1
|
Beheshti S, Wasil Wesal M. Anticonvulsant activity of the histamine H3 receptor inverse agonist pitolisant in an electrical kindling model of epilepsy. Neurosci Lett 2022; 782:136685. [DOI: 10.1016/j.neulet.2022.136685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/30/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
|
2
|
Song M, Yan R, Zhang Y, Guo D, Zhou N, Deng X. Design, synthesis, and anticonvulsant effects evaluation of nonimidazole histamine H 3 receptor antagonists/inverse agonists containing triazole moiety. J Enzyme Inhib Med Chem 2021; 35:1310-1321. [PMID: 32529860 PMCID: PMC7717691 DOI: 10.1080/14756366.2020.1774573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Histamine H3 receptors (H3R) antagonists/inverse agonists are becoming a promising therapeutic approach for epilepsy. In this article, novel nonimidazole H3R antagonists/inverse agonists have been designed and synthesised via hybriding the H3R pharmacophore (aliphatic amine with propyloxy chain) with the 1,2,4-triazole moiety as anticonvulsant drugs. The majority of antagonists/inverse agonists prepared here exerted moderate to robust activities in cAMP-response element (CRE) luciferase screening assay. 1-(3-(4-(3-Phenyl-4H-1,2,4-triazol-4-yl)phenoxy)propyl)piperidine (3l) and 1-(3-(4-(3-(4-chlorophenyl)-4H-1,2,4-triazol-4-yl)phenoxy)propyl)piperidine (3m) displayed the highest H3R antagonistic activities, with IC50 values of 7.81 and 5.92 nM, respectively. Meanwhile, the compounds with higher H3R antagonistic activities exhibited protection for mice in maximal electroshock seizure (MES)-induced convulsant model. Moreover, the protection of 3m against the MES induced seizures was fully abrogated when mice were co-treated with RAMH, a CNS-penetrant H3R agonist, which suggested that the potential therapeutic effect of 3m was through H3R. These results indicate that the attempt to find new anticonvulsant among H3R antagonists/inverse agonists is practicable.
Collapse
Affiliation(s)
- Mingxia Song
- Medical College, Jinggangshan University, Ji'an, China
| | - Rui Yan
- Medical College, Jinggangshan University, Ji'an, China
| | - Yanhui Zhang
- Medical College, Jinggangshan University, Ji'an, China
| | - Dongfu Guo
- Medical College, Jinggangshan University, Ji'an, China
| | - Naiming Zhou
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - XianQing Deng
- Medical College, Jinggangshan University, Ji'an, China
| |
Collapse
|
3
|
Harwell V, Fasinu PS. Pitolisant and Other Histamine-3 Receptor Antagonists-An Update on Therapeutic Potentials and Clinical Prospects. MEDICINES 2020; 7:medicines7090055. [PMID: 32882898 PMCID: PMC7554886 DOI: 10.3390/medicines7090055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022]
Abstract
Background: Besides its well-known role as a peripheral chemical mediator of immune, vascular, and cellular responses, histamine plays major roles in the central nervous system, particularly in the mediation of arousal and cognition-enhancement. These central effects are mediated by the histamine-3 auto receptors, the modulation of which is thought to be beneficial for the treatment of disorders that impair cognition or manifest with excessive daytime sleepiness. Methods: A database search of PubMed, Google Scholar, and clinicaltrials.gov was performed in June 2020. Full-text articles were screened and reviewed to provide an update on pitolisant and other histamine-3 receptor antagonists. Results: A new class of drugs—histamine-3 receptor antagonists—has emerged with the approval of pitolisant for the treatment of narcolepsy with or without cataplexy. At the recommended dose, pitolisant is well tolerated and effective. It has also been evaluated for potential therapeutic benefit in Parkinson disease, epilepsy, attention deficit hyperactivity disorder, Alzheimer’s disease, and dementia. Limited studies have shown pitolisant to lack abuse potential which will be a major advantage over existing drug options for narcolepsy. Several histamine-3 receptor antagonists are currently in development for a variety of clinical indications. Conclusions: Although limited clinical studies have been conducted on this new class of drugs, the reviewed literature showed promising results for future additions to the clinical indications of pitolisant, and the expansion of the list of approved drugs in this class for a variety of indications.
Collapse
|
4
|
Yazdi A, Doostmohammadi M, Pourhossein Majarshin F, Beheshti S. Betahistine, prevents kindling, ameliorates the behavioral comorbidities and neurodegeneration induced by pentylenetetrazole. Epilepsy Behav 2020; 105:106956. [PMID: 32062106 DOI: 10.1016/j.yebeh.2020.106956] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/26/2020] [Accepted: 01/29/2020] [Indexed: 12/20/2022]
Abstract
A seizure may occur because of the imbalance between glutamate and gamma-aminobutyric acid (GABA). Recurrent seizures induce some cognitive problems, such as, depression, learning and memory deficits, and neurodegeneration. Histamine is an appropriate therapeutic target for epilepsy via its effect on regulating neurotransmitter release. Also, evidence indicates the effect of histamine on neuroprotection and alleviating cognitive disorders. An ideal antiepileptic drug is a substance, which has both anticonvulsant effects and decreases the comorbidities that are induced by repeated seizures. Betahistine dihydrochloride (betahistine) is a structural analog of histamine. It acts as histamine H1 receptor agonist and H3 receptor antagonist, which enhances histaminergic neuronal activities. In the present study, we examined the effect of betahistine administration on seizure scores, memory deficits, depression, and neuronal loss induced by pentylenetetrazole (PTZ). Eight- to ten-week-old BALB/c male mice (20-25 g) received betahistine, 1, and 10 mg/kg daily from 7 days before the onset of PTZ-induced kindling until the end of the establishment of the kindling. We found that betahistine prevented generalized tonic-clonic seizures induction and diminished forelimb clonic seizures intensity. Also, it decreased cell death in the hippocampus and cortex, ameliorated the memory deficit and depression induced by PTZ in the kindled animals. Altogether, these results indicate that pretreatment and repetitive administration with betahistine exerts antiepileptogenic and anticonvulsant activity. These findings might be due to the neuroprotective impact of betahistine in the hippocampus and cortex.
Collapse
Affiliation(s)
- Azadeh Yazdi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammadmahdi Doostmohammadi
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Farshid Pourhossein Majarshin
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Siamak Beheshti
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
5
|
Sugitate R, Okubo Y, Nariai H, Matsui A. The effects of antihistamine on the duration of the febrile seizure: A single center study with a systematic review and meta-analysis. Brain Dev 2020; 42:103-112. [PMID: 31677915 DOI: 10.1016/j.braindev.2019.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/23/2019] [Accepted: 10/11/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Several studies have investigated the potential effects of antihistamines on febrile seizure. However, these findings are inconsistent across the studies. METHOD A retrospective observational study was conducted on a total of 434 consecutive patients aged between 6 months and 5 years with the diagnosis of febrile seizure. Patients with chronic medical conditions were excluded. Multivariable generalized linear models were conducted to ascertain the effects of antihistamine use on duration of febrile seizure. Also, we conducted a systematic review and meta-analyses of the medical literatures to calculate the pooled estimates using random effects models. RESULTS The adjusted mean duration of febrile seizure in the antihistamine group was 4.9 min shorter than that in the non-user group (95% confidence interval (CI), 0.4-9.5). The risk of duration in febrile seizure >5 min among antihistamine users was also 0.83 times that among the non-users (95%CI, 0.58-1.19), whereas the risk of duration in febrile seizure >10 min among first-generation antihistamine users was 1.21 times that among non-users (95%CI, 0.69-2.13). According to the systematic review of the literature, 8 observational studies were included in the meta-analyses. Comparing to non-users, the antihistamine users had prolonged duration of febrile seizure by 1.07 min (95%CI, -1.13 to 3.27), elevated risk of duration in febrile seizure >5 min (Risk ratio, 1.16; 95%CI, 0.90-1.49), and similar duration from fever to febrile seizure onset (pooled mean difference, -0.01 h; -1.43 to 1.41), but these estimates were imprecise. Similar results were obtained when we stratified the data by types of antihistamine (first vs. second generation). CONCLUSIONS Our study may indicate the effects of antihistamine on prolonging febrile seizure duration, but they are still controversial given the limited evidence, highly heterogeneous results, and concerns of the internal and external validities.
Collapse
Affiliation(s)
- Ryo Sugitate
- Department of Pediatrics, Maebashi Red Cross Hospital, Gunma, Japan
| | - Yusuke Okubo
- Department of Epidemiology, UCLA Fielding School of Public Health, LA, CA, USA; Department of Social Medicine, National Center for Child Health and Development, Tokyo, Japan.
| | - Hiroki Nariai
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Medical Center, LA, CA, USA
| | - Atsushi Matsui
- Department of Pediatrics, Maebashi Red Cross Hospital, Gunma, Japan
| |
Collapse
|
6
|
Zestos AG, Luna-Munguia H, Stacey WC, Kennedy RT. Use and Future Prospects of in Vivo Microdialysis for Epilepsy Studies. ACS Chem Neurosci 2019; 10:1875-1883. [PMID: 30001105 DOI: 10.1021/acschemneuro.8b00271] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epilepsy is a common neurological disease characterized by recurrent unpredictable seizures. For the last 30 years, microdialysis sampling has been used to measure changes in excitatory and inhibitory neurotransmitter concentrations before, during, and after seizures. These advances have fostered breakthroughs in epilepsy research by identifying neurochemical changes associated with seizures and correlating them to electrophysiological data. Recent advances in methodology may be useful in further delineating the chemical underpinnings of seizures. A new model of ictogenesis has been developed that allows greater control over the timing of seizures that are similar to spontaneous seizures. This model will facilitate making chemical measurements before and during a seizure. Recent advancements in microdialysis sampling, including the use of segmented flow, "fast" liquid chromatography (LC), and capillary electrophoresis with laser-induced fluorescence (CE-LIF) have significantly improved temporal resolution to better than 1 min, which could be used to measure transient, spontaneous neurochemical changes associated with seizures. Microfabricated sampling probes that are markedly smaller than conventional probes and allow for a much greater spatial resolution have been developed. They may allow the targeting of specific brain regions important to epilepsy studies. Coupling microdialysis sampling to optogenetics and light-stimulated release of neurotransmitters may also prove useful for studying epileptic seizures.
Collapse
Affiliation(s)
- Alexander G. Zestos
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington, D.C. 20016, United States
| | - Hiram Luna-Munguia
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, Queretaro 76230, Mexico
| | - William C. Stacey
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
7
|
Franco P, Dauvilliers Y, Inocente CO, Guyon A, Villanueva C, Raverot V, Plancoulaine S, Lin JS. Impaired histaminergic neurotransmission in children with narcolepsy type 1. CNS Neurosci Ther 2018; 25:386-395. [PMID: 30225986 DOI: 10.1111/cns.13057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE Narcolepsy is a sleep disorder characterized in humans by excessive daytime sleepiness and cataplexy. Greater than fifty percent of narcoleptic patients have an onset of symptoms prior to the age of 18. Current general agreement considers the loss of hypothalamic hypocretin (orexin) neurons as the direct cause of narcolepsy notably cataplexy. To assess whether brain histamine (HA) is also involved, we quantified the cerebrospinal fluid (CSF) levels of HA and tele-methylhistamine (t-MeHA), the direct metabolite of HA between children with orexin-deficient narcolepsy type 1 (NT1) and controls. METHODS We included 24 children with NT1 (12.3 ± 3.6 years, 11 boys, 83% cataplexy, 100% HLA DQB1*06:02) and 21 control children (11.2 ± 4.2 years, 10 boys). CSF HA and t-MeHA were measured in all subjects using a highly sensitive liquid chromatographic-electrospray/tandem mass spectrometric assay. CSF hypocretin-1 values were determined in the narcoleptic patients. RESULTS Compared with the controls, NT1 children had higher CSF HA levels (771 vs 234 pmol/L, P < 0.001), lower t-MeHA levels (879 vs 1924 pmol/L, P < 0.001), and lower t-MeHA/HA ratios (1.1 vs 8.2, P < 0.001). NT1 patients had higher BMI z-scores (2.7 ± 1.6 vs 1.0 ± 2.3, P = 0.006) and were more often obese (58% vs 29%, P = 0.05) than the controls. Multivariable analyses including age, gender, and BMI z-score showed a significant decrease in CSF HA levels when the BMI z-score increased in patients (P = 0.007) but not in the controls. No association was found between CSF HA, t-MeHA, disease duration, age at disease onset, the presence of cataplexy, lumbar puncture timing, and CSF hypocretin levels. CONCLUSIONS Narcolepsy type 1 children had a higher CSF HA level together with a lower t-MeHA level leading to a significant decrease in the t-MeHA/HA ratios. These results suggest a decreased HA turnover and an impairment of histaminergic neurotransmission in narcoleptic children and support the use of a histaminergic therapy in the treatment against narcolepsy.
Collapse
Affiliation(s)
- Patricia Franco
- Integrative Physiology of the Brain Arousal System, CRNL, INSERM-U1028, CNRS, UMR5292, University Lyon1, Lyon, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic hypersomnia and Kleine-Levin Syndrome (CNR narcolepsie-hypersomnie), Bron, France.,Pediatric Sleep Unit, Mother- Children Hospital, Hospices Civils de Lyon, University Lyon1, Lyon, France
| | - Yves Dauvilliers
- National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic hypersomnia and Kleine-Levin Syndrome (CNR narcolepsie-hypersomnie), Bron, France.,Sleep Unit, Department of Neurology, Gui de Chauliac Hospital, CHU Montpellier, Montpellier, France.,Inserm, U1061, Univ Montpellier 1, Montpellier, France
| | - Clara Odilia Inocente
- Integrative Physiology of the Brain Arousal System, CRNL, INSERM-U1028, CNRS, UMR5292, University Lyon1, Lyon, France
| | - Aurore Guyon
- Integrative Physiology of the Brain Arousal System, CRNL, INSERM-U1028, CNRS, UMR5292, University Lyon1, Lyon, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic hypersomnia and Kleine-Levin Syndrome (CNR narcolepsie-hypersomnie), Bron, France.,Pediatric Sleep Unit, Mother- Children Hospital, Hospices Civils de Lyon, University Lyon1, Lyon, France
| | - Carine Villanueva
- Department of Endocrinology, Mother- Children Hospital, Hospices Civils de Lyon, University Lyon1, France
| | - Veronique Raverot
- Laboratoire de Hormonologie, Groupement Est, Hospices Civils de Lyon, University Lyon1, Lyon, France
| | - Sabine Plancoulaine
- INSERM, UMR1153, Centre of Research in Epidemiology and Statistics Sorbonne Paris Cité (CRESS), Villejuif, Paris-Descartes University, Paris, France
| | - Jian-Sheng Lin
- Integrative Physiology of the Brain Arousal System, CRNL, INSERM-U1028, CNRS, UMR5292, University Lyon1, Lyon, France
| |
Collapse
|
8
|
Posterior hypothalamus glutamate infusion decreases pentylenetetrazol-induced seizures of male rats through hippocampal histamine increase. Pharmacol Biochem Behav 2017; 158:7-13. [PMID: 28495313 DOI: 10.1016/j.pbb.2017.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/05/2017] [Accepted: 05/06/2017] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Seizures are epileptic manifestations that are intrinsically modulated through different neurotransmitters and receptor systems. Although glutamate increases excitation and hence seizures, it activates other systems which could potentially terminate seizures. Histamine originates from neurons of the posterior hypothalamus (PH) and can mediate anticonvulsant properties, but the effect of local PH glutamate on hippocampal histamine content is unknown. Therefore, in this study, the effect of PH glutamate and the involvement of hippocampal histamine in pentylenetetrazol (PTZ) induced seizure activity was studied. MATERIALS AND METHODS OX2R antagonist (TCS OX2 29, 40nmol/1μl, intra-PH), AMPA/Kainate receptor antagonist (CNQX, 3mM, intra-PH) and glutamate (1mM) were injected bilaterally into PH using stereotaxic surgery. The intravenous PTZ infusion model was used to generate behavioral convulsions and the amount of hippocampal histamine content was then measured using a biochemical method. RESULTS Administration of glutamate into PH decreased both seizure stage and the duration of tonic-clonic convulsion (TCC) with increasing TCC latency and hippocampal histamine content. Blocking OX2Rs alone or coinhibition of OX2Rs and AMPA/kainate receptors reversed these effects by increasing both seizure stage and TCC duration, and by decreasing both latency and consequent histamine content. CONCLUSIONS Our findings suggest that glutamate administration into PH may control seizures (stages and duration) through increasing the hippocampal histamine content.
Collapse
|
9
|
Sadek B, Saad A, Latacz G, Kuder K, Olejarz A, Karcz T, Stark H, Kieć-Kononowicz K. Non-imidazole-based histamine H3 receptor antagonists with anticonvulsant activity in different seizure models in male adult rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3879-3898. [PMID: 27932863 PMCID: PMC5135077 DOI: 10.2147/dddt.s116192] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A series of twelve novel non-imidazole-based ligands (3–14) was developed and evaluated for its in vitro binding properties at the human histamine H3 receptor (hH3R). The novel ligands were investigated for their in vivo protective effects in different seizure models in male adult rats. Among the H3R ligands (3–14) tested, ligand 14 showed significant and dose-dependent reduction in the duration of tonic hind limb extension in maximal electroshock (MES)-induced seizure model subsequent to acute systemic administration (5, 10, and 20 mg/kg, intraperitoneally), whereas ligands 4, 6, and 7 without appreciable protection in MES model were most promising in pentylenetetrazole (PTZ) model. Moreover, the protective effect observed for ligand 14 in MES model was lower than that observed for the reference drug phenytoin and was entirely abrogated when rats were co-administered with the brain-penetrant H1R antagonist pyrilamine (PYR) but not the brain-penetrant H2R antagonist zolantidine (ZOL), demonstrating that histaminergic neurotransmission by activation of postsynaptically located H1Rs seems to be involved in the protective action. On the contrary, PYR and ZOL failed to abrogate the full protection provided by 4 in PTZ model and the moderate protective effect by 14 in strychnine (STR) model. Moreover, the experimental and in silico estimation of properties such as metabolism was performed for five selected test compounds. Also, lipophilicity using planar reversed-phase thin-layer chromatography method was included for better understanding of the molecular properties of the tested compounds. Additionally, the absorption, distribution, metabolism, and elimination and toxicity parameters were evaluated for the most promising compounds 2, 4, 6, 7, and 14 utilizing in vitro methods. These interesting results highlight the potential of H3R ligands as new antiepileptic drugs or as adjuvants to available epilepsy medications.
Collapse
Affiliation(s)
- Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ali Saad
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Kamil Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Agnieszka Olejarz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Holger Stark
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
10
|
Svob Strac D, Pivac N, Smolders IJ, Fogel WA, De Deurwaerdere P, Di Giovanni G. Monoaminergic Mechanisms in Epilepsy May Offer Innovative Therapeutic Opportunity for Monoaminergic Multi-Target Drugs. Front Neurosci 2016; 10:492. [PMID: 27891070 PMCID: PMC5102907 DOI: 10.3389/fnins.2016.00492] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 10/13/2016] [Indexed: 12/22/2022] Open
Abstract
A large body of experimental and clinical evidence has strongly suggested that monoamines play an important role in regulating epileptogenesis, seizure susceptibility, convulsions, and comorbid psychiatric disorders commonly seen in people with epilepsy (PWE). However, neither the relative significance of individual monoamines nor their interaction has yet been fully clarified due to the complexity of these neurotransmitter systems. In addition, epilepsy is diverse, with many different seizure types and epilepsy syndromes, and the role played by monoamines may vary from one condition to another. In this review, we will focus on the role of serotonin, dopamine, noradrenaline, histamine, and melatonin in epilepsy. Recent experimental, clinical, and genetic evidence will be reviewed in consideration of the mutual relationship of monoamines with the other putative neurotransmitters. The complexity of epileptic pathogenesis may explain why the currently available drugs, developed according to the classic drug discovery paradigm of "one-molecule-one-target," have turned out to be effective only in a percentage of PWE. Although, no antiepileptic drugs currently target specifically monoaminergic systems, multi-target directed ligands acting on different monoaminergic proteins, present on both neurons and glia cells, may represent a new approach in the management of seizures, and their generation as well as comorbid neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Nela Pivac
- Division of Molecular Medicine, Rudjer Boskovic InstituteZagreb, Croatia
| | - Ilse J. Smolders
- Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit BrusselBrussels, Belgium
| | - Wieslawa A. Fogel
- Department of Hormone Biochemistry, Medical University of LodzLodz, Poland
| | | | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, University of MaltaMsida, Malta
| |
Collapse
|
11
|
Sadek B, Saad A, Sadeq A, Jalal F, Stark H. Histamine H3 receptor as a potential target for cognitive symptoms in neuropsychiatric diseases. Behav Brain Res 2016; 312:415-30. [PMID: 27363923 DOI: 10.1016/j.bbr.2016.06.051] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/22/2016] [Accepted: 06/26/2016] [Indexed: 01/27/2023]
Abstract
The potential contributions of the brain histaminergic system in neurodegenerative diseases, and the possiblity of histamine-targeting treatments is attracting considerable interests. The histamine H3 receptor (H3R) is expressed mainly in the central nervous system, and is, consequently, an attractive pharmacological target. Although recently described clinical trials have been disappointing in attention deficit hyperactivity disorder (ADHD) and schizophrenia (SCH), numerous H3R antagonists, including pitolisant, demonstrate potential in the treatment of narcolepsy, excessive daytime sleepiness associated with cognitive impairment, epilepsy, and Alzheimer's disease (AD). This review focuses on the recent preclinical as well as clinical results that support the relevance of H3R antagonists for the treatment of cognitive symptoms in neuropsychiatric diseases, namely AD, epilepsy and SCH. The review summarizes the role of histaminergic neurotransmission with focus on these brain disorders, as well as the effects of numerous H3R antagonists on animal models and humans.
Collapse
Affiliation(s)
- Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| | - Ali Saad
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Adel Sadeq
- College of Pharmacy, Al Ain University of Science and Technology, Al Ain, United Arab Emirates
| | - Fakhreya Jalal
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Universitaetsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
12
|
Sadek B, Saad A, Subramanian D, Shafiullah M, Łażewska D, Kieć-Kononowiczc K. Anticonvulsant and procognitive properties of the non-imidazole histamine H3 receptor antagonist DL77 in male adult rats. Neuropharmacology 2015; 106:46-55. [PMID: 26525191 DOI: 10.1016/j.neuropharm.2015.10.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/12/2015] [Accepted: 10/19/2015] [Indexed: 02/07/2023]
Abstract
It has become clear that histamine H3 receptors (H3Rs) are implicated in modulating epilepsy and memory in laboratory animals. The new non-imidazole H3R antagonist DL77 has excellent selectivity profile and shows high in-vivo potency as well as in-vitro antagonist affinity with ED50 values of 2.1 ± 0.2 mg/kg and 8.4 ± 1.3 [nM], respectively. In the present study, the anticonvulsant effects of DL77 on maximal electroshock (MES)-, pentylenetetrazole (PTZ)-, and strychnine (STR)-induced seizure models were investigated. Moreover, the procognitive properties of DL77 were tested on acquisition, consolidation and retrieval processes in a one-trial inhibitory avoidance task in male Wistar rats. The results indicate that DL77 (5, 10, and 15 mg/kg, i.p.) significantly and dose-dependently reduced MES-induced seizure duration, whereas no protection was observed in PTZ- or STR-induced seizures. Importantly, the protective action observed for DL77 in MES-induced seizure was comparable to that of the reference antiepileptic drug (AED) phenytoin (PHT), and was also reversed when rats were pretreated with the CNS penetrant pyrilamine (PYR) (10 mg/kg, i.p.), or with the selective H3R agonist R-(α)-methyl-histamine (RAMH) (10 mg/kg, i.p.). Furthermore, the procognitive studies indicate that acute pre-training systemic administration of DL77 (2.5 mg/kg, i.p.) facilitated acquisition, whereas pre-testing acute administration of DL77 (5 and 10 mg/kg, i.p.) improved retrieval. Interestingly, the procognitive effect of DL77 on retrieval was completely abrogated when rats were pretreated with the centrally-acting H2R antagonist zolantidine (ZOL) but not the centrally acting H1R antagonist PYR, indicating that histaminergic pathways through activation of H2Rs appear to be participating in neuronal circuits involved in retrieval processes. Taken together, our results show that DL77 demonstrates anticonvulsant properties in the MES-induced seizure model and improves cognitive performance through actions on different memory stages. Therefore, H3Rs may have implications for the treatment of degenerative disorders associated with impaired memory function and may represent a novel therapeutic pharmacological target to tackle cognitive problems associated with the chronic use of antiepileptic drugs. This article is part of the Special Issue entitled 'Histamine Receptors'.
Collapse
Affiliation(s)
- Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Ali Saad
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Dhanasekaran Subramanian
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed Shafiullah
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Dorota Łażewska
- Jagiellonian University-Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9 St., 30-688 Kraków, Poland
| | - Katarzyna Kieć-Kononowiczc
- Jagiellonian University-Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9 St., 30-688 Kraków, Poland
| |
Collapse
|
13
|
French JA, Schachter SC, Sirven J, Porter R. The Epilepsy Foundation's 4th Biennial Epilepsy Pipeline Update Conference. Epilepsy Behav 2015; 46:34-50. [PMID: 25922152 DOI: 10.1016/j.yebeh.2015.02.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/09/2015] [Indexed: 10/23/2022]
Abstract
On June 5 and 6, 2014, the Epilepsy Foundation held its 4th Biennial Epilepsy Pipeline Update Conference, an initiative of the Epilepsy Therapy Project, which showcased the most promising epilepsy innovations from health-care companies and academic laboratories dedicated to pioneering and advancing drugs, biologics, technologies, devices, and diagnostics for epilepsy. Speakers and attendees included emerging biotech and medical technology companies, major pharmaceutical and device companies, as well as investigators and innovators at the cutting-edge of epilepsy. The program included panel discussions on collaboration between small and large companies, how to get products in need of funding to the marketplace, who is currently funding epilepsy and CNS innovation, and how the NIH facilitates early-stage drug development. Finally, the conference featured the third annual "Shark Tank" competition. The presentations are summarized in this paper, which is followed by a compilation of the meeting poster abstracts.
Collapse
Affiliation(s)
- Jacqueline A French
- Department of Neurology, New York University Langone Medical Center, New York, NY, USA
| | - Steven C Schachter
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Consortia for Improving Medicine Through Innovation and Technology, Boston, MA, USA.
| | - Joseph Sirven
- Department of Neurology, Mayo Clinic Scottsdale, Scottsdale, AZ, USA
| | - Roger Porter
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA; Department of Pharmacology, USUHS, Bethesda, MD, USA
| |
Collapse
|
14
|
Bialer M, Johannessen SI, Levy RH, Perucca E, Tomson T, White HS. Progress report on new antiepileptic drugs: A summary of the Twelfth Eilat Conference (EILAT XII). Epilepsy Res 2015; 111:85-141. [PMID: 25769377 DOI: 10.1016/j.eplepsyres.2015.01.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/09/2015] [Indexed: 10/24/2022]
|
15
|
Yilmaz UT, Inan D. Quantification of histamine in various fish samples using square wave stripping voltammetric method. Journal of Food Science and Technology 2015; 52:6671-8. [PMID: 26396415 DOI: 10.1007/s13197-015-1748-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 10/24/2022]
Abstract
The objective of this study was to describe a new and simple method for the determination of histamine so that it can be used in routine food analysis. A square wave stripping voltammetric (SWSV) method has been used for the indirect determination of histamine. The method is based on accumulation copper (II) - histamine complex onto a hanging mercury drop electrode and reduction of complex. The optimum conditions include an accumulation potential of -420 mV (versus Ag/AgCl), an accumulation time of 10 s. Two linear calibration graphs were obtained with slopes of 0.078 (μM/μA) and 0.014 (μM/μA), respectively. The detection limits were found to be 3 × 10(-7) and 1 × 10(-5) M for histamine (S/N = 3), respectively. The validated SWSV method showed good linearity as well as satisfactory repeatability and immediate precision values, for both instrument and method. The effect of common excipients and metal ions on the peak height of Cu-histamine complex peak was studied. The method was successfully, applied to the determination of histamine in canned anchovy (Engraulis encrasicholus), frozen Tinca tinca (L.) and Cyprinus carpio fish samples.
Collapse
Affiliation(s)
| | - Derya Inan
- Science and Letters Faculty, Department of Chemistry, Nevsehir University, 50300 Nevsehir, Turkey
| |
Collapse
|
16
|
Sadek B, Kuder K, Subramanian D, Shafiullah M, Stark H, Łażewska D, Adem A, Kieć-Kononowicz K. Anticonvulsive effect of nonimidazole histamine H3 receptor antagonists. Behav Pharmacol 2014; 25:245-52. [DOI: 10.1097/fbp.0000000000000042] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Gholipoor P, Saboory E, Roshan-Milani S, Fereidoni J. Effect of hyperthermia on histamine blood level and convulsive behavior in infant rats. Epilepsy Behav 2013; 29:269-74. [PMID: 24051280 DOI: 10.1016/j.yebeh.2013.07.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 06/26/2013] [Accepted: 07/30/2013] [Indexed: 10/26/2022]
Abstract
Febrile seizures (FS), which have been extensively studied using animal models, are the most common type of convulsive events in children, but the cellular mechanisms causing FS are still unclear. Histamine has been suggested to participate in seizure control. This study investigated the effect of hyperthermia (HT) on histamine blood level (HBL) and convulsive behavior in prepubertal rats. Forty Wistar rat pups were assigned to 5 groups (n=8), namely, control, HT, cromolyn, chlorpheniramine, and ranitidine. Two groups of adult rats were also used as control and HT adults. The control rats were placed in a hyperthermic chamber, and a room temperature current of air was blown on them. In all other groups, the rats were placed in the chamber for 30 min, and a current of warm air was applied to them. In the pretreatment groups, the rats received an injection of 68-mg/kg cromolyn sodium, 4-mg/kg chlorpheniramine, or 80-mg/kg ranitidine intraperitoneally 30 min prior to HT. Body temperature and convulsive behaviors were recorded. Then, the rats were anesthetized with ether, and their blood sample was obtained through direct heart puncture. Hyperthermia initiated convulsive behaviors in infant rats but not in the adult ones. Pretreatment with chlorpheniramine significantly potentiated convulsive behaviors (p=0.017). Hyperthermia led to a significant decrease in the HBL of both infant (p<0.001) and adult (p=0.003) rats. Pretreatments led to more decrease in the HBL of infant rats (p<0.001). It was concluded that HT could lead to a decrease in HBL, which in turn increases the seizure susceptibility of animals. Histamine may have a pivotal role in hyperthermia-induced seizures.
Collapse
Affiliation(s)
- Peyman Gholipoor
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | | | | | | |
Collapse
|
18
|
Kasteleijn-Nolst Trenité D, Parain D, Genton P, Masnou P, Schwartz JC, Hirsch E. Efficacy of the histamine 3 receptor (H3R) antagonist pitolisant (formerly known as tiprolisant; BF2.649) in epilepsy: dose-dependent effects in the human photosensitivity model. Epilepsy Behav 2013; 28:66-70. [PMID: 23665640 DOI: 10.1016/j.yebeh.2013.03.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 03/05/2013] [Accepted: 03/16/2013] [Indexed: 11/16/2022]
Abstract
A new class of drugs, the nonimidazole histamine 3 receptor (H3R) antagonists, has been developed in the past decade for treatment of various brain diseases. Pitolisant is such a drug. We studied the pharmacodynamic effect of pitolisant in patients with epilepsy in early Phase II, using the photosensitivity proof of concept model. A total of 14 adult patients (11 females and 3 males; 5 drug naïve) were studied for three days to evaluate the effect of a single oral dose of pitolisant on EEG photosensitivity ranges. All patients showed repeatedly a generalized photoparoxysmal response (PPR) prior to drug administration on placebo Day 1. A statistically significant suppressive effect (standardized photosensitive response [SPR] reduction as measured with paired t-tests) for 20-, 40-, or 60-mg doses of pitolisant was seen in 9/14 (64%) patients of whom 6/14 (43%) showed abolition of the response to intermittent photic stimulation (IPS). Patients on the highest dosage (60 mg) showed the strongest effect with an effect lasting up to 28 h. Thus, full-scale Phase II studies with this novel H3R antagonist, pitolisant, in patients with epilepsy are warranted.
Collapse
|
19
|
High-performance liquid chromatographic determination of histamine in biological samples: The cerebrospinal fluid challenge – A review. Anal Chim Acta 2013; 774:1-10. [DOI: 10.1016/j.aca.2012.12.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/23/2012] [Accepted: 12/26/2012] [Indexed: 11/24/2022]
|
20
|
Bhowmik M, Khanam R, Vohora D. Histamine H3 receptor antagonists in relation to epilepsy and neurodegeneration: a systemic consideration of recent progress and perspectives. Br J Pharmacol 2012; 167:1398-1414. [PMID: 22758607 PMCID: PMC3514756 DOI: 10.1111/j.1476-5381.2012.02093.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/03/2012] [Accepted: 06/12/2012] [Indexed: 12/22/2022] Open
Abstract
The central histaminergic actions are mediated by H(1) , H(2) , H(3) and H(4) receptors. The histamine H(3) receptor regulates the release of histamine and a number of other neurotransmitters and thereby plays a role in cognitive and homeostatic processes. Elevated histamine levels suppress seizure activities and appear to confer neuroprotection. The H(3) receptors have a number of enigmatic features like constitutive activity, interspecies variation, distinct ligand binding affinities and differential distribution of prototypic splice variants in the CNS. Furthermore, this Gi/Go-protein-coupled receptor modulates several intracellular signalling pathways whose involvement in epilepsy and neurotoxicity are yet to be ascertained and hence represent an attractive target in the search for new anti-epileptogenic drugs. So far, H(3) receptor antagonists/inverse agonists have garnered a great deal of interest in view of their promising therapeutic properties in various CNS disorders including epilepsy and related neurotoxicity. However, a number of experiments have yielded opposing effects. This article reviews recent works that have provided evidence for diverse mechanisms of antiepileptic and neuroprotective effects that were observed in various experimental models both in vitro and in vivo. The likely reasons for the apparent disparities arising from the literature are also discussed with the aim of establishing a more reliable basis for the future use of H(3) receptor antagonists, thus improving their utility in epilepsy and associated neurotoxicity.
Collapse
Affiliation(s)
- M Bhowmik
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi, India
| | | | | |
Collapse
|
21
|
Rye DB. Inability to replicate cerebrospinal fluid histamine deficits in the primary hypersomnias: a back to the drawing board moment. Sleep 2012; 35:1315-7. [PMID: 23024426 DOI: 10.5665/sleep.2098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
22
|
Dauvilliers Y, Delallée N, Jaussent I, Scholz S, Bayard S, Croyal M, Schwartz JC, Robert P. Normal cerebrospinal fluid histamine and tele-methylhistamine levels in hypersomnia conditions. Sleep 2012; 35:1359-66. [PMID: 23024434 DOI: 10.5665/sleep.2114] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES To determine the activity of cerebral histaminergic system evaluated by CSF levels of histamine (HA) and tele-methylhistamine (t-MHA), its major metabolite, and their relationships with hypocretin-1 levels in a large population of patients with hypersomnia and neurological conditions. DESIGN sensitive liquid chromatographic-electrospray/tandem mass spectrometric assay was developed for the simultaneous quantification of CSF HA and t-MHA. SETTING ata were collected and CSF hypocretin-1 levels were measured using radioimmunoassay at the Sleep Disorders Center, Montpellier, France. CSF HA and t-MHA were measured in Bioprojet-Biotech, France PARTICIPANTS One hundred fourteen unrelated patients with a suspicion of central hypersomnia underwent one night of polysomnography followed by the multiple sleep latency test. Sleep disorders were diagnosed clinically and using sleep studies: narcolepsy-cataplexy NC (n = 56), narcolepsy without cataplexy NwC (n = 27), idiopathic hypersomnia IH (n = 11), secondary narcolepsy (n = 3), and unspecified hypersomnia Uns EDS (n = 17). Fifty neurological patients without daytime sleepiness were included as controls. MEASUREMENTS AND RESULTS No between-hypersomnia group differences were found for CSF HA levels (median 708.62 pM extreme range [55.92-3335.50] in NC; 781.34 [174.08-4391.50] in NwC; 489.42 [177.45-906.70] in IH, and 1155.40 [134.80-2736.59] in Uns EDS) or for t-MHA levels. No association was found between CSF HA, t-MHA, or HA + t-MHA, sleepiness, treatment intake, and frequency of cataplexy. A slight negative correlation was found between age and HA levels. Further adjustment for the age revealed no significant HA levels difference between hypersomnia patients and controls. CONCLUSION CSF histamine and tele-methylhistamine did not significantly differ between patients with narcolepsy-cataplexy and other etiologies of non-hypocretin-1 deficient central hypersomnias; these measurements, therefore, are not useful in assessing the etiology or severity of centrally mediated hypersomnia.
Collapse
Affiliation(s)
- Yves Dauvilliers
- Sleep Unit, Department of Neurology, Gui de Chauliac Hospital, CHU Montpellier, National Reference Network for Orphan Diseases-Narcolepsy, Hypersomnia, Kleine-Levin Syndrome, France.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Background The purpose of this study was to determine whether seizure susceptibility due to antihistamines is provoked in patients with febrile seizures. Methods The current descriptive study was carried out from April 2009 to February 2011 in 250 infants and children who visited the Madinah Maternity and Children’s Hospital as a result of febrile convulsions. They were divided into two groups according to administration of antihistamines at the onset of fever. Results Detailed clinical manifestations were compared between patients with and without administration of antihistamines. The time from fever detection to seizure onset was significantly shorter in the antihistamine group than that in the nonantihistamine group, and the duration of seizures was significantly longer in the antihistamine group than in the nonantihistamine group. No significant difference was found in time from fever detection to seizure onset or seizure duration between patients who received a first-generation antihistamine and those who received a second-generation antihistamine. Conclusion Due to their central nervous system effects, H1 antagonists should not be administered to patients with febrile seizures and epilepsy. Caution should be exercised regarding the use of histamine H1 antagonists in young infants, because these drugs could potentially disturb the anticonvulsive central histaminergic system.
Collapse
Affiliation(s)
- Mohammed A Zolaly
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah Al-Munawarah, Kingdom of Saudi Arabia
| |
Collapse
|
24
|
Croyal M, Dauvilliers Y, Labeeuw O, Capet M, Schwartz JC, Robert P. Histamine and tele-methylhistamine quantification in cerebrospinal fluid from narcoleptic subjects by liquid chromatography tandem mass spectrometry with precolumn derivatization. Anal Biochem 2011; 409:28-36. [PMID: 20932951 DOI: 10.1016/j.ab.2010.09.045] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 09/29/2010] [Accepted: 09/29/2010] [Indexed: 11/18/2022]
|
25
|
Histamine and histamine receptors in pathogenesis and treatment of multiple sclerosis. Neuropharmacology 2010; 59:180-9. [PMID: 20493888 DOI: 10.1016/j.neuropharm.2010.05.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 05/09/2010] [Accepted: 05/17/2010] [Indexed: 01/03/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disease associated with chronic inflammatory demyelination of the central nervous system (CNS). Due to disease complexity and heterogeneity, its pathogenesis remains unknown and despite extensive studies, specific effective treatments have not yet been developed. The factors behind the initiation of the inflammatory reactions in CNS have not been identified until now. MS is considered as a complex disease depending on genetic as well as environmental factors. Experimental autoimmune encephalomyelitis (EAE) is the preferential experimental rodent model for MS. Histamine [2-(4-imidazole) ethylamine] is a ubiquitous inflammatory mediator of diverse physiological processes including neurotransmission, secretion of pituitary hormones, and regulation of the gastrointestinal and circulatory systems which can modulate immune responses. Histamine functions are mediated through four G-protein coupled receptors that are named H1-H4 receptor. Histamine is implicated as an important factor in pathophysiology of MS and EAE. It has been shown that histamine can change the permeability of blood brain barrier, which leads to elevation of infiltrated cells in CNS and neuroinflammation. In contrast, there are evidence that show the protective role of histamine in MS and its animal model, EAE. In this review, we try to clarify the role of histamine in pathogenesis of MS, as well as we evaluate the efficacy of histamine receptors agonists and antagonists in treatment of this disease.
Collapse
|
26
|
Nuutinen S, Panula P. Histamine in neurotransmission and brain diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 709:95-107. [PMID: 21618891 DOI: 10.1007/978-1-4419-8056-4_10] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Apart from its central role in the mediation of allergic reactions, gastric acid secretion and inflammation in the periphery, histamine serves an important function as a neurotransitter in the central nervous system. The histaminergic neurons originate from the tuberomamillary nucleus of the posterior hypothalamus and send projections to most parts of the brain. The central histamine system is involved in many brain functions such as arousal, control of pituitary hormone secretion, suppression ofeating and cognitive functions. The effects of neuronal histamine are mediated via G-protein-coupled H1-H4 receptors. The prominent role of histamine as a wake-promoting substance has drawn interest to treat sleep-wake disorders, especially narcolepsy, via modulation of H3 receptor function. Post mortem studies have revealed alterations in histaminergic system in neurological and psychiatric diseases. Brain histamine levels are decreased in Alzheimer's disease patients whereas abnormally high histamine concentrations are found in the brains of Parkinson's disease and schizophrenic patients. Low histamine levels are associated with convulsions and seizures. The release of histamine is altered in response to different types of brain injury: e.g. increased release of histamine in an ischemic brain trauma might have a role in the recovery from neuronal damage. Neuronal histamine is also involved in the pain perception. Drugs that increase brain and spinal histamine concentrations have antinociceptive properties. Histaminergic drugs, most importantly histamine H3 receptors ligands, have shown efficacy in many animal models of the above-mentioned disorders. Ongoing clinical trials will reveal the efficacy and safety of these drugs in the treatment of human patients.
Collapse
Affiliation(s)
- Saara Nuutinen
- Institute of Biomedicine, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
27
|
Nishino S, Sakurai E, Nevsimalova S, Yoshida Y, Watanabe T, Yanai K, Mignot E. Decreased CSF histamine in narcolepsy with and without low CSF hypocretin-1 in comparison to healthy controls. Sleep 2009; 32:175-80. [PMID: 19238804 DOI: 10.1093/sleep/32.2.175] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
STUDY OBJECTIVE To examine whether cerebrospinal fluid (CSF) histamine contents are altered in human narcolepsy and whether these alterations are specific to hypocretin deficiency, as defined by low CSF hypocretin-1. METHODS Patients meeting the ICSD-2 criteria for narcolepsy with and without cataplexy and who had CSF hypocretin-1 results available were selected from the Stanford Narcolepsy Database on the basis of CSF availability and adequate age and sex matching across 3 groups: narcolepsy with low CSF hypocretin-1 (n=34, 100% with cataplexy), narcolepsy without low CSF hypocretin-1 (n=24, 75% with cataplexy), and normal controls (n=23). Low CSF hypocretin-1 was defined as CSF < or =110 pg/mL (1/3 of mean control values). Six of 34 patients with low CSF hypocretin-1, six of 24 subjects with normal CSF hypocretin-1, and all controls were unmedicated at the time of CSF collection. CSF histamine was measured in all samples using a fluorometric HPLC system. RESULTS Mean CSF histamine levels were: 133.2 +/- 20.1 pg/mL in narcoleptic subjects with low CSF hypocretin-1, 233.3 +/- 46.5 pg/mL in patients with normal CSF hypocretin-1 (204.9 +/- 89.7 pg/mL if only patients without cataplexy are included), and 300.5 +/- 49.7 pg/mL in controls, reaching statistically significant differences between the 3 groups. CONCLUSION CSF histamine levels are reduced in human narcolepsy. The reduction of CSF histamine levels was more evident in the cases with low CSF hypocretin-1, and levels were intermediate in other narcolepsy cases. As histamine is a wake-promoting amine known to decrease during sleep, decreased histamine could either passively reflect or partially mediate daytime sleepiness in these pathologies.
Collapse
Affiliation(s)
- Seiji Nishino
- Sleep and Circadian Neurobiology Laboratory, Center for Narcolepsy, Stanford Sleep Research Center, Stanford University, MSLS Bldg Room P213, 1201 Welch Road, Palo Alto CA 94305, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Kanbayashi T, Kodama T, Kondo H, Satoh S, Inoue Y, Chiba S, Shimizu T, Nishino S. CSF histamine contents in narcolepsy, idiopathic hypersomnia and obstructive sleep apnea syndrome. Sleep 2009; 32:181-7. [PMID: 19238805 DOI: 10.1093/sleep/32.2.181] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVE To (1) replicate our prior result of low cerebrospinal fluid (CSF) histamine levels in human narcolepsy in a different sample population and to (2) evaluate if histamine contents are altered in other types of hypersomnia with and without hypocretin deficiency. DESIGN Cross sectional studies. SETTING AND PATIENTS Sixty-seven narcolepsy subjects, 26 idiopathic hypersomnia (IHS) subjects, 16 obstructive sleep apnea syndrome (OSAS) subjects, and 73 neurological controls were included. All patients were Japanese. Diagnoses were made according to ICSD-2. RESULTS We found significant reductions in CSF histamine levels in hypocretin deficient narcolepsy with cataplexy (mean +/- SEM; 176.0 +/- 25.8 pg/mL), hypocretin non-deficient narcolepsy with cataplexy (97.8 +/- 38.4 pg/mL), hypocretin non-deficient narcolepsy without cataplexy (113.6 +/- 16.4 pg/mL), and idiopathic hypersomnia (161.0 +/- 29.3 pg/ mL); the levels in OSAS (259.3 +/- 46.6 pg/mL) did not statistically differ from those in the controls (333.8 +/- 22.0 pg/mL). Low CSF histamine levels were mostly observed in non-medicated patients; significant reductions in histamine levels were evident in non-medicated patients with hypocretin deficient narcolepsy with cataplexy (112.1 +/- 16.3 pg/ mL) and idiopathic hypersomnia (143.3 +/- 28.8 pg/mL), while the levels in the medicated patients were in the normal range. CONCLUSION The study confirmed reduced CSF histamine levels in hypocretin-deficient narcolepsy with cataplexy. Similar degrees of reduction were also observed in hypocretin non-deficient narcolepsy and in idiopathic hypersomnia, while those in OSAS (non central nervous system hypersomnia) were not altered. The decrease in histamine in these subjects were more specifically observed in non-medicated subjects, suggesting CSF histamine is a biomarker reflecting the degree of hypersomnia of central origin.
Collapse
Affiliation(s)
- Takashi Kanbayashi
- Department of Neuropsychiatry, Akita University School of Medicine, Akita, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Haruyama W, Fuchigami T, Noguchi Y, Endo A, Hashimoto K, Inamo Y, Fujita Y, Takahashi S, Mugishima H. The relationship between drug treatment and the clinical characteristics of febrile seizures. World J Pediatr 2008; 4:202-5. [PMID: 18822929 DOI: 10.1007/s12519-008-0037-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Drugs such as theophylline, antihistamines, and antiallergics with anti-histaminic actions have been shown to induce febrile seizures. The relationship between febrile seizures and medications has not been actively investigated. The present study aimed to investigate the relationship between the clinical characteristics of febrile seizures and the use of medications. METHODS Two hundred and sixty-five children treated at our emergency room due to febrile seizures were studied to investigate the relationship between the clinical characteristics of febrile seizures, such as the type and duration of convulsions, and the drug treatment. RESULTS The duration of convulsions was longer among children who took theophylline and antihistamines than among children who did not take these medications. Of the antihistamines, mequitazine did not prolong the duration of convulsion. CONCLUSIONS Theophylline should not be used in febrile children, particularly infants. Cautions should be taken in using histamine H1 antagonists in young infants because such drugs could potentially disturb the anticonvulsive central histaminergic system. However, mequitazine appears to be a suitable antihistamine for use in children with febrile seizures, since it does not prolong convulsions.
Collapse
Affiliation(s)
- Wakako Haruyama
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kukko-Lukjanov TK, Soini S, Taira T, Michelsen KA, Panula P, Holopainen IE. Histaminergic neurons protect the developing hippocampus from kainic acid-induced neuronal damage in an organotypic coculture system. J Neurosci 2006; 26:1088-97. [PMID: 16436594 PMCID: PMC6674565 DOI: 10.1523/jneurosci.1369-05.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The central histaminergic neuron system inhibits epileptic seizures, which is suggested to occur mainly through histamine 1 (H1) and histamine 3 (H3) receptors. However, the importance of histaminergic neurons in seizure-induced cell damage is poorly known. In this study, we used an organotypic coculture system and confocal microscopy to examine whether histaminergic neurons, which were verified by immunohistochemistry, have any protective effect on kainic acid (KA)-induced neuronal damage in the developing hippocampus. Fluoro-Jade B, a specific marker for degenerating neurons, indicated that, after the 12 h KA (5 microM) treatment, neuronal damage was significantly attenuated in the hippocampus cultured together with the posterior hypothalamic slice containing histaminergic neurons [HI plus HY (POST)] when compared with the hippocampus cultured alone (HI) or with the anterior hypothalamus devoid of histaminergic neurons. Moreover, alpha-fluoromethylhistidine, an inhibitor of histamine synthesis, eliminated the neuroprotective effect in KA-treated HI plus HY (POST), and extracellularly applied histamine (1 nM to 100 microM) significantly attenuated neuronal damage only at 1 nM concentration in HI. After the 6 h KA treatment, spontaneous electrical activity registered in the CA1 subregion contained significantly less burst activity in HI plus HY (POST) than in HI. Finally, in KA-treated slices, the H3 receptor antagonist thioperamide enhanced the neuroprotective effect of histaminergic neurons, whereas the H1 receptor antagonists triprolidine and mepyramine dose-dependently decreased the neuroprotection in HI plus HY (POST). Our results suggest that histaminergic neurons protect the developing hippocampus from KA-induced neuronal damage, with regulation of neuronal survival being at least partly mediated through H1 and H3 receptors.
Collapse
MESH Headings
- Animals
- Cell Death/drug effects
- Cells, Cultured/drug effects
- Cells, Cultured/physiology
- Coculture Techniques
- Convulsants/toxicity
- Hippocampus/cytology
- Hippocampus/drug effects
- Histamine/biosynthesis
- Histamine/pharmacology
- Histamine/physiology
- Histamine Antagonists/pharmacology
- Histamine H1 Antagonists/pharmacology
- Hypothalamus, Anterior/cytology
- Hypothalamus, Posterior/cytology
- Imidazoles/pharmacology
- Kainic Acid/toxicity
- Methylhistidines/pharmacology
- Microscopy, Confocal
- Neurons/physiology
- Neuroprotective Agents/pharmacology
- Organ Culture Techniques
- Piperidines/pharmacology
- Pyrilamine/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Histamine H1/drug effects
- Receptors, Histamine H1/physiology
- Receptors, Histamine H3/drug effects
- Receptors, Histamine H3/physiology
- Thiourea/analogs & derivatives
- Thiourea/pharmacology
- Triprolidine/pharmacology
Collapse
|
31
|
Jobe PC, Browning RA. The serotonergic and noradrenergic effects of antidepressant drugs are anticonvulsant, not proconvulsant. Epilepsy Behav 2005; 7:602-19. [PMID: 16169281 DOI: 10.1016/j.yebeh.2005.07.014] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 07/19/2005] [Indexed: 11/22/2022]
Abstract
Contrary to existing evidence, convulsant liability of the antidepressants has been attributed to noradrenergic and serotonergic increments. This is a classic case of confusing treatment effects with the manifestations of illness. In fact, the remarkable anticonvulsant effectiveness of antidepressant-induced noradrenergic and serotonergic activation has been ignored. Some antidepressant drugs such as the specific serotonin reuptake inhibitor (SSRI) fluoxetine may be devoid of convulsant liability entirely, while having distinct anticonvulsant properties. Some authorities advance the notion that the seizure predisposition of patients with epilepsy increases risks for antidepressant-induced seizures. However, evidence does not support this contention. Instead, data increasingly support the concept that noradrenergic and serotonergic deficiencies contribute to seizure predisposition. Indeed, the antidepressants have the potential to overcome seizure predisposition in epilepsy. Whereas therapeutic doses of antidepressants elevate noradrenergic and serotonergic transmission, larger doses can activate other biological processes that may be convulsant.
Collapse
Affiliation(s)
- Phillip C Jobe
- University of Illinois College of Medicine, Peoria, IL, USA.
| | | |
Collapse
|
32
|
Hirai T, Okuma C, Harada C, Mio M, Ohtsu H, Watanabe T, Kamei C. Development of Amygdaloid Kindling in Histidine Decarboxylase-deficient and Histamine H1 Receptor-deficient Mice. Epilepsia 2004; 45:309-13. [PMID: 15030492 DOI: 10.1111/j.0013-9580.2004.19303.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE This study attempted to clarify the role of histamine or histamine H1 receptors in the development of amygdaloid kindling by using histidine decarboxylase (HDC)-deficient and histamine H1 receptor (H1R)-deficient mice. METHODS Under pentobarbital anesthesia, mice were fixed to a stereotaxic apparatus, and bipolar electrodes were implanted into the right amygdala. Electrodes were connected to a miniature receptacle, which was embedded in the skull with dental cement. A bipolar electroencephalogram was recorded; bipolar stimulation of the amygdala was applied every day with a constant-current stimulator and continued until a generalized convulsion was obtained. RESULTS The development of amygdaloid kindling in HDC-deficient and H1R-deficient mice was significantly accelerated compared with that in their respective wild-type mice. In addition, the afterdischarge (AD) duration and generalized seizure duration in HDC-deficient and H1R-deficient mice were prolonged. Intraperitoneal injection of histidine resulted in an inhibition of amygdaloid kindled seizures in wild-type mice at doses that caused an increase in the histamine contents of the brain. However, no significant effect was observed with histidine in H1R-deficient mice at the same dose. CONCLUSIONS These findings suggest that histaminergic mechanisms through H1 receptors play a crucial role not only in amygdaloid kindled seizures but also in the development of amygdaloid kindling.
Collapse
Affiliation(s)
- Tadashi Hirai
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Experimental and epidemiological studies have indicated that central histaminergic neuron system plays an important role in inhibition of convulsive disorders through histamine H(1)-receptors, especially in developing period. Histamine H(1) antagonists increase the duration of electrically induced convulsions in 21-day-old mice, but not in 42-day-old mice. Epidemiological studies suggested that histamine H(1) antagonist may be one of the risk factors in febrile convulsions. In histidinemic patients who were considered to have high brain histamine content, the incidence of convulsions was lower than that of ordinary population.The centrally acting histamine H(1) antagonists including pyrilamine and ketotifen facilitate the development of amygdaloid kindling in rats, an experimental model of epileptogenic process. On the contrary, epinastine, a histamine H(1) antagonist which scarcely enters the brain, shows no facilitation. These findings suggest that the central histaminergic neuron system plays an inhibitory role on the seizure development through central histamine H(1)-receptors.Recently, three cases has been reported in which West syndrome developed 8-10 days after ketotifen or oxatomide administration. Considering experimental and clinical studies, histamine H(1) antagonists may be associated with West syndrome and may be hazardous to infants. Further careful experimental and clinical studies will be required to elucidate the relationships between West syndrome and central histaminergic neuron system.
Collapse
Affiliation(s)
- H Yokoyama
- Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| |
Collapse
|
34
|
Kiviranta T, Tuomisto L, Airaksinen EM. Diurnal and age-related changes in cerebrospinal fluid tele-methylhistamine levels during infancy and childhood. Pharmacol Biochem Behav 1994; 49:997-1000. [PMID: 7886118 DOI: 10.1016/0091-3057(94)90254-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Histamine is a neurotransmitter participating in many physiological functions and behavior, including control of arousal and modulation of the circadian rhythms. Diurnal variation in cerebrospinal fluid (CSF) levels of tele-methylhistamine (t-MH), the main histamine metabolite, has been detected in several animal studies. In humans, such changes have not been described. Little is known on the development of histaminergic neurons in human brain. In children, the levels of CSF t-MH are not known. Therefore, we have measured the concentrations of CSF t-MH in 81 children, age ranging from 3 months to 14.6 years. t-MH levels were higher in infants, and near adult values were measured in adolescents, the relation between CSF t-MH and age being; CSF t-MH = -0.217 years + 7.31 (n = 81, r = 0.26, p = 0.021). The mean t-MH concentration was higher during the daytime (7.07 +/- 0.46 pmol/ml, mean +/- SEM) than in the night (5.35 +/- 0.60 pmol/ml, p = 0.0019, ANOVA). The results show a development change in the concentration of t-MH during childhood and a difference in t-MH levels between the daytime and night indicating a more active metabolism of brain HA in the waking period.
Collapse
Affiliation(s)
- T Kiviranta
- Department of Pediatrics, Kuopio University Hospital, Finland
| | | | | |
Collapse
|