1
|
Dadkhah M, Afshari S, Samizadegan T, Shirmard LR, Barin S. Pegylated chitosan nanoparticles of fluoxetine enhance cognitive performance and hippocampal brain derived neurotrophic factor levels in a rat model of local demyelination. Exp Gerontol 2024; 195:112533. [PMID: 39134215 DOI: 10.1016/j.exger.2024.112533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
Cognitive impairment is a common feature in neurodegenerative diseases such as multiple sclerosis (MS). This study aims to explore the potential of enhancing the beneficial effects of fluoxetine (FLX), a neuroprotective agent known for its ability to increase neural plasticity by utilizing nanoparticles. The study specifically focuses on the synthesis and evaluation of PEGylated chitosan nanoparticles of FLX and its effect on demyelination and the subsequent cognitive impairment (CI) in the hippocampus of rats induced by local injection of lysophosphatidylcholine (LPC). Chitosan/polyethylene glycol nanoparticles were synthesized, and their properties were analyzed. Demyelination was induced in rats via hippocampal injections of lysolecithin. Behavioral assessments included open field maze, elevated plus maze, and novel object recognition memory (NORM) tests. Hippocampal levels of insulin-like growth factor (IGF-1) and brain-derived neurotrophic factor (BDNF) were measured using enzyme-linked immunoassay (ELISA). The extent of remyelination was quantified using Luxol fast blue staining. Nanoparticle size measured 240.2 nm with 53 % encapsulation efficacy. Drug release exhibited a slow pattern, with 76 % released within 4 h. Nanoparticle-treated rats displayed reduced anxiety-like behavior, improved memory, increased BDNF levels, and a reduced extent of demyelination, with no change in IGF- levels. In addition, FLX -loaded chitosan nanoparticles had better effect on cognitive improvement, BDNF levels in the hippocampus that FLX. Altering pharmacokinetics and possibly pharmacodynamics. These findings highlight the potential of innovative drug delivery systems, encouraging further research in this direction.
Collapse
Affiliation(s)
- Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Salva Afshari
- Student Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Tara Samizadegan
- Student Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Leila Rezaie Shirmard
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Sajjad Barin
- Department of Pathology, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
2
|
Horng DE. Editorial for "Longitudinal Metabolite Changes in Progressive Multiple Sclerosis: A Study of 3 Potential Neuroprotective Treatments". J Magn Reson Imaging 2024; 59:2202-2203. [PMID: 37737006 DOI: 10.1002/jmri.29018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 09/23/2023] Open
Affiliation(s)
- Debra E Horng
- Deb Horng Consulting LLC, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Sahu M, Vashishth S, Kukreti N, Gulia A, Russell A, Ambasta RK, Kumar P. Synergizing drug repurposing and target identification for neurodegenerative diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 205:111-169. [PMID: 38789177 DOI: 10.1016/bs.pmbts.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Despite dedicated research efforts, the absence of disease-curing remedies for neurodegenerative diseases (NDDs) continues to jeopardize human society and stands as a challenge. Drug repurposing is an attempt to find new functionality of existing drugs and take it as an opportunity to discourse the clinically unmet need to treat neurodegeneration. However, despite applying this approach to rediscover a drug, it can also be used to identify the target on which a drug could work. The primary objective of target identification is to unravel all the possibilities of detecting a new drug or repurposing an existing drug. Lately, scientists and researchers have been focusing on specific genes, a particular site in DNA, a protein, or a molecule that might be involved in the pathogenesis of the disease. However, the new era discusses directing the signaling mechanism involved in the disease progression, where receptors, ion channels, enzymes, and other carrier molecules play a huge role. This review aims to highlight how target identification can expedite the whole process of drug repurposing. Here, we first spot various target-identification methods and drug-repositioning studies, including drug-target and structure-based identification studies. Moreover, we emphasize various drug repurposing approaches in NDDs, namely, experimental-based, mechanism-based, and in silico approaches. Later, we draw attention to validation techniques and stress on drugs that are currently undergoing clinical trials in NDDs. Lastly, we underscore the future perspective of synergizing drug repurposing and target identification in NDDs and present an unresolved question to address the issue.
Collapse
Affiliation(s)
- Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Shrutikirti Vashishth
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Neha Kukreti
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Ashima Gulia
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Ashish Russell
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Rashmi K Ambasta
- Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India.
| |
Collapse
|
4
|
Zhu F, Tu H, Chen T. The Microbiota-Gut-Brain Axis in Depression: The Potential Pathophysiological Mechanisms and Microbiota Combined Antidepression Effect. Nutrients 2022; 14:nu14102081. [PMID: 35631224 PMCID: PMC9144102 DOI: 10.3390/nu14102081] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
Depression is a kind of worldwide mental illness with the highest morbidity and disability rate, which is often accompanied by gastrointestinal symptoms. Experiments have demonstrated that the disorder of the intestinal microbial system structure plays a crucial role in depression. The gut–brain axis manifests a potential linkage between the digestion system and the central nervous system (CNS). Nowadays, it has become an emerging trend to treat diseases by targeting intestinal microorganisms (e.g., probiotics) and combining the gut–brain axis mechanism. Combined with the research, we found that the incidence of depression is closely linked to the gut microbiota. Moreover, the transformation of the gut microbiota system structure is considered to have both positive and negative regulatory effects on the development of depression. This article reviewed the mechanism of bidirectional interaction in the gut–brain axis and existing symptom-relieving measures and antidepression treatments related to the gut microbiome.
Collapse
Affiliation(s)
- Fangyuan Zhu
- Departments of Geriatrics, The Second Affiliated Hospital of Nanchang University, Nanchang 330031, China;
- Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Huaijun Tu
- Departments of Geriatrics, The Second Affiliated Hospital of Nanchang University, Nanchang 330031, China;
- Correspondence: (H.T.); (T.C.)
| | - Tingtao Chen
- Departments of Geriatrics, The Second Affiliated Hospital of Nanchang University, Nanchang 330031, China;
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
- Correspondence: (H.T.); (T.C.)
| |
Collapse
|
5
|
Hong M, Cheng L, Liu Y, Wu Z, Zhang P, Zhang X. Mechanisms Underlying the Interaction Between Chronic Neurological Disorders and Microbial Metabolites via Tea Polyphenols Therapeutics. Front Microbiol 2022; 13:823902. [PMID: 35401435 PMCID: PMC8991060 DOI: 10.3389/fmicb.2022.823902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
The number of hydroxyl groups and existence of characteristic structural groups in tea polyphenols (TP) make them have antioxidant activity, which gives TP anti-inflammatory effects, toward protecting the intestinal flora and brain neurons. Host-associated microbial metabolites are emerging as dominant modifiers of the central nervous system. As yet, the investigations on host-microbiota crosstalking remain challenging, studies focusing on metabolites such as serotonin, short-chain fatty acids, and others have pinpointed multiple actionable signaling pathways relevant to host health. However, there are still complexities and apparent limitations inherent in transforming complex human diseases to corresponding animal models. Here, we choose to discuss several intestinal metabolites with research value, as crucial areas for assessing TP-mediated chronic brain diseases interactions with microbial.
Collapse
Affiliation(s)
- Mengyu Hong
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Peng Zhang
- Department of Student Affairs, Xinyang Normal University, Xinyang, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| |
Collapse
|
6
|
Kalra P, Khan H, Kaur A, Singh TG. Mechanistic Insight on Autophagy Modulated Molecular Pathways in Cerebral Ischemic Injury: From Preclinical to Clinical Perspective. Neurochem Res 2022; 47:825-843. [PMID: 34993703 DOI: 10.1007/s11064-021-03500-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022]
Abstract
Cerebral ischemia is one of the most devastating brain injuries and a primary cause of acquired and persistent disability worldwide. Despite ongoing therapeutic interventions at both the experimental and clinical levels, options for stroke-related brain injury are still limited. Several evidence suggests that autophagy is triggered in response to cerebral ischemia, therefore targeting autophagy-related signaling pathways can provide a new direction for the therapeutic implications in the ischemic injury. Autophagy is a highly conserved lysosomal-dependent pathway that degrades and recycles damaged or non-essential cellular components to maintain neuronal homeostasis. But, whether autophagy activation promotes cell survival against ischemic injury or, on the contrary, causes neuronal death is still under debate. We performed an extensive literature search from PubMed, Bentham and Elsevier for various aspects related to molecular mechanisms and pathobiology involved in autophagy and several pre-clinical studies justifiable further in the clinical trials. Autophagy modulates various downstream molecular cascades, i.e., mTOR, NF-κB, HIF-1, PPAR-γ, MAPK, UPR, and ROS pathways in cerebral ischemic injury. In this review, the various approaches and their implementation in the translational research in ischemic injury into practices has been covered. It will assist researchers in finding a way to cross the unbridgeable chasm between the pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Palak Kalra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
7
|
Bhattacharjee A, Prajapati SK, Krishnamurthy S. Supplementation of taurine improves ionic homeostasis and mitochondrial function in the rats exhibiting post-traumatic stress disorder-like symptoms. Eur J Pharmacol 2021; 908:174361. [PMID: 34297965 DOI: 10.1016/j.ejphar.2021.174361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/24/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
RATIONALE Current pharmacotherapy for post-traumatic stress disorder (PTSD) is limited to few antidepressants. Mitochondrial dysfunction is observed in PTSD, along with altered potassium homeostasis. Nutritional supplementation of taurine can improve ionic homeostasis and thereby treat PTSD-like symptoms in rats. AIM The purpose is to study the pharmacological effect of taurine in stress re-stress-induced PTSD in rats. METHODS As per protocol, animals were restrained for 2 h then exposed to footshock (FS) (2 mA/10 s) followed by halothane-induced anesthesia. Behavioral assessments such as elevated plus maze (EPM) and Y-maze tests were performed on days 2, 8, and 32 of experimental protocol after re-stress. In addition, daily oral administration of taurine (100, 200, and 300 mg/kg) and paroxetine (PAX) (10 mg/kg) was done from D-8 to D-32 followed by re-stress. The plasma concentration of taurine, corticosterone, and potassium was measured on Day-32 along with mitochondrial function in discrete brain regions. RESULTS Sub-chronic administration of taurine in high and medium doses significantly ameliorated PTSD-like symptoms such as hyperarousal, anxiety, and improved spatial recognition memory. Taurine in all doses restored the plasma concentration of corticosterone and potassium. SRS-induced alterations in mitochondrial bioenergetics, complex enzyme activities, and reduced mitochondrial membrane potential in different brain regions were ameliorated by taurine. CONCLUSION Nutritional supplementation of taurine improves potassium ionic homeostasis, mitochondrial function, and attenuated PTSD-like symptoms in SRS subjected rats.
Collapse
Affiliation(s)
- Anindita Bhattacharjee
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221 005, U.P., India
| | - Santosh Kumar Prajapati
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221 005, U.P., India
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221 005, U.P., India.
| |
Collapse
|
8
|
Wang M, Sun Y, Hu B, He Z, Chen S, Qi D, An H, Wei Y. Organic Cation Transporters are Involved in Fluoxetine Transport Across the Blood-Brain Barrier in Vivo and in Vitro. Curr Drug Deliv 2021; 19:508-517. [PMID: 34238184 DOI: 10.2174/1567201818666210708122326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The research and development of drugs for the treatment of central nervous system diseases faces many challenges at present. One of the most important questions to be answered is, how does the drug cross the blood-brain barrier to get to the target site for pharmacological action. Fluoxetine is widely used in clinical antidepressant therapy. However, the mechanism by which fluoxetine passes through the BBB also remains unclear. Under physiological pH conditions, fluoxetine is an organic cation with a relatively small molecular weight (<500), which is in line with the substrate characteristics of organic cation transporters (OCTs). Therefore, this study aimed to investigate the interaction of fluoxetine with OCTs at the BBB and BBB-associated efflux transporters. This is of great significance for fluoxetine to better treat depression. Moreover, it can provide a theoretical basis for clinical drug combinations. METHODS In vitro BBB model was developed using human brain microvascular endothelial cells (hCMEC/D3), and the cellular accumulation was tested in the presence or absence of transporter inhibitors. In addition, an in vivo trial was performed in rats to investigate the effect of OCTs on the distribution of fluoxetine in the brain tissue. Fluoxetine concentration was determined by a validated UPLC-MS/MS method. RESULTS The results showed that amantadine (an OCT1/2 inhibitor) and prazosin (an OCT1/3 inhibitor) significantly decreased the cellular accumulation of fluoxetine (P <.001). Moreover, we found that N-methylnicotinamide (an OCT2 inhibitor) significantly inhibited the cellular uptake of 100 and 500 ng/mL fluoxetine (P <.01 and P <.05 respectively). In contrast, corticosterone (an OCT3 inhibitor) only significantly inhibited the cellular uptake of 1000 ng/mL fluoxetine (P <.05). The P-glycoprotein (P-gp) inhibitor, verapamil, and the multidrug resistance resistance-associated proteins (MRPs) inhibitor, MK571, significantly decreased the cellular uptake of fluoxetine. However, intracellular accumulation of fluoxetine was not significantly changed when fluoxetine was incubated with the breast cancer resistance protein (BCRP) inhibitor Ko143. Furthermore, in vivo experiments proved that corticosterone and prazosin significantly inhibited the brain-plasma ratio of fluoxetine at 5.5 h and 12 h, respectively. CONCLUSION OCTs might play a significant role in the transport of fluoxetine across the BBB. In addition, P-gp, BCRP, and MRPs seemed not to mediate the efflux transport of fluoxetine.
Collapse
Affiliation(s)
- Min Wang
- Zhejiang Key Laboratory of Neuropsychiatric Drug Research, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), No.182, Tianmu Shan Road, 310013 Hangzhou, China
| | - Yingying Sun
- Zhejiang Key Laboratory of Neuropsychiatric Drug Research, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), No.182, Tianmu Shan Road, 310013 Hangzhou, China
| | - Bingying Hu
- Zhejiang Key Laboratory of Neuropsychiatric Drug Research, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), No.182, Tianmu Shan Road, 310013 Hangzhou, China
| | - Zhisheng He
- Zhejiang Key Laboratory of Neuropsychiatric Drug Research, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), No.182, Tianmu Shan Road, 310013 Hangzhou, China
| | - Shanshan Chen
- Zhejiang Key Laboratory of Neuropsychiatric Drug Research, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), No.182, Tianmu Shan Road, 310013 Hangzhou, China
| | - Dake Qi
- Zhejiang Key Laboratory of Neuropsychiatric Drug Research, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), No.182, Tianmu Shan Road, 310013 Hangzhou, China
| | - Hai An
- Zhejiang Key Laboratory of Neuropsychiatric Drug Research, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), No.182, Tianmu Shan Road, 310013 Hangzhou, China
| | - Yang Wei
- Zhejiang Key Laboratory of Neuropsychiatric Drug Research, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), No.182, Tianmu Shan Road, 310013 Hangzhou, China
| |
Collapse
|
9
|
Song N, Yang M, Zhang H, Yang SK. Intracellular Calcium Homeostasis and Kidney Disease. Curr Med Chem 2021; 28:3647-3665. [PMID: 33138745 DOI: 10.2174/0929867327666201102114257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 11/22/2022]
Abstract
Kidney disease is a serious health problem that burdens our healthcare system. It is crucial to find the accurate pathogenesis of various types of kidney disease to provide guidance for precise therapies for patients suffering from these diseases. However, the exact molecular mechanisms underlying these diseases have not been fully understood. Disturbance of calcium homeostasis in renal cells plays a fundamental role in the development of various types of kidney disease, such as primary glomerular disease, diabetic nephropathy, acute kidney injury and polycystic kidney disease, through promoting cell proliferation, stimulating extracellular matrix accumulation, aggravating podocyte injury, disrupting cellular energetics as well as dysregulating cell survival and death dynamics. As a result, preventing the disturbance of calcium homeostasis in specific renal cells (such as tubular cells, podocytes and mesangial cells) is becoming one of the most promising therapeutic strategies in the treatment of kidney disease. The endoplasmic reticulum and mitochondria are two vital organelles in this process. Calcium ions cycle between the endoplasmic reticulum and mitochondria at the conjugation of these two organelles known as the mitochondria-associated endoplasmic reticulum membrane, maintaining calcium homeostasis. The pharmacologic modulation of cellular calcium homeostasis can be viewed as a novel therapeutic method for renal diseases. Here, we will introduce calcium homeostasis under physiological conditions and the disturbance of calcium homeostasis in kidney diseases. We will focus on the calcium homeostasis regulation in renal cells (including tubular cells, podocytes and mesangial cells), especially in the mitochondria- associated endoplasmic reticulum membranes of these renal cells.
Collapse
Affiliation(s)
- Na Song
- Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Shi-Kun Yang
- Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
10
|
Yin CY, Li LD, Xu C, Du ZW, Wu JM, Chen X, Xia T, Huang SY, Meng F, Zhang J, Xu PJ, Hua FZ, Muhammad N, Han F, Zhou QG. A novel method for automatic pharmacological evaluation of sucrose preference change in depression mice. Pharmacol Res 2021; 168:105601. [PMID: 33838294 DOI: 10.1016/j.phrs.2021.105601] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/28/2021] [Accepted: 04/01/2021] [Indexed: 01/22/2023]
Abstract
Sucrose preference test (SPT) is a most frequently applied method for measuring anhedonia, a core symptom of depression, in rodents. However, the method of SPT still remains problematic mainly due to the primitive, irregular, and inaccurate various types of home-made equipment in laboratories, causing imprecise, inconsistent, and variable results. To overcome this issue, we devised a novel method for automatic detection of anhedonia in mice using an electronic apparatus with its program for automated detecting the behavior of drinking of mice instead of manual weighing the water bottles. In this system, the liquid surface of the bottles was monitored electronically by infrared monitoring elements which were assembled beside the plane of the water surface and the information of times and duration of each drinking was collected to the principal machine. A corresponding computer program was written and installed in a computer connected to the principal machine for outputting and analyzing the data. This new method, based on the automated system, was sensitive, reliable, and adaptable for evaluation of stress- or drug-induced anhedonia, as well as taste preference and effects of addictive drugs. Extensive application of this automated apparatus for SPT would greatly improve and standardize the behavioral assessment method of anhedonia, being instrumental in novel antidepressant screening and depression researching.
Collapse
Affiliation(s)
- Chun-Yu Yin
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Department of Neonatal Medical Center, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Lian-Di Li
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Chu Xu
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Zi-Wei Du
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jia-Min Wu
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiang Chen
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Tian Xia
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Shu-Ying Huang
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Fan Meng
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jing Zhang
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Pei-Jin Xu
- Wanxiang Biotechnology company, Nanyang 473061, China
| | - Fu-Zhou Hua
- The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang 330006, China
| | - Naveed Muhammad
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine of Jiangsu Province, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Feng Han
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine of Jiangsu Province, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Qi-Gang Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Cardiovascular and Cerebrovascular Medicine of Jiangsu Province, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
11
|
Chrissobolis S, Luu AN, Waldschmidt RA, Yoakum ME, D'Souza MS. Targeting the renin angiotensin system for the treatment of anxiety and depression. Pharmacol Biochem Behav 2020; 199:173063. [PMID: 33115635 DOI: 10.1016/j.pbb.2020.173063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/13/2020] [Accepted: 10/22/2020] [Indexed: 12/27/2022]
Abstract
Emotional disorders like anxiety and depression are responsible for considerable morbidity and mortality all over the world. Several antidepressant and anxiolytic medications are available for the treatment of anxiety and depression. However, a significant number of patients either do not respond to these medications or respond inadequately. Hence, there is a need to identify novel targets for the treatment of anxiety and depression. In this review we focus on the renin angiotensin system (RAS) as a potential target for the treatment of these disorders. We review work that has evaluated the effects of various compounds targeting the RAS on anxiety- and depression-like behaviors. Further, we suggest future work that must be carried out to fully exploit the RAS for the treatment of anxiety and depression. The RAS provides an attractive target for both the identification of novel anxiolytic and antidepressant medications and/or for enhancing the efficacy of currently available medications used for the treatment of anxiety and depression.
Collapse
Affiliation(s)
- Sophocles Chrissobolis
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH 45810, United States of America
| | - Anh N Luu
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH 45810, United States of America
| | - Ryan A Waldschmidt
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH 45810, United States of America
| | - Madison E Yoakum
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH 45810, United States of America
| | - Manoranjan S D'Souza
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH 45810, United States of America.
| |
Collapse
|
12
|
Sakhaie N, Sadegzadeh F, Dehghany R, Adak O, Hakimeh S. Sex-dependent effects of chronic fluoxetine exposure during adolescence on passive avoidance memory, nociception, and prefrontal brain-derived neurotrophic factor mRNA expression. Brain Res Bull 2020; 162:231-236. [DOI: 10.1016/j.brainresbull.2020.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/19/2020] [Accepted: 06/17/2020] [Indexed: 01/26/2023]
|
13
|
Sadegzadeh F, Sakhaie N, Dehghany R, Adak O, Saadati H. Effects of adolescent administration of fluoxetine on novel object recognition memory, anxiety-like behaviors, and hippocampal brain-derived neurotrophic factor level. Life Sci 2020; 260:118338. [PMID: 32841662 DOI: 10.1016/j.lfs.2020.118338] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
AIMS Fluoxetine (FLX) is a common selective serotonin reuptake inhibitor, which is used in adolescents with psychiatric disorders. Controversial results have been obtained in different studies about the effects of FLX on cognitive functions. The present study was designed to examine the effects of chronic FLX exposure during adolescence on cognitive function, anxiety-like behaviors, and hippocampal brain-derived neurotrophic factor (BDNF) mRNA expression among adult male and female rats. MAIN METHODS The sex-dependent effects of FLX chronic administration during adolescence (5 mg/kg/day, gavage) on short-term novel object recognition memory (NORM), anxiety-like behaviors, and BDNF mRNA expression in the hippocampus were examined. NORM and anxiety-like behaviors were assessed by novel object recognition, open field, and elevated plus-maze (EPM) tests, respectively. The expression of BDNF mRNA was also evaluated by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). KEY FINDINGS The present findings revealed the dysfunction of short-term NORM among the adolescent male and female rats exposed to FLX, while the mRNA expression of BDNF was significantly higher among the males. Moreover, adolescent FLX administration had different effects on the anxiety-like behaviors of the male and female rats. Adolescent FLX treatment also decreased the body weight of the male animals. SIGNIFICANCE In conclusion, adolescent FLX treatment impairs cognitive functions in both sexes and increases BDNF mRNA expression in the hippocampus of the male animals. FLX administration during adolescence has sex-dependent effects on anxiety-like behaviors. These findings indicate that the impairment of cognitive functions can occur following the adolescent manipulation of the serotonergic system. Therefore, the side effects of chronic FLX administration during adolescence should be more considered.
Collapse
Affiliation(s)
- Farshid Sadegzadeh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nona Sakhaie
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Raziyeh Dehghany
- Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Omid Adak
- Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hakimeh Saadati
- Department of Physiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran; Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
14
|
Regenhardt RW, Takase H, Lo EH, Lin DJ. Translating concepts of neural repair after stroke: Structural and functional targets for recovery. Restor Neurol Neurosci 2020; 38:67-92. [PMID: 31929129 PMCID: PMC7442117 DOI: 10.3233/rnn-190978] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stroke is among the most common causes of adult disability worldwide, and its disease burden is shifting towards that of a long-term condition. Therefore, the development of approaches to enhance recovery and augment neural repair after stroke will be critical. Recovery after stroke involves complex interrelated systems of neural repair. There are changes in both structure (at the molecular, cellular, and tissue levels) and function (in terms of excitability, cortical maps, and networks) that occur spontaneously within the brain. Several approaches to augment neural repair through enhancing these changes are under study. These include identifying novel drug targets, implementing rehabilitation strategies, and developing new neurotechnologies. Each of these approaches has its own array of different proposed mechanisms. Current investigation has emphasized both cellular and circuit-based targets in both gray and white matter, including axon sprouting, dendritic branching, neurogenesis, axon preservation, remyelination, blood brain barrier integrity, blockade of extracellular inhibitory signals, alteration of excitability, and promotion of new brain cortical maps and networks. Herein, we review for clinicians recovery after stroke, basic elements of spontaneous neural repair, and ongoing work to augment neural repair. Future study requires alignment of basic, translational, and clinical research. The field continues to grow while becoming more clearly defined. As thrombolysis changed stroke care in the 1990 s and thrombectomy in the 2010 s, the augmentation of neural repair and recovery after stroke may revolutionize care for these patients in the coming decade.
Collapse
Affiliation(s)
- Robert W Regenhardt
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
| | - Hajime Takase
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
| | - Eng H Lo
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
| | - David J Lin
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
| |
Collapse
|
15
|
Jiang N, Lv JW, Wang HX, Lu C, Wang Q, Xia TJ, Bao Y, Li SS, Liu XM. Dammarane sapogenins alleviates depression-like behaviours induced by chronic social defeat stress in mice through the promotion of the BDNF signalling pathway and neurogenesis in the hippocampus. Brain Res Bull 2019; 153:239-249. [PMID: 31542427 DOI: 10.1016/j.brainresbull.2019.09.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/04/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022]
Abstract
Chronic social defeat stress (CSDS) is a widely used behavioural paradigm of psychosocial stress that can be used to research the pathogenesis of depression and seek antidepressant drugs. Dammarane sapogenins (DS), the deglycosylated product of ginsenosides, has a wide range of biological activities, including immunomodulatory, antifatigue, antitumour and antidepressant activities. However, whether DS has antidepressant-like effects in a CSDS mouse model remains unknown. Therefore, the present study was conducted to evaluate the antidepressant properties of DS in CSDS mice and its underlying mechanisms. The results showed that the oral administration of DS (40 and 80 mg/kg) increased the time spent in the interaction zone in the social interaction test and the sucrose intake in the sucrose preference test, decreased the latency in the novelty-suppressed feeding test, and reduced the immobility time in both the tail suspension test and forced swimming test. Biochemical analyses of brain tissue and serum showed that DS treatment significantly decreased serum corticosterone levels and enhanced brain monoamine neurotransmitter levels in CSDS mice. In addition, an impairment in hippocampal neurogenesis that paralleled a reduced BDNF level in the hippocampus was observed in the mice that were subjected with CSDS for 3 weeks, while treatment with DS reversed these changes. Moreover, DS treatment significantly upregulated BDNF, pTrkB/TrkB, pAkt/Akt, pPI3K/PI3K, pCREB/CREB, pERK1/2/ERK1/2 and pmTOR/mTOR protein expression in the hippocampus. In conclusion, our results showed that DS exerts antidepressant-like effects in mice with CSDS-induced depression, that the effects may be mediated by the normalization of monoamine neurotransmitter levels, the prevention of HPA axis dysfunction and the impairment of hippocampal neurogenesis, and that this occurs partly through the ability of DS to enhance BDNF expression by increasing the TrkB/CREB/ERK pathway and the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Ning Jiang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing-Wei Lv
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hai-Xia Wang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cong Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Qiong Wang
- Affiliated TCM Hospital/School of Pharmacy/Sino-Portugal TCM International Cooperation Center, Southwest Medical University, Luzhou 646000, China
| | - Tian-Ji Xia
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Bao
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shan-Shan Li
- Affiliated TCM Hospital/School of Pharmacy/Sino-Portugal TCM International Cooperation Center, Southwest Medical University, Luzhou 646000, China
| | - Xin-Min Liu
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
16
|
Cambron M, Mostert J, D’Hooghe M, Nagels G, Willekens B, Debruyne J, Algoed L, Verhagen W, Hupperts R, Heersema D, De Keyser J, De Groot L, De Bruyne J, Foselle E, Guillaume D, Merckx H, Vanopdenbosch L, Vokaer M, Klippel ND, Nuytten D, Van Remoortel A, Symons A, D’haeseleer M, Bissay V, Van Merhaegen-Wieleman A, Van Lint M, Michiels V, Haentjens P, Van Wijmeersch B, Tillemans B, Van Hecke W, Hengstman G. Fluoxetine in progressive multiple sclerosis: The FLUOX-PMS trial. Mult Scler 2019; 25:1728-1735. [DOI: 10.1177/1352458519843051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background: Preclinical studies suggest that fluoxetine has neuroprotective properties that might reduce axonal degeneration in multiple sclerosis (MS). Objective: To determine whether fluoxetine slows accumulation of disability in progressive MS. Methods: In a double-blind multicenter phase 2 trial, patients with primary or secondary progressive MS were randomized to fluoxetine 40 mg/day or placebo for a period of 108 weeks. Clinical assessments were performed every 12 weeks by trained study nurses who visited the patients at their home. The primary outcome was the time to a 12-week confirmed 20% increase in the Timed 25 Foot Walk or 9-Hole Peg test. Secondary outcomes included the Hauser ambulation index, cognitive tests, fatigue, and brain magnetic resonance imaging (MRI). Results: In the efficacy analysis, 69 patients received fluoxetine and 68 patients received placebo. Using the log-rank test ( p = 0.258) and Cox regression analysis ( p = 0.253), we found no significant difference in the primary outcome between the two groups. Due to an unexpected slow rate of progression in the placebo group, there was insufficient statistical power to detect a potential benefit of fluoxetine. We found no differences between the two groups for secondary outcomes. Conclusion: The trial failed to demonstrate a neuroprotective effect of fluoxetine in patients with progressive MS.
Collapse
Affiliation(s)
- Melissa Cambron
- Department of Neurology, UZ Brussel, Brussel, Belgium/Center for Neurosciences (C4N) Vrije Universiteit Brussel (VUB), Brussels, Belgium/ Department of Neurology, AZ Sint-Jan, Bruges, Belgium
| | - Jop Mostert
- Department of Neurology, Rijnstate Hospital, Arnhem, The Netherlands
| | - Marie D’Hooghe
- Department of Neurology, UZ Brussel, Brussel, Belgium/Center for Neurosciences (C4N) Vrije Universiteit Brussel (VUB), Brussels, Belgium/Nationaal MS Centrum Melsbroek, Steenokkerzeel, Belgium
| | - Guy Nagels
- Department of Neurology, UZ Brussel, Brussel, Belgium/Center for Neurosciences (C4N) Vrije Universiteit Brussel (VUB), Brussels, Belgium/Nationaal MS Centrum Melsbroek, Steenokkerzeel, Belgium
| | - Barbara Willekens
- Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - Jan Debruyne
- Department of Neurology, University Hospital Gent, Gent, Belgium
| | - Luc Algoed
- Department of Neurology, AZ Maria Middelares, Gent, Belgium
| | - Wim Verhagen
- Department of Neurology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Raymond Hupperts
- Department of Neurology, Zuyderland Medisch Centrum, Sittard-Geleen, The Netherlands
| | - Dorothea Heersema
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jacques De Keyser
- Department of Neurology, UZ Brussel, Brussel, Belgium/Center for Neurosciences (C4N) Vrije Universiteit Brussel (VUB), Brussels, Belgium/ Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chemotherapy and cognition: comprehensive review on doxorubicin-induced chemobrain. Cancer Chemother Pharmacol 2019; 84:1-14. [PMID: 30955080 DOI: 10.1007/s00280-019-03827-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/25/2019] [Indexed: 01/11/2023]
Abstract
Chemobrain refers to a common sequela experienced by a substantial subset of cancer patients exposed to chemotherapeutic treatment, a phenomenon that dramatically deteriorates the survivors' quality of life and prevents them from restoring their pre-cancer life. This review is intended to address the current knowledge regarding the mechanisms underlying the pathophysiology of the chemobrain phenomenon, with special focus on the antineoplastic agent ''doxorubicin'', which has been shown to be implicated in strenuous central neurotoxicity despite being-almost entirely-peripherally confined. Moreover, the assessment of the post-chemotherapy cognitive impairment in both human and animal subjects, and the potential pharmacotherapy and behavioral intervention strategies are reviewed.
Collapse
|
18
|
Chen MK, Peng CC, Maner RS, Zulkefli ND, Huang SM, Hsieh CL. Geniposide ameliorated fluoxetine-suppressed neurite outgrowth in Neuro2a neuroblastoma cells. Life Sci 2019; 226:1-11. [PMID: 30953644 DOI: 10.1016/j.lfs.2019.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/01/2019] [Accepted: 04/01/2019] [Indexed: 01/08/2023]
Abstract
AIM Fluoxetine (FXT), a selective serotonin reuptake inhibitor (SSRI), is one of the most common psychiatric medications clinically prescribed; while over-produced serotonin may suppress neurite development. The role of major iridoids like geniposide (GPS) and genipin (GNP) from Gardenia jasminoides Ellis fruit (family Rubiaceae) in ameliorating the anti-neurite outgrowth effect of FXT is poorly understood. In this study, the effects of these iridoids on FXT-suppressed neurite outgrowth in Neuro2a neuroblastoma cells were investigated. MAIN METHODS Neuro2a cells were treated with FXT and GPS. The effect of GPS-FXT co-treatment on neurite outgrowth was observed using inverted phase-contrast microscope imaging system, while neurite outgrowth markers - microtubule-associated protein-2 (MAP2) and growth-associated protein 43 (GAP43) were analyzed using RT-PCR, Western blot and immunofluorescence staining. The transcription factor-cAMP response element binding (CREB), and signaling pathways - mitogen-activated protein kinase (MAPK) and protein kinase B/mammalian target of rapamycin (AKT/mTOR) were also analyzed with the help of Western blot. KEY FINDINGS The results showed that FXT decreased the neurite outgrowth in Neuro2a cells and also downregulated gene and protein expression of MAP2 and GAP43. It also downregulated the protein expression of phosphorylated-CREB, MAPK, and AKT/mTOR signaling pathways. In contrast, GPS counteracted the effects of FXT. GPS-FXT co-treatment increased the percentage of neurite-bearing cells by 3.6-fold at 200 μM as compared to FXT treatment only. SIGNIFICANCE This study has provided the possible molecular mechanism showing how FXT exerted its detrimental side-effects on the neurite differentiation, and via the same mechanism how GPS attenuated these side effects.
Collapse
Affiliation(s)
- Ming-Kai Chen
- Department of Biology, National Changhua University of Education, 1 Jin-De Rd., Changhua 50007, Taiwan
| | - Chiung-Chi Peng
- Graduate Institute of Clinical Medicine, Taipei Medical University, 250 Wu-Xing St., Taipei 11031, Taiwan.
| | - Rida S Maner
- Department of Biology, National Changhua University of Education, 1 Jin-De Rd., Changhua 50007, Taiwan
| | - Nor Diana Zulkefli
- Department of Biology, National Changhua University of Education, 1 Jin-De Rd., Changhua 50007, Taiwan
| | - Shang-Ming Huang
- Department of Biology, National Changhua University of Education, 1 Jin-De Rd., Changhua 50007, Taiwan
| | - Chiu-Lan Hsieh
- Department of Biology, National Changhua University of Education, 1 Jin-De Rd., Changhua 50007, Taiwan.
| |
Collapse
|
19
|
Connick P, De Angelis F, Parker RA, Plantone D, Doshi A, John N, Stutters J, MacManus D, Prados Carrasco F, Barkhof F, Ourselin S, Braisher M, Ross M, Cranswick G, Pavitt SH, Giovannoni G, Gandini Wheeler-Kingshott CA, Hawkins C, Sharrack B, Bastow R, Weir CJ, Stallard N, Chandran S, Chataway J. Multiple Sclerosis-Secondary Progressive Multi-Arm Randomisation Trial (MS-SMART): a multiarm phase IIb randomised, double-blind, placebo-controlled clinical trial comparing the efficacy of three neuroprotective drugs in secondary progressive multiple sclerosis. BMJ Open 2018; 8:e021944. [PMID: 30166303 PMCID: PMC6119433 DOI: 10.1136/bmjopen-2018-021944] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION The major unmet need in multiple sclerosis (MS) is for neuroprotective therapies that can slow (or ideally stop) the rate of disease progression. The UK MS Society Clinical Trials Network (CTN) was initiated in 2007 with the purpose of developing a national, efficient, multiarm trial of repurposed drugs. Key underpinning work was commissioned by the CTN to inform the design, outcome selection and drug choice including animal models and a systematic review. This identified seven leading oral agents for repurposing as neuroprotective therapies in secondary progressive MS (SPMS). The purpose of the Multiple Sclerosis-Secondary Progressive Multi-Arm Randomisation Trial (MS-SMART) will be to evaluate the neuroprotective efficacy of three of these drugs, selected with distinct mechanistic actions and previous evidence of likely efficacy, against a common placebo arm. The interventions chosen were: amiloride (acid-sensing ion channel antagonist); fluoxetine (selective serotonin reuptake inhibitor) and riluzole (glutamate antagonist). METHODS AND ANALYSIS Patients with progressing SPMS will be randomised 1:1:1:1 to amiloride, fluoxetine, riluzole or matched placebo and followed for 96 weeks. The primary outcome will be the percentage brain volume change (PBVC) between baseline and 96 weeks, derived from structural MR brain imaging data using the Structural Image Evaluation, using Normalisation, of Atrophy method. With a sample size of 90 per arm, this will give 90% power to detect a 40% reduction in PBVC in any active arm compared with placebo and 80% power to detect a 35% reduction (analysing by analysis of covariance and with adjustment for multiple comparisons of three 1.67% two-sided tests), giving a 5% overall two-sided significance level. MS-SMART is not powered to detect differences between the three active treatment arms. Allowing for a 20% dropout rate, 110 patients per arm will be randomised. The study will take place at Neuroscience centres in England and Scotland. ETHICS AND DISSEMINATION MS-SMART was approved by the Scotland A Research Ethics Committee on 13 January 2013 (REC reference: 13/SS/0007). Results of the study will be submitted for publication in a peer-reviewed journal. TRIAL REGISTRATION NUMBERS NCT01910259; 2012-005394-31; ISRCTN28440672.
Collapse
Affiliation(s)
- Peter Connick
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Floriana De Angelis
- Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK
| | - Richard A Parker
- Edinburgh Clinical Trials Unit, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Domenico Plantone
- Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK
| | - Anisha Doshi
- Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK
| | - Nevin John
- Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK
| | - Jonathan Stutters
- Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK
| | - David MacManus
- Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK
| | - Ferran Prados Carrasco
- Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK
- Department of Medical Physics and Biomedical Engineering, Translational Imaging Group (TIG), Centre for Medical Image Computing (CMIC), UCL, London, UK
| | - Frederik Barkhof
- Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK
- Department of Radiology and Nuclear Medicine, VU University Medical Centre, Amsterdam, The Netherlands
| | - Sebastien Ourselin
- Department of Medical Physics and Biomedical Engineering, Translational Imaging Group (TIG), Centre for Medical Image Computing (CMIC), UCL, London, UK
| | - Marie Braisher
- Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK
| | - Moira Ross
- Edinburgh Clinical Trials Unit, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Gina Cranswick
- Edinburgh Clinical Trials Unit, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Sue H Pavitt
- Dental Translational and Clinical Research Unit (part of the NIHR Leeds CRF), University of Leeds, Leeds, UK
| | - Gavin Giovannoni
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Claudia Angela Gandini Wheeler-Kingshott
- Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK
- Brain MRI 3T Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Clive Hawkins
- Keele Medical School and Institute for Science and Technology in Medicine, Keele University, Keele, UK
| | - Basil Sharrack
- Department of Neuroscience, Royal Hallamshire Hospital, Sheffield, UK
| | | | - Christopher J Weir
- Edinburgh Clinical Trials Unit, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Nigel Stallard
- Statistics and Epidemiology, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | | | - Jeremy Chataway
- Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK
| |
Collapse
|
20
|
Nezhadali A, Motlagh MO, Sadeghzadeh S. Spectrophotometric determination of fluoxetine by molecularly imprinted polypyrrole and optimization by experimental design, artificial neural network and genetic algorithm. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 190:181-187. [PMID: 28922645 DOI: 10.1016/j.saa.2017.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/30/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
A selective method based on molecularly imprinted polymer (MIP) solid-phase extraction (SPE) using UV-Vis spectrophotometry as a detection technique was developed for the determination of fluoxetine (FLU) in pharmaceutical and human serum samples. The MIPs were synthesized using pyrrole as a functional monomer in the presence of FLU as a template molecule. The factors that affecting the preparation and extraction ability of MIP such as amount of sorbent, initiator concentration, the amount of monomer to template ratio, uptake shaking rate, uptake time, washing buffer pH, take shaking rate, Taking time and polymerization time were considered for optimization. First a Plackett-Burman design (PBD) consists of 12 randomized runs were applied to determine the influence of each factor. The other optimization processes were performed using central composite design (CCD), artificial neural network (ANN) and genetic algorithm (GA). At optimal condition the calibration curve showed linearity over a concentration range of 10-7-10-8M with a correlation coefficient (R2) of 0.9970. The limit of detection (LOD) for FLU was obtained 6.56×10-9M. The repeatability of the method was obtained 1.61%. The synthesized MIP sorbent showed a good selectivity and sensitivity toward FLU. The MIP/SPE method was used for the determination of FLU in pharmaceutical, serum and plasma samples, successfully.
Collapse
Affiliation(s)
- Azizollah Nezhadali
- Department of Chemistry, Payame Noor University (PNU), Mashhad, Iran; Department of Chemistry, Payame Noor University, P.O. Box 19395-4697, Tehran 19569, Iran.
| | | | - Samira Sadeghzadeh
- Department of Chemistry, Payame Noor University (PNU), Mashhad, Iran; Department of Chemistry, Payame Noor University, P.O. Box 19395-4697, Tehran 19569, Iran
| |
Collapse
|
21
|
Nagano R, Nagano M, Nakai A, Takeshita T, Suzuki H. Differential effects of neonatal SSRI treatments on hypoxia-induced behavioral changes in male and female offspring. Neuroscience 2017; 360:95-105. [PMID: 28778701 DOI: 10.1016/j.neuroscience.2017.07.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 07/19/2017] [Accepted: 07/19/2017] [Indexed: 02/07/2023]
Abstract
Prenatal hypoxia induced by transient intrauterine ischemia is a serious clinical problem, and at present, effective treatments are lacking. Currently, it is unknown how prenatal hypoxia affects behaviors in adulthood. Therefore, we developed a mouse model that mimics prenatal hypoxia in humans using uterine artery occlusion in late gestation. We examined whether prenatal hypoxia induces behavioral changes in adult male and female offspring by conducting a series of behavioral tests. In adulthood, longer immobility was observed in the forced swim test in males, whereas females showed decreased inhibition in the prepulse inhibition test. We then investigated the effects of two different selective serotonin reuptake inhibitors (SSRIs), fluoxetine (FLX) and escitalopram (ESC), on these behavioral changes. These drugs affect the neurodevelopmental process and have long-term neurological consequences. FLX treatment from postnatal day 3 (P3) to P21 ameliorated the behavioral changes in both male and female mice. In comparison, ESC treatment ameliorated the behavioral changes only in female mice. Neurochemical analysis revealed that dopamine was increased in the female hippocampus, but not in males. Thus, neonatal SSRI treatment decreases dopamine levels in the hippocampus in females selectively. Our findings suggest that prenatal hypoxia is a risk factor for behavioral abnormalities in adulthood, and that neonatal SSRI treatment might have clinical potential for alleviating these long-term behavioral deficits.
Collapse
Affiliation(s)
- Reiko Nagano
- Department of Obstetrics and Gynecology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| | - Masatoshi Nagano
- Department of Pharmacology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| | - Akihito Nakai
- Department of Obstetrics and Gynecology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| | - Toshiyuki Takeshita
- Department of Obstetrics and Gynecology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| | - Hidenori Suzuki
- Department of Pharmacology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| |
Collapse
|
22
|
Murphy R, O'Donoghue S, Counihan T, McDonald C, Calabresi PA, Ahmed MA, Kaplin A, Hallahan B. Neuropsychiatric syndromes of multiple sclerosis. J Neurol Neurosurg Psychiatry 2017; 88:697-708. [PMID: 28285265 DOI: 10.1136/jnnp-2016-315367] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/06/2017] [Accepted: 02/09/2017] [Indexed: 01/13/2023]
Abstract
Neuropsychiatric signs and symptoms occur frequently in individuals with multiple sclerosis (MS), either as the initial presenting complaint prior to a definitive neurological diagnosis or more commonly with disease progression. However, the pathogenesis of these comorbid conditions remains unclear and it remains difficult to accurately elucidate if neuropsychiatric symptoms or conditions are indicators of MS illness severity. Furthermore, both the disease process and the treatments of MS can adversely impact an individual's mental health. In this review, we discuss the common neuropsychiatric syndromes that occur in MS and describe the clinical symptoms, aetiology, neuroimaging findings and management strategies for these conditions.
Collapse
Affiliation(s)
- Ruth Murphy
- Department of Psychiatry, University College Hospital Galway, Galway, Ireland
| | - Stefani O'Donoghue
- Department of Psychiatry, National University of Ireland, Galway, Ireland
| | - Timothy Counihan
- Department of Neurology, National University of Ireland, Galway, Ireland
| | - Colm McDonald
- Department of Psychiatry, National University of Ireland, Galway, Ireland
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mohammed As Ahmed
- Departments of Medical Education and Psychiatry, Hamad Medical Corporation, Doha, Qatar
| | - Adam Kaplin
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Brian Hallahan
- Department of Psychiatry, National University of Ireland, Galway, Ireland
| |
Collapse
|
23
|
Yue JK, Burke JF, Upadhyayula PS, Winkler EA, Deng H, Robinson CK, Pirracchio R, Suen CG, Sharma S, Ferguson AR, Ngwenya LB, Stein MB, Manley GT, Tarapore PE. Selective Serotonin Reuptake Inhibitors for Treating Neurocognitive and Neuropsychiatric Disorders Following Traumatic Brain Injury: An Evaluation of Current Evidence. Brain Sci 2017; 7:E93. [PMID: 28757598 PMCID: PMC5575613 DOI: 10.3390/brainsci7080093] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/15/2017] [Accepted: 07/20/2017] [Indexed: 01/15/2023] Open
Abstract
The prevalence of neuropsychiatric disorders following traumatic brain injury (TBI) is 20%-50%, and disorders of mood and cognition may remain even after recovery of neurologic function is achieved. Selective serotonin reuptake inhibitors (SSRI) block the reuptake of serotonin in presynaptic cells to lead to increased serotonergic activity in the synaptic cleft, constituting first-line treatment for a variety of neurocognitive and neuropsychiatric disorders. This review investigates the utility of SSRIs in treating post-TBI disorders. In total, 37 unique reports were consolidated from the Cochrane Central Register and PubMed (eight randomized-controlled trials (RCTs), nine open-label studies, 11 case reports, nine review articles). SSRIs are associated with improvement of depressive but not cognitive symptoms. Pooled analysis using the Hamilton Depression Rating Scale demonstrate a significant mean decrease of depression severity following sertraline compared to placebo-a result supported by several other RCTs with similar endpoints. Evidence from smaller studies demonstrates mood improvement following SSRI administration with absent or negative effects on cognitive and functional recovery. Notably, studies on SSRI treatment effects for post-traumatic stress disorder after TBI remain absent, and this represents an important direction of future research. Furthermore, placebo-controlled studies with extended follow-up periods and concurrent biomarker, neuroimaging and behavioral data are necessary to delineate the attributable pharmacological effects of SSRIs in the TBI population.
Collapse
Affiliation(s)
- John K Yue
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110, USA.
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA.
| | - John F Burke
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110, USA.
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA.
| | - Pavan S Upadhyayula
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110, USA.
- Department of Psychiatry, University of California, San Diego, CA 92093, USA.
| | - Ethan A Winkler
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110, USA.
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA.
| | - Hansen Deng
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110, USA.
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA.
| | - Caitlin K Robinson
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110, USA.
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA.
| | - Romain Pirracchio
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Catherine G Suen
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110, USA.
- Department of Neurology, University of Utah School of Medicine, Salt Lake, UT 84112, USA.
| | - Sourabh Sharma
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110, USA.
- Stritch School of Medicine, Loyola University Chicago, Chicago, IL 60660, USA.
| | - Adam R Ferguson
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110, USA.
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA.
- San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA.
| | - Laura B Ngwenya
- Department of Neurological Surgery, University of Cincinnati, Cincinnati, OH 45220, USA.
| | - Murray B Stein
- Department of Psychiatry, University of California, San Diego, CA 92093, USA.
- Department of Family and Preventive Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Geoffrey T Manley
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110, USA.
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA.
| | - Phiroz E Tarapore
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110, USA.
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA.
| |
Collapse
|
24
|
Abstract
Good health while aging depends upon optimal cellular and organ functioning that contribute to the regenerative ability of the body during the lifespan, especially when injuries and diseases occur. Although diet may help in the maintenance of cellular fitness during periods of stability or modest decline in the regenerative function of an organ, this approach is inadequate in an aged system, in which the ability to maintain homeostasis is further challenged by aging and the ensuing suboptimal functioning of the regenerative unit, tissue-specific stem cells. Focused nutritional approaches can be used as an intervention to reduce decline in the body's regenerative capacity. This article brings together nutrition-associated therapeutic approaches with the fields of aging, immunology, neurodegenerative disease, and cancer to propose ways in which diet and nutrition can work with standard-of-care and integrated medicine to help improve the brain's function as it ages. The field of regenerative medicine has exploded during the past 2 decades as a result of the discovery of stem cells in nearly every organ system of the body, including the brain, where neural stem cells persist in discrete areas throughout life. This fact, and the uncovering of the genetic basis of plasticity in somatic cells and cancer stem cells, open a door to a world where maintenance and regeneration of organ systems maintain health and extend life expectancy beyond its present limits. An area that has received little attention in regenerative medicine is the influence on regulatory mechanisms and therapeutic potential of nutrition. We propose that a strong relation exists between brain regenerative medicine and nutrition and that nutritional intervention at key times of life could be used to not only maintain optimal functioning of regenerative units as humans age but also play a primary role in therapeutic treatments to combat injury and diseases (in particular, those that occur in the latter one-third of the lifespan).
Collapse
Affiliation(s)
- Dennis A Steindler
- Neuroscience and Aging Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, and
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA; and
| | - Brent A Reynolds
- Department of Neurosurgery, University of Florida, Gainesville, FL
| |
Collapse
|
25
|
Xu Y, Zhang C, Wu F, Xu X, Wang G, Lin M, Yu Y, An Y, Pan J. Piperine potentiates the effects of trans-resveratrol on stress-induced depressive-like behavior: involvement of monoaminergic system and cAMP-dependent pathway. Metab Brain Dis 2016; 31:837-48. [PMID: 26946512 DOI: 10.1007/s11011-016-9809-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/17/2016] [Indexed: 12/26/2022]
Abstract
Stress can act as a precipitation factor in the onset of emotional disorders, particularly depression. Trans-resveratrol is a polyphenolic compound enriched in polygonum cuspidatum and has been found to exert antidepressant-like effects in our previous studies. In present study, we assessed the effects of trans-resveratrol used in combination with piperine, commonly known as a bioavailability enhancer, on chronic unpredictable mild stress-induced depressive-like behaviors and relevant molecular targets. Trans-resveratrol used alone reduced the immobility time of rats in the forced swimming test, with the maximal effects of trans-resveratrol around 60 % inhibition at the highest dose tested, 40 mg/kg. However, when a subthreshold dose of piperine, 2.5 mg/kg was used in combination with trans-resveratrol, the minimum effective dose of trans-resveratrol in reducing the immobility time was reduced to 20 mg/kg. Further evidence from neurochemical (monoamines in the frontal cortex and the hippocampus), biochemical (monoamine oxidase, MAO activities) and molecular biological (cAMP, PKA, CREB and BDNF) assays supported the findings in the behavioral studies. These results suggest that the co-treatment strategy with trans-resveratrol and piperine might be an alternative therapy that provides efficacious protection against chronic stress.
Collapse
Affiliation(s)
- Ying Xu
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325021, China
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Chong Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Feiyan Wu
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325021, China
| | - Xiaoxiao Xu
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325021, China
| | - Gang Wang
- Department of Clinical Pharmacy, Hangzhou First People's Hospital, Hangzhou, Zhejiang Province, 310006, China
| | - Mengmeng Lin
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325021, China
| | - Yingcong Yu
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325021, China
- Wenzhou Third Clinical Institute affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, Zhejiang Province, 325000, China
| | - Yiran An
- University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Jianchun Pan
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325021, China.
| |
Collapse
|
26
|
Long-term Ameliorative Effects of the Antidepressant Fluoxetine Exposure on Cognitive Deficits in 3 × TgAD Mice. Mol Neurobiol 2016; 54:4160-4171. [DOI: 10.1007/s12035-016-9952-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/06/2016] [Indexed: 01/08/2023]
|
27
|
Lee JY, Choi HY, Yune TY. Fluoxetine and vitamin C synergistically inhibits blood-spinal cord barrier disruption and improves functional recovery after spinal cord injury. Neuropharmacology 2016; 109:78-87. [PMID: 27256500 DOI: 10.1016/j.neuropharm.2016.05.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 01/08/2023]
Abstract
Recently we reported that fluoxetine (10 mg/kg) improves functional recovery by attenuating blood spinal cord barrier (BSCB) disruption after spinal cord injury (SCI). Here we investigated whether a low-dose of fluoxetine (1 mg/kg) and vitamin C (100 mg/kg), separately not possessing any protective effect, prevents BSCB disruption and improves functional recovery when combined. After a moderate contusion injury at T9 in rat, a low-dose of fluoxetine and vitamin C, or the combination of both was administered intraperitoneally immediately after SCI and further treated once a day for 14 d. Co-treatment with fluoxetine and vitamin C significantly attenuated BSCB permeability at 1 d after SCI. When only fluoxetine or vitamin C was treated after injury, however, there was no effect on BSCB disruption. Co-treatment with fluoxetine and vitamin C also significantly inhibited the expression and activation of MMP-9 at 8 h and 1 d after injury, respectively, and the infiltration of neutrophils (at 1 d) and macrophages (at 5 d) and the expression of inflammatory mediators (at 2 h, 6 h, 8 h or 24 h after injury) were significantly inhibited by co-treatment with fluoxetine and vitamin C. Furthermore, the combination of fluoxetine and vitamin C attenuated apoptotic cell death at 1 d and 5 d and improved locomotor function at 5 weeks after SCI. These results demonstrate the synergistic effect combination of low-dose fluoxetine and vitamin C on BSCB disruption after SCI and furthermore support the effectiveness of the combination treatment regimen for the management of acute SCI.
Collapse
Affiliation(s)
- Jee Y Lee
- Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hae Y Choi
- Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Tae Y Yune
- Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
28
|
Sarkissova KY, Fedotova IB, Surina NM, Nikolaev GM, Perepelkina OV, Poletaeva II. Effect of chronic fluoxetine treatment on audiogenic epilepsy, symptoms of anxiety and depression in rats of four lines. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2016; 467:55-8. [PMID: 27193875 DOI: 10.1134/s0012496616020058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Indexed: 11/22/2022]
Abstract
Anxiety (Anx) and depression (Dp) levels were evaluated in rats of 4 lines: 2 of them (KM and "4") exhibited audiogenic seizures (AS), and 2 (Wistar and "0") had no AS. In KM rats (with AS), Anx and Dp levels were higher than in Wistars (without AS), while in "4" and "0" rats with the related genetic background but contrasting in AS severity, Anx and Dp indices were not different. Fluoxetine treatment exerted antidepressant effect in all rat lines irrespective of its effect on AS. Thus, phenotypic expression of AS is not directly associated with the mechanisms of Anx and Dp development.
Collapse
Affiliation(s)
- K Yu Sarkissova
- Institute of Higher Nervous Activity and Neurophysiology, RAS, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
29
|
3,5,6,7,8,3',4'-Heptamethoxyflavone, a Citrus Flavonoid, Ameliorates Corticosterone-Induced Depression-like Behavior and Restores Brain-Derived Neurotrophic Factor Expression, Neurogenesis, and Neuroplasticity in the Hippocampus. Molecules 2016; 21:541. [PMID: 27120588 PMCID: PMC6273269 DOI: 10.3390/molecules21040541] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 01/08/2023] Open
Abstract
We previously reported that the citrus flavonoid 3,5,6,7,8,3′,4′-heptamethoxyflavone (HMF) increased the expression of brain-derived neurotrophic factor (BDNF) in the hippocampus of a transient global ischemia mouse model. Since the BDNF hypothesis of depression postulates that a reduction in BDNF is directly involved in the pathophysiology of depression, we evaluated the anti-depressive effects of HMF in mice with subcutaneously administered corticosterone at a dose of 20 mg/kg/day for 25 days. We demonstrated that the HMF treatment ameliorated (1) corticosterone-induced body weight loss, (2) corticosterone-induced depression-like behavior, and (3) corticosterone-induced reductions in BDNF production in the hippocampus. We also showed that the HMF treatment restored (4) corticosterone-induced reductions in neurogenesis in the dentate gyrus subgranular zone and (5) corticosterone-induced reductions in the expression levels of phosphorylated calcium-calmodulin-dependent protein kinase II and extracellular signal-regulated kinase1/2. These results suggest that HMF exerts its effects as an anti-depressant drug by inducing the expression of BDNF.
Collapse
|
30
|
Boulle F, Pawluski JL, Homberg JR, Machiels B, Kroeze Y, Kumar N, Steinbusch HWM, Kenis G, van den Hove DLA. Developmental fluoxetine exposure increases behavioral despair and alters epigenetic regulation of the hippocampal BDNF gene in adult female offspring. Horm Behav 2016; 80:47-57. [PMID: 26844865 DOI: 10.1016/j.yhbeh.2016.01.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 12/16/2015] [Accepted: 01/29/2016] [Indexed: 10/22/2022]
Abstract
A growing number of infants are exposed to selective serotonin reuptake inhibitor (SSRI) medications during the perinatal period. Perinatal exposure to SSRI medications alter neuroplasticity and increase depressive- and anxiety-related behaviors, particularly in male offspring as little work has been done in female offspring to date. The long-term effects of SSRI on development can also differ with previous exposure to prenatal stress, a model of maternal depression. Because of the limited work done on the role of developmental SSRI exposure on neurobehavioral outcomes in female offspring, the aim of the present study was to investigate how developmental fluoxetine exposure affects anxiety and depression-like behavior, as well as the regulation of hippocampal brain-derived neurotrophic factor (BDNF) signaling in the hippocampus of adult female offspring. To do this female Sprague-Dawley rat offspring were exposed to prenatal stress and fluoxetine via the dam, for a total of four groups of female offspring: 1) No Stress+Vehicle, 2) No Stress+Fluoxetine, 3) Prenatal Stress+Vehicle, and 4) Prenatal Stress+Fluoxetine. Primary results show that, in adult female offspring, developmental SSRI exposure significantly increases behavioral despair measures on the forced swim test, decreases hippocampal BDNF exon IV mRNA levels, and increases levels of the repressive histone 3 lysine 27 tri-methylated mark at the corresponding promoter. There was also a significant negative correlation between hippocampal BDNF exon IV mRNA levels and immobility in the forced swim test. No effects of prenatal stress or developmental fluoxetine exposure were seen on tests of anxiety-like behavior. This research provides important evidence for the long-term programming effects of early-life exposure to SSRIs on female offspring, particularily with regard to affect-related behaviors and their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Fabien Boulle
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, European Graduate School of Neuroscience (EURON), Universiteitssingel 50, P.O. box 616, 6200, MD, Maastricht, The Netherlands; Center for Psychiatry and Neuroscience, INSERM, U894, University Pierre and Marie Curie, Paris, France
| | - Jodi L Pawluski
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, European Graduate School of Neuroscience (EURON), Universiteitssingel 50, P.O. box 616, 6200, MD, Maastricht, The Netherlands; University of Liege, GIGA-Neurosciences, 1 avenue de l'Hôpital (Bat. B36), B-4000 Liège, Belgium.
| | - Judith R Homberg
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Radboud University Medical Centre, Department of Cognitive Neuroscience, Geert Grooteplein 21, 6525 EZ Nijmegen, The Netherlands
| | - Barbie Machiels
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, European Graduate School of Neuroscience (EURON), Universiteitssingel 50, P.O. box 616, 6200, MD, Maastricht, The Netherlands
| | - Yvet Kroeze
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Radboud University Medical Centre, Department of Cognitive Neuroscience, Geert Grooteplein 21, 6525 EZ Nijmegen, The Netherlands
| | - Neha Kumar
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, European Graduate School of Neuroscience (EURON), Universiteitssingel 50, P.O. box 616, 6200, MD, Maastricht, The Netherlands
| | - Harry W M Steinbusch
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, European Graduate School of Neuroscience (EURON), Universiteitssingel 50, P.O. box 616, 6200, MD, Maastricht, The Netherlands
| | - Gunter Kenis
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, European Graduate School of Neuroscience (EURON), Universiteitssingel 50, P.O. box 616, 6200, MD, Maastricht, The Netherlands
| | - Daniel L A van den Hove
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, European Graduate School of Neuroscience (EURON), Universiteitssingel 50, P.O. box 616, 6200, MD, Maastricht, The Netherlands; Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Fuechsleinstrasse 15, 97080 Wuerzburg, Germany
| |
Collapse
|
31
|
Boulle F, Pawluski JL, Homberg JR, Machiels B, Kroeze Y, Kumar N, Steinbusch HWM, Kenis G, Van den Hove DLA. Prenatal stress and early-life exposure to fluoxetine have enduring effects on anxiety and hippocampal BDNF gene expression in adult male offspring. Dev Psychobiol 2015; 58:427-38. [PMID: 26608001 DOI: 10.1002/dev.21385] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 11/03/2015] [Indexed: 12/12/2022]
Abstract
With the growing use of selective serotonin reuptake inhibitor medications (SSRIs) for the treatment of depression during the perinatal period, questions have been raised about the longterm impact of these medications on development. We aimed to investigate how developmental SSRI exposure may alter affect-related behaviors and associated molecular processes in offspring using a rodent model of maternal stress and depression. For this purpose, prenatally stressed or non-stressed male offspring were exposed to fluoxetine (5 mg/kg/day) or vehicle, via lactation, until weaning. Primary results show that postnatal fluoxetine exposure differentially altered anxiety-like behavior by increasing anxiety in non-stressed offspring and decreasing anxiety in prenatally stressed offspring. In the hippocampus, developmental fluoxetine exposure decreased BDNF IV and TrkB mRNA expression. Prenatal stress alone also decreased escape behaviors and decreased hippocampal BDNF IV mRNA expression. These data provide important evidence for the long-term programming effects of early-life exposure to SSRIs on brain and behavior.
Collapse
Affiliation(s)
- Fabien Boulle
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, European Graduate School of Neuroscience (EURON), Universiteitssingel 50, P.O. box 616, 6200 MD, Maastricht, The Netherlands.,Center for Psychiatry and Neuroscience, INSERM U894, University Pierre and Marie Curie, Paris, France
| | - Jodi L Pawluski
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, European Graduate School of Neuroscience (EURON), Universiteitssingel 50, P.O. box 616, 6200 MD, Maastricht, The Netherlands.,University of Liege, GIGA-Neurosciences, 1 avenue de l'Hôpital (Bat. B36), B-4000 Liège, Belgium
| | - Judith R Homberg
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Radboud University Medical Centre, Department of Cognitive Neuroscience, Geert Grooteplein 21, 6525 EZ Nijmegen, The Netherlands
| | - Barbie Machiels
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, European Graduate School of Neuroscience (EURON), Universiteitssingel 50, P.O. box 616, 6200 MD, Maastricht, The Netherlands
| | - Yvet Kroeze
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Radboud University Medical Centre, Department of Cognitive Neuroscience, Geert Grooteplein 21, 6525 EZ Nijmegen, The Netherlands
| | - Neha Kumar
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, European Graduate School of Neuroscience (EURON), Universiteitssingel 50, P.O. box 616, 6200 MD, Maastricht, The Netherlands
| | - Harry W M Steinbusch
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, European Graduate School of Neuroscience (EURON), Universiteitssingel 50, P.O. box 616, 6200 MD, Maastricht, The Netherlands
| | - Gunter Kenis
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, European Graduate School of Neuroscience (EURON), Universiteitssingel 50, P.O. box 616, 6200 MD, Maastricht, The Netherlands
| | - Daniel L A Van den Hove
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, European Graduate School of Neuroscience (EURON), Universiteitssingel 50, P.O. box 616, 6200 MD, Maastricht, The Netherlands.,Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Fuechsleinstrasse 15, 97080 Wuerzburg, Germany
| |
Collapse
|
32
|
Qiao J, Wang J, Wang H, Zhang Y, Zhu S, Adilijiang A, Guo H, Zhang R, Guo W, Luo G, Qiu Y, Xu H, Kong J, Huang Q, Li XM. Regulation of astrocyte pathology by fluoxetine prevents the deterioration of Alzheimer phenotypes in an APP/PS1 mouse model. Glia 2015; 64:240-54. [PMID: 26446044 DOI: 10.1002/glia.22926] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 09/10/2015] [Accepted: 09/14/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Jinping Qiao
- Mental Health Center, Shantou University; Shantou Guangdong People's Republic of China
- Clinical Laboratory; The First Affiliated Hospital of Anhui Medical University; Hefei Anhui People's Republic of China
- Department of Anatomy and Cell Science; University of Manitoba; Winnipeg Manitoba Canada
| | - Junhui Wang
- Mental Health Center, Shantou University; Shantou Guangdong People's Republic of China
- Department of Psychiatry; University of Alberta; Edmonton Alberta Canada
| | - Hongxing Wang
- Beijing Anding Hospital, Capital Medical University; Beijing People's Republic of China
| | - Yanbo Zhang
- Department of Psychiatry; College of Medicine, University of Saskatchewan; Saskatoon Saskatchewan Canada
| | - Shenghua Zhu
- Department of Anatomy and Cell Science; University of Manitoba; Winnipeg Manitoba Canada
| | | | - Huining Guo
- Department of Psychiatry; University of Alberta; Edmonton Alberta Canada
| | - Ruiguo Zhang
- Department of Psychiatry; Xijing Hospital, the Fourth Military Medical University; Xi'an Shanxi People's Republic of China
| | - Wei Guo
- Beijing Anding Hospital, Capital Medical University; Beijing People's Republic of China
| | - Gang Luo
- Department of Neurology; First Affiliated Hospital of Henan University; Henan People's Republic of China
| | - Yiqing Qiu
- Department of Neurosurgery; Shanghai Changhai Hospital, Secondary Military Medical University; Shanghai People's Republic of China
| | - Haiyun Xu
- Mental Health Center, Shantou University; Shantou Guangdong People's Republic of China
| | - Jiming Kong
- Department of Anatomy and Cell Science; University of Manitoba; Winnipeg Manitoba Canada
| | - Qingjun Huang
- Mental Health Center, Shantou University; Shantou Guangdong People's Republic of China
| | - Xin-Min Li
- Department of Psychiatry; University of Alberta; Edmonton Alberta Canada
| |
Collapse
|
33
|
Rama Rao KV, Kielian T. Neuron-astrocyte interactions in neurodegenerative diseases: Role of neuroinflammation. ACTA ACUST UNITED AC 2015; 6:245-263. [PMID: 26543505 DOI: 10.1111/cen3.12237] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Selective neuron loss in discrete brain regions is a hallmark of various neurodegenerative disorders, although the mechanisms responsible for this regional vulnerability of neurons remain largely unknown. Earlier studies attributed neuron dysfunction and eventual loss during neurodegenerative diseases as exclusively cell autonomous. Although cell-intrinsic factors are one critical aspect in dictating neuron death, recent evidence also supports the involvement of other central nervous system cell types in propagating non-cell autonomous neuronal injury during neurodegenerative diseases. One such example is astrocytes, which support neuronal and synaptic function, but can also contribute to neuroinflammatory processes through robust chemokine secretion. Indeed, aberrations in astrocyte function have been shown to negatively impact neuronal integrity in several neurological diseases. The present review focuses on neuroinflammatory paradigms influenced by neuron-astrocyte cross-talk in the context of select neurodegenerative diseases.
Collapse
Affiliation(s)
- Kakulavarapu V Rama Rao
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
34
|
Alvarez-Rodriguez J. Hypersynchronic Mental Automatisms: An Innovative Psychiatric Hypothesis Reaffirming Its Validity for Fifteen Years. Health (London) 2015. [DOI: 10.4236/health.2015.71006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Ping G, Qian W, Song G, Zhaochun S. Valsartan reverses depressive/anxiety-like behavior and induces hippocampal neurogenesis and expression of BDNF protein in unpredictable chronic mild stress mice. Pharmacol Biochem Behav 2014; 124:5-12. [DOI: 10.1016/j.pbb.2014.05.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 05/06/2014] [Accepted: 05/10/2014] [Indexed: 01/12/2023]
|
36
|
Borowicz KK, Zarczuk R, Latalski M, Borowicz KM. Reboxetine and its influence on the action of classical antiepileptic drugs in the mouse maximal electroshock model. Pharmacol Rep 2014; 66:430-5. [PMID: 24905519 DOI: 10.1016/j.pharep.2013.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 11/07/2013] [Accepted: 11/18/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND Our previous studies revealed that different classes of antidepressant drugs differently affect seizure phenomena. Continuing our research in this field, in the present study we wanted to investigate the influence of acute and chronic treatment with reboxetine, a selective norepinephrine reuptake inhibitor, on the anticonvulsant action of classical antiepileptic drugs. METHODS Experiments were conducted in the model of electroconvulsive threshold and maximal electroshock in mice. Motor coordination was evaluated in the chimney test and long term memory in the step-through passive avoidance task. Brain concentrations of antiepileptic drugs were detected by fluorescence polarization immunoassay. RESULTS Acute treatment with reboxetine (8-16 mg/kg) significantly raised the electroconvulsive threshold. In contrast, chronic reboxetine (2-16 mg/kg) did not affect this parameter. Single administration of the antidepressant applied at its subthreshold doses enhanced the action of valproate, carbamazepine and phenobarbital. The antielectroshock effect of phenytoin was also potentiated by acute reboxetine, but only at doses increasing the threshold. Repeated administration of reboxetine (8-12 mg/kg) enhanced the anticonvulsant action of carbamazepine, but not that of three remaining antiepileptic drugs. Neither acute nor chronic reboxetine changed the brain concentrations of valproate, carbamazepine, phenytoin or phenobarbital. Therefore, all revealed interactions seem to be pharmacodynamic. In terms of undesired effects, acute/chronic reboxetine and its combinations with classical antiepileptic drugs did not significantly impair motor performance or long-term memory in mice. CONCLUSIONS As far as the obtained data can be extrapolated into clinical conditions, it seems that reboxetine may be safely used in the treatment of depressive disorders in epileptic patients.
Collapse
Affiliation(s)
- Kinga K Borowicz
- Independent Unit of Experimental Neuropathophysiology, Department of Pathophysiology, Medical University, Lublin, Poland.
| | - Radosław Zarczuk
- Independent Unit of Experimental Neuropathophysiology, Department of Pathophysiology, Medical University, Lublin, Poland
| | - Michał Latalski
- Clinic for Children's Orthopaedics, Medical University, Lublin, Poland
| | - Kornel M Borowicz
- Independent Unit of Experimental Neuropathophysiology, Department of Pathophysiology, Medical University, Lublin, Poland
| |
Collapse
|
37
|
Cambron M, Mostert J, Haentjens P, D'Hooghe M, Nagels G, Willekens B, Heersema D, Debruyne J, Van Hecke W, Algoed L, De Klippel N, Fosselle E, Laureys G, Merckx H, Van Wijmeersch B, Vanopdenbosch L, Verhagen W, Hupperts R, Hengstman G, Michiels V, Van Merhaegen-Wieleman A, De Keyser J. Fluoxetine in progressive multiple sclerosis (FLUOX-PMS): study protocol for a randomized controlled trial. Trials 2014; 15:37. [PMID: 24460863 PMCID: PMC3931920 DOI: 10.1186/1745-6215-15-37] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/14/2014] [Indexed: 11/30/2022] Open
Abstract
Background Currently available disease-modifying treatments acting by modifying the immune response are ineffective in progressive multiple sclerosis (MS), which is caused by a widespread axonal degeneration. Mechanisms suspected to be involved in this widespread axonal degeneration are reduced axonal energy metabolism, axonal glutamate toxicity, and reduced cerebral blood flow. Fluoxetine might theoretically reduce axonal degeneration in MS because it stimulates energy metabolism through enhancing glycogenolysis, stimulates the production of brain-derived neurotrophic factor, and dilates cerebral arterioles. The current document presents the protocol of a clinical trial to test the hypothesis that fluoxetine slows down the progressive phase of MS. Methods/Design The FLUOX-PMS trial is a multi-center, randomized, controlled and double-blind clinical study. A total of 120 patients with the diagnosis of either secondary or primary progressive MS will be treated either by fluoxetine (40 mg daily) or placebo for a total period of 108 weeks. The primary endpoint is the time to confirmed disease progression defined as either at least a 20% increase in the timed 25-Foot Walk or at least a 20% increase in the 9-Hole Peg Test. Secondary endpoints include the Hauser ambulation index, cognitive changes, fatigue, magnetic resonance imaging of the brain, and in a small subgroup optical coherence tomography. Discussion The FLUOX-PMS trial will gives us information as to whether fluoxetine has neuroprotective effects in patients with progressive MS. Trial Registration Eudra-CT: 2011-003775-11
Collapse
Affiliation(s)
- Melissa Cambron
- Department of Neurology, University Hospital Brussel, Center for Neurosciences Vrije Universiteit Brussel (VUB) UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
IJzerman MJ, Renzenbrink GJ, Geurts ACH. Neuromuscular stimulation after stroke: from technology to clinical deployment. Expert Rev Neurother 2014; 9:541-52. [DOI: 10.1586/ern.09.6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Polussa J, Schneider A, Hagerman R. Molecular Advances Leading to Treatment Implications for Fragile X Premutation Carriers. BRAIN DISORDERS & THERAPY 2014; 3:1000119. [PMID: 25436181 PMCID: PMC4245015 DOI: 10.4172/2168-975x.1000119] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fragile X syndrome (FXS) is the most common single gene cause of intellectual disability and it is characterized by a CGG expansion of more than 200 repeats in the FMR1 gene, leading to methylation of the promoter and gene silencing. The fragile X premutation, characterized by a 55 to 200 CGG repeat expansion, causes health problems and developmental difficulties in some, but not all, carriers. The premutation causes primary ovarian insufficiency in approximately 20% of females, psychiatric problems (including depression and/or anxiety) in approximately 50% of carriers and a neurodegenerative disorder, the fragile X-associated tremor ataxia syndrome (FXTAS), in approximately 40% of males and 16% of females later in life. Recent clinical studies in premutation carriers have expanded the health problems that may be seen. Advances in the molecular pathogenesis of the premutation have shown significant mitochondrial dysfunction and oxidative stress in neurons which may be amenable to treatment. Here we review the clinical problems of carriers and treatment recommendations.
Collapse
Affiliation(s)
- Jonathan Polussa
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health System, Sacramento, California, USA
- Department of Pediatrics, University of California Davis Health System, Sacramento, California, USA
| | - Andrea Schneider
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health System, Sacramento, California, USA
- Department of Pediatrics, University of California Davis Health System, Sacramento, California, USA
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health System, Sacramento, California, USA
- Department of Pediatrics, University of California Davis Health System, Sacramento, California, USA
| |
Collapse
|
40
|
Abstract
Changes in the level and activity of brain-derived neurotrophic factor (BDNF) have been described in a number of neurodegenerative disorders since early 1990s. However, only in Huntington disease (HD) gain- and loss-of-function experiments have mechanistically linked these abnormalities with the genetic defect.In this chapter we will describe how huntingtin protein, whose mutation causes HD, is involved in the physiological control of BDNF synthesis and transport in neurons and how both processes are simultaneously disrupted in HD. We will describe the underlying molecular mechanisms and discuss pre-clinical data concerning the impact of the experimental manipulation of BDNF levels on HD progression. These studies have revealed that a major loss of BDNF protein in the brain of HD patients may contribute to the clinical manifestations of the disease. The experimental strategies under investigation to increase brain BDNF levels in animal models of HD will also be described, with a view to ultimately improving the clinical treatment of this condition.
Collapse
Affiliation(s)
- Chiara Zuccato
- Department of Biosciences and Centre for Stem cell Research, Università degli Studi di Milano, Via Viotti 3/5, 20133, Milan, Italy,
| | | |
Collapse
|
41
|
Kovacs D, Gonda X, Petschner P, Edes A, Eszlari N, Bagdy G, Juhasz G. Antidepressant treatment response is modulated by genetic and environmental factors and their interactions. Ann Gen Psychiatry 2014; 13:17. [PMID: 25053968 PMCID: PMC4106212 DOI: 10.1186/1744-859x-13-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/30/2014] [Indexed: 12/28/2022] Open
Abstract
Although there is a wide variety of antidepressants with different mechanisms of action available, the efficacy of treatment is not satisfactory. Genetic factors are presumed to play a role in differences in medication response; however, available evidence is controversial. Even genome-wide association studies failed to identify genes or regions which would consequently influence treatment response. We conducted a literature review in order to uncover possible mechanisms concealing the direct effects of genetic variants, focusing mainly on reports from large-scale studies including STAR*D or GENDEP. We observed that inclusion of environmental factors, gene-environment and gene-gene interactions in the model improves the probability of identifying genetic modulator effects of antidepressant response. It could be difficult to determine which allele of a polymorphism is the risk factor for poor treatment outcome because depending on the acting environmental factors different alleles could be advantageous to improve treatment response. Moreover, genetic variants tend to show better association with certain intermediate phenotypes linked to depression because these are more objective and detectable than traditional treatment outcomes. Thus, detailed modeling of environmental factors and their interactions with different genetic pathways could significantly improve our understanding of antidepressant efficacy. In addition, the complexity of depression itself demands a more comprehensive analysis of symptom trajectories if we are to extract useful information which could be used in the personalization of antidepressant treatment.
Collapse
Affiliation(s)
- Dávid Kovacs
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, 1089 Budapest, Hungary ; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, 1089 Budapest, Hungary
| | - Xénia Gonda
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, 1089 Budapest, Hungary ; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, 1089 Budapest, Hungary ; Department of Clinical and Theoretical Mental Health, Kutvolgyi Clinical Center, Semmelweis University, 1125 Budapest, Hungary
| | - Péter Petschner
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, 1089 Budapest, Hungary ; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, 1089 Budapest, Hungary
| | - Andrea Edes
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, 1089 Budapest, Hungary ; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, 1089 Budapest, Hungary
| | - Nóra Eszlari
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, 1089 Budapest, Hungary ; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, 1089 Budapest, Hungary
| | - György Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, 1089 Budapest, Hungary ; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, 1089 Budapest, Hungary
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, 1089 Budapest, Hungary ; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, 1089 Budapest, Hungary ; Neuroscience and Psychiatry Unit, School of Community Based Medicine, Faculty of Medical and Human Sciences, The University of Manchester, UK and Manchester Academic Health Sciences Centre, M13 9PT Manchester, UK
| |
Collapse
|
42
|
Tobe BTD, Brandel MG, Nye JS, Snyder EY. Implications and limitations of cellular reprogramming for psychiatric drug development. Exp Mol Med 2013; 45:e59. [PMID: 24232258 PMCID: PMC3849573 DOI: 10.1038/emm.2013.124] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 08/28/2013] [Indexed: 12/28/2022] Open
Abstract
Human-induced pluripotent stem cells (hiPSCs) derived from somatic cells of patients have opened possibilities for in vitro modeling of the physiology of neural (and other) cells in psychiatric disease states. Issues in early stages of technology development include (1) establishing a library of cells from adequately phenotyped patients, (2) streamlining laborious, costly hiPSC derivation and characterization, (3) assessing whether mutations or other alterations introduced by reprogramming confound interpretation, (4) developing efficient differentiation strategies to relevant cell types, (5) identifying discernible cellular phenotypes meaningful for cyclic, stress induced or relapsing-remitting diseases, (6) converting phenotypes to screening assays suitable for genome-wide mechanistic studies or large collection compound testing and (7) controlling for variability in relation to disease specificity amidst low sample numbers. Coordination of material for reprogramming from patients well-characterized clinically, genetically and with neuroimaging are beginning, and initial studies have begun to identify cellular phenotypes. Finally, several psychiatric drugs have been found to alter reprogramming efficiency in vitro, suggesting further complexity in applying hiPSCs to psychiatric diseases or that some drugs influence neural differentiation moreso than generally recognized. Despite these challenges, studies utilizing hiPSCs may eventually serve to fill essential niches in the translational pipeline for the discovery of new therapeutics.
Collapse
Affiliation(s)
- Brian T D Tobe
- 1] Program in Stem Cell and Regenerative Biology, Sanford-Burnham Medical Research Institute, Burnham Institute for Medical Research, La Jolla, CA, USA [2] Department of Psychiatry, Veterans Administration Medical Center, La Jolla, CA, USA
| | | | | | | |
Collapse
|
43
|
Neuroligin modulates the locomotory dopaminergic and serotonergic neuronal pathways of C. elegans. Neurogenetics 2013; 14:233-42. [DOI: 10.1007/s10048-013-0377-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 09/21/2013] [Indexed: 11/27/2022]
|
44
|
Koch MW, Cutter G, Stys PK, Yong VW, Metz LM. Treatment trials in progressive MS—current challenges and future directions. Nat Rev Neurol 2013; 9:496-503. [DOI: 10.1038/nrneurol.2013.148] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Zhornitsky S, Wee Yong V, Koch MW, Mackie A, Potvin S, Patten SB, Metz LM. Quetiapine fumarate for the treatment of multiple sclerosis: focus on myelin repair. CNS Neurosci Ther 2013; 19:737-44. [PMID: 23870612 DOI: 10.1111/cns.12154] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 06/20/2013] [Accepted: 06/26/2013] [Indexed: 02/03/2023] Open
Abstract
Multiple sclerosis (MS) is a central nervous system disorder that is associated with progressive oligodendrocyte and neuronal loss, axonal degeneration, and demyelination. Several medications that mitigate immune abnormalities reduce both the frequency of relapses and inflammation on magnetic resonance imaging, leading to improved outcomes for people with the relapsing-remitting form of MS. However, there are no treatments for the progressive forms of MS where neurons and axons continue to degenerate; here, neuroprotective therapies, or medications that rebuild myelin to confer axonal well-being, may be useful. Quetiapine fumarate is an atypical antipsychotic with reported remyelinating and neuroprotective properties in inflammatory and noninflammatory models of demyelination, including experimental autoimmune encephalomyelitis, and both cuprizone- and global cerebral ischemia-induced demyelination. Preclinical studies suggest that quetiapine may exert these effects by stimulating proliferation and maturation of oligodendrocytes, releasing neurotrophic factors, increasing antioxidant defences, scavenging for free radicals, and inhibiting activated microglia, astrocytes, and T lymphocytes. Additionally, quetiapine may be beneficial for psychiatric and nonpsychiatric symptoms of MS including depression, anxiety, insomnia, and possibly even pain. These data indicate that clinical trials are justified to determine the safety, tolerability, and efficacy of quetiapine fumarate in MS.
Collapse
Affiliation(s)
- Simon Zhornitsky
- Department of Clinical Neurosciences, Faculty of Medicine, Foothills Medical Centre, Calgary MS Clinic, University of Calgary, Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | | | | | | | | | | | | |
Collapse
|
46
|
Subacute fluoxetine enhances conditioned responding and conditioning-specific reflex modification of the rabbit nictitating membrane response: implications for drug treatment with selective serotonin reuptake inhibitors. Behav Pharmacol 2013; 24:55-64. [PMID: 23263485 DOI: 10.1097/fbp.0b013e32835d528e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Extensive research on the rabbit nictitating membrane response (NMR) has shown that the NMR reflex can become exaggerated following classical fear conditioning. This learning-related change is referred to as conditioning-specific reflex modification (CRM) and is observed in the absence of the conditioned stimulus. The aim of the current study was to examine the sensitivity of the CRM paradigm to serotonergic manipulation with fluoxetine, a commonly prescribed selective serotonin reuptake inhibitor for anxiety disorders. To assess the effect of fluoxetine on exaggerated reflexive responding indicative of CRM and on conditioned cued fear, rabbits underwent delay NMR conditioning (pairings of tone and periorbital shock) and were tested for CRM, followed by 5 days of daily fluoxetine (0.03, 0.3, or 3.0 mg/kg) or saline injections. CRM was reassessed 1 day and 1 week later, followed by a retention test of conditioned responses (CRs) to the tone. Fluoxetine (3.0 mg/kg) enhanced CRM and retention of conditioned responses, a week after treatment ceased, and this is in agreement with the reports on increased anxiety-like behaviors in other animal models and humans. The CRM paradigm, therefore, may provide important insight into the mechanisms underlying the paradoxical selective serotonin reuptake inhibitor effects.
Collapse
|
47
|
Ampuero E, Stehberg J, Gonzalez D, Besser N, Ferrero M, Diaz-Veliz G, Wyneken U, Rubio FJ. Repetitive fluoxetine treatment affects long-term memories but not learning. Behav Brain Res 2013; 247:92-100. [DOI: 10.1016/j.bbr.2013.03.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 10/27/2022]
|
48
|
Sandoval M, Luarte A, Herrera-Molina R, Varas-Godoy M, Santibáñez M, Rubio FJ, Smit AB, Gundelfinger ED, Li KW, Smalla KH, Wyneken U. The glycolytic enzyme aldolase C is up-regulated in rat forebrain microsomes and in the cerebrospinal fluid after repetitive fluoxetine treatment. Brain Res 2013; 1520:1-14. [PMID: 23688545 DOI: 10.1016/j.brainres.2013.04.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 03/22/2013] [Accepted: 04/24/2013] [Indexed: 01/21/2023]
Abstract
The antidepressant drug fluoxetine is widely used for the treatment of a broad range of psychiatric disorders. Its mechanism of action is thought to involve cellular adaptations that are induced with a slow time course after initiation of treatment. To gain insight into the signaling pathways underlying such changes, the expression levels of proteins in a microsomal sub-fraction enriched in intracellular membranes from the rat forebrain was analyzed after two weeks of treatment with fluoxetine. Proteins were separated by two-dimensional gel electrophoresis, and the differentially regulated protein spots were identified by mass spectrometry. Protein network analysis suggested that most of the identified proteins could potentially be regulated by the insulin family of proteins. Among them, Fructose-bisphosphate aldolase C (AldoC), a glycolytic/gluconeogenic enzyme primarily expressed in forebrain astrocytes, was up-regulated 7.6-fold. An immunohistochemical analysis of the dorsal hippocampus revealed a robust decrease (43±2%) in the co-localization of AldoC and the astrocyte marker GFAP and a diffuse staining pattern, compatible with AldoC secretion into the extracellular space. Consistently, AldoC, contained in an exosome-like fraction in astrocyte conditioned medium, increased significantly in the cerebrospinal fluid. Our findings strongly favor a non-canonic signaling role for AldoC in cellular adaptations induced by repetitive fluoxetine treatment.
Collapse
Affiliation(s)
- Mauricio Sandoval
- Laboratorio de Neurociencias, Universidad de Los Andes, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sun Y, Evans J, Russell B, Kydd R, Connor B. A benzodiazepine impairs the neurogenic and behavioural effects of fluoxetine in a rodent model of chronic stress. Neuropharmacology 2013; 72:20-8. [PMID: 23639432 DOI: 10.1016/j.neuropharm.2013.04.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 12/14/2022]
Abstract
Antidepressant agents such as fluoxetine have been shown to produce neurogenic effects involving transcriptional and translational changes that direct molecular and cellular plasticity. These cellular and molecular events appear necessary to mediate the therapeutic effects of fluoxetine and may be generated through the ability for fluoxetine to regulate BDNF levels. Clinically, benzodiazepines are frequently used in combination with standard antidepressants both for initial treatment and maintenance therapy, especially when comorbid anxiety is present. However, very little is known regarding the consequence of combined treatment of benzodiazepines and antidepressant on the development of clinical effect. The current study therefore examined the effect of co-administration of fluoxetine and the benzodiazepine, diazepam, on hippocampal neurogenesis in the social isolation rodent model of chronic stress. We demonstrate that 9 weeks of social isolation induces a deficit in motivational behaviour with increased anxiety as well as impairment in hippocampal neurogenesis. This was parallelled by reduced BDNF levels in the hippocampus. While treatment with fluoxetine alone for 3 weeks restored anxiety behaviour as well as progenitor cell proliferation and the generation of new hippocampal neurons, this effect was prevented by co-administration with diazepam. This suggests that co-administering benzodiazepines with antidepressants could significantly delay or prevent the cellular and behavioural improvement needed by patients. These findings indicate the need for future clinical studies designed to investigate the combined effects of benzodiazepines and antidepressants in patients.
Collapse
Affiliation(s)
- Yuhui Sun
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | | | | | | |
Collapse
|
50
|
Thinnes FP. New findings concerning vertebrate porin II--on the relevance of glycine motifs of type-1 VDAC. Mol Genet Metab 2013; 108:212-24. [PMID: 23419876 DOI: 10.1016/j.ymgme.2013.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
Abstract
New findings concerning vertebrate porin part I was published in 1997, then summarizing early data and reflections regarding the molecular structure of vertebrate voltage-dependent anion-selective channels, VDAC/eukaryotic porin, and the extra-mitochondrial expression pattern of human type-1 VDAC. Meanwhile, endeavors of different laboratories confirmed and widened this beginning by encircling the function of the channels. Regarding the function of mitochondrial outer membrane-standing VDACs the channels are established parts of the intrinsic apoptotic pathway and thus therapeutic targets in studies on several diseases: cancer, Alzheimer's disease, Down Syndrome, Parkinson's disease, Amyotrophic Lateral Sclerosis, cystic fibrosis and malaria. Regarding cell membrane-integrated type-1 VDAC it has been documented by different approaches that this porin channel is engaged in cell volume regulation, trans-membrane electron transport and apoptosis. Furthermore, new data insinuate a bridging of extrinsic and intrinsic apoptotic pathways, putatively gaining relevance in Alzheimer research. Mammalian type-1 VDAC, a β-barrel, is basically built up by nineteen β-sheets connected by peptide stretches of varying lengths. The molecule also comprises an N-terminal stretch of some twenty amino acids which, according to biochemical data, traverses the channel lumen towards the cytosolic surface of outer mitochondrial membranes or the plasma lemma, respectively and works as voltage sensor in channel gating. In artificial lipid bilayers VDACs figure as anion or cation-channels, as VDACs are permeable to both cations and anions, with voltage shifts changing the relative permeability. Type-1 VDAC carries several motifs where glycine residues are in critical positions. Motifs of this type, on the on hand, are established nucleotide binding sites. On the other hand, the GxxxG motifs are also discussed as relevant peptide dimerization/aggregation/membrane perturbation motifs. Finally, GxxxG motifs bind cholesterol. Type-1 VDAC shows one such GxxxG motif at the proximal end of its N-terminal voltage sensor while amyloid Aβ peptides include three of them in series. Noteworthy, two additional may be modified versions, GxxxGxG and GxxGxxxG, are found on β-sheet 19 or 9, respectively. Recent data have allowed speculating that amyloid Aβ induces apoptosis via opening type-1 VDAC in cell membranes of hypo-metabolic neurons, a process most likely running over life time--as leaves fall from trees in the tropics--and ending in Alzheimer's disease whenever critical brain regions are affected. The expression of GxxxG motifs on either reactant under consideration is in line with this model of Alzheimer's disease pathogenesis, which clearly differs from the amyloid Aβ cascade theory, and which can, furthermore, be understood as a basic model for apoptosis induction. However, to assume randomly distributed interactions of body wide found amyloid Aβ peptides with the N-terminal voltage sensors of ubiquitously expressed cell membrane-standing human type-1 VDAC opens up a new view on Alzheimer's disease, which might even include a clue on systemic aspects of the disease. While elaborating this concept, my focus was at first only on the GxxxG motif at the proximal end of the N-terminal voltage sensor of type-1 VDAC. Here, I include a corresponding sequence stretch on the channel's β-sheet 19, too.
Collapse
|