1
|
Massey N, Vasanthi SS, Gimenez-Lirola LG, Tyler H, Thippeswamy T. Proinflammatory cytokines, oxidative stress, and organ function as biomarkers of soman (GD) chronic neurotoxicity. Sci Rep 2025; 15:9021. [PMID: 40089647 PMCID: PMC11910520 DOI: 10.1038/s41598-025-94190-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/12/2025] [Indexed: 03/17/2025] Open
Abstract
Organophosphate (OP) nerve agents, such as soman (GD), pose great risk to neurological health by inhibiting acetylcholinesterase, leading to seizures, epilepsy, and behavioral deficits. While acute treatment may alleviate immediate symptoms, the long-term consequences, particularly those involving neuroinflammation and systemic toxicity, remain poorly understood. This study used adult male and female Sprague Dawley rats to investigate the chronic effects of a single acute exposure to soman (132 µg/kg, s.c., 1.2 × LD50) on neuroinflammation, behavioral comorbidity, and systemic toxicity. Following exposure, animals were treated with atropine sulfate (2 mg/kg, i.m.) and oxime HI-6 (125 mg/kg, i.m.) to mitigate peripheral cholinergic effects, and with midazolam (3 mg/kg, i.m., 1 h post-exposure) to control seizures. Spontaneously recurring seizures were monitored during handling and with video electroencephalogram (vEEG). Neurobehavioral deficits were assessed 4-8 weeks post-exposure. At 18 weeks post-exposure, brain, serum, and cerebrospinal fluid (CSF) were analyzed for inflammatory and nitro-oxidative stress markers, and the liver and kidney function biomarkers were evaluated. Soman-exposed animals developed epilepsy, confirmed by handling-induced seizures and/or continuous vEEG monitoring. Behavioral assessments revealed significant memory deficits following soman exposure. Proinflammatory cytokines (TNF-α, IL-6, IL-1α, IL-18, IL-17A, and MCP-1) were significantly elevated in both serum and CSF, alongside corresponding increases in their gene expression in the brain. Elevated reactive oxygen/nitrogen species were detected in the serum. Although hematological parameters remained unchanged, a significant increase in total bilirubin and an upward trend in serum blood urea nitrogen (BUN) levels and BUN: Creatinine ratio indicated potential liver and kidney dysfunction. However, no significant structural changes in these organs at the cellular level were observed in histological analyses. This study identifies critical chronic biomarkers of soman exposure affecting the brain, serum, CSF, liver, and kidney. The findings highlight the critical need to monitor systemic and neurological impacts, as well as organ function, to develop effective diagnostic and therapeutic strategies for survivors of nerve agent exposure or OP pesticide poisoning. Behavioral deficits and EEG changes in soman-exposed animals further emphasize the long-term neurological consequences of exposure.
Collapse
Affiliation(s)
- Nyzil Massey
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Suraj S Vasanthi
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Luis G Gimenez-Lirola
- Vet Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Harm Tyler
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| |
Collapse
|
2
|
Du X, Wang B, Wang H, Li Q, Li X, Hu P, Lai Q, Fan H. Is the regulation of lamotrigine on depression in patients with epilepsy related to cytokines? Heliyon 2024; 10:e33129. [PMID: 39022060 PMCID: PMC11252738 DOI: 10.1016/j.heliyon.2024.e33129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Objectives The purpose of this study was to analyze the effects of lamotrigine on peripheral blood cytokines and depression in patients with epilepsy and to explore the possible mechanism by which lamotrigine regulates depression in patients with epilepsy. Methods 50 healthy people, 72 patients treated with lamotrigine (LTG group) and 72 patients treated with valproate were enrolled (VPA group). Cytokine levels in the peripheral blood of the subjects were measured and their level of depression was scored according to the self-rating Depression Scale (SDS), Hamilton Depression Scale (HAMD) and Chinese version of Epilepsy Depression Scale (c-NDDI-E). The cytokine levels and depression scale scores were compared between the three groups. The correlation between cytokine levels and depression scale scores was analyzed. Results The levels of IL-1β, IL-2, IL-6, and TNF-α and the SDS, HAMD, and c-NDDI-E scores in healthy group was lower than that in epileptic group. After 6 months of treatment, the difference valule of IL-1β、IL-6、TNF-α、SDS and HAMD before and after treatment in LTG group significantly higher than that in VPA group. Correlation analysis showed that the SDS scores were correlated with the levels of IL-1β and TNF-α, and the HAMD scores were correlated with the levels of TNF-α. Multiple linear regression analysis showed that the HAMD scores were correlated with the levels of TNF-α. Conclusion Lamotrigine can inhibit peripheral blood inflammation and improve depression in epileptic patients. Lamotrigine improved depressive mood in epileptic patients, which may be related to reduced TNF-α levels.
Collapse
Affiliation(s)
- Xin Du
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, China
- Department of Neurology, First People's Hospital of Xuzhou, Xuzhou City, China
| | - Bingbing Wang
- Department of Neurology, Suining County People's Hospital, Xuzhou City, China
| | - Heng Wang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, China
| | - Qingyun Li
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, China
| | - Xinyu Li
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, China
| | - Peng Hu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, China
| | - Qingwei Lai
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, China
| | - Hongbin Fan
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, China
| |
Collapse
|
3
|
Sriram S, Carstens K, Dewing W, Fiacco TA. Astrocyte regulation of extracellular space parameters across the sleep-wake cycle. Front Cell Neurosci 2024; 18:1401698. [PMID: 38988660 PMCID: PMC11233815 DOI: 10.3389/fncel.2024.1401698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
Multiple subfields of neuroscience research are beginning to incorporate astrocytes into current frameworks of understanding overall brain physiology, neuronal circuitry, and disease etiology that underlie sleep and sleep-related disorders. Astrocytes have emerged as a dynamic regulator of neuronal activity through control of extracellular space (ECS) volume and composition, both of which can vary dramatically during different levels of sleep and arousal. Astrocytes are also an attractive target of sleep research due to their prominent role in the glymphatic system, a method by which toxic metabolites generated during wakefulness are cleared away. In this review we assess the literature surrounding glial influences on fluctuations in ECS volume and composition across the sleep-wake cycle. We also examine mechanisms of astrocyte volume regulation in glymphatic solute clearance and their role in sleep and wake states. Overall, findings highlight the importance of astrocytes in sleep and sleep research.
Collapse
Affiliation(s)
- Sandhya Sriram
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, United States
- Department of Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
| | - Kaira Carstens
- Department of Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
| | - Wayne Dewing
- Undergraduate Major in Neuroscience, University of California, Riverside, Riverside, CA, United States
| | - Todd A Fiacco
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, United States
- Department of Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
4
|
Brenet A, Somkhit J, Csaba Z, Ciura S, Kabashi E, Yanicostas C, Soussi-Yanicostas N. Microglia Mitigate Neuronal Activation in a Zebrafish Model of Dravet Syndrome. Cells 2024; 13:684. [PMID: 38667299 PMCID: PMC11049242 DOI: 10.3390/cells13080684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
It has been known for a long time that epileptic seizures provoke brain neuroinflammation involving the activation of microglial cells. However, the role of these cells in this disease context and the consequences of their inflammatory activation on subsequent neuron network activity remain poorly understood so far. To fill this gap of knowledge and gain a better understanding of the role of microglia in the pathophysiology of epilepsy, we used an established zebrafish Dravet syndrome epilepsy model based on Scn1Lab sodium channel loss-of-function, combined with live microglia and neuronal Ca2+ imaging, local field potential (LFP) recording, and genetic microglia ablation. Data showed that microglial cells in scn1Lab-deficient larvae experiencing epileptiform seizures displayed morphological and biochemical changes characteristic of M1-like pro-inflammatory activation; i.e., reduced branching, amoeboid-like morphology, and marked increase in the number of microglia expressing pro-inflammatory cytokine Il1β. More importantly, LFP recording, Ca2+ imaging, and swimming behavior analysis showed that microglia-depleted scn1Lab-KD larvae displayed an increase in epileptiform seizure-like neuron activation when compared to that seen in scn1Lab-KD individuals with microglia. These findings strongly suggest that despite microglia activation and the synthesis of pro-inflammatory cytokines, these cells provide neuroprotective activities to epileptic neuronal networks, making these cells a promising therapeutic target in epilepsy.
Collapse
Affiliation(s)
- Alexandre Brenet
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France (C.Y.)
| | - Julie Somkhit
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France (C.Y.)
| | - Zsolt Csaba
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France (C.Y.)
| | - Sorana Ciura
- Institut Imagine, University Paris Descartes, Necker-Enfants Malades Hospital, 75015 Paris, France
| | - Edor Kabashi
- Institut Imagine, University Paris Descartes, Necker-Enfants Malades Hospital, 75015 Paris, France
| | - Constantin Yanicostas
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France (C.Y.)
- INSERM, T3S, Department of Biochemistry, Université Paris Cité, 75006 Paris, France
| | - Nadia Soussi-Yanicostas
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France (C.Y.)
- INSERM, T3S, Department of Biochemistry, Université Paris Cité, 75006 Paris, France
| |
Collapse
|
5
|
Kouba BR, de Araujo Borba L, Borges de Souza P, Gil-Mohapel J, Rodrigues ALS. Role of Inflammatory Mechanisms in Major Depressive Disorder: From Etiology to Potential Pharmacological Targets. Cells 2024; 13:423. [PMID: 38474387 PMCID: PMC10931285 DOI: 10.3390/cells13050423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The involvement of central and peripheral inflammation in the pathogenesis and prognosis of major depressive disorder (MDD) has been demonstrated. The increase of pro-inflammatory cytokines (interleukin (IL)-1β, IL-6, IL-18, and TNF-α) in individuals with depression may elicit neuroinflammatory processes and peripheral inflammation, mechanisms that, in turn, can contribute to gut microbiota dysbiosis. Together, neuroinflammation and gut dysbiosis induce alterations in tryptophan metabolism, culminating in decreased serotonin synthesis, impairments in neuroplasticity-related mechanisms, and glutamate-mediated excitotoxicity. This review aims to highlight the inflammatory mechanisms (neuroinflammation, peripheral inflammation, and gut dysbiosis) involved in the pathophysiology of MDD and to explore novel anti-inflammatory therapeutic approaches for this psychiatric disturbance. Several lines of evidence have indicated that in addition to antidepressants, physical exercise, probiotics, and nutraceuticals (agmatine, ascorbic acid, and vitamin D) possess anti-inflammatory effects that may contribute to their antidepressant properties. Further studies are necessary to explore the therapeutic benefits of these alternative therapies for MDD.
Collapse
Affiliation(s)
- Bruna R. Kouba
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (L.d.A.B.); (P.B.d.S.)
| | - Laura de Araujo Borba
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (L.d.A.B.); (P.B.d.S.)
| | - Pedro Borges de Souza
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (L.d.A.B.); (P.B.d.S.)
| | - Joana Gil-Mohapel
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Ana Lúcia S. Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (L.d.A.B.); (P.B.d.S.)
| |
Collapse
|
6
|
Abdel Mageed SS, Rashad AA, Elshaer SS, Elballal MS, Mohammed OA, Darwish SF, Salama RM, Mangoura SA, Al-Noshokaty TM, Gomaa RM, Elesawy AE, El-Demerdash AA, Zaki MB, Abulsoud AI, El-Dakroury WA, Elrebehy MA, Abdel-Reheim MA, Moustafa YM, Gedawy EM, Doghish AS. The emerging role of miRNAs in epilepsy: From molecular signatures to diagnostic potential. Pathol Res Pract 2024; 254:155146. [PMID: 38266457 DOI: 10.1016/j.prp.2024.155146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Epilepsy is a medical condition characterized by intermittent seizures accompanied by changes in consciousness. Epilepsy significantly impairs the daily functioning and overall well-being of affected individuals. Epilepsy is a chronic neurological disorder characterized by recurrent seizures resulting from various dysfunctions in brain activity. The molecular processes underlying changes in neuronal structure, impaired apoptotic responses in neurons, and disruption of regenerative pathways in glial cells in epilepsy remain unknown. MicroRNAs (miRNAs) play a crucial role in regulating apoptosis, autophagy, oxidative stress, neuroinflammation, and the body's regenerative and immune responses. miRNAs have been shown to influence many pathogenic processes in epilepsy including inflammatory responses, neuronal necrosis and apoptosis, dendritic growth, synaptic remodeling, and other processes related to the development of epilepsy. Therefore, the purpose of our current analysis was to determine the role of miRNAs in the etiology and progression of epilepsy. Furthermore, they have been examined for their potential application as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Samar F Darwish
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Rania M Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Safwat Abdelhady Mangoura
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Rania M Gomaa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, P.O. Box 11829, Cairo, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Aya A El-Demerdash
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ehab M Gedawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, P.O. Box 11829, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
7
|
Mu C, Gao M, Xu W, Sun X, Chen T, Xu H, Qiu H. Mechanisms of microRNA-132 in central neurodegenerative diseases: A comprehensive review. Biomed Pharmacother 2024; 170:116029. [PMID: 38128185 DOI: 10.1016/j.biopha.2023.116029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
MicroRNA-132 (miR-132) is a highly conserved molecule that plays a crucial regulatory role in central nervous system (CNS) disorders. The expression levels of miR-132 exhibit variability in various neurological disorders and have been closely linked to disease onset and progression. The expression level of miR-132 in the CNS is regulated by a diverse range of stimuli and signaling pathways, including neuronal migration and integration, dendritic outgrowth, and complexity, synaptogenesis, synaptic plasticity, as well as inflammation and apoptosis activation. The aberrant expression of miR-132 in various central neurodegenerative diseases has garnered widespread attention. Clinical studies have revealed altered miR-132 expression levels in both chronic and acute CNS diseases, positioning miR-132 as a potential biomarker or therapeutic target. An in-depth exploration of miR-132 holds the promise of enhancing our understanding of the mechanisms underlying CNS diseases, thereby offering novel insights and strategies for disease diagnosis and treatment. It is anticipated that this review will assist researchers in recognizing the potential value of miR-132 and in generating innovative ideas for clinical trials related to CNS degenerative diseases.
Collapse
Affiliation(s)
- Chenxi Mu
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Meng Gao
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Weijing Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China
| | - Xun Sun
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Tianhao Chen
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Hui Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| | - Hongbin Qiu
- School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| |
Collapse
|
8
|
de Melo IS, Sabino-Silva R, Costa MA, Vaz ER, Anselmo-E-Silva CI, de Paula Soares Mendonça T, Oliveira KB, de Souza FMA, Dos Santos YMO, Pacheco ALD, Freitas-Santos J, Caixeta DC, Goulart LR, de Castro OW. N-Formyl-Methionyl-Leucyl-Phenylalanine Plays a Neuroprotective and Anticonvulsant Role in Status Epilepticus Model. Cell Mol Neurobiol 2023; 43:4231-4244. [PMID: 37742326 PMCID: PMC11407717 DOI: 10.1007/s10571-023-01410-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/31/2023] [Indexed: 09/26/2023]
Abstract
Status epilepticus (SE) is described as continuous and self-sustaining seizures, which triggers hippocampal neurodegeneration, inflammation, and gliosis. N-formyl peptide receptor (FPR) has been associated with inflammatory process. N-formyl-methionyl-leucyl-phenylalanine (fMLP) peptide plays an anti-inflammatory role, mediated by the activation of G-protein-coupled FPR. Here, we evaluated the influence of fMLP peptides on the behavior of limbic seizures, memory consolidation, and hippocampal neurodegeneration process. Male Wistar rats (Rattus norvegicus) received microinjections of pilocarpine in hippocampus (H-PILO, 1.2 mg/μL, 1 μL) followed by fMLP (1 mg/mL, 1 μL) or vehicle (VEH, saline 0.9%, 1 μL). During the 90 min of SE, epileptic seizures were analyzed according to the Racine's Scale. After 24 h of SE, memory impairment was assessed by the inhibitory avoidance test and the neurodegeneration process was evaluated in hippocampal areas. There was no change in latency and number of wet dog shake (WDS) after administration of fMLP. However, our results showed that the intrahippocampal infusion of fMLP reduced the severity of seizures, as well as the number of limbic seizures. In addition, fMLP infusion protected memory dysfunction followed by SE. Finally, the intrahippocampal administration of fMLP attenuated the process of neurodegeneration in both hippocampi. Taken together, our data suggest a new insight into the functional role of fMLP peptides, with important implications for their potential use as a therapeutic agent for the treatment of brain disorders, such as epilepsy. Schematic drawing on the neuroprotective and anticonvulsant role of fMLP during status epilepticus. Initially, a cannula was implanted in hippocampus and pilocarpine/saline was administered into the hippocampus followed by fMLP/saline (A-C). fMLP reduced seizure severity and neuronal death in the hippocampus, as well as protecting against memory deficit (D).
Collapse
Affiliation(s)
- Igor Santana de Melo
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil.
| | - Robinson Sabino-Silva
- Department of Physiology, Innovation Center in Salivary Diagnostic and Nanotheranostics, Institute of Biomedical Sciences (ICBIM), Federal University of Uberlandia (UFU), Av. Pará, 1720, Uberlandia, MG, CEP 38400-902, Brazil.
| | - Maisa Araújo Costa
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Emília Rezende Vaz
- Institute of Biotechnology, Federal University of Uberlandia, Minas Gerais, Brazil
| | | | | | - Kellysson Bruno Oliveira
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Fernanda Maria Araújo de Souza
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Yngrid Mickaelli Oliveira Dos Santos
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Amanda Larissa Dias Pacheco
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Jucilene Freitas-Santos
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Douglas Carvalho Caixeta
- Department of Physiology, Innovation Center in Salivary Diagnostic and Nanotheranostics, Institute of Biomedical Sciences (ICBIM), Federal University of Uberlandia (UFU), Av. Pará, 1720, Uberlandia, MG, CEP 38400-902, Brazil
| | - Luiz Ricardo Goulart
- Institute of Biotechnology, Federal University of Uberlandia, Minas Gerais, Brazil
| | - Olagide Wagner de Castro
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil.
| |
Collapse
|
9
|
Cao Z, Guo M, Cao X, Liu T, Hu S, Xiao Y, Zhang M, Liu H. Progress in TLE treatment from 2003 to 2023: scientific measurement and visual analysis based on CiteSpace. Front Neurol 2023; 14:1223457. [PMID: 37854064 PMCID: PMC10580429 DOI: 10.3389/fneur.2023.1223457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/30/2023] [Indexed: 10/20/2023] Open
Abstract
Objective Temporal lobe epilepsy (TLE) is the most common cause of drug-resistant epilepsy and can be treated surgically to control seizures. In this study, we analyzed the relevant research literature in the field of temporal lobe epilepsy (TLE) treatment to understand the background, hotspots, and trends in TLE treatment research. Methods We discussed the trend, frontier, and hotspot of scientific output in TLE treatment research in the world in the last 20 years by searching the core collection of the Web of Science database. Excel and CiteSpace software were used to analyze the basic data of the literature. Result We identified a total of 2,051 publications on TLE treatment from 75 countries between 2003 and 2023. We found that the publication rate was generally increasing. The United States was the most publishing country; among the research institutions on TLE treatment, the University of California system published the most relevant literature and collaborated the most with other institutions. The co-citation of literature, keyword co-occurrence, and its clustering analysis showed that the early studies focused on open surgical treatment, mainly by lobectomy. In recent years, the attention given to stereotactic, microsurgery, and other surgical techniques has gradually increased, and the burst analysis indicated that new research hotspots may appear in the future in the areas of improved surgical procedures and mechanism research.
Collapse
Affiliation(s)
- Zhan Cao
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingjie Guo
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Xun Cao
- Medical College of Zhengzhou University, Zhengzhou, China
| | - Tiantian Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaowen Hu
- Department of Urinary Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Yafei Xiao
- Department of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Min Zhang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hengfang Liu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Xie G, Chen H, He C, Hu S, Xiao X, Luo Q. The dysregulation of miRNAs in epilepsy and their regulatory role in inflammation and apoptosis. Funct Integr Genomics 2023; 23:287. [PMID: 37653173 PMCID: PMC10471759 DOI: 10.1007/s10142-023-01220-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Epilepsy is a neurological disorder that impacts millions of people worldwide, and it is characterized by the occurrence of recurrent seizures. The pathogenesis of epilepsy is complex, involving dysregulation of various genes and signaling pathways. MicroRNAs (miRNAs) are a group of small non-coding RNAs that play a vital role in the regulation of gene expression. They have been found to be involved in the pathogenesis of epilepsy, acting as key regulators of neuronal excitability and synaptic plasticity. In recent years, there has been a growing interest in exploring the miRNA regulatory network in epilepsy. This review summarizes the current knowledge of the regulatory miRNAs involved in inflammation and apoptosis in epilepsy and discusses its potential as a new avenue for developing targeted therapies for the treatment of epilepsy.
Collapse
Affiliation(s)
- Guoping Xie
- Department of Clinical Laboratory, The Second Staff Hospital of Wuhan Iron and Steel (Group) Corporation, Wuhan, Hubei, China
| | - Huan Chen
- Department of Clinical Laboratory, Wuhan Institute of Technology Hospital, Wuhan Institute of Technology, Wuhan, China
| | - Chan He
- Department of Clinical Laboratory, Maternal and Child Health Hospital in Wuchang District, Wuhan, Hubei, China
| | - Siheng Hu
- Department of Clinical Laboratory, Honggangcheng Street Community Health Service Center, Qingshan District, Wuhan, Hubei, China
| | - Xue Xiao
- Department of Clinical Laboratory, Gongrencun Street Community Health Service Center, Wuhan, China
| | - Qunying Luo
- Department of Neurology, Huarun Wuhan Iron and Steel General Hospital, Wuhan, Hubei, China.
| |
Collapse
|
11
|
Vasanthi SS, Rao NS, Samidurai M, Massey N, Meyer C, Gage M, Kharate M, Almanza A, Wachter L, Mafuta C, Trevino L, Carlo AM, Bryant E, Corson BE, Wohlgemuth M, Ostrander M, Showman L, Wang C, Thippeswamy T. Disease-modifying effects of a glial-targeted inducible nitric oxide synthase inhibitor (1400W) in mixed-sex cohorts of a rat soman (GD) model of epilepsy. J Neuroinflammation 2023; 20:163. [PMID: 37438764 PMCID: PMC10337207 DOI: 10.1186/s12974-023-02847-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Acute exposure to seizurogenic organophosphate (OP) nerve agents (OPNA) such as diisopropylfluorophosphate (DFP) or soman (GD), at high concentrations, induce immediate status epilepticus (SE), reactive gliosis, neurodegeneration, and epileptogenesis as a consequence. Medical countermeasures (MCMs-atropine, oximes, benzodiazepines), if administered in < 20 min of OPNA exposure, can control acute symptoms and mortality. However, MCMs alone are inadequate to prevent OPNA-induced brain injury and behavioral dysfunction in survivors. We have previously shown that OPNA exposure-induced SE increases the production of inducible nitric oxide synthase (iNOS) in glial cells in both short- and long- terms. Treating with a water soluble and highly selective iNOS inhibitor, 1400W, for 3 days significantly reduced OPNA-induced brain changes in those animals that had mild-moderate SE in the rat DFP model. However, such mitigating effects and the mechanisms of 1400W are unknown in a highly volatile nerve agent GD exposure. METHODS Mixed-sex cohort of adult Sprague Dawley rats were exposed to GD (132 μg/kg, s.c.) and immediately treated with atropine (2 mg/kg, i.m) and HI-6 (125 mg/kg, i.m.). Severity of seizures were quantified for an hour and treated with midazolam (3 mg/kg, i.m.). An hour post-midazolam, 1400W (20 mg/kg, i.m.) or vehicle was administered daily for 2 weeks. After behavioral testing and EEG acquisition, animals were euthanized at 3.5 months post-GD. Brains were processed for neuroinflammatory and neurodegeneration markers. Serum and CSF were used for nitrooxidative and proinflammatory cytokines assays. RESULTS We demonstrate a significant long-term (3.5 months post-soman) disease-modifying effect of 1400W in animals that had severe SE for > 20 min of continuous convulsive seizures. 1400W significantly reduced GD-induced motor and cognitive dysfunction; nitrooxidative stress (nitrite, ROS; increased GSH: GSSG); proinflammatory cytokines in the serum and some in the cerebrospinal fluid (CSF); epileptiform spikes and spontaneously recurring seizures (SRS) in males; reactive gliosis (GFAP + C3 and IBA1 + CD68-positive glia) as a measure of neuroinflammation, and neurodegeneration (especially parvalbumin-positive neurons) in some brain regions. CONCLUSION These findings demonstrate the long-term disease-modifying effects of a glial-targeted iNOS inhibitor, 1400W, in a rat GD model by modulating reactive gliosis, neurodegeneration (parvalbumin-positive neurons), and neuronal hyperexcitability.
Collapse
Affiliation(s)
- Suraj S. Vasanthi
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| | - Nikhil S. Rao
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| | - Manikandan Samidurai
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| | - Nyzil Massey
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| | - Christina Meyer
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| | - Meghan Gage
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| | - Mihir Kharate
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| | - Aida Almanza
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| | - Logan Wachter
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| | - Candide Mafuta
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| | - Lily Trevino
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| | - Adriana M. Carlo
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| | - Elijah Bryant
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| | - Brooke E. Corson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| | - Morgan Wohlgemuth
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| | - Morgan Ostrander
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| | - Lucas Showman
- W.M. Keck Metabolomics Research Laboratory, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| | - Chong Wang
- Department of Veterinary Diagnostic and Production Animal Medicine and Statistics, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, 50011 USA
| |
Collapse
|
12
|
Escobar AP, Bonansco C, Cruz G, Dagnino-Subiabre A, Fuenzalida M, Negrón I, Sotomayor-Zárate R, Martínez-Pinto J, Jorquera G. Central and Peripheral Inflammation: A Common Factor Causing Addictive and Neurological Disorders and Aging-Related Pathologies. Int J Mol Sci 2023; 24:10083. [PMID: 37373230 PMCID: PMC10298583 DOI: 10.3390/ijms241210083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Many diseases and degenerative processes affecting the nervous system and peripheral organs trigger the activation of inflammatory cascades. Inflammation can be triggered by different environmental conditions or risk factors, including drug and food addiction, stress, and aging, among others. Several pieces of evidence show that the modern lifestyle and, more recently, the confinement associated with the COVID-19 pandemic have contributed to increasing the incidence of addictive and neuropsychiatric disorders, plus cardiometabolic diseases. Here, we gather evidence on how some of these risk factors are implicated in activating central and peripheral inflammation contributing to some neuropathologies and behaviors associated with poor health. We discuss the current understanding of the cellular and molecular mechanisms involved in the generation of inflammation and how these processes occur in different cells and tissues to promote ill health and diseases. Concomitantly, we discuss how some pathology-associated and addictive behaviors contribute to worsening these inflammation mechanisms, leading to a vicious cycle that promotes disease progression. Finally, we list some drugs targeting inflammation-related pathways that may have beneficial effects on the pathological processes associated with addictive, mental, and cardiometabolic illnesses.
Collapse
Affiliation(s)
- Angélica P. Escobar
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Christian Bonansco
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Gonzalo Cruz
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Alexies Dagnino-Subiabre
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Marco Fuenzalida
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Ignacio Negrón
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Ramón Sotomayor-Zárate
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Jonathan Martínez-Pinto
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gonzalo Jorquera
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile
| |
Collapse
|
13
|
Vasanthi SS, Rao NS, Samidurai M, Massey N, Meyer C, Gage M, Kharate M, Almanza A, Wachter L, Mafuta C, Trevino L, Carlo AM, Bryant E, Corson BE, Wohlgemuth M, Ostrander M, Wang C, Thippeswamy T. Disease-Modifying Effects of a Glial-targeted Inducible Nitric Oxide Synthase Inhibitor (1400W) in Mixed-sex Cohorts of a Rat Soman (GD) Model of Epilepsy. RESEARCH SQUARE 2023:rs.3.rs-2883247. [PMID: 37214912 PMCID: PMC10197763 DOI: 10.21203/rs.3.rs-2883247/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Background Acute exposure to seizurogenic organophosphate (OP) nerve agents (OPNA) such as diisopropylfluorophosphate (DFP) or soman (GD), at high concentrations, induce immediate status epilepticus (SE), reactive gliosis, neurodegeneration, and epileptogenesis as a consequence. Medical countermeasures (MCMs- atropine, oximes, benzodiazepines), if administered in < 20 minutes of OPNA exposure, can control acute symptoms and mortality. However, MCMs alone are inadequate to prevent OPNA-induced brain injury and behavioral dysfunction in survivors. We have previously shown that OPNA exposure-induced SE increases the production of inducible nitric oxide synthase (iNOS) in glial cells in both short- and long- terms. Treating with a water soluble and highly selective iNOS inhibitor, 1400W, for three days significantly reduced OPNA-induced brain changes in those animals that had mild-moderate SE in the rat DFP model. However, such mitigating effects and the mechanisms of 1400W are unknown in a highly volatile nerve agent GD exposure. Methods Mixed-sex cohort of adult Sprague Dawley rats were exposed to GD (132µg/kg, s.c.) and immediately treated with atropine (2mg/kg, i.m) and HI-6 (125mg/kg, i.m.). Severity of seizures were quantified for an hour and treated with midazolam (3mg/kg, i.m.). An hour post-midazolam, 1400W (20mg/kg, i.m.) or vehicle was administered daily for two weeks. After behavioral testing and EEG acquisition, animals were euthanized at 3.5 months post-GD. Brains were processed for neuroinflammatory and neurodegeneration markers. Serum and CSF were used for nitrooxidative and proinflammatory cytokines assays. Results We demonstrate a significant long-term (3.5 months post-soman) disease-modifying effect of 1400W in animals that had severe SE for > 20min of continuous convulsive seizures. 1400W significantly reduced GD-induced motor and cognitive dysfunction; nitrooxidative stress (nitrite, ROS; increased GSH: GSSG); proinflammatory cytokines in the serum and some in the cerebrospinal fluid (CSF); epileptiform spikes and spontaneously recurring seizures (SRS) in males; reactive gliosis (GFAP + C3 and IBA1 + CD68 positive glia) as a measure of neuroinflammation, and neurodegeneration (including parvalbumin positive neurons) in some brain regions. Conclusion These findings demonstrate the long-term disease-modifying effects of a glial-targeted iNOS inhibitor, 1400W, in a rat GD model by modulating reactive gliosis, neurodegeneration, and neuronal hyperexcitability.
Collapse
|
14
|
Zhu J, Park S, Kim CH, Jeong KH, Kim WJ. Eugenol alleviates neuronal damage via inhibiting inflammatory process against pilocarpine-induced status epilepticus. Exp Biol Med (Maywood) 2023; 248:722-731. [PMID: 36802956 PMCID: PMC10408549 DOI: 10.1177/15353702231151976] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/25/2022] [Indexed: 02/22/2023] Open
Abstract
Neuroinflammation is one of the most common pathological outcomes in various neurological diseases. A growing body of evidence suggests that neuroinflammation plays a pivotal role in the pathogenesis of epileptic seizures. Eugenol is the major phytoconstituent of essential oils extracted from several plants and possesses protective and anticonvulsant properties. However, it remains unclear whether eugenol exerts an anti-inflammatory effect to protect against severe neuronal damage induced by epileptic seizures. In this study, we investigated the anti-inflammatory action of eugenol in an experimental epilepsy model of pilocarpine-induced status epilepticus (SE). To examine the protective effect of eugenol via anti-inflammatory mechanisms, eugenol (200 mg/kg) was administrated daily for three days after pilocarpine-induced SE onset. The anti-inflammatory action of eugenol was evaluated by examining the expression of reactive gliosis, pro-inflammatory cytokines, nuclear factor-κB (NF-κB), and the nucleotide-binding domain leucine-rich repeat with a pyrin-domain containing 3 (NLRP3) inflammasome. Our results showed that eugenol reduced SE-induced apoptotic neuronal cell death, mitigated the activation of astrocytes and microglia, and attenuated the expression of interleukin-1β and tumor necrosis factor α in the hippocampus after SE onset. Furthermore, eugenol inhibited NF-κB activation and the formation of the NLRP3 inflammasome in the hippocampus after SE. These results suggest that eugenol is a potential phytoconstituent that suppresses the neuroinflammatory processes induced by epileptic seizures. Therefore, these findings provide evidence that eugenol has therapeutic potential for epileptic seizures.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Neurology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Soojin Park
- Department of Neurology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Chul Hoon Kim
- Department of Pharmacology, Brain Korea 21 Project, Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kyoung Hoon Jeong
- Epilepsy Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Won-Joo Kim
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| |
Collapse
|
15
|
The Anti-Seizure Effect of Liraglutide on Ptz-Induced Convulsions Through its Anti-Oxidant and Anti-Inflammatory Properties. Neurochem Res 2023; 48:188-195. [PMID: 36040609 DOI: 10.1007/s11064-022-03736-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/11/2023]
Abstract
Epilepsy is a prevalent and frequently devastating neurological disorder defined by recurring spontaneous seizures caused by aberrant electrical activity in the brain. Over ten million people worldwide suffer from drug-resistant epilepsy. This severe condition requires novel treatment approaches. Both oxidative and nitrosative stress are thought to have a role in the etiology of epilepsy. Liraglutide is a glucagon-like peptide-1 (GLP-1) analogue that is used to treat type-2 diabetes mellitus. According to recent studies, Liraglutide also shows neuroprotective properties, improving memory retention and total hippocampus pyramidal neuronal population in mice. The purpose of this investigation was to determine the anti-seizure and anti-oxidative effects of liraglutide in a pentylenetetrazole (PTZ)-induced rat model of epilepsy. 48 rats were randomly assigned to two groups: those who had electroencephalography (EEG) recordings and those who underwent behavioral assessment. Rats received either intraperitoneal (IP) liraglutide at two different dosages (3-6 mg/kg) or a placebo, followed by pentylenetetrazole (IP). To determine if liraglutide has anti-seizure characteristics, we examined seizure activity in rats using EEG, the Racine convulsion scale (RCS), the time of first myoclonic jerk (FMJ), and MDA, SOD, TNF-α, IL-1β and GAD-67 levels. The mean EEG spike wave percentage score was reduced from 75.8% (placebo) to 59.4% (lower-dose) and 41.5% (higher-dose). FMJ had increased from a mean of 70.6 s (placebo) to 181.2 s (lower-dose) and 205.2 s (higher-dose). RCS was reduced from a mean of 5.5 (placebo) to 2.7 (lower-dose) and 2.4 (higher-dose). Liraglutide (3 and 6 mg/kg i.p.) successfully decreased the spike percentages and RCS associated with PTZ induced epilepsy, as well as considerably decreased MDA, TNF-α, IL-1β and elevated SOD, GAD-67 levels in rat brain. Liraglutide significantly decreased seizure activity at both dosages when compared to control, most likely due to its anti-oxidant and anti-inflammatory properties. The potential clinical role of liraglutide as an anti-seizure medication should be further explored.
Collapse
|
16
|
Sun H, Ma D, Cheng Y, Li J, Zhang W, Jiang T, Li Z, Li X, Meng H. The JAK-STAT Signaling Pathway in Epilepsy. Curr Neuropharmacol 2023; 21:2049-2069. [PMID: 36518035 PMCID: PMC10556373 DOI: 10.2174/1570159x21666221214170234] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 12/16/2022] Open
Abstract
Epilepsy is defined as spontaneous recurrent seizures in the brain. There is increasing evidence that inflammatory mediators and immune cells are involved in epileptic seizures. As more research is done on inflammatory factors and immune cells in epilepsy, new targets for the treatment of epilepsy will be revealed. The Janus kinase-signal transducer and transcriptional activator (JAKSTAT) signaling pathway is strongly associated with many immune and inflammatory diseases, At present, more and more studies have found that the JAK-STAT pathway is involved in the development and development of epilepsy, indicating the JAK-STAT pathway's potential promise as a target in epilepsy treatment. In this review, we discuss the composition, activation, and regulation of the JAK-STAT pathway and the relationship between the JAK-STAT pathway and epilepsy. In addition, we summarize the common clinical inhibitors of JAK and STAT that we would expect to be used in epilepsy treatment in the future.
Collapse
Affiliation(s)
- Huaiyu Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Di Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yu Cheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jiaai Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Wuqiong Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Ting Jiang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Zhaoran Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xuewei Li
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Hongmei Meng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Effects of Diclofenac Sodium on Seizure Activity in Rats with Pentylenetetrazole-Induced Convulsions. Neurochem Res 2022; 48:1412-1423. [PMID: 36474102 DOI: 10.1007/s11064-022-03838-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/12/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Epilepsy is a disease which affects between 1 and 2% of the population, and a large proportion of these people do not react to currently available anticonvulsant medications, indicating the need for further research into novel pharmacological therapies. Numerous studies have demonstrated that oxidative stress and inflammation occur during epilepsy and may contribute to its development and progression, indicating higher levels of oxidative and inflammatory parameters in experimental models and clinical patients. This research aimed to assess the impact of diclofenac sodium, a nonsteroidal anti-inflammatory medicine, on seizure and levels of oxidative stress and inflammatory biomarkers in a rat model of epilepsy triggered by pentylenetetrazole (PTZ). 60 rats were randomly allocated to one of two groups: electroencephalography (EEG) recordings or behavioral evaluation. Rats received diclofenac sodium at three various doses (25, 50, and 75 mg/kg) intraperitoneally (IP) or a placebo, followed by intraperitoneal (IP) pentylenetetrazole, a powerful seizure-inducing medication. To investigate if diclofenac sodium had antiseizure properties, seizure activity in rats was evaluated using EEG recordings, the Racine convulsion scale (RCS) behaviour score, the duration of the first myoclonic jerk (FMJ), and the levels of MDA, TNF-α, and SOD. The average percentage of EEG spike waves decreased from 76.8% (placebo) to 64.1% (25 mg/kg diclofenac), 55.9% (50 mg/kg diclofenac), and 37.8% (75 mg/kg diclofenac). FMJ had increased from a mean of 58.8 s (placebo), to 93.6 s (25 mg/kg diclofenac), 185.8 s (50 mg/kg diclofenac) and 231.7 s (75 mg/kg diclofenac). RCS scores decreased from a mean score of 5.6 (placebo), to 3.75 (25 mg/kg diclofenac), 2.8 (50 mg/kg diclofenac) and 1.75 (75 mg/kg diclofenac). MDA levels reduced from 14.2 ng/gr (placebo) to 9.6 ng/gr (25 mg/kg diclofenac), 8.4 ng/gr (50 mg/kg diclofenac) and 5.1 ng/gr (75 mg/kg diclofenac). Likely, TNF-α levels decreased from 67.9 ng/gr (placebo) to 48.1 ng/gr (25 mg/kg diclofenac), 33.5 ng/gr (50 mg/kg diclofenac) and 21.3 ng/gr (75 mg/kg diclofenac). SOD levels, however, enhanced from 0.048 U/mg (placebo) to 0.055 U/mg (25 mg/kg diclofenac), 0.14 U/mg (50 mg/kg diclofenac), and 0.18 U/mg (75 mg/kg diclofenac). Diclofenac sodium (25, 50, and 75 mg/kg i.p.) effectively lowered the spike percentages and RCS scores linked with PTZ-induced epilepsy in rats, as well as significantly decreased MDA, TNF-α, IL-1β, PGE2 and increased SOD levels. Probably as a result of its anti-oxidative and anti-inflammatory effects, diclofenac sodium dramatically lowered seizure activity at both doses compared to placebo control. Each of these results were significant, with p-values of < 0.01, < 0.05. Therefore, the therapeutic application diclofenac sodium as a potential anticonvulsant should be investigated further.
Collapse
|
18
|
Rubio C, López-López F, Rojas-Hernández D, Moreno W, Rodríguez-Quintero P, Rubio-Osornio M. Caloric restriction: Anti-inflammatory and antioxidant mechanisms against epileptic seizures. Epilepsy Res 2022; 186:107012. [PMID: 36027691 DOI: 10.1016/j.eplepsyres.2022.107012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/26/2022] [Accepted: 08/13/2022] [Indexed: 11/03/2022]
Abstract
Caloric restriction (CR) possesses different cellular mechanisms. Though there are still gaps in the literature regarding its plausible beneficial effects, the suggestion that this alternative therapy can improve the inflammatory and antioxidant response to control epileptic seizures is explored throughout this study. Epilepsy is the second most prevalent neurodegenerative disease in the world. However, the appropriate mechanisms for it to be fully controlled are still unknown. Neuroinflammation and oxidative stress promote epileptic seizures' appearance and might even aggravate them. There is growing evidence that caloric restriction has extensive anti-inflammatory and antioxidant properties. For instance, nuclear factor erythroid 2-related factor 2 (Nrf2) and all-trans retinoic acid (ATRA) have been proposed to induce antioxidant processes and ulteriorly improve the disease progression. Caloric restriction can be an option for those patients with refractory epilepsy since it allows for anti-inflammatory and antioxidant properties to evolve within the brain areas involved.
Collapse
Affiliation(s)
- Carmen Rubio
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico
| | - Felipe López-López
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico; Facultad de Medicina, Universidad Autónoma de Baja California, Campus Mexicali, Mexico
| | - Daniel Rojas-Hernández
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico; Universidad Autónoma Metropolitana, Unidad Xochimilco, Mexico
| | - Wilhelm Moreno
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico; Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico
| | - Paola Rodríguez-Quintero
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico; Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico
| | - Moisés Rubio-Osornio
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Mexico.
| |
Collapse
|
19
|
Ton ST, Laghi JR, Tsai SY, Blackwell AA, Adamczyk NS, Oltmanns JRO, Britten RA, Wallace DG, Kartje GL. Exposure to 5 cGy 28Si Particles Induces Long-Term Microglial Activation in the Striatum and Subventricular Zone and Concomitant Neurogenic Suppression. Radiat Res 2022; 198:28-39. [DOI: 10.1667/rade-21-00021.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/17/2022] [Indexed: 11/03/2022]
Abstract
The proposed mission to Mars will expose astronauts to space radiation that is known to adversely affect cognition and tasks that rely on fine sensorimotor function. Space radiation has also been shown to affect the microglial and neurogenic responses in the center nervous system (CNS). We recently reported that a low dose of 5 cGy 600 MeV/n 28Si results in impaired cognition and skilled motor behavior in adult rats. Since these tasks rely at least in part on the proper functioning of the striatum, we examined striatal microglial cells in these same subjects. Using morphometric analysis, we found that 28Si exposure increased activated microglial cells in the striatum. The majority of these striatal Iba1+ microglia were ED1–, indicating that they were in an alternatively activated state, where microglia do not have phagocytic activity but may be releasing cytokines that could negatively impact neuronal function. In the other areas studied, Iba1+ microglial cells were increased in the subventricular zone (SVZ), but not in the dentate gyrus (DG). Additionally, we examined the relationship between the microglial response and neurogenesis. An analysis of new neurons in the DG revealed an increase in doublecortin-positive (DCX+) hilar ectopic granule cells (hEGC) which correlated with Iba1+ cells, suggesting that microglial cells contributed to this aberrant distribution which may adversely affect hippocampal function. Taken together, these results indicate that a single dose of 28Si radiation results in persistent cellular effects in the CNS that may impact astronauts both in the short and long-term following deep space missions.
Collapse
Affiliation(s)
- Son T. Ton
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois
| | - Julia R. Laghi
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois
| | - Shih-Yen Tsai
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois
| | | | | | | | - Richard A. Britten
- Department of Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia
| | - Douglas G. Wallace
- Department of Psychology, Northern Illinois University, DeKalb, Illinois
| | - Gwendolyn L. Kartje
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago Health Sciences Division, Maywood, Illinois
| |
Collapse
|
20
|
Manna I, Fortunato F, De Benedittis S, Sammarra I, Bertoli G, Labate A, Gambardella A. Non-Coding RNAs: New Biomarkers and Therapeutic Targets for Temporal Lobe Epilepsy. Int J Mol Sci 2022; 23:ijms23063063. [PMID: 35328484 PMCID: PMC8954985 DOI: 10.3390/ijms23063063] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy; it is considered a network disorder associated with structural changes. Incomplete knowledge of the pathological changes in TLE complicates a therapeutic approach; indeed, 30 to 50% of patients with TLE are refractory to drug treatment. Non-coding RNAs (ncRNAs), acting as epigenetic factors, participate in the regulation of the pathophysiological processes of epilepsy and are dysregulated during epileptogenesis. Abnormal expression of ncRNA is observed in patients with epilepsy and in animal models of epilepsy. Furthermore, ncRNAs could also be used as biomarkers for the diagnosis and prognosis of treatment response in epilepsy. In summary, ncRNAs can represent important mechanisms and targets for the modulation of brain excitability and can provide information on pathomechanisms, biomarkers and novel therapies for epilepsy. In this review, we summarize the latest research advances concerning mainly molecular mechanisms, regulated by ncRNA, such as synaptic plasticity, inflammation and apoptosis, already associated with the pathogenesis of TLE. Moreover, we discuss the role of ncRNAs, such as microRNAs, long non-coding RNAs and circular RNAs, in the pathophysiology of epilepsy, highlighting their use as potential biomarkers for future therapeutic approaches.
Collapse
Affiliation(s)
- Ida Manna
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Section of Germaneto, 88100 Catanzaro, Italy
- Correspondence: (I.M.); (A.G.)
| | - Francesco Fortunato
- Department of Medical and Surgical Sciences, Institute of Neurology, University “Magna Graecia”, Germaneto, 88100 Catanzaro, Italy; (F.F.); (S.D.B.); (I.S.); (A.L.)
| | - Selene De Benedittis
- Department of Medical and Surgical Sciences, Institute of Neurology, University “Magna Graecia”, Germaneto, 88100 Catanzaro, Italy; (F.F.); (S.D.B.); (I.S.); (A.L.)
| | - Ilaria Sammarra
- Department of Medical and Surgical Sciences, Institute of Neurology, University “Magna Graecia”, Germaneto, 88100 Catanzaro, Italy; (F.F.); (S.D.B.); (I.S.); (A.L.)
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), 20090 Milan, Italy;
| | - Angelo Labate
- Department of Medical and Surgical Sciences, Institute of Neurology, University “Magna Graecia”, Germaneto, 88100 Catanzaro, Italy; (F.F.); (S.D.B.); (I.S.); (A.L.)
| | - Antonio Gambardella
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Section of Germaneto, 88100 Catanzaro, Italy
- Department of Medical and Surgical Sciences, Institute of Neurology, University “Magna Graecia”, Germaneto, 88100 Catanzaro, Italy; (F.F.); (S.D.B.); (I.S.); (A.L.)
- Correspondence: (I.M.); (A.G.)
| |
Collapse
|
21
|
Cai M, Lin W. The Function of NF-Kappa B During Epilepsy, a Potential Therapeutic Target. Front Neurosci 2022; 16:851394. [PMID: 35360161 PMCID: PMC8961383 DOI: 10.3389/fnins.2022.851394] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/22/2022] [Indexed: 01/04/2023] Open
Abstract
The transcriptional regulator nuclear factor kappa B (NF-κB) modulates cellular biological activity by binding to promoter regions in the nucleus and transcribing various protein-coding genes. The NF-κB pathway plays a major role in the expressing genes related to inflammation, including chemokines, interleukins, and tumor necrosis factor. It also transcribes genes that can promote neuronal survival or apoptosis. Epilepsy is one of the most common brain disorders and it not only causes death worldwide but also affects the day-to-day life of affected individuals. While epilepsy has diverse treatment options, there remain patients who are not sensitive to the existing treatment methods. Recent studies have implicated the critical role of NF-κB in epilepsy. It is upregulated in neurons, glial cells, and endothelial cells, due to neuronal loss, glial cell proliferation, blood-brain barrier dysfunction, and hippocampal sclerosis through the glutamate and γ-aminobutyric acid imbalance, ion concentration changes, and other mechanisms. In this review, we summarize the functional changes caused by the upregulation of NF-κB in the central nervous system during different periods after seizures. This review is the first to deconvolute the complicated functions of NF-κB, and speculate that the regulation of NF-κB can be a safe and effective treatment strategy for epilepsy.
Collapse
|
22
|
Ismail FS, Corvace F, Faustmann PM, Faustmann TJ. Pharmacological Investigations in Glia Culture Model of Inflammation. Front Cell Neurosci 2022; 15:805755. [PMID: 34975415 PMCID: PMC8716582 DOI: 10.3389/fncel.2021.805755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022] Open
Abstract
Astrocytes and microglia are the main cell population besides neurons in the central nervous system (CNS). Astrocytes support the neuronal network via maintenance of transmitter and ion homeostasis. They are part of the tripartite synapse, composed of pre- and postsynaptic neurons and perisynaptic astrocytic processes as a functional unit. There is an increasing evidence that astroglia are involved in the pathophysiology of CNS disorders such as epilepsy, autoimmune CNS diseases or neuropsychiatric disorders, especially with regard to glia-mediated inflammation. In addition to astrocytes, investigations on microglial cells, the main immune cells of the CNS, offer a whole network approach leading to better understanding of non-neuronal cells and their pathological role in CNS diseases and treatment. An in vitro astrocyte-microglia co-culture model of inflammation was developed by Faustmann et al. (2003), which allows to study the endogenous inflammatory reaction and the cytokine expression under drugs in a differentiated manner. Commonly used antiepileptic drugs (e.g., levetiracetam, valproic acid, carbamazepine, phenytoin, and gabapentin), immunomodulatory drugs (e.g., dexamethasone and interferon-beta), hormones and psychotropic drugs (e.g., venlafaxine) were already investigated, contributing to better understanding mechanisms of actions of CNS drugs and their pro- or anti-inflammatory properties concerning glial cells. Furthermore, the effects of drugs on glial cell viability, proliferation and astrocytic network were demonstrated. The in vitro astrocyte-microglia co-culture model of inflammation proved to be suitable as unique in vitro model for pharmacological investigations on astrocytes and microglia with future potential (e.g., cancer drugs, antidementia drugs, and toxicologic studies).
Collapse
Affiliation(s)
- Fatme Seval Ismail
- Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany
| | - Franco Corvace
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| | - Pedro M Faustmann
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| | - Timo Jendrik Faustmann
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
23
|
Martínez-Aguirre C, Cinar R, Rocha L. Targeting Endocannabinoid System in Epilepsy: For Good or for Bad. Neuroscience 2021; 482:172-185. [PMID: 34923038 DOI: 10.1016/j.neuroscience.2021.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023]
Abstract
Epilepsy is a neurological disorder with a high prevalence worldwide. Several studies carried out during the last decades indicate that the administration of cannabinoids as well as the activation of the endocannabinoid system (ECS) represent a therapeutic strategy to control epilepsy. However, there are controversial studies indicating that activation of ECS results in cell damage, inflammation and neurotoxicity, conditions that facilitate the seizure activity. The present review is focused to present findings supporting this issue. According to the current discrepancies, it is relevant to elucidate the different effects induced by the activation of ECS and determine the conditions under which it facilitates the seizure activity.
Collapse
Affiliation(s)
| | - Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Rockville, USA
| | - Luisa Rocha
- Department of Pharmacobiology, Center for Research and Advanced Studies, Mexico City, Mexico.
| |
Collapse
|
24
|
The Effect of Valproic Acid Exposure throughout Development on Microglia Number in the Prefrontal Cortex, Hippocampus and Cerebellum. Neuroscience 2021; 481:166-177. [PMID: 34780921 DOI: 10.1016/j.neuroscience.2021.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/14/2023]
Abstract
Microglia serve as resident immune cells in the brain, responding to insults and pathological developments. They have also been implicated in shaping synaptic development and regulation. The present study examined microglial cell density in a number of brain regions across select postnatal (P) ages along with the effects of valproic acid (VPA) on microglia density. Specifically, C57BL/6JCx3CR1+/GFP mice were examined for microglial cell number changes on P7, P14, P30, and P60 under baseline conditions and following 400 mg/kg VPA or saline. The prefrontal cortex (PFC), hippocampus and cerebellum were observed. Under control conditions, the results showed a shift in the number of microglia in these brain areas throughout development with a peak density in the hippocampus at P14 and an increase in PFC microglial numbers from P15 to P30. Interestingly, VPA treatment enhanced microglial numbers in a region-specific manner. VPA at P7 increased microglial cell number in the hippocampus and cerebellum whereas P14 VPA treatment altered microglial density in the cerebellum only. Cerebellar increases also occurred after VPA at P30, and were attended by an effect of increased numbers in the PFC. Finally, animals treated with VPA at P60 exhibited decreased microglia density in the hippocampus only. These results suggest rapid VPA-induced increases in microglial cell density in a developmentally-regulated fashion which differs across distinct brain areas. Furthermore, in the context of prior reports that early VPA causes excitotoxic damage, the present findings suggest early VPA exposure may provide a model for studying altered microglial responses to early toxicant challenge.
Collapse
|
25
|
Li X, Lin J, Hua Y, Gong J, Ding S, Du Y, Wang X, Zheng R, Xu H. Agmatine Alleviates Epileptic Seizures and Hippocampal Neuronal Damage by Inhibiting Gasdermin D-Mediated Pyroptosis. Front Pharmacol 2021; 12:627557. [PMID: 34421582 PMCID: PMC8378273 DOI: 10.3389/fphar.2021.627557] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Epilepsy is a common neurological disease, and neuroinflammation is one of the main contributors to epileptogenesis. Pyroptosis is a type of pro-inflammatory cell death that is related to epilepsy. Agmatine, has anti-inflammatory properties and exerts neuroprotective effects against seizures. Our study investigated the effect of agmatine on the core pyroptosis protein GSDMD in the context of epilepsy. Methods: A chronic epilepsy model and BV2 microglial cellular inflammation model were established by pentylenetetrazole (PTZ)-induced kindling or lipopolysaccharide (LPS) stimulation. H&E and Nissl staining were used to evaluate hippocampal neuronal damage. The expression of pyroptosis and inflammasome factors was examined by western blotting, quantitative real-time PCR, immunofluorescence and enzyme-linked immunosorbent assay (ELISA). Results: Agmatine disrupted the kindling acquisition process, which decreased seizure scores and the incidence of full kindling and blocked hippocampal neuronal damage. In addition, agmatine increased BV2 microglial cell survival in vitro and alleviated seizures in vivo by suppressing the levels of PTZ-induced pyroptosis. Finally, the expression of TLR4, MYD88, phospho-IκBα, phospho-NF-κB and the NLRP3 inflammasome was significantly upregulated in LPS-induced BV2 microglial cells, while agmatine suppressed the expression of these proteins. Conclusions: Our results indicate that agmatine affects epileptogenesis and exerts neuroprotective effects by inhibiting neuroinflammation, GSDMD activation, and pyroptosis. The inhibitory effect of agmatine on pyroptosis was mediated by the suppression of the TLR4/MYD88/NF-κB/NLRP3 inflammasome pathway. Therefore, agmatine may be a potential treatment option for epilepsy.
Collapse
Affiliation(s)
- Xueying Li
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiahe Lin
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yingjie Hua
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiaoni Gong
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Siqi Ding
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanru Du
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinshi Wang
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rongyuan Zheng
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huiqin Xu
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
26
|
Bartolini L, Moran MP, Norato G, Thomas B, Dick AD, Wells E, Suslovic W, Bumbut A, Chamberlain JM, Theodore WH, Gaillard WD, Jacobson S. Differential activation of neuroinflammatory pathways in children with seizures: A cross-sectional study. Seizure 2021; 91:150-158. [PMID: 34161903 DOI: 10.1016/j.seizure.2021.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/08/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022] Open
Abstract
PURPOSE Inflammation plays a crucial role in epileptogenesis. We analyzed inflammatory cytokines in plasma and saliva from children with seizures and healthy controls and measured their associations with HHV6 and EBV infection. METHODS We analyzed plasma from 36 children within 24 h of seizures (cases) and 43 healthy controls and saliva from 44 cases and 44 controls with a multiplex immunoassay. Saliva from all controls and 65 cases and blood from 26 controls and 35 cases were also analyzed by PCR for viral DNA. Primary outcome was cytokine levels in cases vs. controls. Secondary outcomes included detection of HHV-6 and EBV viral DNA in cases vs. controls and viral loads in cases vs. controls. Statistical analysis included the Wilcoxon Rank Sum test, Fisher's exact test, ANOVA, and Spearman correlation. RESULTS Compared to controls, patients had higher levels of CCL11 (p = 0.0018), CCL26 (p<0.001), IL10 (p = 0.044), IL6 (p<0.001), IL8 (p = 0.018), and MIP1β (p = 0.0012). CCL11 was higher with 3 or more seizures (p = 0.01), seizures longer than 10 min (p = 0.001), and when EEG showed focal slowing (p = 0.02). In saliva, febrile seizures had higher levels of IL-1β (n = 7, p = 0.04) and new onset seizures had higher IL-6 (n = 15, p = 0.02). Plasma and saliva cytokine levels did not show a correlation. The frequency of HHV-6 and EBV detection was similar across groups and not different than controls. We found no correlation between viral load and cytokine levels. CONCLUSIONS We showed differential activation of neuroinflammatory pathways in plasma from different seizure etiologies compared to controls, unrelated to viral infection.
Collapse
Affiliation(s)
- Luca Bartolini
- The Warren Alpert Medical School of Brown University, Hasbro Children's Hospital, Providence, RI, United States.
| | - Michael P Moran
- Division of Neuroimmunology and Neurovirology, NINDS, NIH, Bethesda, MD, United States
| | - Gina Norato
- Office of Biostatistics, NINDS, NIH, Bethesda, MD, United States
| | - Bobbe Thomas
- Emergency Medicine and Trauma Services, Children's National Medical Center, Washington DC, United States
| | - Alexander D Dick
- Center for Neuroscience, Children's National Medical Center/The George Washington University, Washington DC, United States
| | - Elizabeth Wells
- Center for Neuroscience, Children's National Medical Center/The George Washington University, Washington DC, United States
| | - William Suslovic
- Center for Neuroscience, Children's National Medical Center/The George Washington University, Washington DC, United States
| | - Adrian Bumbut
- Center for Neuroscience, Children's National Medical Center/The George Washington University, Washington DC, United States
| | - James M Chamberlain
- Emergency Medicine and Trauma Services, Children's National Medical Center, Washington DC, United States
| | | | - William D Gaillard
- Center for Neuroscience, Children's National Medical Center/The George Washington University, Washington DC, United States
| | - Steven Jacobson
- Division of Neuroimmunology and Neurovirology, NINDS, NIH, Bethesda, MD, United States
| |
Collapse
|
27
|
Choudhary A, Varshney R, Kumar A, Kaushik K. A Prospective Study of Novel Therapeutic Targets Interleukin 6, Tumor Necrosis Factor α, and Interferon γ as Predictive Biomarkers for the Development of Posttraumatic Epilepsy. World Neurosurg X 2021; 12:100107. [PMID: 34195601 PMCID: PMC8233159 DOI: 10.1016/j.wnsx.2021.100107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/24/2021] [Indexed: 12/02/2022] Open
Abstract
Background Posttraumatic epilepsy (PTE) is a serious and debilitating consequence of traumatic brain injury (TBI). Sometimes, the management of PTE becomes a challenging task on account of its resistance to existing antiepileptic drugs and often contributes to poor functional and psychosocial outcomes after TBI. We investigated the role of inflammatory markers interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), and interferon γ (INF-γ) in predicting the development of PTE. Methods A prospective analysis was performed of 254 patients who were admitted with head injury to our hospital, 35 of whom had posttraumatic epilepsy (32 males and 3 females); 30 adults (28 men, 2 women) with a similar demographic profile were selected randomly as control individuals. Blood levels of TNF-α, IL-6, and INF-γ were evaluated in all participants. Results IL-6 levels were significantly higher in the PTE group (121.36 pg/mL; standard deviation [SD], 89.23) than in the nonseizure group (65.30 pg/mL; SD, 74.75; P = 0.01), whereas there was no significant difference between the seizure group (11.42 pg/mL; SD, 7.84) and the nonseizure groups (10.58 pg/mL; SD, 7.84) in terms of TNF-α level (P = 0.343). The level of INF-γ in the seizure group tended to be higher (mean, 1.88 pg/mL, SD, 2.13 in seizure group vs. 1.10 pg/mL, SD, 1.45 in the nonseizure group); however, no statistically significant difference was detected among the 2 groups (P = 0.09). Conculsions Posttraumatic epilepsy has a strong association with an increased level of IL-6 in the blood. INF-γ may or may not be associated with PTE. However, TNF-α was not associated with PTE.
Collapse
Key Words
- CI, Confidence interval
- CNS, Central nervous system
- CSF, Cerebrospinal fluid
- Cytokines
- Epileptogenesis
- GCS, Glasgow Coma Scale
- IL-6, Interleukin 6
- INF-γ, Interferon γ
- Immunomodulators
- NMDA, N-methyl-d-aspartate
- Neuroplasticity
- PTE, Posttraumatic epilepsy
- PTS, Posttraumatic seizures
- ROC, Receiver operating characteristic
- Seizures
- TBI, Traumatic brain injury
- TNF-α, Tumor necrosis factor α
Collapse
Affiliation(s)
| | - Rahul Varshney
- To whom correspondence should be addressed: Rahul Varshney, M.Ch.
| | | | | |
Collapse
|
28
|
Wang J, Zhao J. MicroRNA Dysregulation in Epilepsy: From Pathogenetic Involvement to Diagnostic Biomarker and Therapeutic Agent Development. Front Mol Neurosci 2021; 14:650372. [PMID: 33776649 PMCID: PMC7994516 DOI: 10.3389/fnmol.2021.650372] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/23/2021] [Indexed: 12/21/2022] Open
Abstract
Epilepsy is the result of a group of transient abnormalities in brain function caused by an abnormal, highly synchronized discharge of brain neurons. MicroRNA (miRNA) is a class of endogenous non-coding single-stranded RNA molecules that participate in a series of important biological processes. Recent studies demonstrated that miRNAs are involved in a variety of central nervous system diseases, including epilepsy. Although the exact mechanism underlying the role of miRNAs in epilepsy pathogenesis is still unclear, these miRNAs may be involved in the inflammatory response in the nervous system, neuronal necrosis and apoptosis, dendritic growth, synaptic remodeling, glial cell proliferation, epileptic circuit formation, impairment of neurotransmitter and receptor function, and other processes. Here, we discuss miRNA metabolism and the roles of miRNA in epilepsy pathogenesis and evaluate miRNA as a potential new biomarker for the diagnosis of epilepsy, which enhances our understanding of disease processes.
Collapse
Affiliation(s)
- Jialu Wang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiuhan Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
29
|
Maupu C, Enderlin J, Igert A, Oger M, Auvin S, Hassan-Abdi R, Soussi-Yanicostas N, Brazzolotto X, Nachon F, Dal Bo G, Dupuis N. Diisopropylfluorophosphate-induced status epilepticus drives complex glial cell phenotypes in adult male mice. Neurobiol Dis 2021; 152:105276. [PMID: 33529768 DOI: 10.1016/j.nbd.2021.105276] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/14/2020] [Accepted: 01/24/2021] [Indexed: 12/11/2022] Open
Abstract
Organophosphate pesticides and nerve agents (OPs), are characterized by cholinesterase inhibition. In addition to severe peripheral symptoms, high doses of OPs can lead to seizures and status epilepticus (SE). Long lasting seizure activity and subsequent neurodegeneration promote neuroinflammation leading to profound pathological alterations of the brain. The aim of this study was to characterize neuroinflammatory responses at key time points after SE induced by the OP, diisopropylfluorophosphate (DFP). Immunohistochemistry (IHC) analysis and RT-qPCR on cerebral tissue are often insufficient to identity and quantify precise neuroinflammatory alterations. To address these needs, we performed RT-qPCR quantification after whole brain magnetic-activated cell-sorting (MACS) of CD11B (microglia/infiltrated macrophages) and GLAST (astrocytes)-positive cells at 1, 4, 24 h and 3 days post-SE. In order to compare these results to those obtained by IHC, we performed, classical Iba1 (microglia/infiltrated macrophages) and GFAP (astrocytes) IHC analysis in parallel, focusing on the hippocampus, a brain region affected by seizure activity and neurodegeneration. Shortly after SE (1-4 h), an increase in pro-inflammatory (M1-like) markers and A2-specific markers, proposed as neurotrophic, were observed in CD11B and GLAST-positive isolated cells, respectively. Microglial cells successively expressed immuno-regulatory (M2b-like) and anti-inflammatory (M2a-like) at 4 h and 24 h post-SE induction. At 24 h and 3 days, A1-specific markers, proposed as neurotoxic, were increased in isolated astrocytes. Although IHC analysis presented no modification in terms of percentage of marked area and cell number at 1 and 4 h after SE, at 24 h and 3 days after SE, microglial and astrocytic activation was visible by IHC as an increase in Iba1 and GFAP-positive area and Iba1-positive cells in DFP animals when compared to the control. Our work identified sequential microglial and astrocytic phenotype activation. Although the role of each phenotype in SE cerebral outcomes requires further study, targeting specific markers at specific time point could be a beneficial strategy for DFP-induced SE treatment.
Collapse
Affiliation(s)
- Clémence Maupu
- Département de Toxicologie et risques chimiques, Institut de recherche biomédicale des armées, BP73, F-91223 Brétigny sur Orge cedex, France
| | - Julie Enderlin
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France; Service de neurologie pédiatrique, AP-HP, Hôpital Robert Debré, F-75019 Paris, France
| | - Alexandre Igert
- Département de Toxicologie et risques chimiques, Institut de recherche biomédicale des armées, BP73, F-91223 Brétigny sur Orge cedex, France
| | - Myriam Oger
- Unité Imagerie, Institut de recherche biomédicale des armées, BP73, F-91223 Brétigny sur Orge cedex, France
| | - Stéphane Auvin
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France; Service de neurologie pédiatrique, AP-HP, Hôpital Robert Debré, F-75019 Paris, France
| | | | | | - Xavier Brazzolotto
- Département de Toxicologie et risques chimiques, Institut de recherche biomédicale des armées, BP73, F-91223 Brétigny sur Orge cedex, France
| | - Florian Nachon
- Département de Toxicologie et risques chimiques, Institut de recherche biomédicale des armées, BP73, F-91223 Brétigny sur Orge cedex, France
| | - Grégory Dal Bo
- Département de Toxicologie et risques chimiques, Institut de recherche biomédicale des armées, BP73, F-91223 Brétigny sur Orge cedex, France
| | - Nina Dupuis
- Département de Toxicologie et risques chimiques, Institut de recherche biomédicale des armées, BP73, F-91223 Brétigny sur Orge cedex, France.
| |
Collapse
|
30
|
Arend J, Kegler A, Caprara ALF, Gabbi P, Pascotini ET, de Freitas LAV, Duarte MMMF, Broetto N, Furian AF, Oliveira MS, Royes LFF, Fighera MR. MnSOD Ala16Val polymorphism in cognitive dysfunction in patients with epilepsy: A relationship with oxidative and inflammatory markers. Epilepsy Behav 2020; 112:107346. [PMID: 32889510 DOI: 10.1016/j.yebeh.2020.107346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The objective of the study was to evaluate the neurocognitive profile and its relation with Ala16ValMnSOD polymorphism in epilepsy and if these clinical parameters are linked to oxidative stress and inflammatory markers. METHODS Patients with epilepsy (n = 31) and healthy subjects (n = 42) were recruited. A neuropsychological evaluation was performed in both groups through a battery of cognitive tests. Oxidative stress, inflammatory markers, apoptotic factors, and deoxyribonucleic acid (DNA) damage were measured in blood samples. RESULTS Statistical analyses showed the association of MnSOD Ala16Val polymorphism with cognitive impairment, including praxis, perception, attention, language, executive functions, long-term semantic memory, short-term visual memory, and total memory in patients with epilepsy and Valine-Valine (VV) genotype compared with the control group. Compared with the controls and patients with epilepsy, Alanine-Alanine (AA), and Alanine-Valine (AV) genotype, the patients with epilepsy and VV genotype exhibited higher levels of tumor necrosis factor alpha (TNF-α), interleukin 1β (IL-1β), interleukin 6 (IL-6), activation of caspases 1 and 3 (CASP-1 and -3), and DNA damage. Our findings also showed higher carbonyl protein and thiobarbituric acid reactive substances (TBARS) levels as well as an increased superoxide dismutase (SOD) and acetylcholinesterase (AChE) activities in patients with epilepsy and VV genotype. CONCLUSION This study supports the evidence of a distinct neuropsychological profile in patients with epilepsy, especially those with the VV genotype. Furthermore, our results suggest that oxidative and inflammatory pathways may be associated with genetic polymorphism and cognitive dysfunction in patients with epilepsy.
Collapse
Affiliation(s)
- Josi Arend
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, RS, Brazil; Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Aline Kegler
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, RS, Brazil
| | - Ana Letícia Fornari Caprara
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, RS, Brazil
| | - Patricia Gabbi
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, RS, Brazil
| | - Eduardo T Pascotini
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, RS, Brazil
| | - Lori Ane Vargas de Freitas
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, RS, Brazil
| | - Marta M M F Duarte
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Núbia Broetto
- Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, RS, Brazil
| | - Ana Flavia Furian
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Mauro Schneider Oliveira
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Luiz Fernando Freire Royes
- Centro de Ciências Naturais e Exatas, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil; Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, RS, Brazil; Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Michele Rechia Fighera
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, RS, Brazil; Centro de Ciências Naturais e Exatas, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil; Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, RS, Brazil; Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil.
| |
Collapse
|
31
|
Kim YS, Choi J, Yoon BE. Neuron-Glia Interactions in Neurodevelopmental Disorders. Cells 2020; 9:cells9102176. [PMID: 32992620 PMCID: PMC7601502 DOI: 10.3390/cells9102176] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Recent studies have revealed synaptic dysfunction to be a hallmark of various psychiatric diseases, and that glial cells participate in synapse formation, development, and plasticity. Glial cells contribute to neuroinflammation and synaptic homeostasis, the latter being essential for maintaining the physiological function of the central nervous system (CNS). In particular, glial cells undergo gliotransmission and regulate neuronal activity in tripartite synapses via ion channels (gap junction hemichannel, volume regulated anion channel, and bestrophin-1), receptors (for neurotransmitters and cytokines), or transporters (GLT-1, GLAST, and GATs) that are expressed on glial cell membranes. In this review, we propose that dysfunction in neuron-glia interactions may contribute to the pathogenesis of neurodevelopmental disorders. Understanding the mechanisms of neuron-glia interaction for synapse formation and maturation will contribute to the development of novel therapeutic targets of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yoo Sung Kim
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea; (Y.S.K.); (J.C.)
| | - Juwon Choi
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea; (Y.S.K.); (J.C.)
| | - Bo-Eun Yoon
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea; (Y.S.K.); (J.C.)
- Department of Nanobiomedical science, Dankook University, Cheonan 31116, Korea
- Correspondence: ; Tel.: +82-41-529-6085
| |
Collapse
|
32
|
Korotkov A, Puhakka N, Gupta SD, Vuokila N, Broekaart DWM, Anink JJ, Heiskanen M, Karttunen J, van Scheppingen J, Huitinga I, Mills JD, van Vliet EA, Pitkänen A, Aronica E. Increased expression of miR142 and miR155 in glial and immune cells after traumatic brain injury may contribute to neuroinflammation via astrocyte activation. Brain Pathol 2020; 30:897-912. [PMID: 32460356 PMCID: PMC7540383 DOI: 10.1111/bpa.12865] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 02/17/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is associated with the pathological activation of immune-competent cells in the brain, such as astrocytes, microglia and infiltrating immune blood cells, resulting in chronic inflammation and gliosis. This may contribute to the secondary injury after TBI, thus understanding of these processes is crucial for the development of effective treatments of post-traumatic pathologies. MicroRNAs (miRNAs, miRs) are small noncoding RNAs, functioning as posttranscriptional regulators of gene expression. The increased expression of inflammation-associated microRNAs miR155 and miR142 has been reported after TBI in rats. However, expression of these miRNAs in the human brain post-TBI is not studied and their functions are not well understood. Moreover, circulating miR155 and miR142 are candidate biomarkers. Therefore, we characterized miR142 and miR155 expression in the perilesional cortex and plasma of rats that underwent lateral fluid-percussion injury, a model for TBI and in the human perilesional cortex post-TBI. We demonstrated higher miR155 and miR142 expression in the perilesional cortex of rats 2 weeks post-TBI. In plasma, miR155 was associated with proteins and miR142 with extracellular vesicles, however their expression did not change. In the human perilesional cortex miR155 was most prominently expressed by activated astrocytes, whereas miR142 was expressed predominantly by microglia, macrophages and lymphocytes. Pro-inflammatory medium from macrophage-like cells stimulated miR155 expression in astrocytes and overexpression of miR142 in these cells further potentiated a pro-inflammatory state of activated astrocytes. We conclude that miR155 and miR142 promote brain inflammation via astrocyte activation and may be involved in the secondary brain injury after TBI.
Collapse
Affiliation(s)
- Anatoly Korotkov
- Department of (Neuro)Pathology, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamMeibergdreef 9Amsterdam1105 AZthe Netherlands
| | - Noora Puhakka
- Department of Neurology, A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFI‐70211Finland
| | - Shalini Das Gupta
- Department of Neurology, A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFI‐70211Finland
| | - Niina Vuokila
- Department of Neurology, A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFI‐70211Finland
| | - Diede W. M. Broekaart
- Department of (Neuro)Pathology, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamMeibergdreef 9Amsterdam1105 AZthe Netherlands
| | - Jasper J. Anink
- Department of (Neuro)Pathology, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamMeibergdreef 9Amsterdam1105 AZthe Netherlands
| | - Mette Heiskanen
- Department of Neurology, A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFI‐70211Finland
| | - Jenni Karttunen
- Department of Neurology, A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFI‐70211Finland
| | - Jackelien van Scheppingen
- Department of (Neuro)Pathology, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamMeibergdreef 9Amsterdam1105 AZthe Netherlands
- Department of NeuroimmunologyNetherlands Institute for NeuroscienceMeibergdreef 47Amsterdam1105 BAthe Netherlands
| | - Inge Huitinga
- Department of NeuroimmunologyNetherlands Institute for NeuroscienceMeibergdreef 47Amsterdam1105 BAthe Netherlands
| | - James D. Mills
- Department of (Neuro)Pathology, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamMeibergdreef 9Amsterdam1105 AZthe Netherlands
| | - Erwin A. van Vliet
- Department of (Neuro)Pathology, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamMeibergdreef 9Amsterdam1105 AZthe Netherlands
- Swammerdam Institute for Life Sciences, Center for NeuroscienceUniversity of AmsterdamScience Park 904Amsterdam1090 GEthe Netherlands
| | - Asla Pitkänen
- Department of Neurology, A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFI‐70211Finland
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamMeibergdreef 9Amsterdam1105 AZthe Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN)Heemstedethe Netherlands
| |
Collapse
|
33
|
Cataldi M, Pignataro G, Taglialatela M. Neurobiology of coronaviruses: Potential relevance for COVID-19. Neurobiol Dis 2020; 143:105007. [PMID: 32622086 PMCID: PMC7329662 DOI: 10.1016/j.nbd.2020.105007] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/18/2022] Open
Abstract
In the first two decades of the 21st century, there have been three outbreaks of severe respiratory infections caused by highly pathogenic coronaviruses (CoVs) around the world: the severe acute respiratory syndrome (SARS) by the SARS-CoV in 2002-2003, the Middle East respiratory syndrome (MERS) by the MERS-CoV in June 2012, and Coronavirus Disease 2019 (COVID-19) by the SARS-CoV-2 presently affecting most countries In all of these, fatalities are a consequence of a multiorgan dysregulation caused by pulmonary, renal, cardiac, and circulatory damage; however, COVID patients may show significant neurological signs and symptoms such as headache, nausea, vomiting, and sensory disturbances, the most prominent being anosmia and ageusia. The neuroinvasive potential of CoVs might be responsible for at least part of these symptoms and may contribute to the respiratory failure observed in affected patients. Therefore, in the present manuscript, we have reviewed the available preclinical evidence on the mechanisms and consequences of CoVs-induced CNS damage, and highlighted the potential role of CoVs in determining or aggravating acute and long-term neurological diseases in infected individuals. We consider that a widespread awareness of the significant neurotropism of CoVs might contribute to an earlier recognition of the signs and symptoms of viral-induced CNS damage. Moreover, a better understanding of the cellular and molecular mechanisms by which CoVs affect CNS function and cause CNS damage could help in planning new strategies for prognostic evaluation and targeted therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Maurizio Taglialatela
- Division of Pharmacology, Department of Neuroscience, University of Naples "Federico II", 80131 Naples, Italy.
| |
Collapse
|
34
|
Casillas‐Espinosa PM, Ali I, O'Brien TJ. Neurodegenerative pathways as targets for acquired epilepsy therapy development. Epilepsia Open 2020; 5:138-154. [PMID: 32524040 PMCID: PMC7278567 DOI: 10.1002/epi4.12386] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/13/2020] [Accepted: 02/24/2020] [Indexed: 12/16/2022] Open
Abstract
There is a growing body of clinical and experimental evidence that neurodegenerative diseases and epileptogenesis after an acquired brain insult may share common etiological mechanisms. Acquired epilepsy commonly develops as a comorbid condition in patients with neurodegenerative diseases such as Alzheimer's disease, although it is likely much under diagnosed in practice. Progressive neurodegeneration has also been described after traumatic brain injury, stroke, and other forms of brain insults. Moreover, recent evidence has shown that acquired epilepsy is often a progressive disorder that is associated with the development of drug resistance, cognitive decline, and worsening of other neuropsychiatric comorbidities. Therefore, new pharmacological therapies that target neurobiological pathways that underpin neurodegenerative diseases have potential to have both an anti-epileptogenic and disease-modifying effect on the seizures in patients with acquired epilepsy, and also mitigate the progressive neurocognitive and neuropsychiatric comorbidities. Here, we review the neurodegenerative pathways that are plausible targets for the development of novel therapies that could prevent the development or modify the progression of acquired epilepsy, and the supporting published experimental and clinical evidence.
Collapse
Affiliation(s)
- Pablo M. Casillas‐Espinosa
- Departments of Neuroscience and MedicineCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Department of MedicineThe Royal Melbourne HospitalThe University of MelbourneMelbourneVic.Australia
| | - Idrish Ali
- Departments of Neuroscience and MedicineCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Department of MedicineThe Royal Melbourne HospitalThe University of MelbourneMelbourneVic.Australia
| | - Terence J. O'Brien
- Departments of Neuroscience and MedicineCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Department of MedicineThe Royal Melbourne HospitalThe University of MelbourneMelbourneVic.Australia
- Department of NeurologyThe Alfred HospitalMelbourneVic.Australia
- Department of NeurologyThe Royal Melbourne HospitalParkvilleVic.Australia
| |
Collapse
|
35
|
Zhu X, Yao Y, Yang J, Ge Q, Niu D, Liu X, Zhang C, Gan G, Zhang A, Yao H. Seizure-induced neuroinflammation contributes to ectopic neurogenesis and aggressive behavior in pilocarpine-induced status epilepticus mice. Neuropharmacology 2020; 170:108044. [PMID: 32179291 DOI: 10.1016/j.neuropharm.2020.108044] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/20/2022]
Abstract
Epilepsy is a chronic neurological disorder often associated with recurrent seizures. A growing body of evidence suggests that seizures cause structural and functional alterations of the brain. It is reported that behavioral abnormalities frequently occur in patients with epilepsy and experimental epilepsy models. However, the precise pathological mechanisms associated with these epilepsy comorbidities remain largely unknown. Neurogenesis persists throughout life in the hippocampal dentate gyrus (DG) to maintain proper brain function. However, aberrant neurogenesis usually generates abnormal neural circuits and consequently causes neuronal dysfunction. Neuroinflammatory responses are well known to affect neurogenesis and lead to aberrant reorganization of neural networks in the hippocampal DG. Here, in this study, we observed a significant increase in neuroinflammation and in the proliferation and survival of newborn granular cells in the hippocampus of pilocarpine-induced status epilepticus (SE) mice. More importantly, these proliferating and surviving newborn granular cells are largely ectopically located in the hippocampal DG hilus region. Our behavior test demonstrated that SE mice displayed severe aggressive behavior. Pharmacological inhibition of neuroinflammation, however, suppressed the ectopic neurogenesis and countered the enhanced aggressive behavior in SE mice, indicating that seizure-induced neuroinflammation may contribute to ectopic neurogenesis and aggressive behavior in SE mice. These findings establish a key role for neuroinflammation in seizure-induced aberrant neurogenesis and aggressive behavior. Suppressing neuroinflammation in the epileptic brain may reduce ectopic neurogenesis and effectively block the pathophysiological process that leads to aggressive behavior in TLE mice.
Collapse
Affiliation(s)
- Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China.
| | - Yuanyuan Yao
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Jiurong Yang
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Qiyue Ge
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Diejing Niu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Xiufang Liu
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Chenchen Zhang
- Transmission Electron Microscopy Center, Medical School of Southeast University, Nanjing, China
| | - Guangming Gan
- Transmission Electron Microscopy Center, Medical School of Southeast University, Nanjing, China; Department of Genetics and Developmental Biology, Medical School of Southeast University, Nanjing, China
| | - Aifeng Zhang
- Department of Pathology, Medical School of Southeast University, Nanjing, China
| | - Honghong Yao
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
36
|
Rocha L, Frías‐Soria CL, Ortiz JG, Auzmendi J, Lazarowski A. Is cannabidiol a drug acting on unconventional targets to control drug-resistant epilepsy? Epilepsia Open 2020; 5:36-49. [PMID: 32140642 PMCID: PMC7049809 DOI: 10.1002/epi4.12376] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022] Open
Abstract
Cannabis has been considered as a therapeutic strategy to control intractable epilepsy. Several cannabis components, especially cannabidiol (CBD), induce antiseizure effects. However, additional information is necessary to identify the types of epilepsies that can be controlled by these components and the mechanisms involved in these effects. This review presents a summary of the discussion carried out during the 2nd Latin American Workshop on Neurobiology of Epilepsy entitled "Cannabinoid and epilepsy: myths and realities." This event was carried out during the 10th Latin American Epilepsy Congress in San José de Costa Rica (September 28, 2018). The review focuses to discuss the use of CBD as a new therapeutic strategy to control drug-resistant epilepsy. It also indicates the necessity to consider the evaluation of unconventional targets such as P-glycoprotein, to explain the effects of CBD in drug-resistant epilepsy.
Collapse
Affiliation(s)
- Luisa Rocha
- Departamento de FarmacobiologíaCentro de Investigación y de Estudios AvanzadosMéxico CityMéxico
| | | | - José G. Ortiz
- Department of Pharmacology and ToxicologySchool of MedicineUniversity of Puerto RicoSan JuanPuerto Rico
| | - Jerónimo Auzmendi
- Departamento de Bioquímica ClínicaFacultad de Farmacia y BioquímicaInstituto de Investigaciones en Fisiopatología y Bioquímica Clínica (INFIBIOC)Universidad de Buenos AiresBuenos AiresArgentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Alberto Lazarowski
- Departamento de Bioquímica ClínicaFacultad de Farmacia y BioquímicaInstituto de Investigaciones en Fisiopatología y Bioquímica Clínica (INFIBIOC)Universidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
37
|
Cyclosporin A ameliorates eclampsia seizure through reducing systemic inflammation in an eclampsia-like rat model. Hypertens Res 2020; 43:263-270. [PMID: 31932642 DOI: 10.1038/s41440-019-0387-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/05/2019] [Accepted: 06/19/2019] [Indexed: 12/18/2022]
Abstract
Our previous studies have shown that the maternal hyperinflammatory response in pre-eclampsia lowered the eclampsia-like seizure threshold. Cyclosporin A (CsA), which is an effective immunosuppressant, could attenuate the inflammatory responses in LPS-induced pre-eclampsia rats. Here, we hypothesized that CsA may ameliorate seizure severity through reducing systemic inflammation in pre-eclampsia/eclampsia. In the current study, the effects of CsA on pre-eclampsia manifestation, eclampsia-like seizure activities and systemic inflammation were examined in a pre-eclampsia model. Pregnant rats were given an intraperitoneal injection of the epileptogenic drug pentylenetetrazol (PTZ) following a tail vein injection of lipopolysaccharide to establish the eclampsia-like seizure model. CsA (5 mg/kg) was administered intravenously through the tail after LPS infusion. Mean systolic blood pressure and proteinuria in pre-eclampsia were detected. After PTZ injection, seizure activity was assessed, inflammatory responses were determined and pregnancy outcomes were analyzed. The results showed that CsA treatment significantly decreased blood pressure and proteinuria and increased the fetal and placental weight (P < 0.01). Meanwhile, CsA treatment significantly reduced serum IL-1β, TNF-α, and IL-17 levels (P < 0.01), decreased the seizure scores and prolonged the latency to seizure (P < 0.01). CsA effectively attenuated pre-eclampsia manifestation and eclampsia-like seizure severity. In addition, CsA treatment significantly reduced the inflammatory cytokine levels and improved pregnancy outcomes following eclampsia-like seizures. The decreased inflammatory cytokines in pre-eclampsia are coincident with attenuated pre-eclampsia manifestation after CsA treatment, suggesting that CsA treatment might decrease the eclampsia-like seizure severity through decreasing systemic inflammation in pre-eclasmpsia/eclampsia.
Collapse
|
38
|
Zhang H, Tao J, Zhang S, Lv X. LncRNA MEG3 Reduces Hippocampal Neuron Apoptosis via the PI3K/AKT/mTOR Pathway in a Rat Model of Temporal Lobe Epilepsy. Neuropsychiatr Dis Treat 2020; 16:2519-2528. [PMID: 33149593 PMCID: PMC7604460 DOI: 10.2147/ndt.s270614] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Temporal lobe epilepsy (TLE) is a common neurological disorder, which is characterized by recurrent spontaneous seizures. Exploring the mechanisms of epileptogenesis has been considered as a priority. The aim of this study is to investigate the effects of LncRNA MEG3 in spontaneous recurrent epileptiform discharges (SREDs) and rats with TLE. METHODS Rat model of TLE was produced by intraperitoneal injection of lithium chloride and pilocarpine. Rat hippocampal neuronal model of SREDs was established by Mg2+-free treatment. MEG3 was overexpressed by transfection of AAV-MEG3 in TLE and SREDs model. The expression of MEG3, interleukin-1β (IL-1β), interleukin-6 (IL-6) and recombinant human tumor necrosis factor-alpha (TNF-α) was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Malondialdehyde (MDA) content and superoxide dismutase (SOD) activity were detected by corresponding kit. The apoptosis of hippocampal neurons was detected by terminal deoxynucleotidyl transferase transfer‑mediated dUTP nick end‑labeling (TUNEL) assay and flow cytometry. The expression of proteins related to apoptosis (Caspase-3, Bax, and Bcl-2) and the PI3K/AKT/mTOR pathway was detected by Western blot. RESULTS MEG3 expression was downregulated in SREDs and rats with TLE. Overexpression of MEG3 reduced the expression of IL-1β, IL-6, and TNF-α, MDA content, apoptosis rate of hippocampal neuron, increased SOD activity, and inhibited the PI3K/AKT/mTOR pathway in rats with TLE. In addition, overexpression of MEG3 enhanced cell viability and inhibited apoptosis through the activation of the PI3K/AKT/mTOR pathway in SREDs. CONCLUSION MEG3 reduced proinflammatory cytokines, oxidative stress, and apoptosis rate of hippocampal neuron and enhanced cell viability through the activation of the PI3K/AKT/mTOR pathway in SREDs and rats with TLE. Our findings may contribute to find a new therapeutic target for the treatment of epilepsy.
Collapse
Affiliation(s)
- Hongyan Zhang
- Department of Pediatrics, The First People's Hospital of Jinan, Jinan, Shandong 250011, People's Republic of China
| | - Jiuyun Tao
- Department of Surgery 1, Chiping County People's Hospital, Liaocheng, Shandong 252100, People's Republic of China
| | - ShuXia Zhang
- Department of Obstetrics, Zhangqiu People's Hospital of Jinan City, Jinan, Shandong 250200, People's Republic of China
| | - XinXin Lv
- Department of Pediatrics, Jining First People's Hospital, Jining, Shandong 272000, People's Republic of China
| |
Collapse
|
39
|
Xu S, Sun Q, Fan J, Jiang Y, Yang W, Cui Y, Yu Z, Jiang H, Li B. Role of Astrocytes in Post-traumatic Epilepsy. Front Neurol 2019; 10:1149. [PMID: 31798512 PMCID: PMC6863807 DOI: 10.3389/fneur.2019.01149] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/14/2019] [Indexed: 12/25/2022] Open
Abstract
Traumatic brain injury, a common cause of acquired epilepsy, is typical to find necrotic cell death within the injury core. The dynamic changes in astrocytes surrounding the injury core contribute to epileptic seizures associated with intense neuronal firing. However, little is known about the molecular mechanisms that activate astrocytes during traumatic brain injury or the effect of functional changes of astrocytes on seizures. In this comprehensive review, we present our cumulated understanding of the complex neurological affection in astrocytes after traumatic brain injury. We approached the problem through describing the changes of cell morphology, neurotransmitters, biochemistry, and cytokines in astrocytes during post-traumatic epilepsy. In addition, we also discussed the relationship between dynamic changes in astrocytes and seizures and the current pharmacologic agents used for treatment. Hopefully, this review will provide a more detailed knowledge from which better therapeutic strategies can be developed to treat post-traumatic epilepsy.
Collapse
Affiliation(s)
- Songbai Xu
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, China
| | - Qihan Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jie Fan
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Yuanyuan Jiang
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Yifeng Cui
- Department of Pediatrics, Yanbian Maternal and Child Health Hospital, Yanji, China
| | - Zhenxiang Yu
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, China
| | - Huiyi Jiang
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
40
|
Wang A, Si Z, Li X, Lu L, Pan Y, Liu J. FK506 Attenuated Pilocarpine-Induced Epilepsy by Reducing Inflammation in Rats. Front Neurol 2019; 10:971. [PMID: 31572289 PMCID: PMC6751399 DOI: 10.3389/fneur.2019.00971] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022] Open
Abstract
Background: The status epilepticus (SE) is accompanied by a local inflammatory response and many oxygen free radicals. FK506 is an effective immunosuppressive agent with neuroprotective and neurotrophic effects, however, whether it can inhibit the inflammatory response and attenuate epilepsy remains unclear. Objective: This study aims to clarify the effect of FK506 on inflammatory response in rats with epilepsy. Methods: A total of 180 rats were randomly and equally divided into the control group, epilepsy group, and FK506 group. The rat SE model in the epilepsy group and FK506 group was induced by lithium chloride combined with pilocarpine. In the FK506 group, FK506 was given before the injection of pilocarpine. The control group was given the same volume of saline. Then the effect of FK506 on epilepsy in rats and the changes of inflammatory factors and free radicals in hippocampus were examined using hematoxylin and eosin (HE) staining, immunohistochemistry, quantitative real-time polymerase chain reaction (qRT-PCR), and western blotting. Results: FK506 ameliorated the course of pilocarpine-induced epilepsy and the neuronal loss in the rat hippocampus after SE. FK506 reduced the increased content of nitric oxide (NO), superoxide dismutase (SOD), and malondialdehyde (MDA) in the hippocampus after SE. Besides, FK506 also significantly reduced the levels of factors involved in inflammatory response such as vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor-α (TNF-α), and Protein Kinase C δ (PKCδ) that rise after epilepsy. Conclusion: FK506 ameliorated the course of pilocarpine-induced epilepsy, significantly reduced free radical content, and inhibited the expression of inflammatory factors, which provided a theoretical basis for the application of FK506 in the treatment of epilepsy.
Collapse
Affiliation(s)
- Aihua Wang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated With Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Zhihua Si
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated With Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Xiaolin Li
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated With Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Lu Lu
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated With Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yongli Pan
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated With Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Jinzhi Liu
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated With Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
41
|
Korotkov A, Broekaart DWM, Banchaewa L, Pustjens B, van Scheppingen J, Anink JJ, Baayen JC, Idema S, Gorter JA, van Vliet EA, Aronica E. microRNA-132 is overexpressed in glia in temporal lobe epilepsy and reduces the expression of pro-epileptogenic factors in human cultured astrocytes. Glia 2019; 68:60-75. [PMID: 31408236 PMCID: PMC6899748 DOI: 10.1002/glia.23700] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/26/2022]
Abstract
Temporal lobe epilepsy (TLE) is a chronic neurological disease in humans, which is refractory to pharmacological treatment in about 30% of the patients. Reactive glial cells are thought to play a major role during the development of epilepsy (epileptogenesis) via regulation of brain inflammation and remodeling of the extracellular matrix (ECM). These processes can be regulated by microRNAs (miRs), a class of small non‐coding RNAs, which can control entire gene networks at a post‐transcriptional level. The expression of miRs is known to change dynamically during epileptogenesis. miR‐132 is one of the most commonly upregulated miRs in animal TLE models with important roles shown in neurons. However, the possible role of miR‐132 in glia remains largely unknown. The aim of this study was to characterize the cell‐type specific expression of miR‐132 in the hippocampus of patients with TLE and during epileptogenesis in a rat TLE model. Furthermore, the potential role of miR‐132 was investigated by transfection of human primary cultured astrocytes that were stimulated with the cytokines IL‐1β or TGF‐β1. We showed an increased expression of miR‐132 in the human and rat epileptogenic hippocampus, particularly in glial cells. Transfection of miR‐132 in human primary astrocytes reduced the expression of pro‐epileptogenic COX‐2, IL‐1β, TGF‐β2, CCL2, and MMP3. This suggests that miR‐132, particularly in astrocytes, represents a potential therapeutic target that warrants further in vivo investigation.
Collapse
Affiliation(s)
- Anatoly Korotkov
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Diede W M Broekaart
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Leyla Banchaewa
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Ben Pustjens
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Jackelien van Scheppingen
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Jasper J Anink
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Johannes C Baayen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Sander Idema
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Jan A Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Erwin A van Vliet
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| |
Collapse
|
42
|
Tian MJ, Wang RF, Hölscher C, Mi RL, Yuan ZY, Li DF, Xue GF. The novel GLP-1/GIP dual receptor agonist DA3-CH is neuroprotective in the pilocarpine-induced epileptogenesis rat model. Epilepsy Res 2019; 154:97-106. [DOI: 10.1016/j.eplepsyres.2019.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/03/2019] [Accepted: 05/07/2019] [Indexed: 12/25/2022]
|
43
|
Owens GC, Garcia AJ, Mochizuki AY, Chang JW, Reyes SD, Salamon N, Prins RM, Mathern GW, Fallah A. Evidence for Innate and Adaptive Immune Responses in a Cohort of Intractable Pediatric Epilepsy Surgery Patients. Front Immunol 2019; 10:121. [PMID: 30761153 PMCID: PMC6362260 DOI: 10.3389/fimmu.2019.00121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 01/15/2019] [Indexed: 12/31/2022] Open
Abstract
Brain-infiltrating lymphocytes (BILs) were isolated from resected brain tissue from 10 pediatric epilepsy patients who had undergone surgery for Hemimegalencephaly (HME) (n = 1), Tuberous sclerosis complex (TSC) (n = 2), Focal cortical dysplasia (FCD) (n = 4), and Rasmussen encephalitis (RE) (n = 3). Peripheral blood mononuclear cells (PBMCs) were also isolated from blood collected at the time of the surgery. Cells were immunostained with a panel of 20 antibody markers, and analyzed by mass cytometry. To identify and quantify the immune cell types in the samples, an unbiased clustering method was applied to the entire data set. More than 85 percent of the CD45+ cells isolated from resected RE brain tissue comprised T cells; by contrast NK cells and myeloid cells constituted 80-95 percent of the CD45+ cells isolated from the TSC and the FCD brain specimens. Three populations of myeloid cells made up >50 percent of all of the myeloid cells in all of the samples of which a population of HLA-DR+ CD11b+ CD4- cells comprised the vast majority of myeloid cells in the BIL fractions from the FCD and TSC cases. CD45RA+ HLA-DR- CD11b+ CD16+ NK cells constituted the major population of NK cells in the blood from all of the cases. This subset also comprised the majority of NK cells in BILs from the resected RE and HME brain tissue, whereas NK cells defined as CD45RA- HLA-DR+ CD11b- CD16- cells comprised 86-96 percent of the NK cells isolated from the FCD and TSC brain tissue. Thirteen different subsets of CD4 and CD8 αβ T cells and γδ T cells accounted for over 80% of the CD3+ T cells in all of the BIL and PBMC samples. At least 90 percent of the T cells in the RE BILs, 80 percent of the T cells in the HME BILs and 40-66 percent in the TSC and FCD BILs comprised activated antigen-experienced (CD45RO+ HLA-DR+ CD69+) T cells. We conclude that even in cases where there is no evidence for an infection or an immune disorder, activated peripheral immune cells may be present in epileptogenic areas of the brain, possibly in response to seizure-driven brain inflammation.
Collapse
Affiliation(s)
- Geoffrey C. Owens
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Alejandro J. Garcia
- Division of Hematology Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Aaron Y. Mochizuki
- Division of Hematology Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Julia W. Chang
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Samuel D. Reyes
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Robert M. Prins
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Parker Institute for Cancer Immunotherapy, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gary W. Mathern
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Mattel Children's Hospital, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Aria Fallah
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Mattel Children's Hospital, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
44
|
Dede F, Karadenizli S, Ozsoy OD, Eraldemir FC, Sahin D, Ates N. Antagonism of adenosinergic system decrease SWD occurrence via an increment in thalamic NFkB and IL-6 in absence epilepsy. J Neuroimmunol 2019; 326:1-8. [PMID: 30423516 DOI: 10.1016/j.jneuroim.2018.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 12/29/2022]
Abstract
Epilepsy is a major pathological condition, characterized by recurrent seizures and affecting approximately 1% of the population. Many studies have shown a relationship between epilepsy and inflammation. The adenosinergic system contributes to inflammation and epilepsy by regulating the release of neurotransmitters through its various receptors. This study investigates the effect of agonist and antagonist of adenosinergic system on seizure activity and cytokine levels in the WAG/Rij strain, a genetic animal model of absence epilepsy. The WAG/Rij rats used in our study were assigned to saline, Tween 20, adenosine, and caffeine groups. Tripolar electrodes were implanted on the skull, and EEG activities recorded for 3 h. ELISA was used to determine the NFkB, TNF-α, IL-1β, and IL-6 levels in the cortical and thalamic brain regions, as well as the TNF-α, IL-1β, and IL-6 levels in the blood samples. Administration of caffeine to rats resulted in a decreased SWD number at 30 and 60 min as determined by EEG recording after baseline (p < .05), and a significant increase in NFkB and IL-6 levels in the thalamic tissue (p < .05). Administration of adenosine to rats did not change seizures and cytokine levels. Our results show that an increase in thalamic IL-6 and NFkB levels may related with a decrement in absence epilepsy. This study clearly shows the contribution of adenosinergic system in absence seizure in WAG/Rij rats. These results also support the importance of the thalamus on occurrence of SWD in the thalamocortical loop.
Collapse
Affiliation(s)
- Fazilet Dede
- Department of Physiology, Medical Faculty of Kocaeli University, Kocaeli, Turkey
| | - Sabriye Karadenizli
- Department of Physiology, Medical Faculty of Kocaeli University, Kocaeli, Turkey
| | - Ozgur Doga Ozsoy
- Department of Biochemistry, Medical Faculty of Kocaeli University, Kocaeli, Turkey
| | | | - Deniz Sahin
- Department of Physiology, Medical Faculty of Kocaeli University, Kocaeli, Turkey
| | - Nurbay Ates
- Department of Physiology, Medical Faculty of Kocaeli University, Kocaeli, Turkey.
| |
Collapse
|
45
|
Nikolic L, Shen W, Nobili P, Virenque A, Ulmann L, Audinat E. Blocking TNFα-driven astrocyte purinergic signaling restores normal synaptic activity during epileptogenesis. Glia 2018; 66:2673-2683. [DOI: 10.1002/glia.23519] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Ljiljana Nikolic
- Neuron-glia interactions group, INSERM U1128; Paris Descartes University; Paris France
| | - Weida Shen
- Neuron-glia interactions group, INSERM U1128; Paris Descartes University; Paris France
- Department of Pharmacology; Zhejiang University City College; Hangzhou, Zhejiang China
| | - Paola Nobili
- Neuron-glia interactions group, INSERM U1128; Paris Descartes University; Paris France
| | - Anaïs Virenque
- Institute of Functional Genomics, University of Montpellier; CNRS, INSERM; Montpellier France
| | - Lauriane Ulmann
- Institute of Functional Genomics, University of Montpellier; CNRS, INSERM; Montpellier France
- LabEx Ion Channel Science and Therapeutics; Montpellier France
| | - Etienne Audinat
- Neuron-glia interactions group, INSERM U1128; Paris Descartes University; Paris France
- Institute of Functional Genomics, University of Montpellier; CNRS, INSERM; Montpellier France
| |
Collapse
|
46
|
Morris G, Fernandes BS, Puri BK, Walker AJ, Carvalho AF, Berk M. Leaky brain in neurological and psychiatric disorders: Drivers and consequences. Aust N Z J Psychiatry 2018; 52:924-948. [PMID: 30231628 DOI: 10.1177/0004867418796955] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The blood-brain barrier acts as a highly regulated interface; its dysfunction may exacerbate, and perhaps initiate, neurological and neuropsychiatric disorders. METHODS In this narrative review, focussing on redox, inflammatory and mitochondrial pathways and their effects on the blood-brain barrier, a model is proposed detailing mechanisms which might explain how increases in blood-brain barrier permeability occur and can be maintained with increasing inflammatory and oxidative and nitrosative stress being the initial drivers. RESULTS Peripheral inflammation, which is causatively implicated in the pathogenesis of major psychiatric disorders, is associated with elevated peripheral pro-inflammatory cytokines, which in turn cause increased blood-brain barrier permeability. Reactive oxygen species, such as superoxide radicals and hydrogen peroxide, and reactive nitrogen species, such as nitric oxide and peroxynitrite, play essential roles in normal brain capillary endothelial cell functioning; however, chronically elevated oxidative and nitrosative stress can lead to mitochondrial dysfunction and damage to the blood-brain barrier. Activated microglia, redox control of which is mediated by nitric oxide synthases and nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, secrete neurotoxic molecules such as reactive oxygen species, nitric oxide, prostaglandin, cyclooxygenase-2, quinolinic acid, several chemokines (including monocyte chemoattractant protein-1 [MCP-1], C-X-C motif chemokine ligand 1 [CXCL-1] and macrophage inflammatory protein 1α [MIP-1α]) and the pro-inflammatory cytokines interleukin-6, tumour necrosis factor-α and interleukin-1β, which can exert a detrimental effect on blood-brain barrier integrity and function. Similarly, reactive astrocytes produce neurotoxic molecules such as prostaglandin E2 and pro-inflammatory cytokines, which can cause a 'leaky brain'. CONCLUSION Chronic inflammatory and oxidative and nitrosative stress is associated with the development of a 'leaky gut'. The following evidence-based approaches, which address the leaky gut and blood-brain barrier dysfunction, are suggested as potential therapeutic interventions for neurological and neuropsychiatric disorders: melatonin, statins, probiotics containing Bifidobacteria and Lactobacilli, N-acetylcysteine, and prebiotics containing fructo-oligosaccharides and galacto-oligosaccharides.
Collapse
Affiliation(s)
- Gerwyn Morris
- 1 IMPACT Strategic Research Centre, Deakin University School of Medicine, and Barwon Health, Geelong, VIC, Australia
| | - Brisa S Fernandes
- 1 IMPACT Strategic Research Centre, Deakin University School of Medicine, and Barwon Health, Geelong, VIC, Australia.,2 Centre for Addiction and Mental Health (CAMH) and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Basant K Puri
- 3 Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Adam J Walker
- 1 IMPACT Strategic Research Centre, Deakin University School of Medicine, and Barwon Health, Geelong, VIC, Australia
| | - Andre F Carvalho
- 2 Centre for Addiction and Mental Health (CAMH) and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Michael Berk
- 1 IMPACT Strategic Research Centre, Deakin University School of Medicine, and Barwon Health, Geelong, VIC, Australia.,4 Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
47
|
Abstract
A rapidly growing body of evidence supports the premise that neuroinflammation plays an important role in initiating and sustaining seizures in a range of pediatric epilepsies. Clinical and experimental evidence indicate that neuroinflammation is both an outcome and a contributor to seizures. In this manner, seizures that arise from an initial insult (e.g. infection, trauma, genetic mutation) contribute to an inflammatory response that subsequently promotes recurrent seizures. This cyclical relationship between seizures and neuroinflammation has been described as a 'vicious cycle.' Studies of human tissue resected for surgical treatment of refractory epilepsy have reported activated inflammatory and immune signaling pathways, while animal models have been used to demonstrate that key inflammatory mediators lead to increased seizure susceptibility. Further characterization of the molecular mechanisms involved in this cycle may ultimately enable the development of new therapeutic approaches for the treatment of epilepsy. In this brief review we focus on key inflammatory mediators that have become prominent in recent literature of epilepsy, including newly characterized microRNAs and their potential role in neuroinflammatory signaling.
Collapse
Affiliation(s)
- Shruti Bagla
- Division of Hematology/Oncology, Department of Pediatrics, Room 3L22, Children's Hospital of Michigan, 3901 Beaubien Blvd, Detroit, MI 48201, USA
| | - Alan A Dombkowski
- Division of Clinical Pharmacology and Toxicology, Department of Pediatrics, Room 3L22, Children's Hospital of Michigan, 3901 Beaubien Blvd, Detroit, MI 48201, USA
| |
Collapse
|
48
|
Arend J, Kegler A, Caprara ALF, Almeida C, Gabbi P, Pascotini ET, de Freitas LAV, Miraglia C, Bertazzo TL, Palma R, Arceno P, Duarte MMMF, Furian AF, Oliveira MS, Royes LFF, Mathern GW, Fighera MR. Depressive, inflammatory, and metabolic factors associated with cognitive impairment in patients with epilepsy. Epilepsy Behav 2018; 86:49-57. [PMID: 30077908 DOI: 10.1016/j.yebeh.2018.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 01/14/2023]
Abstract
PURPOSE The purpose of this study was to examine the cognitive function and depressive traits most frequently associated with the clinical assessment of patients with epilepsy and if these clinical parameters are linked to glycolipid levels and inflammatory and apoptotic markers. METHODS Patients with epilepsy (n = 32) and healthy subjects (n = 41) were recruited to participate in this study. Neuropsychological evaluation was performed in both groups through a battery of cognitive tests. Inflammatory markers, apoptotic factors, and deoxyribonucleic acid (DNA) damage were measured in blood samples. Additionally, the metabolic markers total cholesterol (CHO), low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglyceride (TG), and glucose (GLU) levels were analyzed. RESULTS Statistical analyses showed that patients with epilepsy presented decreased scores in memory, attention, language, and executive function tests compared with the control group. Analysis revealed that there was negative correlation in epilepsy for seizure duration vs. oral language (R = -0.4484, p < 0.05) and seizure duration vs. problem solving (executive functions) (R = -0.3995, p < 0.05). This was also observed when comparing depression with temporal-spatial orientation (TSO) (R = -0.39, p < 0.05). Furthermore, we observed a higher depression score in patients with epilepsy than in the healthy ones. Statistical analyses showed higher acetylcholinesterase (AChE) (p < 0.05), interleukin 1β (IL-1β, p < 0.001), and tumor necrosis factor-alpha (TNF-α) (p < 0.001) levels compared with those in the control group. Moreover, patients with epilepsy had significantly higher serum levels of caspase 3 (CASP 3) (p < 0.001) and Picogreen (p < 0.001) compared with the control subjects. Regarding the metabolic markers, higher glycolipid levels were observed in the patients with epilepsy (CHO < 0.05*, LDL < 0.0001*, TG < 0.05*, GLU p < 0.05). High-density lipoprotein levels were not significant. The patients with epilepsy had significant correlation when comparing total language with TNF-α (R = -0.4, p < 0.05), praxes with CASP 3 (R = -0.52, p < 0.01), total CHO with total language (R = -0.48, p < 0.05), TG with semantic memory (R = -0.54, p < 0.05), TG with prospective memory (R = -0.2165, p < 0.02), TG with total memory (R = -0.53, p < 0.02), and GLU with total attention (R = -0.62, p < 0.002). CONCLUSION This study supports the evidence of a distinct neuropsychological profile between patients with epilepsy and healthy subjects. Furthermore, our findings suggest that inflammatory pathway, glycolipid profile, and depressive factors may be associated with cognitive dysfunction in patients with epilepsy.
Collapse
Affiliation(s)
- Josi Arend
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, RS, Brazil; Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Aline Kegler
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, RS, Brazil; Centro de Ciências Naturais e Exatas, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
| | - Ana Letícia Fornari Caprara
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, RS, Brazil
| | - Camila Almeida
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, RS, Brazil
| | - Patricia Gabbi
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, RS, Brazil; Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Eduardo T Pascotini
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, RS, Brazil; Centro de Ciências Naturais e Exatas, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
| | - Lori Ane Vargas de Freitas
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, RS, Brazil
| | - Cinara Miraglia
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, RS, Brazil
| | - Taíse Leitemperger Bertazzo
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, RS, Brazil
| | - Raphael Palma
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, RS, Brazil
| | - Patrícia Arceno
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, RS, Brazil
| | - Marta M M F Duarte
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Ana Flavia Furian
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Mauro Schneider Oliveira
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Luiz Fernando Freire Royes
- Centro de Ciências Naturais e Exatas, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil; Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, RS, Brazil; Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Gary W Mathern
- UCLA, School of Medicine, Los Angeles, CA, United States
| | - Michele Rechia Fighera
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, RS, Brazil; Centro de Ciências Naturais e Exatas, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil; Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, RS, Brazil; Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil.
| |
Collapse
|
49
|
Korotkov A, Broekaart DWM, van Scheppingen J, Anink JJ, Baayen JC, Idema S, Gorter JA, Aronica E, van Vliet EA. Increased expression of matrix metalloproteinase 3 can be attenuated by inhibition of microRNA-155 in cultured human astrocytes. J Neuroinflammation 2018; 15:211. [PMID: 30031401 PMCID: PMC6054845 DOI: 10.1186/s12974-018-1245-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/02/2018] [Indexed: 12/21/2022] Open
Abstract
Background Temporal lobe epilepsy (TLE) is a chronic neurological disease, in which about 30% of patients cannot be treated adequately with anti-epileptic drugs. Brain inflammation and remodeling of the extracellular matrix (ECM) seem to play a major role in TLE. Matrix metalloproteinases (MMPs) are proteolytic enzymes largely responsible for the remodeling of the ECM. The inhibition of MMPs has been suggested as a novel therapy for epilepsy; however, available MMP inhibitors lack specificity and cause serious side effects. We studied whether MMPs could be modulated via microRNAs (miRNAs). Several miRNAs mediate inflammatory responses in the brain, which are known to control MMP expression. The aim of this study was to investigate whether an increased expression of MMPs after interleukin-1β (IL-1β) stimulation can be attenuated by inhibition of the inflammation-associated miR-155. Methods We investigated the expression of MMP2, MMP3, MMP9, and MMP14 in cultured human fetal astrocytes after stimulation with the pro-inflammatory cytokine IL-1β. The cells were transfected with miR-155 antagomiR, and the effect on MMP3 expression was investigated using real-time quantitative PCR and Western blotting. Furthermore, we characterized MMP3 and miR-155 expression in brain tissue of TLE patients with hippocampal sclerosis (TLE-HS) and during epileptogenesis in a rat TLE model. Results Inhibition of miR-155 by the antagomiR attenuated MMP3 overexpression after IL-1β stimulation in astrocytes. Increased expression of MMP3 and miR-155 was also evident in the hippocampus of TLE-HS patients and throughout epileptogenesis in the rat TLE model. Conclusions Our experiments showed that MMP3 is dynamically regulated by seizures as shown by increased expression in TLE tissue and during different phases of epileptogenesis in the rat TLE model. MMP3 can be induced by the pro-inflammatory cytokine IL-1β and is regulated by miR-155, suggesting a possible strategy to prevent epilepsy via reduction of inflammation. Electronic supplementary material The online version of this article (10.1186/s12974-018-1245-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anatoly Korotkov
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Diede W M Broekaart
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jackelien van Scheppingen
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jasper J Anink
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Johannes C Baayen
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Sander Idema
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Jan A Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Erwin A van Vliet
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands. .,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
50
|
Vargas-Sánchez K, Mogilevskaya M, Rodríguez-Pérez J, Rubiano MG, Javela JJ, González-Reyes RE. Astroglial role in the pathophysiology of status epilepticus: an overview. Oncotarget 2018; 9:26954-26976. [PMID: 29928494 PMCID: PMC6003549 DOI: 10.18632/oncotarget.25485] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 05/09/2018] [Indexed: 12/11/2022] Open
Abstract
Status epilepticus is a medical emergency with elevated morbidity and mortality rates, and represents a leading cause of epilepsy-related deaths. Though status epilepticus can occur at any age, it manifests more likely in children and elderly people. Despite the common prevalence of epileptic disorders, a complete explanation for the mechanisms leading to development of self-limited or long lasting seizures (as in status epilepticus) are still lacking. Apart from neurons, research evidence suggests the involvement of immune and glial cells in epileptogenesis. Among glial cells, astrocytes represent an ideal target for the study of the pathophysiology of status epilepticus, due to their key role in homeostatic balance of the central nervous system. During status epilepticus, astroglial cells are activated by the presence of cytokines, damage associated molecular patterns and reactive oxygen species. The persistent activation of astrocytes leads to a decrease in glutamate clearance with a corresponding accumulation in the synaptic extracellular space, increasing the chance of neuronal excitotoxicity. Moreover, major alterations in astrocytic gap junction coupling, inflammation and receptor expression, facilitate the generation of seizures. Astrocytes are also involved in dysregulation of inhibitory transmission in the central nervous system and directly participate in ionic homeostatic alterations during status epilepticus. In the present review, we focus on the functional and structural changes in astrocytic activity that participate in the development and maintenance of status epilepticus, with special attention on concurrent inflammatory alterations. We also include potential astrocytic treatment targets for status epilepticus.
Collapse
Affiliation(s)
- Karina Vargas-Sánchez
- Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | | | - John Rodríguez-Pérez
- Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - María G Rubiano
- Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - José J Javela
- Grupo de Clínica y Salud Mental, Programa de Psicología, Universidad Católica de Pereira, Pereira, Colombia
| | - Rodrigo E González-Reyes
- Universidad del Rosario, Escuela de Medicina y Ciencias de la Salud, GI en Neurociencias-NeURos, Bogotá, Colombia
| |
Collapse
|