1
|
Doyen M, Lambert C, Roeder E, Boutley H, Chen B, Pierson J, Verger A, Raffo E, Karcher G, Marie PY, Maskali F. Assessment of a one-week ketogenic diet on brain glycolytic metabolism and on the status epilepticus stage of a lithium-pilocarpine rat model. Sci Rep 2024; 14:5063. [PMID: 38424459 PMCID: PMC10904769 DOI: 10.1038/s41598-024-53824-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
The ketogenic diet (KD) has been shown to be effective in refractory epilepsy after long-term administration. However, its interference with short-term brain metabolism and its involvement in the early process leading to epilepsy remain poorly understood. This study aimed to assess the effect of a short-term ketogenic diet on cerebral glucose metabolic changes, before and after status epilepticus (SE) in rats, by using [18F]-FDG PET. Thirty-nine rats were subjected to a one-week KD (KD-rats, n = 24) or to a standard diet (SD-rats, n = 15) before the induction of a status epilepticus (SE) by lithium-pilocarpine administrations. Brain [18F]-FDG PET scans were performed before and 4 h after this induction. Morphological MRIs were acquired and used to spatially normalize the PET images which were then analyzed voxel-wisely using a statistical parametric-based method. Twenty-six rats were analyzed (KD-rats, n = 15; SD-rats, n = 11). The 7 days of the KD were associated with significant increases in the plasma β-hydroxybutyrate level, but with an unchanged glycemia. The PET images, recorded after the KD and before SE induction, showed an increased metabolism within sites involved in the appetitive behaviors: hypothalamic areas and periaqueductal gray, whereas no area of decreased metabolism was observed. At the 4th hour following the SE induction, large metabolism increases were observed in the KD- and SD-rats in areas known to be involved in the epileptogenesis process late-i.e., the hippocampus, parahippocampic, thalamic and hypothalamic areas, the periaqueductal gray, and the limbic structures (and in the motor cortex for the KD-rats only). However, no statistically significant difference was observed when comparing SD and KD groups at the 4th hour following the SE induction. A one-week ketogenic diet does not prevent the status epilepticus (SE) and associated metabolic brain abnormalities in the lithium-pilocarpine rat model. Further explorations are needed to determine whether a significant prevention could be achieved by more prolonged ketogenic diets and by testing this diet in less severe experimental models, and moreover, to analyze the diet effects on the later and chronic stages leading to epileptogenesis.
Collapse
Affiliation(s)
- Matthieu Doyen
- NANCYCLOTEP-Molecular and Experimental Imaging Platform, 54000, Nancy, France.
- Lorraine University, IADI, INSERM UMR 1254, 54000, Nancy, France.
| | - Clémentine Lambert
- NANCYCLOTEP-Molecular and Experimental Imaging Platform, 54000, Nancy, France
- Department of Neuropediatrics, Children's Hospital CHRU Nancy, 54000, Nancy, France
| | - Emilie Roeder
- NANCYCLOTEP-Molecular and Experimental Imaging Platform, 54000, Nancy, France
| | - Henri Boutley
- NANCYCLOTEP-Molecular and Experimental Imaging Platform, 54000, Nancy, France
| | - Bailiang Chen
- CHRU-Nancy, INSERM UMR 1433, CIC, Innovation Technologique, Université de Lorraine, 54000, Nancy, France
| | - Julien Pierson
- NANCYCLOTEP-Molecular and Experimental Imaging Platform, 54000, Nancy, France
| | - Antoine Verger
- NANCYCLOTEP-Molecular and Experimental Imaging Platform, 54000, Nancy, France
- Lorraine University, IADI, INSERM UMR 1254, 54000, Nancy, France
- Department of Nuclear Medicine, University Hospital, 54000, Nancy, France
| | - Emmanuel Raffo
- Department of Neuropediatrics, Children's Hospital CHRU Nancy, 54000, Nancy, France
| | - Gilles Karcher
- NANCYCLOTEP-Molecular and Experimental Imaging Platform, 54000, Nancy, France
- Department of Nuclear Medicine, University Hospital, 54000, Nancy, France
| | - Pierre-Yves Marie
- NANCYCLOTEP-Molecular and Experimental Imaging Platform, 54000, Nancy, France
- Lorraine University, IADI, INSERM UMR 1254, 54000, Nancy, France
- Department of Nuclear Medicine, University Hospital, 54000, Nancy, France
| | - Fatiha Maskali
- NANCYCLOTEP-Molecular and Experimental Imaging Platform, 54000, Nancy, France
- Lorraine University, INSERM DCAC1116, 54000, Nancy, France
| |
Collapse
|
2
|
Simeone T, Simeone K. The Unconventional Effects of the Ketogenic Diet (KD) in Preclinical Epilepsy. Epilepsy Curr 2024; 24:117-122. [PMID: 39280056 PMCID: PMC11394414 DOI: 10.1177/15357597231216916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
The integration of metabolic therapeutics in the available clinical armory is becoming more commonplace in health care as our understanding about the dependence of disease on metabolism continues to deepen and evolve. In the epilepsy field, we often think about the ketogenic diet (KD, high fat: carbohydrate ratio) in terms of its anti-seizure efficacy. The aim of this article is to review what we've learned from preclinical studies about the KD's more unconventional effects, including its neuroprotective effects, anti-epileptogenic and disease-modifying effects, and how the KD influences comorbidities associated with epilepsy. As time moves us into the future and metabolic therapies become more common place, the effects of the KD considered unconventional herein, may end up being referred to as traditional.
Collapse
Affiliation(s)
- Timothy Simeone
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Kristina Simeone
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
3
|
Field R, Field T, Pourkazemi F, Rooney K. Ketogenic diets and the nervous system: a scoping review of neurological outcomes from nutritional ketosis in animal studies. Nutr Res Rev 2022; 35:268-281. [PMID: 34180385 DOI: 10.1017/s0954422421000214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Ketogenic diets have reported efficacy for neurological dysfunctions; however, there are limited published human clinical trials elucidating the mechanisms by which nutritional ketosis produces therapeutic effects. The purpose of this present study was to investigate animal models that report variations in nervous system function by changing from a standard animal diet to a ketogenic diet, synthesise these into broad themes, and compare these with mechanisms reported as targets in pain neuroscience to inform human chronic pain trials. METHODS An electronic search of seven databases was conducted in July 2020. Two independent reviewers screened studies for eligibility, and descriptive outcomes relating to nervous system function were extracted for a thematic analysis, then synthesised into broad themes. RESULTS In total, 170 studies from eighteen different disease models were identified and grouped into fourteen broad themes: alterations in cellular energetics and metabolism, biochemical, cortical excitability, epigenetic regulation, mitochondrial function, neuroinflammation, neuroplasticity, neuroprotection, neurotransmitter function, nociception, redox balance, signalling pathways, synaptic transmission and vascular supply. DISCUSSION The mechanisms presented centred around the reduction of inflammation and oxidative stress as well as a reduction in nervous system excitability. Given the multiple potential mechanisms presented, it is likely that many of these are involved synergistically and undergo adaptive processes within the human body, and controlled animal models that limit the investigation to a particular pathway in isolation may reach differing conclusions. Attention is required when translating this information to human chronic pain populations owing to the limitations outlined from the animal research.
Collapse
Affiliation(s)
- Rowena Field
- The University of Sydney, Faculty of Medicine and Health, Sydney, Australia
| | - Tara Field
- The New South Wales Ministry of Health (NSW Health), Sydney, Australia
| | | | - Kieron Rooney
- The University of Sydney, Faculty of Medicine and Health, Sydney, Australia
| |
Collapse
|
4
|
Melik-Kasumov TB, Korneyeva MA, Chuprina AV, Zhabinskaya AA, Rozhko AA. Neuroprotective Effect of Palmitoylethanolamide in the Lithium-Pilocarpine Model of Temporal Lobe Epilepsy. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Shehata NI, Abdelsamad MA, Amin HAA, Sadik NAH, Shaheen AA. Ameliorating effect of ketogenic diet on acute status epilepticus: Insights into biochemical and histological changes in rat hippocampus. J Food Biochem 2022; 46:e14217. [PMID: 35543175 DOI: 10.1111/jfbc.14217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/26/2022] [Accepted: 04/05/2022] [Indexed: 11/29/2022]
Abstract
This study aimed to evaluate the potential neuroprotective effects of ketogenic diet (KD) against the neuronal disruptions induced by SE in lithium-pilocarpine rat model of status epilepticus (SE). Four groups of female rats include; groups I and III received standard diet and groups II and IV received KD for 3 weeks. Groups I and II were left untreated, while groups III and IV were injected with LiCl (127 mg/kg, i.p.) followed by pilocarpine HCl (10 mg/kg, i.p.) 18-24 h later, repeatedly, till induction of SE. 72 h post-SE, KD effectively ameliorated the balance between excitatory (glutamate) and inhibitory (GABA) neurotransmitters and the oxidative stress indices, increased adenine nucleotides and decreased immunoreactivity of iNOS, TNFα, glial fibrillary acidic protein, and synaptophysin. Thiswas in association with improvement in inflammatory response and neuronal tissue characteristics in hippocampus of SE rats. Histological changes showed preservation of neuronal integrity. These findings highlight the protective effects of KD in the acute phase post-SE via ameliorating biochemical and histological changes involved. PRACTICAL APPLICATIONS: Epilepsy is the fourth most common neurological disorder that requires lifelong treatment. It stigmatizes patients and their families. The use of the ketogenic diet (KD) as a therapy for epilepsy developed from observations that fasting could reduce seizures. From 1920s, the KD was a common epilepsy treatment until it was gradually superseded by anticonvulsant drugs so that by the 1980s it was rarely used. However, there has been a resurgence of interest and usage of the KD for epilepsy since the turn of the century. Despite its long history, the mechanisms by which KD exhibits its anti-seizure action are not fully understood. Our study aims to identify the mechanism of KD which may help further studies to achieve the same benefits with a drug or supplement to overcome its unpalatability and gastrointestinal side effects.
Collapse
Affiliation(s)
- Nagwa I Shehata
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mai A Abdelsamad
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hebat Allah A Amin
- Pathology Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Nermin A H Sadik
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Amira A Shaheen
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Dozières-Puyravel B, Höhn S, Auvin S. Considering safety and patient tolerance in the use of ketogenic diet in the management of refractory and super-refractory status epilepticus: a systematic review. Expert Rev Neurother 2021; 21:1303-1308. [PMID: 34275391 DOI: 10.1080/14737175.2021.1956905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Early use of the ketogenic diet (KD) is described as having a particular interest for super-refractory status epilepticus and febrile infection-related epilepsy syndrome. The authors conducted a systematic review of the available data on the KD for refractory and super-refractory status epilepticus. AREAS COVERED Following a systematic bibliographic search, the authors found 15 published papers: 2 prospective and 13 retrospective studies. Most often, the primary aim of the retrospective studies was the efficacy evaluation of the KD for refractory or super-refractory status epilepticus. Four studies focused on the use of KD for NORSE/FIRES. These initial studies suggested that KD was effective in these conditions, and that it showed mild and manageable side effects. EXPERT OPINION The published studies provided enough preliminary data to validate the feasibility and safety of the use of KD for refractory and super-refractory status epilepticus. Further studies demonstrating the efficacy of the KD in these indications are needed. Possible design and endpoints are discussed.
Collapse
Affiliation(s)
- Blandine Dozières-Puyravel
- Service de Neurologie Pédiatrique, Hôpital Robert-Debré, APHP, Paris, France.,Université de Paris, Paris, France
| | - Sophie Höhn
- Service de Neurologie Pédiatrique, Hôpital Robert-Debré, APHP, Paris, France.,Université de Paris, Paris, France
| | - Stéphane Auvin
- Service de Neurologie Pédiatrique, Hôpital Robert-Debré, APHP, Paris, France.,Université de Paris, Paris, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
7
|
Xiao W, Yang Z, Yan X, Feng L, Long L, Tu T, Deng N, Chen W, Xiao B, Long H, Zeng Y. iTRAQ-Based Proteomic Analysis of Dentate Gyrus in Temporal Lobe Epilepsy With Hippocampal Sclerosis. Front Neurol 2021; 11:626013. [PMID: 33569037 PMCID: PMC7868380 DOI: 10.3389/fneur.2020.626013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/22/2020] [Indexed: 12/21/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most frequent type of focal epilepsy in adults, typically resistant to pharmacological treatment, and mostly presents with cognitive impairment and psychiatric comorbidities. The most common neuropathological hallmark in TLE patients is hippocampal sclerosis (HS). However, the underlying molecular mechanisms involved remain poorly characterized. The dentate gyrus (DG), one specific hippocampal subarea, structural and functional changes imply a key involvement of the DG in the development of TLE. In this study, a isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomic technique was performed for the analysis of hippocampal DG obtained from patients with TLE-HS compared to control samples obtained from autopsy. Our proteomic data identified 5,583 proteins, of which 82 proteins were upregulated and 90 proteins were downregulated. Bioinformatics analysis indicated that differentially expressed proteins were enriched in "synaptic vesicle," "mitochondrion," "cell-cell adhesion," "regulation of synaptic plasticity," "ATP binding," and "oxidative phosphorylation." Protein-protein interaction network analysis found a pivotal module of 10 proteins that were related to "oxidative phosphorylation." This study has investigated proteomic alterations in the DG region of TLE-HS patients, and paved the way for the better understanding of epileptogenesis mechanisms and future therapeutic intervention.
Collapse
Affiliation(s)
- Wenbiao Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiquan Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Tian Tu
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Na Deng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenjuan Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongyu Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Zeng
- Department of Geriatrics, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Effects of ketogenic diet on cognitive function in pentylenetetrazol-kindled rats. Epilepsy Res 2020; 170:106534. [PMID: 33385944 DOI: 10.1016/j.eplepsyres.2020.106534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
Although the ketogenic diet (KD) is known to control seizures and improve cognition function in patients with drug-refractory epilepsy, the underlying mechanism remains unknown. In the present study, using pentylenetetrazol (PTZ)-induced and kindled rats, we found that KD significantly improved the impaired spatial reference memory of PTZ-kindled rats in the Morris water maze. To explore the mechanism underlying the action of KD in PTZ-kindled rats, quantitative real-time PCR (qRT-PCR) and immunohistochemical analysis were used to detect the expression of GluR1 and NR2B. The results showed that both the mRNA and protein expression of GluR1 and NR2B were significantly downregulated in the hippocampus of PTZ-kindled rats, while KD could observably improve both the mRNA and protein expression of GluR1 and NR2B in the hippocampus of PTZ-kindled rats. Additionally, KD improved the over-activated MAPK in PTZ-kindled rats, but not CAMKII, as detected by enzyme-linked immuno sorbent assay (ELISA), suggesting that the MAPK signaling pathway might be involved in the memory improvement of KD in PTZ-kindled rats. In conclusion, these results demonstrate that KD can indeed improve impaired spatial reference memory in PTZ-kindled rats, and KD can improve the expression of NR2B and GluR1.
Collapse
|
9
|
Clément A, Boutley H, Poussier S, Pierson J, Lhuillier M, Kolodziej A, Olivier JL, Karcher G, Marie PY, Maskali F. A 1-week extension of a ketogenic diet provides a further decrease in myocardial 18F-FDG uptake and a high detectability of myocarditis with FDG-PET. J Nucl Cardiol 2020; 27:612-618. [PMID: 30128917 PMCID: PMC7174271 DOI: 10.1007/s12350-018-1404-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/25/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Short periods of fasting and/or low-carbohydrate diet have been proven beneficial for decreasing the myocardial uptake of 18F-fluorodeoxyglucose (18F-FDG) and enhancing the detection of inflammatory heart diseases by 18F-FDG positron emission tomography (PET). This study aimed at determining whether this benefit is increased when a low-carbohydrate ketogenic diet is prolonged up to 7 days. METHODS Wistar rats underwent serial 18F-FDG-PET imaging after an 18-hour fasting period and after 2, 4 and 7 days of a ketogenic diet (3% carbohydrate) and they were compared to rats submitted to the same protocol but with normal diet (44% carbohydrate). The 18F-FDG-PET/ketogenic protocol was also applied in rats with immune myocarditis (injection of porcine cardiac myosin). RESULTS The 7-day ketogenic diet was associated with (1) a sustained increase in circulating ketone bodies at an equivalent level to that reached after 18-hour fasting, (2) a gradual decrease in 18F-FDG uptake within normal myocardium reaching a lower level compared to fasting at the 7th day (myocardium-to-blood ratios: 1.68 ± 1.02 vs 3.25 ± 1.40, P < .05) and (3) a high 18F-FDG-PET detectability of myocarditis areas. CONCLUSION One-week extension of a ketogenic diet provides a further decrease in the 18F-FDG uptake of normal myocardium and a high detectability of inflammatory areas.
Collapse
Affiliation(s)
- Alexandra Clément
- Nancyclotep, Molecular and Experimental Imaging Platform, Brabois Hospital, 54505 Vandœuvre-lès-Nancy, France
| | - Henri Boutley
- Nancyclotep, Molecular and Experimental Imaging Platform, Brabois Hospital, 54505 Vandœuvre-lès-Nancy, France
| | - Sylvain Poussier
- Nancyclotep, Molecular and Experimental Imaging Platform, Brabois Hospital, 54505 Vandœuvre-lès-Nancy, France
| | - Julien Pierson
- Nancyclotep, Molecular and Experimental Imaging Platform, Brabois Hospital, 54505 Vandœuvre-lès-Nancy, France
| | - Mickael Lhuillier
- Nancyclotep, Molecular and Experimental Imaging Platform, Brabois Hospital, 54505 Vandœuvre-lès-Nancy, France
| | - Allan Kolodziej
- Department of Biochemistry and Molecular Biology, CHRU-Nancy, University of Lorraine, 54000 Nancy, France
| | - Jean-Luc Olivier
- Department of Biochemistry and Molecular Biology, CHRU-Nancy, University of Lorraine, 54000 Nancy, France
| | - Gilles Karcher
- Nancyclotep, Molecular and Experimental Imaging Platform, Brabois Hospital, 54505 Vandœuvre-lès-Nancy, France
- Department of Nuclear Medicine, CHRU-Nancy, University of Lorraine, 54000 Nancy, France
| | - Pierre-Yves Marie
- Nancyclotep, Molecular and Experimental Imaging Platform, Brabois Hospital, 54505 Vandœuvre-lès-Nancy, France
- Department of Nuclear Medicine, CHRU-Nancy, University of Lorraine, 54000 Nancy, France
- University of Lorraine, INSERM, UMR 1116, 54000 Nancy, France
| | - Fatiha Maskali
- Nancyclotep, Molecular and Experimental Imaging Platform, Brabois Hospital, 54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|
10
|
Chen F, He X, Luan G, Li T. Role of DNA Methylation and Adenosine in Ketogenic Diet for Pharmacoresistant Epilepsy: Focus on Epileptogenesis and Associated Comorbidities. Front Neurol 2019; 10:119. [PMID: 30863356 PMCID: PMC6399128 DOI: 10.3389/fneur.2019.00119] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/29/2019] [Indexed: 01/02/2023] Open
Abstract
Epilepsy is a neurological disorder characterized by a long term propensity to produce unprovoked seizures and by the associated comorbidities including neurological, cognitive, psychiatric, and impairment the quality of life. Despite the clinic availability of several novel antiepileptic drugs (AEDs) with different mechanisms of action, more than one-third of patients with epilepsy suffer with pharmacoresistant epilepsy. Until now, no AEDs have been proven to confer the efficacy in alteration of disease progression or inhibition of the development of epilepsy. The ketogenic diet, the high-fat, low-carbohydrate composition is an alternative metabolic therapy for epilepsy, especially for children with drug-resistant epilepsy. Recently clinical and experimental results demonstrate its efficacy in ameliorating both seizures and comorbidities associated with epilepsy, such as cognitive/psychiatric concerns for the patients with refractory epilepsy. Of importance, ketogenic diet demonstrates to be a promising disease-modifying or partial antiepileptogenesis therapy for epilepsy. The mechanisms of action of ketogenic diet in epilepsy have been revealed recently, such as epigenetic mechanism for increase the adenosine level in the brain and inhibition of DNA methylation. In the present review, we will focus on the mechanisms of ketogenic diet therapies underlying adenosine system in the prevention of epileptogenesis and disease modification. In addition, we will review the role of ketogenic diet therapy in comorbidities associated epilepsy and the underlying mechanisms of adenosine.
Collapse
Affiliation(s)
- Fan Chen
- Beijing Key Laboratory of Epilepsy Research, Department of Neurology, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Xinghui He
- Beijing Key Laboratory of Epilepsy Research, Department of Neurosurgery, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Guoming Luan
- Beijing Key Laboratory of Epilepsy Research, Department of Neurosurgery, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Tianfu Li
- Beijing Key Laboratory of Epilepsy Research, Department of Neurology, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Cavarsan CF, Malheiros J, Hamani C, Najm I, Covolan L. Is Mossy Fiber Sprouting a Potential Therapeutic Target for Epilepsy? Front Neurol 2018; 9:1023. [PMID: 30555406 PMCID: PMC6284045 DOI: 10.3389/fneur.2018.01023] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 11/13/2018] [Indexed: 11/13/2022] Open
Abstract
Mesial temporal lobe epilepsy (MTLE) caused by hippocampal sclerosis is one of the most frequent focal epilepsies in adults. It is characterized by focal seizures that begin in the hippocampus, sometimes spread to the insulo-perisylvian regions and may progress to secondary generalized seizures. Morphological alterations in hippocampal sclerosis are well defined. Among them, hippocampal sclerosis is characterized by prominent cell loss in the hilus and CA1, and abnormal mossy fiber sprouting (granular cell axons) into the dentate gyrus inner molecular layer. In this review, we highlight the role of mossy fiber sprouting in seizure generation and hippocampal excitability and discuss the response of alternative treatment strategies in terms of MFS and spontaneous recurrent seizures in models of TLE (temporal lobe epilepsy).
Collapse
Affiliation(s)
- Clarissa F Cavarsan
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jackeline Malheiros
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Clement Hamani
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil.,Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Imad Najm
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Luciene Covolan
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil.,Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
12
|
Abstract
The vulnerability of cancer cells to nutrient deprivation and their dependency on specific metabolites are emerging hallmarks of cancer. Fasting or fasting-mimicking diets (FMDs) lead to wide alterations in growth factors and in metabolite levels, generating environments that can reduce the capability of cancer cells to adapt and survive and thus improving the effects of cancer therapies. In addition, fasting or FMDs increase resistance to chemotherapy in normal but not cancer cells and promote regeneration in normal tissues, which could help prevent detrimental and potentially life-threatening side effects of treatments. While fasting is hardly tolerated by patients, both animal and clinical studies show that cycles of low-calorie FMDs are feasible and overall safe. Several clinical trials evaluating the effect of fasting or FMDs on treatment-emergent adverse events and on efficacy outcomes are ongoing. We propose that the combination of FMDs with chemotherapy, immunotherapy or other treatments represents a potentially promising strategy to increase treatment efficacy, prevent resistance acquisition and reduce side effects.
Collapse
Affiliation(s)
- Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | | | - Valter D Longo
- IFOM, FIRC Institute of Molecular Oncology, Milano, Italy.
- Longevity Institute, Leonard Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Hong Y, Deng N, Jin HN, Xuan ZZ, Qian YX, Wu ZY, Xie W. Saikosaponin A modulates remodeling of Kv4.2-mediated A-type voltage-gated potassium currents in rat chronic temporal lobe epilepsy. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2945-2958. [PMID: 30254424 PMCID: PMC6141107 DOI: 10.2147/dddt.s166408] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Chronic temporal lobe epilepsy (cTLE) is the most common intractable epilepsy. Recent studies have shown that saikosaponin A (SSa) could inhibit epileptiform discharges induced by 4 action potentials and selectively increase the transient inactivating K+ currents (IA). However, the mechanisms of SSa on IA remain unclear. In this study, we comprehensively evaluated the anticonvulsant activities of SSa and explored whether or not it plays an anti-epileptic role in a Li-pilocarpine induced epilepsy rat model via remodeling Kv4.2-mediated A-type voltage-gated potassium currents (Kv4.2-mediated IA). Materials and methods All in vitro spontaneous recurrent seizures (SRS) were recorded with continuous video monitoring. Nissl’s staining was used to evaluate the SSa protection of neurons and immunohistochemistry, Western blot, and quantitative reverse transcription PCR were used to quantify the expression of Kchip1 and Kv4.2 in the hippocampal CA1 field and the adjacent cortex following Li-pilocarpine induced status epilepticus. We used whole-cell current-clamp recordings to evaluate the anticonvulsant activities of SSa in a hippocampal neuronal culture model of cTLE, while whole-cell voltage-clamp recordings were used to evaluate the modulatory effects of SSa on Kv4.2-mediated IA. Results SSa treatment significantly reduced the frequency and duration of SRS over the course of eight weeks and increased the production of Kchip1 and Kv4.2. In addition, SSa attenuated spontaneous recurrent epileptiform discharges (SREDs) in the hippocampal neuronal model and up-regulated Kv4.2-mediated IA. Conclusions SSa exerted a disease-modifying effect in our cTLE rat model both in vivo and in vitro; the increase in Kv4.2-mediated IA may contribute to the anticonvulsant mechanisms of SSa.
Collapse
Affiliation(s)
- Yu Hong
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China, .,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China,
| | - Ning Deng
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China,
| | - Han-Na Jin
- Department of Internal Neurology, People's Hospital of Huizhou Zhongkai Hi-tech Industrial Development Zone, Huizhou, China
| | - Zheng-Zheng Xuan
- Neuroelectrophysiological Examination Room, Traditional Chinese Medicine Hospital of Guangdong Province, Guangzhou, China
| | - Yi-Xiao Qian
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China,
| | - Zhi-Yong Wu
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China, .,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China,
| | - Wei Xie
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China, .,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China,
| |
Collapse
|
14
|
Melo IT, M Rêgo E, Bueno NB, Gomes TC, Oliveira SL, Trindade-Filho EM, Cabral CR, Machado TS, Galvão JA, R Ataide T. Ketogenic Diet Based on Extra Virgin Coconut Oil Has No Effects in Young Wistar Rats With Pilocarpine-Induced Epilepsy. Lipids 2018; 53:251-254. [PMID: 29570799 DOI: 10.1002/lipd.12019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 11/06/2022]
Abstract
This study evaluated the effects of a ketogenic diet (KD) based on extra virgin coconut oil (Cocos nucifera L., VCO), on the treatment of epileptic rats. Two sets of experiments were conducted. First, male Wistar rats underwent induction of status epilepticus (SE) with the administration of pilocarpine intraperitoneally 21 animals reached spontaneous recurrent seizures (SRS) and were randomly allocated to the dietary regimens and video-monitored for 19 days. In the second experiment, 24 animals were randomized immediately after the induction of SE and followed for 67 days. Diets were as follows: Control (AIN-93G; 7% lipid), KetoTAGsoya (KD based on soybean oil; 69.79% lipid), and KetoTAGcoco (KD based on VCO; 69.79% lipid). There were no differences in the latency to the first crisis, total frequency, and duration of the SRS between groups in 2 experiments. The data suggest no effects of KD, with or without VCO, in rats with pilocarpine-induced epilepsy.
Collapse
Affiliation(s)
- Isabelle T Melo
- Laboratório de Nutrição Experimental, Faculdade de Nutrição, Universidade Federal de Alagoas, Campus A. C. Simões, Cidade Universitária, BR 104 Norte, Km 97, Tabuleiro dos Martins, Maceió, AL, 57.072-970, Brazil
| | - Elisabete M Rêgo
- Laboratório de Nutrição Experimental, Faculdade de Nutrição, Universidade Federal de Alagoas, Campus A. C. Simões, Cidade Universitária, BR 104 Norte, Km 97, Tabuleiro dos Martins, Maceió, AL, 57.072-970, Brazil
| | - Nassib B Bueno
- Laboratório de Nutrição Experimental, Faculdade de Nutrição, Universidade Federal de Alagoas, Campus A. C. Simões, Cidade Universitária, BR 104 Norte, Km 97, Tabuleiro dos Martins, Maceió, AL, 57.072-970, Brazil
| | - Tâmara C Gomes
- Laboratório de Nutrição Experimental, Faculdade de Nutrição, Universidade Federal de Alagoas, Campus A. C. Simões, Cidade Universitária, BR 104 Norte, Km 97, Tabuleiro dos Martins, Maceió, AL, 57.072-970, Brazil
| | - Suzana L Oliveira
- Laboratório de Nutrição Experimental, Faculdade de Nutrição, Universidade Federal de Alagoas, Campus A. C. Simões, Cidade Universitária, BR 104 Norte, Km 97, Tabuleiro dos Martins, Maceió, AL, 57.072-970, Brazil
| | - Euclides M Trindade-Filho
- Laboratório de Neurofisiologia, Universidade Estadual de Ciências da Saúde de Alagoas, R. Dr. Jorge de Lima, 113, Trapiche da Barra, Maceió, AL, 57010-300, Brazil
| | - Cyro R Cabral
- Laboratório de Nutrição Experimental, Faculdade de Nutrição, Universidade Federal de Alagoas, Campus A. C. Simões, Cidade Universitária, BR 104 Norte, Km 97, Tabuleiro dos Martins, Maceió, AL, 57.072-970, Brazil
| | - Tacy S Machado
- Laboratório de Nutrição Experimental, Faculdade de Nutrição, Universidade Federal de Alagoas, Campus A. C. Simões, Cidade Universitária, BR 104 Norte, Km 97, Tabuleiro dos Martins, Maceió, AL, 57.072-970, Brazil
| | - Jaqueline A Galvão
- Laboratório de Nutrição Experimental, Faculdade de Nutrição, Universidade Federal de Alagoas, Campus A. C. Simões, Cidade Universitária, BR 104 Norte, Km 97, Tabuleiro dos Martins, Maceió, AL, 57.072-970, Brazil
| | - Terezinha R Ataide
- Laboratório de Nutrição Experimental, Faculdade de Nutrição, Universidade Federal de Alagoas, Campus A. C. Simões, Cidade Universitária, BR 104 Norte, Km 97, Tabuleiro dos Martins, Maceió, AL, 57.072-970, Brazil
| |
Collapse
|
15
|
Ketogenic diet attenuates neuronal injury via autophagy and mitochondrial pathways in pentylenetetrazol-kindled seizures. Brain Res 2018; 1678:106-115. [DOI: 10.1016/j.brainres.2017.10.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 09/20/2017] [Accepted: 10/07/2017] [Indexed: 11/24/2022]
|
16
|
Lucchi C, Marchiò M, Caramaschi E, Giordano C, Giordano R, Guerra A, Biagini G. Electrographic Changes Accompanying Recurrent Seizures under Ketogenic Diet Treatment. Pharmaceuticals (Basel) 2017; 10:E82. [PMID: 29053577 PMCID: PMC5748639 DOI: 10.3390/ph10040082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 12/31/2022] Open
Abstract
The ketogenic diet (KD) is increasingly used to treat epilepsy refractory to antiepileptic drugs and other neurological disorders. In animal models, the KD was found to increase the threshold to seizures induced by different convulsive stimulations. However, in models in which suprathreshold stimuli were used, a paradoxical seizure worsening was consistently observed in KD-fed animals. To better define this phenomenon, we characterized the electrographic response to seizures induced in mice which were treated with the KD, and then corneally stimulated at 6-Hz in four different sessions. We also evaluated the electroencephalogram (EEG) in three patients in which the KD was associated with a paradoxical worsening of epileptic seizures. Although seizures were initially less severe, a remarkable prolongation of the electrographic response was observed in mice receiving the KD from the second session of 6-Hz corneal stimulation and onwards. The EEG was also markedly altered in the presence of progressive seizure aggravation observed in children treated with the KD, specifically one affected by Lennox-Gastaut syndrome and two by type I lissencephaly,. These results suggest that when seizures are induced or recur because of resistance to therapeutic interventions, the KD may change the EEG by potentiating the electrographic epileptic activity.
Collapse
Affiliation(s)
- Chiara Lucchi
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| | - Maddalena Marchiò
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
- Pediatric Neurology, Polyclinic Hospital, 41124 Modena, Italy.
| | | | - Carmela Giordano
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
- Azienda Unità Sanitaria Locale di Modena, 41121 Modena, Italy.
| | - Rocco Giordano
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| | - Azzurra Guerra
- Pediatric Neurology, Polyclinic Hospital, 41124 Modena, Italy.
| | - Giuseppe Biagini
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
- Azienda Unità Sanitaria Locale di Modena, 41121 Modena, Italy.
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| |
Collapse
|
17
|
Clossen BL, Reddy DS. Novel therapeutic approaches for disease-modification of epileptogenesis for curing epilepsy. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1519-1538. [PMID: 28179120 PMCID: PMC5474195 DOI: 10.1016/j.bbadis.2017.02.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 11/16/2022]
Abstract
This article describes the recent advances in epileptogenesis and novel therapeutic approaches for the prevention of epilepsy, with a special emphasis on the pharmacological basis of disease-modification of epileptogenesis for curing epilepsy. Here we assess animal studies and human clinical trials of epilepsy spanning 1982-2016. Epilepsy arises from a number of neuronal factors that trigger epileptogenesis, which is the process by which a brain shifts from a normal physiologic state to an epileptic condition. The events precipitating these changes can be of diverse origin, including traumatic brain injury, cerebrovascular damage, infections, chemical neurotoxicity, and emergency seizure conditions such as status epilepticus. Expectedly, the molecular and system mechanisms responsible for epileptogenesis are not well defined or understood. To date, there is no approved therapy for the prevention of epilepsy. Epigenetic dysregulation, neuroinflammation, and neurodegeneration appear to trigger epileptogenesis. Targeted drugs are being identified that can truly prevent the development of epilepsy in at-risk people. The promising agents include rapamycin, COX-2 inhibitors, TRK inhibitors, epigenetic modulators, JAK-STAT inhibitors, and neurosteroids. Recent evidence suggests that neurosteroids may play a role in modulating epileptogenesis. A number of promising drugs are under investigation for the prevention or modification of epileptogenesis to halt the development of epilepsy. Some drugs in development appear rational for preventing epilepsy because they target the initial trigger or related signaling pathways as the brain becomes progressively more prone to seizures. Additional research into the target validity and clinical investigation is essential to make new frontiers in curing epilepsy.
Collapse
Affiliation(s)
- Bryan L Clossen
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
18
|
Xu X, Shangguan Y, Lu S, Wang W, Du C, Xiao F, Hu Y, Luo J, Wang L, He C, Yang Y, Zhang Y, Lu X, Yang Q, Wang X. Tubulin β-III modulates seizure activity in epilepsy. J Pathol 2017; 242:297-308. [PMID: 28378416 DOI: 10.1002/path.4903] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 03/14/2017] [Accepted: 03/27/2017] [Indexed: 11/09/2022]
Abstract
Tubulin β-III (TUBB3) is the most dynamic β-tubulin isoform expressed in neurons, and is highly expressed in the central nervous system. However, the relationship between TUBB3 and epileptic seizures has not been thoroughly investigated. The aims of this study were to investigate the expression of TUBB3 in patients with temporal lobe epilepsy and two different rat models of chronic epilepsy, and to determine the specific roles of TUBB3 in epilepsy. TUBB3 expression was upregulated in human and rat epileptic tissue. Moreover, TUBB3 expression was associated with inhibitory GABAergic neurons and the inhibitory postsynaptic scaffold protein gephyrin. TUBB3 downregulation attenuated the behavioural phenotypes of epileptic seizures during the pilocarpine-induced chronic phase of epileptic seizures and the pentylenetetrazole kindling process, whereas TUBB3 overexpression had the opposite effect. Whole-cell clamp recordings and western blotting revealed that the amplitude of GABA-A receptor-mediated miniature inhibitory postsynaptic currents and the surface expression of the GABA-A receptor were increased in rats in which TUBB3 expression was downregulated. Importantly, TUBB3 interacted with GABA-A receptor-associated protein, which is known to be involved in GABA-A receptor trafficking. These results indicate that TUBB3 plays a critical role in the regulation of epileptic seizures via GABA-A receptor trafficking, suggesting a molecular mechanism for new therapeutic strategies. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xin Xu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Yafei Shangguan
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Shanshan Lu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Wei Wang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Chao Du
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Fei Xiao
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Yida Hu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Jing Luo
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Liang Wang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Changlong He
- Institute of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | - Yong Yang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Yanke Zhang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Xi Lu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Qin Yang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Xuefeng Wang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China.,Centre of Epilepsy, Beijing Institute for Brain Disorders, Beijing, PR China
| |
Collapse
|
19
|
Kawamura MJ, Ruskin DN, Masino SA. Metabolic Therapy for Temporal Lobe Epilepsy in a Dish: Investigating Mechanisms of Ketogenic Diet using Electrophysiological Recordings in Hippocampal Slices. Front Mol Neurosci 2016; 9:112. [PMID: 27847463 PMCID: PMC5088211 DOI: 10.3389/fnmol.2016.00112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/17/2016] [Indexed: 11/13/2022] Open
Abstract
The hippocampus is prone to epileptic seizures and is a key brain region and experimental platform for investigating mechanisms associated with the abnormal neuronal excitability that characterizes a seizure. Accordingly, the hippocampal slice is a common in vitro model to study treatments that may prevent or reduce seizure activity. The ketogenic diet is a metabolic therapy used to treat epilepsy in adults and children for nearly 100 years; it can reduce or eliminate even severe or refractory seizures. New insights into its underlying mechanisms have been revealed by diverse types of electrophysiological recordings in hippocampal slices. Here we review these reports and their relevant mechanistic findings. We acknowledge that a major difficulty in using hippocampal slices is the inability to reproduce precisely the in vivo condition of ketogenic diet feeding in any in vitro preparation, and progress has been made in this in vivo/in vitro transition. Thus far at least three different approaches are reported to reproduce relevant diet effects in the hippocampal slices: (1) direct application of ketone bodies; (2) mimicking the ketogenic diet condition during a whole-cell patch-clamp technique; and (3) reduced glucose incubation of hippocampal slices from ketogenic diet–fed animals. Significant results have been found with each of these methods and provide options for further study into short- and long-term mechanisms including Adenosine triphosphate (ATP)-sensitive potassium (KATP) channels, vesicular glutamate transporter (VGLUT), pannexin channels and adenosine receptors underlying ketogenic diet and other forms of metabolic therapy.
Collapse
Affiliation(s)
| | - David N Ruskin
- Department of Psychology and Neuroscience Program, Trinity College Hartford, CT, USA
| | - Susan A Masino
- Department of Psychology and Neuroscience Program, Trinity College Hartford, CT, USA
| |
Collapse
|
20
|
Jiang Y, Lu Y, Jia M, Wang X, Zhang Z, Hou Q, Wang B. Ketogenic diet attenuates spatial and item memory impairment in pentylenetetrazol-kindled rats. Brain Res 2016; 1646:451-458. [DOI: 10.1016/j.brainres.2016.06.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 06/01/2016] [Accepted: 06/20/2016] [Indexed: 10/21/2022]
|
21
|
Landgrave-Gómez J, Mercado-Gómez OF, Vázquez-García M, Rodríguez-Molina V, Córdova-Dávalos L, Arriaga-Ávila V, Miranda-Martínez A, Guevara-Guzmán R. Anticonvulsant Effect of Time-Restricted Feeding in a Pilocarpine-Induced Seizure Model: Metabolic and Epigenetic Implications. Front Cell Neurosci 2016; 10:7. [PMID: 26858603 PMCID: PMC4730902 DOI: 10.3389/fncel.2016.00007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/11/2016] [Indexed: 01/23/2023] Open
Abstract
A new generation of antiepileptic drugs has emerged; however, one-third of epilepsy patients do not properly respond to pharmacological treatments. The purpose of the present study was to investigate whether time-restricted feeding (TRF) has an anticonvulsant effect and whether this restrictive diet promotes changes in energy metabolism and epigenetic modifications in a pilocarpine-induced seizure model. To resolve our hypothesis, one group of rats had free access to food and water ad libitum (AL) and a second group underwent a TRF schedule. We used the lithium-pilocarpine model to induce status epilepticus (SE), and behavioral seizure monitoring was analyzed. Additionally, an electroencephalography (EEG) recording was performed to verify the effect of TRF on cortical electrical activity after a pilocarpine injection. For biochemical analysis, animals were sacrificed 24 h after SE and hippocampal homogenates were used to evaluate the proteins related to metabolism and chromatin structure. Our results showed that TRF had an anticonvulsant effect as measured by the prolonged latency of forelimb clonus seizure, a decrease in the seizure severity score and fewer animals reaching SE. Additionally, the power of the late phase EEG recordings in the AL group was significantly higher than the TRF group. Moreover, we found that TRF is capable of inducing alterations in signaling pathways that regulate energy metabolism, including an increase in the phosphorylation of AMP dependent kinase (AMPK) and a decrease in the phosphorylation of Akt kinase. Furthermore, we found that TRF was able to significantly increase the beta hydroxybutyrate (β-HB) concentration, an endogenous inhibitor of histone deacetylases (HDACs). Finally, we found a significant decrease in HDAC activity as well as an increase in acetylation on histone 3 (H3) in hippocampal homogenates from the TRF group. These findings suggest that alterations in energy metabolism and the increase in β-HB mediated by TRF may inhibit HDAC activity, thus increasing histone acetylation and producing changes in the chromatin structure, which likely facilitates the transcription of a subset of genes that confer anticonvulsant activity.
Collapse
Affiliation(s)
- Jorge Landgrave-Gómez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México México, DF, Mexico
| | | | - Mario Vázquez-García
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México México, DF, Mexico
| | - Víctor Rodríguez-Molina
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México México, DF, Mexico
| | - Laura Córdova-Dávalos
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México México, DF, Mexico
| | - Virginia Arriaga-Ávila
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México México, DF, Mexico
| | - Alfredo Miranda-Martínez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México México, DF, Mexico
| | - Rosalinda Guevara-Guzmán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México México, DF, Mexico
| |
Collapse
|
22
|
Lusardi TA, Akula KK, Coffman SQ, Ruskin DN, Masino SA, Boison D. Ketogenic diet prevents epileptogenesis and disease progression in adult mice and rats. Neuropharmacology 2015; 99:500-9. [PMID: 26256422 DOI: 10.1016/j.neuropharm.2015.08.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/08/2015] [Accepted: 08/03/2015] [Indexed: 12/16/2022]
Abstract
Epilepsy is a highly prevalent seizure disorder which tends to progress in severity and become refractory to treatment. Yet no therapy is proven to halt disease progression or to prevent the development of epilepsy. Because a high fat low carbohydrate ketogenic diet (KD) augments adenosine signaling in the brain and because adenosine not only suppresses seizures but also affects epileptogenesis, we hypothesized that a ketogenic diet might prevent epileptogenesis through similar mechanisms. Here, we tested this hypothesis in two independent rodent models of epileptogenesis. Using a pentylenetetrazole kindling paradigm in mice, we first show that a KD, but not a conventional antiepileptic drug (valproic acid), suppressed kindling-epileptogenesis. Importantly, after treatment reversal, increased seizure thresholds were maintained in those animals kindled in the presence of a KD, but not in those kindled in the presence of valproic acid. Next, we tested whether a KD can halt disease progression in a clinically relevant model of progressive epilepsy. Epileptic rats that developed spontaneous recurrent seizures after a pilocarpine-induced status epilepticus were treated with a KD or control diet (CD). Whereas seizures progressed in severity and frequency in the CD-fed animals, KD-fed animals showed a prolonged reduction of seizures, which persisted after diet reversal. KD-treatment was associated with increased adenosine and decreased DNA methylation, the latter being maintained after diet discontinuation. Our findings demonstrate that a KD prevented disease progression in two mechanistically different models of epilepsy, and suggest an epigenetic mechanism underlying the therapeutic effects.
Collapse
Affiliation(s)
- Theresa A Lusardi
- RS Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR 97232, USA
| | - Kiran K Akula
- RS Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR 97232, USA
| | - Shayla Q Coffman
- RS Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR 97232, USA
| | - David N Ruskin
- Department of Psychology and Neuroscience Program, Trinity College, Hartford, CT 06106, USA
| | - Susan A Masino
- Department of Psychology and Neuroscience Program, Trinity College, Hartford, CT 06106, USA
| | - Detlev Boison
- RS Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR 97232, USA.
| |
Collapse
|
23
|
Dupuis N, Curatolo N, Benoist JF, Auvin S. Ketogenic diet exhibits anti-inflammatory properties. Epilepsia 2015; 56:e95-8. [DOI: 10.1111/epi.13038] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Nina Dupuis
- INSERM, U1141; Paris France
- INSERM UMR1141; Paris Diderot University; Paris France
| | | | - Jean-François Benoist
- INSERM, U1141; Paris France
- AP-HP; Biochemistery Department; Robert Debre Univeristy Hospital; Paris France
| | - Stéphane Auvin
- INSERM, U1141; Paris France
- INSERM UMR1141; Paris Diderot University; Paris France
- AP-HP; Pediatric Neurology Department; Robert Debre University Hospital; Paris France
| |
Collapse
|
24
|
Phillips-Farfán BV, Rubio Osornio MDC, Custodio Ramírez V, Paz Tres C, Carvajal Aguilera KG. Caloric restriction protects against electrical kindling of the amygdala by inhibiting the mTOR signaling pathway. Front Cell Neurosci 2015; 9:90. [PMID: 25814935 PMCID: PMC4356078 DOI: 10.3389/fncel.2015.00090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/26/2015] [Indexed: 11/26/2022] Open
Abstract
Caloric restriction (CR) has been shown to possess antiepileptic properties; however its mechanism of action is poorly understood. CR might inhibit the activity of the mammalian or mechanistic target of rapamycin (mTOR) signaling cascade, which seems to participate crucially in the generation of epilepsy. Thus, we investigated the effect of CR on the mTOR pathway and whether CR modified epilepsy generation due to electrical amygdala kindling. The former was studied by analyzing the phosphorylation of adenosine monophosphate-activated protein kinase, protein kinase B and the ribosomal protein S6. The mTOR cascade is regulated by energy and by insulin levels, both of which may be changed by CR; thus we investigated if CR altered the levels of energy substrates in the blood or the level of insulin in plasma. Finally, we studied if CR modified the expression of genes that encode proteins participating in the mTOR pathway. CR increased the after-discharge threshold and tended to reduce the after-discharge duration, indicating an anti-convulsive action. CR diminished the phosphorylation of protein kinase B and ribosomal protein S6, suggesting an inhibition of the mTOR cascade. However, CR did not change glucose, β-hydroxybutyrate or insulin levels; thus the effects of CR were independent from them. Interestingly, CR also did not modify the expression of any investigated gene. The results suggest that the anti-epileptic effect of CR may be partly due to inhibition of the mTOR pathway.
Collapse
Affiliation(s)
| | | | | | - Carlos Paz Tres
- Laboratorio de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía México City, México
| | | |
Collapse
|
25
|
Wang N, Mi X, Gao B, Gu J, Wang W, Zhang Y, Wang X. Minocycline inhibits brain inflammation and attenuates spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neuroscience 2014; 287:144-56. [PMID: 25541249 DOI: 10.1016/j.neuroscience.2014.12.021] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/07/2014] [Accepted: 12/09/2014] [Indexed: 12/21/2022]
Abstract
Mounting evidence suggests that brain inflammation mediated by glial cells may contribute to epileptogenesis. Minocycline is a second-generation tetracycline and has potent antiinflammatory effects independent of its antimicrobial action. The present study aimed to investigate whether minocycline could exert antiepileptogenic effects in a rat lithium-pilocarpine model of temporal lobe epilepsy. The temporal patterns of microglial and astrocytic activation were examined in the hippocampal CA1 and the adjacent cortex following pilocarpine-induced status epilepticus (SE). These findings displayed that SE caused acute and persistent activation of microglia and astrocytes. Based on these findings, Minocycline was administered once daily at 45 mg/kg for 14 days following SE. Six weeks after termination of minocycline treatment, spontaneous recurrent seizures (SRS) were recorded by continuous video monitoring. Minocycline inhibited the SE-induced microglial activation and the increased production of interleukin-1β and tumor necrosis factor-α in the hippocampal CA1 and the adjacent cortex, without affecting astrocytic activation. In addition, Minocycline prevented the SE-induced neuronal loss in the brain regions examined. Moreover, minocycline significantly reduced the frequency, duration, and severity of SRS during the two weeks monitoring period. These results demonstrated that minocycline could mitigate SE-induced brain inflammation and might exert disease-modifying effects in an animal model of temporal lobe epilepsy. These findings offer new insights into deciphering the molecular mechanisms of epileptogenesis and exploring a novel therapeutic strategy for prevention of epilepsy.
Collapse
Affiliation(s)
- N Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurology, Chongqing, China
| | - X Mi
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurology, Chongqing, China
| | - B Gao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurology, Chongqing, China
| | - J Gu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurology, Chongqing, China
| | - W Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Y Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurology, Chongqing, China
| | - X Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurology, Chongqing, China.
| |
Collapse
|
26
|
Davidson TL, Hargrave SL, Swithers SE, Sample CH, Fu X, Kinzig KP, Zheng W. Inter-relationships among diet, obesity and hippocampal-dependent cognitive function. Neuroscience 2013; 253:110-22. [PMID: 23999121 PMCID: PMC3934926 DOI: 10.1016/j.neuroscience.2013.08.044] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 12/30/2022]
Abstract
Intake of a Western diet (WD), which is high in saturated fat and sugar, is associated with deficits in hippocampal-dependent learning and memory processes as well as with markers of hippocampal pathology. In the present study, rats were trained to asymptote on hippocampal-dependent serial feature negative (FN) and hippocampal-independent simple discrimination problems. Performance was then assessed following 7 days on ad libitum chow and after 10, 24, 40, 60, and 90 days of maintenance on WD, on ketogenic (KETO) diet, which is high in saturated fat and low in sugar and other carbohydrates, or continued maintenance on chow (CHOW). Confirming and extending previous findings, diet-induced obese (DIO) rats fed WD showed impaired FN performance, increased blood-brain barrier (BBB) permeability, and increased fasting blood glucose levels compared to CHOW controls and to diet-resistant (DR) rats that did not become obese when maintained on WD. For rats fed the KETO diet, FN performance and BBB integrity were more closely associated with level of circulating ketone bodies than with obesity phenotype (DR or DIO), with higher levels of ketones appearing to provide a protective effect. The evidence also indicated that FN deficits preceded and predicted increased body weight and adiposity. This research (a) further substantiates previous findings of WD-induced deficits in hippocampal-dependent FN discriminations, (b) suggests that ketones may be protective against diet-induced cognitive impairment, and (c) provides evidence that diet-induced cognitive impairment precedes weight gain and obesity.
Collapse
Affiliation(s)
- T L Davidson
- Center for Behavioral Neuroscience, American University, Washington, DC, United States.
| | | | | | | | | | | | | |
Collapse
|
27
|
Miziak B, Chrościńska-Krawczyk M, Błaszczyk B, Radzik I, Czuczwar SJ. Novel approaches to anticonvulsant drug discovery. Expert Opin Drug Discov 2013; 8:1415-27. [DOI: 10.1517/17460441.2013.837047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Faure JB, Akimana G, Carneiro JEM, Cosquer B, Ferrandon A, Geiger K, Koning E, Penazzi L, Cassel JC, Nehlig A. A comprehensive behavioral evaluation in the lithium-pilocarpine model in rats: Effects of carisbamate administration during status epilepticus. Epilepsia 2013; 54:1203-13. [DOI: 10.1111/epi.12219] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Jean-Baptiste Faure
- Faculty of Medicine; INSERM U 666; Strasbourg France
- Laboratory of Cognitive and Adaptive Neuroscience; CNRS-UDS UMR 7364; Strasbourg France
| | - Gladys Akimana
- Faculty of Medicine; INSERM U 666; Strasbourg France
- Laboratory of Cognitive and Adaptive Neuroscience; CNRS-UDS UMR 7364; Strasbourg France
| | - José E. M. Carneiro
- Faculty of Medicine; INSERM U 666; Strasbourg France
- Laboratory of Cognitive and Adaptive Neuroscience; CNRS-UDS UMR 7364; Strasbourg France
| | - Brigitte Cosquer
- Laboratory of Cognitive and Adaptive Neuroscience; CNRS-UDS UMR 7364; Strasbourg France
| | | | - Karin Geiger
- Laboratory of Cognitive and Adaptive Neuroscience; CNRS-UDS UMR 7364; Strasbourg France
| | | | - Lorène Penazzi
- Laboratory of Cognitive and Adaptive Neuroscience; CNRS-UDS UMR 7364; Strasbourg France
| | | | - Astrid Nehlig
- Faculty of Medicine; INSERM U 666; Strasbourg France
| |
Collapse
|
29
|
Hypothalamic hormones and metabolism. Epilepsy Res 2012; 100:245-51. [PMID: 21856125 DOI: 10.1016/j.eplepsyres.2011.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 12/14/2022]
Abstract
The ketogenic diet is an effective treatment for medically intractable epilepsy and may have antiepileptogenic, neuroprotective, and antitumor properties. While on a ketogenic diet, the body obtains most of its calories from fat rather than carbohydrates. This dramatic change in caloric composition results in a unique metabolic state. In turn, these changes in caloric composition and metabolism alter some of the neurohormones that participate in the complex neuronal network regulating energy homeostasis. Two observed changes are an increase in serum leptin and a decrease in serum insulin. These opposing changes in leptin and insulin are unique compared to other metabolic stimuli and may modify the activity of several cell signaling cascades including phosphoinositidyl-3 kinase (PI3K), adenosine monophosphate activated protein kinase (AMPK), and mammalian target of rapamycin (mTOR). These cell signaling pathways may mediate the anticonvulsant and other beneficial effects of the diet, though the neurohormonal changes induced by the ketogenic diet and the physiological consequences of these changes remain poorly characterized.
Collapse
|
30
|
Kobow K, Auvin S, Jensen F, Löscher W, Mody I, Potschka H, Prince D, Sierra A, Simonato M, Pitkänen A, Nehlig A, Rho JM. Finding a better drug for epilepsy: antiepileptogenesis targets. Epilepsia 2012; 53:1868-76. [PMID: 23061663 DOI: 10.1111/j.1528-1167.2012.03716.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
For several decades, both in vitro and in vivo models of seizures and epilepsy have been employed to unravel the molecular and cellular mechanisms underlying the occurrence of spontaneous recurrent seizures (SRS)-the defining hallmark of the epileptic brain. However, despite great advances in our understanding of seizure genesis, investigators have yet to develop reliable biomarkers and surrogate markers of the epileptogenic process. Sadly, the pathogenic mechanisms that produce the epileptic condition, especially after precipitating events such as head trauma, inflammation, or prolonged febrile convulsions, are poorly understood. A major challenge has been the inherent complexity and heterogeneity of known epileptic syndromes and the differential genetic susceptibilities exhibited by patients at risk. Therefore, it is unlikely that there is only one fundamental pathophysiologic mechanism shared by all the epilepsies. Identification of antiepileptogenesis targets has been an overarching goal over the last decade, as current anticonvulsant medications appear to influence only the acute process of ictogenesis. Clearly, there is an urgent need to develop novel therapeutic interventions that are disease modifying-therapies that either completely or partially prevent the emergence of SRS. An important secondary goal is to develop new treatments that can also lessen the burden of epilepsy comorbidities (e.g., cognitive impairment, mood disorders) by preventing or reducing the deleterious changes during the epileptogenic process. This review summarizes novel antiepileptogenesis targets that were critically discussed at the XIth Workshop on the Neurobiology of Epilepsy (WONOEP XI) meeting in Grottaferrata, Italy. Further, emerging neurometabolic links among several target mechanisms and highlights of the panel discussion are presented.
Collapse
Affiliation(s)
- Katja Kobow
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
O’Dell CM, Das A, Wallace IV G, Ray SK, Banik NL. Understanding the basic mechanisms underlying seizures in mesial temporal lobe epilepsy and possible therapeutic targets: a review. J Neurosci Res 2012; 90:913-24. [PMID: 22315182 PMCID: PMC11877321 DOI: 10.1002/jnr.22829] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 10/05/2011] [Accepted: 10/09/2011] [Indexed: 12/13/2022]
Abstract
Despite years of research, epilepsy remains a poorly understood disorder. In the past several years, work has been conducted on a variety of projects with the goal of better understanding the pathogenesis and progression of mesial temporal lobe epilepsy (MTLE), in particular, and how to exploit those properties to generate innovative therapies for treatment of refractory epilepsies. This review seeks to give an overview of common morphological and biochemical changes associated with epilepsy and proposed treatments to address those changes. Furthering the understanding of ictogenesis and epileptogenesis remains an important goal for scientists seeking to find more effective treatments for MTLE.
Collapse
Affiliation(s)
- Casey M. O’Dell
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Arabinda Das
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Gerald Wallace IV
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Naren L. Banik
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
32
|
Stafstrom CE, Rho JM. The ketogenic diet as a treatment paradigm for diverse neurological disorders. Front Pharmacol 2012; 3:59. [PMID: 22509165 PMCID: PMC3321471 DOI: 10.3389/fphar.2012.00059] [Citation(s) in RCA: 276] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/21/2012] [Indexed: 01/01/2023] Open
Abstract
Dietary and metabolic therapies have been attempted in a wide variety of neurological diseases, including epilepsy, headache, neurotrauma, Alzheimer disease, Parkinson disease, sleep disorders, brain cancer, autism, pain, and multiple sclerosis. The impetus for using various diets to treat - or at least ameliorate symptoms of - these disorders stems from both a lack of effectiveness of pharmacological therapies, and also the intrinsic appeal of implementing a more "natural" treatment. The enormous spectrum of pathophysiological mechanisms underlying the aforementioned diseases would suggest a degree of complexity that cannot be impacted universally by any single dietary treatment. Yet, it is conceivable that alterations in certain dietary constituents could affect the course and impact the outcome of these brain disorders. Further, it is possible that a final common neurometabolic pathway might be influenced by a variety of dietary interventions. The most notable example of a dietary treatment with proven efficacy against a neurological condition is the high-fat, low-carbohydrate ketogenic diet (KD) used in patients with medically intractable epilepsy. While the mechanisms through which the KD works remain unclear, there is now compelling evidence that its efficacy is likely related to the normalization of aberrant energy metabolism. The concept that many neurological conditions are linked pathophysiologically to energy dysregulation could well provide a common research and experimental therapeutics platform, from which the course of several neurological diseases could be favorably influenced by dietary means. Here we provide an overview of studies using the KD in a wide panoply of neurologic disorders in which neuroprotection is an essential component.
Collapse
Affiliation(s)
- Carl E Stafstrom
- Department of Neurology, University of Wisconsin Madison, WI, USA
| | | |
Collapse
|
33
|
Ruskin DN, Masino SA. The nervous system and metabolic dysregulation: emerging evidence converges on ketogenic diet therapy. Front Neurosci 2012; 6:33. [PMID: 22470316 PMCID: PMC3312079 DOI: 10.3389/fnins.2012.00033] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/23/2012] [Indexed: 12/21/2022] Open
Abstract
A link between metabolism and brain function is clear. Since ancient times, epileptic seizures were noted as treatable with fasting, and historical observations of the therapeutic benefits of fasting on epilepsy were confirmed nearly 100 years ago. Shortly thereafter a high fat, low-carbohydrate ketogenic diet (KD) debuted as a therapy to reduce seizures. This strict regimen could mimic the metabolic effects of fasting while allowing adequate caloric intake for ongoing energy demands. Today, KD therapy, which forces predominantly ketone-based rather than glucose-based metabolism, is now well-established as highly successful in reducing seizures. Cellular metabolic dysfunction in the nervous system has been recognized as existing side-by-side with nervous system disorders - although often with much less obvious cause-and-effect as the relationship between fasting and seizures. Rekindled interest in metabolic and dietary therapies for brain disorders complements new insight into their mechanisms and broader implications. Here we describe the emerging relationship between a KD and adenosine as a way to reset brain metabolism and neuronal activity and disrupt a cycle of dysfunction. We also provide an overview of the effects of a KD on cognition and recent data on the effects of a KD on pain, and explore the relative time course quantified among hallmark metabolic changes, altered neuron function and altered animal behavior assessed after diet administration. We predict continued applications of metabolic therapies in treating dysfunction including and beyond the nervous system.
Collapse
Affiliation(s)
- David N. Ruskin
- Neuroscience Program, Department of Psychology, Trinity CollegeHartford, CT, USA
| | - Susan A. Masino
- Neuroscience Program, Department of Psychology, Trinity CollegeHartford, CT, USA
| |
Collapse
|
34
|
Jiang Y, Yang Y, Wang S, Ding Y, Guo Y, Zhang MM, Wen SQ, Ding MP. Ketogenic diet protects against epileptogenesis as well as neuronal loss in amygdaloid-kindling seizures. Neurosci Lett 2011; 508:22-6. [PMID: 22178860 DOI: 10.1016/j.neulet.2011.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 11/24/2022]
Abstract
Ketogenic diets (KD) have shown beneficial effects in terms of anticonvulsant and anti-epileptogenic properties in several experimental models. However, few studies have investigated the consequences of KD with regards to the anti-epileptogenic and neuroprotective effects in kindling-induced seizures. Here, postnatal day 28 male Sprague-Dawley rats received one of two experimental diets for 4 weeks: (a) a 'classic' 4:1 KD; and (b) a normal regular rodent chow diet (ND). Fully-kindled seizures were achieved by daily electrical stimulation in the amygdala. Seizure stage and after-discharge duration (ADD) were assessed daily. The after-discharge threshold (ADT) was measured every 5 days. The effects of the two diets on neuronal loss were observed before kindling and 20 days after stimulation by Nissl staining. We found that the progression of seizure stage and ADD was delayed by KD. KD prevented the ADT decrease on day 5. The incidence of generalized seizures was lower in the KD group compared to the ND group. The neuronal density was decreased in the ipsilateral hilus of the dentate gyrus (DG) and CA1 area, as well as the contralateral CA1 area before kindling in the KD group. However, KD prevented neuronal loss in the ipsilateral CA1 area 20 days after stimulation. Our data suggest that KD can protect against epileptogenesis by preventing both after-discharge generation and propagation in kindling seizures. In addition, KD also possesses a neuroprotective function during kindling although it changes hippocampal development in early life.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Current world literature. Curr Opin Pediatr 2011; 23:356-63. [PMID: 21566469 DOI: 10.1097/mop.0b013e3283481706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Abstract
Evaluation of: Hong A, Turner Z, Hamdy RF, Kossoff EH: Infantile spasms treated with the ketogenic diet: Prospective single-center experience in 104 consecutive infants. Epilepsia DOI: 10.1111/j.1528–1167.2010.02586.x (2010) (Epub ahead of print). The ketogenic diet is a nonpharmacologic treatment for epilepsy. Infantile spasm is a particular form of epilepsy in infants characterized by a high level of resistance to antiepileptic drugs and a poor outcome. In recent years, small studies have suggested that the ketogenic diet may be an interesting option for refractory infantile spasms. The presently evaluated prospective study reports the use of the ketogenic diet in 104 patients with infantile spasms. The ketogenic diet is an interesting treatment in infantile spasms and data strongly suggest that it should be used as a second- or third-line treatment in infantile spasms. It may also be used as first-line treatment in selected patients. The authors present new perspectives, suggesting that now is the time to cautiously evaluate all epileptic conditions that may be treated early by the ketogenic diet, such as myoclonic-astatic syndrome, Dravet syndrome, Lennox–Gastaut syndrome, worsening epilepsy and status epilepticus.
Collapse
Affiliation(s)
- Stéphane Auvin
- INSERM, Unité 676, Paris, France and Service de Neurologie Pédiatrique & des Maladies Métaboliques, CHU Hôpital Robert Debré, 48 Boulevard Sérurier, 75935 Paris Cedex 19, France
| |
Collapse
|