around Iceland. The populations varied greatly in terms of allele frequencies at Cath2, but the variation did not correlate with morphotype. At the MHCIIα locus, the variation was nearly identical to the variation in the two benthic morphs of Lake Thingvallavatn. The results are consistent with a scenario where parts of the immune systems have diverged substantially among Arctic charr populations in Iceland, after colonizing the island ∼10.000 years ago.
Collapse
Affiliation(s)
- Kalina H. Kapralova
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Johannes Gudbrandsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Sigrun Reynisdottir
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Cristina B. Santos
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Vanessa C. Baltanás
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Valerie H. Maier
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Sigurdur S. Snorrason
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Arnar Palsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
32
|
Nyboer EA, Chapman LJ. Ontogenetic shifts in phenotype-environment associations in Nile perch,Lates niloticus(Perciformes: Latidae) from Lake Nabugabo, Uganda. Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12122] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Elizabeth A. Nyboer
- Department of Biology; McGill University; 1205 Avenue de Docteur-Penfield; Montréal; QC; H3A 1B1; Canada
| | - Lauren J. Chapman
- Department of Biology; McGill University; 1205 Avenue de Docteur-Penfield; Montréal; QC; H3A 1B1; Canada
| |
Collapse
|
33
|
Ahi EP, Guðbrandsson J, Kapralova KH, Franzdóttir SR, Snorrason SS, Maier VH, Jónsson ZO. Validation of reference genes for expression studies during craniofacial development in arctic charr. PLoS One 2013; 8:e66389. [PMID: 23785496 PMCID: PMC3681766 DOI: 10.1371/journal.pone.0066389] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/05/2013] [Indexed: 01/08/2023] Open
Abstract
Arctic charr (Salvelinus alpinus) is a highly polymorphic species and in Lake Thingvallavatn, Iceland, four phenotypic morphs have evolved. These differences in morphology, especially in craniofacial structures are already apparent during embryonic development, indicating that genes important in the formation of the craniofacial features are expressed differentially between the morphs. In order to generate tools to examine these expression differences in Arctic charr, the aim of the present study was to identify reference genes for quantitative real-time PCR (qPCR). The specific aim was to select reference genes which are able to detect very small expression differences among different morphs. We selected twelve candidate reference genes from the literature, identified corresponding charr sequences using data derived from transcriptome sequencing (RNA-seq) and examined their expression using qPCR. Many of the candidate reference genes were found to be stably expressed, yet their quality-rank as reference genes varied considerably depending on the type of analysis used. In addition to commonly used software for reference gene validation, we used classical statistics to evaluate expression profiles avoiding a bias for reference genes with similar expression patterns (co-regulation). Based on these analyses we chose three reference genes, ACTB, UB2L3 and IF5A1 for further evaluation. Their consistency was assessed in an expression study of three known craniofacially expressed genes, sparc (or osteonectin), matrix metalloprotease 2 (mmp2) and sox9 (sex-determining region Y box 9 protein) using qPCR in embryo heads derived from four charr groups at three developmental time points. The three reference genes were found to be very suitable for studying expression differences between the morphotypes, enabling robust detection of small relative expression changes during charr development. Further, the results showed that sparc and mmp2 are differentially expressed in embryos of different Arctic charr morphotypes.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Life- and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Jóhannes Guðbrandsson
- Institute of Life- and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Kalina H. Kapralova
- Institute of Life- and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Sigurður S. Snorrason
- Institute of Life- and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Valerie H. Maier
- Institute of Life- and Environmental Sciences, University of Iceland, Reykjavik, Iceland
- * E-mail:
| | - Zophonías O. Jónsson
- Institute of Life- and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
34
|
Ogonowski M, Duberg J, Hansson S, Gorokhova E. Behavioral, ecological and genetic differentiation in an open environment--a study of a mysid population in the Baltic Sea. PLoS One 2013; 8:e57210. [PMID: 23469185 PMCID: PMC3585809 DOI: 10.1371/journal.pone.0057210] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 01/22/2013] [Indexed: 11/30/2022] Open
Abstract
Diel vertical migration (DVM) is often assumed to encompass an entire population. However, bimodal nighttime vertical distributions have been observed in various taxa. Mysid shrimp populations also display this pattern with one group concentrated in the pelagia and the other near the bottom. This may indicate alternative migratory strategies, resembling the seasonal partial migrations seen in birds, fishes and amphibians, where only a subset of the population migrates. To assess the persistence of these alternative strategies, we analyzed the nitrogen and carbon stable isotope signatures (as proxies for diet), biochemical indices (as proxies for growth condition), and genetic population divergence in the Baltic mysid Mysis salemaai collected at night in the pelagia and close to the bottom. Stable isotope signatures were significantly different between migrants (pelagic samples) and residents (benthic samples), indicating persistent diet differences, with pelagic mysids having a more uniform and carnivorous diet. Sequencing of the mitochondrial cytochrome subunit I (COI) gene showed genetic differentiation attributable to geographic location but not between benthic and pelagic groups. Divergent migration strategies were however supported by significantly lower gene flow between benthic populations indicating that these groups have a lower predisposition for horizontal migrations compared to pelagic ones. Different migration strategies did not convey measurable growth benefits as pelagic and benthic mysids had similar growth condition indices. Thus, the combination of ecological, biochemical and genetic markers indicate that this partial migration may be a plastic behavioral trait that yields equal growth benefits.
Collapse
Affiliation(s)
- Martin Ogonowski
- Department of Systems Ecology, Stockholm University, Stockholm, Sweden.
| | | | | | | |
Collapse
|
35
|
Küttner E, Parsons KJ, Robinson BW, Skúlason S, Danzmann RG, Ferguson MM. Effects of population, family, and diet on craniofacial morphology of Icelandic Arctic charr (Salvelinus alpinus). Biol J Linn Soc Lond 2013. [DOI: 10.1111/j.1095-8312.2012.02038.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Eva Küttner
- Department of Integrative Biology; University of Guelph; 50 Stone Road West Guelph ON Canada N1G 2W1
| | - Kevin J. Parsons
- Department of Integrative Biology; University of Guelph; 50 Stone Road West Guelph ON Canada N1G 2W1
| | - Beren W. Robinson
- Department of Integrative Biology; University of Guelph; 50 Stone Road West Guelph ON Canada N1G 2W1
| | - Skúli Skúlason
- Hólar University College; Hólar, Hjaltadalur 551 Sauðarkrókur Iceland
| | - Roy G. Danzmann
- Department of Integrative Biology; University of Guelph; 50 Stone Road West Guelph ON Canada N1G 2W1
| | - Moira M. Ferguson
- Department of Integrative Biology; University of Guelph; 50 Stone Road West Guelph ON Canada N1G 2W1
| |
Collapse
|
36
|
CORSE EMMANUEL, NEVE GABRIEL, SINAMA MELTHIDE, PECH NICOLAS, COSTEDOAT CAROLINE, CHAPPAZ REMI, GILLES ANDRE. Plasticity of ontogenetic trajectories in cyprinids: a source of evolutionary novelties. Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2012.01873.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
KRISTJÁNSSON BJARNIK, MALMQUIST HILMARJ, INGIMARSSON FINNUR, ANTONSSON THÓRÓLFUR, SNORRASON SIGURÐURS, SKÚLASON SKÚLI. Relationships between lake ecology and morphological characters in Icelandic Arctic charr, Salvelinus alpinus. Biol J Linn Soc Lond 2011. [DOI: 10.1111/j.1095-8312.2011.01670.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Parsons KJ, Sheets HD, Skúlason S, Ferguson MM. Phenotypic plasticity, heterochrony and ontogenetic repatterning during juvenile development of divergent Arctic charr (Salvelinus alpinus). J Evol Biol 2011; 24:1640-52. [PMID: 21599773 DOI: 10.1111/j.1420-9101.2011.02301.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Phenotypic plasticity is a developmental process that plays a role as a source of variation for evolution. Models of adaptive divergence make the prediction that increasing ecological specialization should be associated with lower levels of plasticity. We tested for differences in the magnitude, rate and trajectory of morphological plasticity in two lake populations of Arctic charr (Salvelinus alpinus) that exhibited variation in the degree of resource polymorphism. We reared offspring on diet treatments that mimicked benthic and pelagic prey. Offspring from the more divergent population had lower levels of morphological plasticity. Allometry influenced the rate of shape change over ontogeny, with differences in rate among ecomorphs being minimal when allometric variation was removed. However, plasticity in the spatial trajectory of development was extensive across ecomorphs, both with and without the inclusion of allometric variation, suggesting that different aspects of shape development can evolve independently.
Collapse
Affiliation(s)
- K J Parsons
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada.
| | | | | | | |
Collapse
|
39
|
Kapralova KH, Morrissey MB, Kristjánsson BK, Olafsdóttir GÁ, Snorrason SS, Ferguson MM. Evolution of adaptive diversity and genetic connectivity in Arctic charr (Salvelinus alpinus) in Iceland. Heredity (Edinb) 2011; 106:472-87. [PMID: 21224880 DOI: 10.1038/hdy.2010.161] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The ecological theory of adaptive radiation predicts that the evolution of phenotypic diversity within species is generated by divergent natural selection arising from different environments and competition between species. Genetic connectivity among populations is likely also to have an important role in both the origin and maintenance of adaptive genetic diversity. Our goal was to evaluate the potential roles of genetic connectivity and natural selection in the maintenance of adaptive phenotypic differences among morphs of Arctic charr, Salvelinus alpinus, in Iceland. At a large spatial scale, we tested the predictive power of geographic structure and phenotypic variation for patterns of neutral genetic variation among populations throughout Iceland. At a smaller scale, we evaluated the genetic differentiation between two morphs in Lake Thingvallavatn relative to historically explicit, coalescent-based null models of the evolutionary history of these lineages. At the large spatial scale, populations are highly differentiated, but weakly structured, both geographically and with respect to patterns of phenotypic variation. At the intralacustrine scale, we observe modest genetic differentiation between two morphs, but this level of differentiation is nonetheless consistent with strong reproductive isolation throughout the Holocene. Rather than a result of the homogenizing effect of gene flow in a system at migration-drift equilibrium, the modest level of genetic differentiation could equally be a result of slow neutral divergence by drift in large populations. We conclude that contemporary and recent patterns of restricted gene flow have been highly conducive to the evolution and maintenance of adaptive genetic variation in Icelandic Arctic charr.
Collapse
Affiliation(s)
- K H Kapralova
- Institute of Biology, University of Iceland, Iceland, UK
| | | | | | | | | | | |
Collapse
|
40
|
Haye PA, Salinas P, Acuña E, Poulin E. Heterochronic phenotypic plasticity with lack of genetic differentiation in the southeastern Pacific squat lobster Pleuroncodes monodon. Evol Dev 2010; 12:628-34. [DOI: 10.1111/j.1525-142x.2010.00447.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|