1
|
Qiao X, Ye Z, Wen J, Lin S, Cao D, Chen L, Zou D, Zou H, Zhang M, Chen Z, Kwan P, Scheffer IE, Qin J, Liao J. Exploring physiological beta-hydroxybutyrate level in children treated with the classical ketogenic diet for drug-resistant epilepsy. ACTA EPILEPTOLOGICA 2025; 7:10. [PMID: 40217541 PMCID: PMC11960278 DOI: 10.1186/s42494-024-00199-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/16/2024] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND The ketogenic diet (KD) therapy is a primary treatment for drug-resistant epilepsy, and beta-hydroxybutyrate (BHB) is the main ketone produced during KD. However, the pattern of increase in BHB levels is not well understood, and the reference range for BHB need to be defined. The aim of this study was to evaluate the BHB levels in the first three months, especially one week, after KD initiation, and to explore the physiological reference range for BHB. METHODS In our study, a fasting initiation strategy was used for the majority of patients (252/300, 84%) who underwent fasting for 24-48 h, the rest fasted for at least 12 h. The concentration of blood BHB was measured four times a day during the first week, at one month and three months. Seizure frequency was recorded at one week, one month and three months. Responders were defined as those with a seizure reduction 50% or more compared to baseline. BHB levels were compared between responders and non-responders. The BHB levels of responders were used to calculate the reference range. RESULTS A total of 300 patients were recruited, of whom 172 (57%) had accessible BHB data. BHB levels rapidly rose to 2.0 mmol/L at 19 h, peaked at 4.2 mmol/L at 43 h of therapy, and stabilized by three months. The reference range for BHB was 1.1 to 4.9 mmol/L. CONCLUSIONS BHB levels increased rapidly following fasting, reaching the peak at day 2, stabilizing from the end of the first week through three months. The lower reference limit for BHB to ensure KD efficacy should be set at 1.1 mmol/L.
Collapse
Affiliation(s)
- Xiaoying Qiao
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, 518038, Guangdong, China
| | - Zimeng Ye
- Department of Medicine (Austin Hospital), University of Melbourne, Melbourne, Victoria, 3084, Australia
| | - Jialun Wen
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, 518038, Guangdong, China
| | - Sufang Lin
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, 518038, Guangdong, China
| | - Dezhi Cao
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, 518038, Guangdong, China
| | - Li Chen
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, 518038, Guangdong, China
| | - Dongfang Zou
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, 518038, Guangdong, China
| | - Huafang Zou
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, 518038, Guangdong, China
| | - Man Zhang
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, 518038, Guangdong, China
| | - Zhibin Chen
- Department of Neurosciences, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Victoria, 3004, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, 3050, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, 3004, Australia
| | - Patrick Kwan
- Department of Neurosciences, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Victoria, 3004, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, 3050, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, 3004, Australia
| | - Ingrid E Scheffer
- Department of Medicine (Austin Hospital), University of Melbourne, Melbourne, Victoria, 3084, Australia
- Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia
- Department of Pediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria, 3010, Australia
- Department of Neurology, Royal Children's Hospital, Melbourne, Victoria, 3052, Australia
| | - Jiong Qin
- Department of Pediatrics, Peking University People's Hospital, Beijing, 100000, China
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Jianxiang Liao
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, 518038, Guangdong, China.
| |
Collapse
|
2
|
Sudarsanan K, Sarangi B, Srivastava K. Early intrathecal dexamethasone (IT-Dexa) associated with faster recovery and good outcome in an adolescent with febrile infection-related epilepsy syndrome (FIRES). BMJ Case Rep 2025; 18:e262592. [PMID: 39900388 DOI: 10.1136/bcr-2024-262592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025] Open
Abstract
A previously normal adolescent boy presented with a new-onset super refractory status epilepticus of unknown cause after a brief febrile illness-suggestive of febrile infection-related epilepsy syndrome (FIRES). Bedside continuous EEG (cEEG) showed frequent focal electrical seizures. After a poor response to pulse methylprednisolone therapy, intrathecal dexamethasone (IT-Dexa) was initiated on day 9 of the illness. Complete seizure freedom was achieved after two doses of alternate-day IT-Dexa. Later cEEG showed bilateral PLEDs with gradual return to the normal background. His modified Rankin score was 2 at discharge and 1 at 3-month follow-up, with a well-preserved cognition. Various therapies like intravenous immunoglobulin, ketogenic diet, anakinra and tocilizumab have been tried in these patients, with variable responses. Early administration of IT-Dexa in children with FIRES may be a cost-effective and potent option, especially in low-resource countries-as it reduces the duration of critical care and improves seizure and cognitive outcomes.
Collapse
Affiliation(s)
| | - Bhakti Sarangi
- Pediatrics, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Kavita Srivastava
- Pediatrics, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| |
Collapse
|
3
|
Ren Y, Zhang M, Fu X, Zhang Y, Liu F, Wu C, Shi H, Tian F, Liu G, Lin Y, Su Y, Chen W. Ketogenic diet treatment for super-refractory status epilepticus in the intensive care unit: feasibility, safety and effectiveness. Front Neurol 2025; 15:1517850. [PMID: 39871989 PMCID: PMC11769800 DOI: 10.3389/fneur.2024.1517850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/24/2024] [Indexed: 01/29/2025] Open
Abstract
Background and aims To investigate the feasibility, safety and effectiveness of the ketogenic diet (KD) for super-refractory status epilepticus (SRSE) in the intensive care unit (ICU). Methods We conducted a prospective investigation on patients with SRSE treated with the KD. The primary outcome measures were ketosis development as a biomarker of feasibility and resolution of SRSE as effectiveness. KD-related side effects were also investigated. Results Twelve patients (9 females and 3 males) with SRSE, with a median age of 34 years [range 16-69, interquartile range (IQR) 18-52], were treated with a KD. The median duration of SRSE prior to KD treatment was 21 days (range 4-46). SRSE resolved in 75% (9/12) of patients at a median of 3 days (range 1-18) after KD initiation. Among the nine KD responders, all were successfully weaned off anesthetic agents at a median of 16 days (range 4-32) after KD initiation, and all were also successfully weaned off ventilator. Side effects varied, and included gastrointestinal intolerances, malnutrition and metabolic abnormalities, electrolyte disturbance, and acute weight loss, although most of them could be corrected. No patient died due to KD, and neurofunctions continued to improve under KD therapy. Conclusion The KD may be feasible and effective for the treatment of SRSE in the ICU. Moreover, it is relatively safe. However, there are numerous adverse events that can be corrected under close monitoring.
Collapse
Affiliation(s)
- Yishu Ren
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Mengyao Zhang
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Xinxiao Fu
- Department of Neurology, Qingyuan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Qingyuan, China
| | - Yan Zhang
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Fang Liu
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Chenglin Wu
- Department of Neurology, Beijing Fengtai You’anmen Hospital, Beijing, China
| | - Haiyan Shi
- Department of Neurology, Beijing Fengtai You’anmen Hospital, Beijing, China
| | - Fei Tian
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Gang Liu
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Yicong Lin
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Yingying Su
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Weibi Chen
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Cameron T, Allan K, Kay Cooper. The use of ketogenic diets in children living with drug-resistant epilepsy, glucose transporter 1 deficiency syndrome and pyruvate dehydrogenase deficiency: A scoping review. J Hum Nutr Diet 2024; 37:827-846. [PMID: 38838079 DOI: 10.1111/jhn.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND The ketogenic diet (KD) is a high fat, moderate protein and very low carbohydrate diet. It can be used as a medical treatment for drug-resistant epilepsy (DRE), glucose transporter 1 deficiency syndrome and pyruvate dehydrogenase deficiency. The aim of this scoping review was to map the KD literature, with a focus on epilepsy and associated metabolic conditions, to summarise the current evidence-base and identify any gaps. METHODS This review was conducted using JBI scoping review methodological guidance and the PRISMA extension for scoping reviews reporting guidance. A comprehensive literature search was conducted in September 2021 and updated in February 2024 using MEDLINE, CINAHL, AMED, EmBASE, CAB Abstracts, Scopus and Food Science Source databases. RESULTS The initial search yielded 2721 studies and ultimately, data were extracted from 320 studies that fulfilled inclusion criteria for the review. There were five qualitative studies, and the remainder were quantitative, including 23 randomised controlled trials (RCTs) and seven quasi-experimental studies. The USA published the highest number of KD studies followed by China, South Korea and the UK. Most studies focused on the classical KD and DRE. The studies key findings suggest that the KD is efficacious, safe and tolerable. CONCLUSIONS There are opportunities available to expand the scope of future KD research, particularly to conduct high-quality RCTs and further qualitative research focused on the child's needs and family support to improve the effectiveness of KDs.
Collapse
Affiliation(s)
- Tracy Cameron
- Royal Aberdeen Children's Hospital, NHS Grampian, Aberdeen, Scotland, UK
- School of Health Sciences, Robert Gordon University, Aberdeen, Scotland, UK
| | - Karen Allan
- School of Health Sciences, Robert Gordon University, Aberdeen, Scotland, UK
| | - Kay Cooper
- School of Health Sciences, Robert Gordon University, Aberdeen, Scotland, UK
- Scottish Centre for Evidence-based, Multi-professional Practice: A JBI Centre of Excellence, Aberdeen, Scotland, UK
| |
Collapse
|
5
|
Hanin A, Jimenez AD, Gopaul M, Asbell H, Aydemir S, Basha MM, Batra A, Damien C, Day GS, Eka O, Eschbach K, Fatima S, Fields MC, Foreman B, Gerard EE, Gofton TE, Haider HA, Hantus ST, Hocker S, Jongeling A, Kalkach Aparicio M, Kandula P, Kang P, Kazazian K, Kellogg MA, Kim M, Lee JW, Marcuse LV, McGraw CM, Mohamed W, Orozco J, Pimentel CM, Punia V, Ramirez AM, Steriade C, Struck AF, Taraschenko O, Treister AK, Wainwright MS, Yoo JY, Zafar S, Zhou DJ, Zutshi D, Gaspard N, Hirsch LJ. Trends in management of patients with new-onset refractory status epilepticus (NORSE) from 2016 to 2023: An interim analysis. Epilepsia 2024; 65:e148-e155. [PMID: 38837761 DOI: 10.1111/epi.18014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/02/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024]
Abstract
In response to the evolving treatment landscape for new-onset refractory status epilepticus (NORSE) and the publication of consensus recommendations in 2022, we conducted a comparative analysis of NORSE management over time. Seventy-seven patients were enrolled by 32 centers, from July 2016 to August 2023, in the NORSE/FIRES biorepository at Yale. Immunotherapy was administered to 88% of patients after a median of 3 days, with 52% receiving second-line immunotherapy after a median of 12 days (anakinra 29%, rituximab 25%, and tocilizumab 19%). There was an increase in the use of second-line immunotherapies (odds ratio [OR] = 1.4, 95% CI = 1.1-1.8) and ketogenic diet (OR = 1.8, 95% CI = 1.3-2.6) over time. Specifically, patients from 2022 to 2023 more frequently received second-line immunotherapy (69% vs 40%; OR = 3.3; 95% CI = 1.3-8.9)-particularly anakinra (50% vs 13%; OR = 6.5; 95% CI = 2.3-21.0), and the ketogenic diet (OR = 6.8; 95% CI = 2.5-20.1)-than those before 2022. Among the 27 patients who received anakinra and/or tocilizumab, earlier administration after status epilepticus onset correlated with a shorter duration of status epilepticus (ρ = .519, p = .005). Our findings indicate an evolution in NORSE management, emphasizing the increasing use of second-line immunotherapies and the ketogenic diet. Future research will clarify the impact of these treatments and their timing on patient outcomes.
Collapse
Affiliation(s)
- Aurelie Hanin
- Department of Neurology, Comprehensive Epilepsy Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute, ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
- Epilepsy Unit, Department of Clinical Neurophysiology, DMU Neurosciences, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Anthony D Jimenez
- Department of Neurology, Comprehensive Epilepsy Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Margaret Gopaul
- Department of Neurology, Comprehensive Epilepsy Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hannah Asbell
- Section of Neurology, Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Seyhmus Aydemir
- Department of Neurology, Weill Cornell Medicine, New York City, New York, USA
| | | | - Ayush Batra
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Charlotte Damien
- Department of Neurology, Hôpital Universitaire de Bruxelles-Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Gregory S Day
- Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Onome Eka
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Krista Eschbach
- Section of Neurology, Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Safoora Fatima
- Department of Neurology, University of Wisconsin, Madison, Wisconsin, USA
| | | | - Brandon Foreman
- Division of Neurocritical Care, Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Elizabeth E Gerard
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Teneille E Gofton
- London Health Sciences Center, University Hospital, London, Ontario, Canada
| | - Hiba A Haider
- Epilepsy Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stephen T Hantus
- Epilepsy Center, Cleveland Clinic, Neurological Institute, Cleveland, Ohio, USA
| | | | - Amy Jongeling
- Department of Neurology, NYU Langone Medical Center, New York, New York, USA
| | | | - Padmaja Kandula
- Department of Neurology, Weill Cornell Medicine, New York City, New York, USA
| | - Peter Kang
- Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Karnig Kazazian
- London Health Sciences Center, University Hospital, London, Ontario, Canada
| | | | - Minjee Kim
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jong Woo Lee
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Lara V Marcuse
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christopher M McGraw
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Wazim Mohamed
- Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Janet Orozco
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | - Vineet Punia
- Epilepsy Center, Cleveland Clinic, Neurological Institute, Cleveland, Ohio, USA
| | - Alexandra M Ramirez
- Division of Neurocritical Care, Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Claude Steriade
- Department of Neurology, NYU Langone Medical Center, New York, New York, USA
| | - Aaron F Struck
- Department of Neurology, University of Wisconsin, Madison, Wisconsin, USA
| | - Olga Taraschenko
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | - Mark S Wainwright
- Divison of Pediatric Neurology, University of Washington, Seattle, Washington, USA
| | - Ji Yeoun Yoo
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sahar Zafar
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Daniel J Zhou
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Deepti Zutshi
- Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nicolas Gaspard
- Department of Neurology, Comprehensive Epilepsy Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Neurology, Hôpital Universitaire de Bruxelles-Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Lawrence J Hirsch
- Department of Neurology, Comprehensive Epilepsy Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
6
|
Hanin A, Chollet C, Demeret S, Di Meglio L, Castelli F, Navarro V. Metabolomic changes in adults with status epilepticus: A human case-control study. Epilepsia 2024; 65:929-943. [PMID: 38339978 DOI: 10.1111/epi.17899] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024]
Abstract
OBJECTIVE Status epilepticus (SE) is a life-threatening prolonged epileptic seizure that affects ~40 per 100 000 people yearly worldwide. The persistence of seizures may lead to excitotoxic processes, neuronal loss, and neuroinflammation, resulting in long-term neurocognitive and functional disabilities. A better understanding of the pathophysiological mechanisms underlying SE consequences is crucial for improving SE management and preventing secondary neuronal injury. METHODS We conducted a comprehensive untargeted metabolomic analysis, using liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS), on plasma and cerebrospinal fluid (CSF) samples from 78 adult patients with SE and 107 control patients without SE, including 29 with CSF for both groups. The metabolomic fingerprints were compared between patients with SE and controls. Metabolites with differences in relative abundances that could not be attributed to treatment or nutrition provided in the intensive care unit were isolated. Enrichment analysis was performed on these metabolites to identify the most affected pathways. RESULTS We identified 76 metabolites in the plasma and 37 in the CSF that exhibited differential expression in patients with SE compared to controls. The enrichment analysis revealed that metabolic dysregulations in patients with SE affected primarily amino acid metabolism (including glutamate, alanine, tryptophan, glycine, and serine metabolism), pyrimidine metabolism, and lipid homeostasis. Specifically, patients with SE had elevated levels of pyruvate, quinolinic acid, and keto butyric acid levels, along with lower levels of arginine, N-acetylaspartylglutamate (NAAG), tryptophan, uracil, and uridine. The tryptophan kynurenine pathway was identified as the most significantly altered in SE, resulting in the overproduction of quinolinic acid, an N-methyl-d-aspartate (NMDA) receptor agonist with pro-inflammatory properties. SIGNIFICANCE This study has identified several pathways that may play pivotal roles in SE consequences, such as the tryptophan kynurenine pathway. These findings offer novel perspectives for the development of neuroprotective therapeutics.
Collapse
Affiliation(s)
- Aurélie Hanin
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
- AP-HP, Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Céline Chollet
- Université Paris Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), MetaboHUB, Gif-sur-Yvette, France
| | - Sophie Demeret
- AP-HP, Neuro-Intensive Care Unit, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Lucas Di Meglio
- AP-HP, Neuro-Intensive Care Unit, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Florence Castelli
- Université Paris Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), MetaboHUB, Gif-sur-Yvette, France
| | - Vincent Navarro
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
- AP-HP, Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France
- Center of Reference for Rare Epilepsies, Epicare, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
7
|
Carson R, Stredny CM. Severe, Refractory Seizures: New-Onset Refractory Status Epilepticus and Febrile Infection-Related Epilepsy Syndrome. Med Clin North Am 2024; 108:201-213. [PMID: 37951651 DOI: 10.1016/j.mcna.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
NORSE (new-onset refractory status epilepticus) and FIRES (febrile infection-related epilepsy syndrome) represent presentations of new-onset status epilepticus without apparent underlying structural, metabolic, or toxic etiology. The cause of NORSE/FIRES remains cryptogenic in up to half of cases, and an abnormal response of the innate immune system has been implicated. Consensus guidelines recommend broad diagnostic investigation and empiric treatment with immunotherapy. NORSE/FIRES is associated with poor outcomes including cognitive impairment and epilepsy, but early recognition and treatment may be important for improving outcomes.
Collapse
Affiliation(s)
- Ross Carson
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Coral M Stredny
- Division of Epilepsy and Clinical Neurophysiology, Program in Neuroimmunology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Andzelm MM, Stredny CM. Mechanisms and Emerging Therapies for Treatment of Seizures in Pediatric Autoimmune Encephalitis and Autoinflammatory/Autoimmune-Associated Epilepsy. Rheum Dis Clin North Am 2023; 49:875-893. [PMID: 37821201 DOI: 10.1016/j.rdc.2023.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
There has been increasing understanding of the role of inflammation in seizures and epilepsy, as well as targeted immunomodulatory treatments. In children, immune-mediated seizures often present acutely in the setting of autoimmune encephalitis and are very responsive to immunotherapy with low rates of subsequent epilepsy. Conversely, seizures in autoimmune-associated epilepsies, such as Rasmussen syndrome, can remain refractory to multimodal therapy, including immunomodulation. In this review, the authors discuss the presentations of immune-mediated seizures in children, underlying mechanisms, and emerging therapies.
Collapse
Affiliation(s)
- Milena M Andzelm
- Program in Neuroimmunology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Coral M Stredny
- Program in Neuroimmunology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
van Baalen A. Febrile infection-related epilepsy syndrome in childhood: A clinical review and practical approach. Seizure 2023; 111:215-222. [PMID: 37703593 DOI: 10.1016/j.seizure.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
Febrile infection-related epilepsy syndrome (FIRES) of unknown aetiology is an extremely rare but severe epilepsy syndrome. It is characterized by a nonspecific febrile infection a few days before the onset of super-refractory status epilepticus, followed by refractory epilepsy and high morbidity in previously healthy children and young adults. To date, FIRES is incurable and irreversible. The clinical course may depend more on time than on therapy, while the outcome may depend more on the clinical spectrum than on therapy. Based on a literature search, retrospective data analysis, and personal observations, this review aimed to explore the clinical spectrum and therapeutic options for FIRES to improve outcomes by optimized and more standardized diagnosis and therapy, including adapted immunotherapy and a less aggressive approach to manage seizures, as seizure-freeness is difficult to achieve and, therefore, not the primary goal for cryptogenic FIRES.
Collapse
Affiliation(s)
- Andreas van Baalen
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Kiel University (CAU), Arnold-Heller-Street 3, House C, Kiel 24105, Germany.
| |
Collapse
|
10
|
Nagase H, Yamaguchi H, Tokumoto S, Ishida Y, Tomioka K, Nishiyama M, Nozu K, Maruyama A. Timing of therapeutic interventions against infection-triggered encephalopathy syndrome: a scoping review of the pediatric literature. Front Neurosci 2023; 17:1150868. [PMID: 37674514 PMCID: PMC10477367 DOI: 10.3389/fnins.2023.1150868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
Our goal was to conduct a scoping review of the literature on the treatment of infection-triggered encephalopathy syndrome/acute encephalopathy in children, focusing on treatment targets and treatment initiation timing. We performed literature searches using PubMed for articles reporting treatments of infection-triggered encephalopathy syndrome/acute encephalopathy. We included articles describing specific treatments for acute encephalopathy with control groups. For the purpose of searching new therapies only experimentally tried in the case series, we also included case series studies without control groups in this review, if the studies contained at least two cases with clear treatment goals. Therapies were classified based on their mechanisms of action into brain protection therapy, immunotherapy, and other therapies. We operationally categorized the timing of treatment initiation as T1 (6-12 h), T2 (12-24 h), T3 (24-48 h), and T4 (>48 h) after the onset of seizures and/or impaired consciousness. Thirty articles were included in this review; no randomized control study was found. Eleven retrospective/historical cohort studies and five case-control studies included control groups with or without specific therapies or outcomes. The targeted conditions and treatment timing varied widely across studies. However, the following three points were suggested to be effective in multiple studies: (1) Careful seizure management and targeted temperature management within 12 h (T1) of onset of febrile seizure/prolonged impaired consciousness without multiple organ failure may reduce the development of acute encephalopathy with biphasic seizures and late reduced diffusion; (2) immunotherapy using corticosteroids, tocilizumab, or plasma exchange within 24 h (T1-T2) of onset of acute necrotizing encephalopathy may reduce sequelae; and (3) anakinra therapy and ketogenic diet demonstrate little evidence of neurologic sequelae reduction, but may reduce seizure frequency and allow for weaning from barbiturates, even when administered weeks (T4) after onset in children with febrile infection-related epilepsy syndrome. Although available studies have no solid evidence in the treatment of infection-triggered encephalopathy syndrome/acute encephalopathy, this scoping review lays the groundwork for future prospective clinical trials.
Collapse
Affiliation(s)
- Hiroaki Nagase
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Yamaguchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shoichi Tokumoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yusuke Ishida
- Department of Neurology, Hyogo Prefectural Kobe Children’s Hospital, Kobe, Japan
- Department of Emergency and General Pediatrics, Hyogo Prefectural Kobe Children’s Hospital, Kobe, Japan
| | - Kazumi Tomioka
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masahiro Nishiyama
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Neurology, Hyogo Prefectural Kobe Children’s Hospital, Kobe, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Azusa Maruyama
- Department of Neurology, Hyogo Prefectural Kobe Children’s Hospital, Kobe, Japan
| |
Collapse
|
11
|
Dale RC, Thomas T, Patel S, Han VX, Kothur K, Troedson C, Gupta S, Gill D, Malone S, Waak M, Calvert S, Subramanian G, Andrews PI, Kandula T, Menezes MP, Ardern‐Holmes S, Mohammad S, Bandodkar S, Yan J. CSF neopterin and quinolinic acid are biomarkers of neuroinflammation and neurotoxicity in FIRES and other infection-triggered encephalopathy syndromes. Ann Clin Transl Neurol 2023; 10:1417-1432. [PMID: 37340737 PMCID: PMC10424664 DOI: 10.1002/acn3.51832] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023] Open
Abstract
OBJECTIVE Infection-triggered encephalopathy syndromes (ITES) are potentially devastating neuroinflammatory conditions. Although some ITES syndromes have recognisable MRI neuroimaging phenotypes, there are otherwise few biomarkers of disease. Early detection to enable immune modulatory treatments could improve outcomes. METHODS We measured CSF neopterin, quinolinic acid, kynurenine and kynurenine/tryptophan ratio using a liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) system. The CSF of 18 children with ITES were compared with acute encephalitis (n = 20), and three control groups, namely epilepsy (n = 20), status epilepticus (n = 18) and neurogenetic controls (n = 20). RESULTS The main ITES phenotypes in 18 patients were acute encephalopathy with biphasic seizures and late restricted diffusion (AESD, n = 4), febrile infection-related epilepsy syndrome (FIRES n = 4) and other ITES phenotypes. Influenza A was the most common infectious trigger (n = 5), and 50% of patients had a preceding notable neurodevelopmental or family history. CSF neopterin, quinolinic acid and kynurenine were elevated in ITES group compared to the three control groups (all p < 0.0002). The ROC (area under curve) for CSF neopterin (99.3%, CI 98.1-100) was significantly better than CSF pleocytosis (87.3% CI 76.4-98.2) (p = 0.028). Elevated CSF neopterin could discriminate ITES from other causes of seizures, status epilepticus and febrile status epilepticus (all p < 0.0002). The elevated CSF metabolites normalised during longitudinal testing in two patients with FIRES. INTERPRETATION CSF neopterin and quinolinic acid are neuroinflammatory and excitotoxic metabolites. This CSF metabolomic inflammatory panel can discriminate ITES from other causes of new onset seizures or status epilepticus, and rapid results (4 h) may facilitate early immune modulatory therapy.
Collapse
Affiliation(s)
- Russell C. Dale
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and HealthUniversity of SydneyWestmeadNew South WalesAustralia
- Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and HealthUniversity of SydneyWestmeadNew South WalesAustralia
| | - Terrence Thomas
- Department of Paediatrics, Neurology ServiceKK Women's and Children's HospitalSingaporeSingapore
| | - Shrujna Patel
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and HealthUniversity of SydneyWestmeadNew South WalesAustralia
- Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and HealthUniversity of SydneyWestmeadNew South WalesAustralia
| | - Velda X. Han
- Khoo Teck Puat‐National University Children's Medical InstituteNational University Health SystemSingaporeSingapore
| | - Kavitha Kothur
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and HealthUniversity of SydneyWestmeadNew South WalesAustralia
- Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and HealthUniversity of SydneyWestmeadNew South WalesAustralia
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at WestmeadThe University of SydneyWestmeadNew South WalesAustralia
| | - Christopher Troedson
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at WestmeadThe University of SydneyWestmeadNew South WalesAustralia
| | - Sachin Gupta
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at WestmeadThe University of SydneyWestmeadNew South WalesAustralia
| | - Deepak Gill
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and HealthUniversity of SydneyWestmeadNew South WalesAustralia
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at WestmeadThe University of SydneyWestmeadNew South WalesAustralia
| | - Stephen Malone
- Department of NeuroscienceQueensland Children's HospitalSouth BrisbaneQueenslandAustralia
| | - Michaela Waak
- Department of NeuroscienceQueensland Children's HospitalSouth BrisbaneQueenslandAustralia
| | - Sophie Calvert
- Department of NeuroscienceQueensland Children's HospitalSouth BrisbaneQueenslandAustralia
| | - Gopinath Subramanian
- Department of PaediatricsJohn Hunter Children's HospitalNewcastleNew South WalesAustralia
| | - P. Ian Andrews
- Department of NeurologySydney Children's Hospital NetworkSydneyNew South WalesAustralia
| | - Tejaswi Kandula
- Department of NeurologySydney Children's Hospital NetworkSydneyNew South WalesAustralia
| | - Manoj P. Menezes
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and HealthUniversity of SydneyWestmeadNew South WalesAustralia
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at WestmeadThe University of SydneyWestmeadNew South WalesAustralia
| | - Simone Ardern‐Holmes
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at WestmeadThe University of SydneyWestmeadNew South WalesAustralia
| | - Shekeeb Mohammad
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and HealthUniversity of SydneyWestmeadNew South WalesAustralia
- Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and HealthUniversity of SydneyWestmeadNew South WalesAustralia
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at WestmeadThe University of SydneyWestmeadNew South WalesAustralia
| | - Sushil Bandodkar
- Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and HealthUniversity of SydneyWestmeadNew South WalesAustralia
- Department of BiochemistryThe Children's Hospital at WestmeadWestmeadNew South WalesAustralia
| | - Jingya Yan
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and HealthUniversity of SydneyWestmeadNew South WalesAustralia
- Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and HealthUniversity of SydneyWestmeadNew South WalesAustralia
- Department of BiochemistryThe Children's Hospital at WestmeadWestmeadNew South WalesAustralia
| |
Collapse
|
12
|
Ellouze I, Sheffler J, Nagpal R, Arjmandi B. Dietary Patterns and Alzheimer's Disease: An Updated Review Linking Nutrition to Neuroscience. Nutrients 2023; 15:3204. [PMID: 37513622 PMCID: PMC10384681 DOI: 10.3390/nu15143204] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is a growing concern for the aging population worldwide. With no current cure or reliable treatments available for AD, prevention is an important and growing area of research. A range of lifestyle and dietary patterns have been studied to identify the most effective preventive lifestyle changes against AD and related dementia (ADRD) pathology. Of these, the most studied dietary patterns are the Mediterranean, DASH, MIND, ketogenic, and modified Mediterranean-ketogenic diets. However, there are discrepancies in the reported benefits among studies examining these dietary patterns. We herein compile a narrative/literature review of existing clinical evidence on the association of these patterns with ADRD symptomology and contemplate their preventive/ameliorative effects on ADRD neuropathology in various clinical milieus. By and large, plant-based dietary patterns have been found to be relatively consistently and positively correlated with preventing and reducing the odds of ADRD. These impacts stem not only from the direct impact of specific dietary components within these patterns on the brain but also from indirect effects through decreasing the deleterious effects of ADRD risk factors, such as diabetes, obesity, and cardiovascular diseases. Importantly, other psychosocial factors influence dietary intake, such as the social connection, which may directly influence diet and lifestyle, thereby also impacting ADRD risk. To this end, prospective research on ADRD should include a holistic approach, including psychosocial considerations.
Collapse
Affiliation(s)
- Ines Ellouze
- Department of Plant Biotechnology, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 382, Tunisia;
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Julia Sheffler
- Center for Translational Behavioral Science, Florida State University College of Medicine, Tallahassee, FL 32304, USA;
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
- Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL 32306, USA
| | - Bahram Arjmandi
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
- Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
13
|
Sheikh Z, Hirsch LJ. A practical approach to in-hospital management of new-onset refractory status epilepticus/febrile infection related epilepsy syndrome. Front Neurol 2023; 14:1150496. [PMID: 37251223 PMCID: PMC10213694 DOI: 10.3389/fneur.2023.1150496] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/12/2023] [Indexed: 05/31/2023] Open
Abstract
New-onset refractory status epilepticus (NORSE) is "a clinical presentation, not a specific diagnosis, in a patient without active epilepsy or other preexisting relevant neurological disorder, with new onset of refractory status epilepticus without a clear acute or active structural, toxic, or metabolic cause." Febrile infection related epilepsy syndrome (FIRES) is "a subcategory of NORSE that requires a prior febrile infection, with fever starting between 2 weeks and 24 h before the onset of refractory status epilepticus, with or without fever at the onset of status epilepticus." These apply to all ages. Extensive testing of blood and CSF for infectious, rheumatologic, and metabolic conditions, neuroimaging, EEG, autoimmune/paraneoplastic antibody evaluations, malignancy screen, genetic testing, and CSF metagenomics may reveal the etiology in some patients, while a significant proportion of patients' disease remains unexplained, known as NORSE of unknown etiology or cryptogenic NORSE. Seizures are refractory and usually super-refractory (i.e., persist despite 24 h of anesthesia), requiring a prolonged intensive care unit stay, often (but not always) with fair to poor outcomes. Management of seizures in the initial 24-48 h should be like any case of refractory status epilepticus. However, based on the published consensus recommendations, the first-line immunotherapy should begin within 72 h using steroids, intravenous immunoglobulins, or plasmapheresis. If there is no improvement, the ketogenic diet and second-line immunotherapy should start within seven days. Rituximab is recommended as the second-line treatment if there is a strong suggestion or proof of an antibody-mediated disease, while anakinra or tocilizumab are recommended for cryptogenic cases. Intensive motor and cognitive rehab are usually necessary after a prolonged hospital stay. Many patients will have pharmacoresistant epilepsy at discharge, and some may need continued immunologic treatments and an epilepsy surgery evaluation. Extensive research is in progress now via multinational consortia relating to the specific type(s) of inflammation involved, whether age and prior febrile illness affect this, and whether measuring and following serum and/or CSF cytokines can help determine the best treatment.
Collapse
Affiliation(s)
- Zubeda Sheikh
- Department of Neurology, West Virginia University School of Medicine, Morgantown, WV, United States
- Epilepsy Division, Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| | - Lawrence J. Hirsch
- Epilepsy Division, Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
14
|
Sculier C, Gaspard N. New-onset refractory status epilepticus and febrile infection-related epilepsy syndrome. Curr Opin Neurol 2023; 36:110-116. [PMID: 36762646 DOI: 10.1097/wco.0000000000001137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
PURPOSE OF REVIEW The concept and understanding of new-onset refractory status epilepticus (NORSE), and its subtype with prior fever known as febrile infection-related epilepsy syndrome (FIRES) have evolved in the recent past. This review aims to summarize the recent developments in the pathophysiology, diagnosis and management of these challenging conditions. RECENT FINDINGS NORSE and FIRES can have many different causes. Although the list of possible causes is still growing, they mostly fall in the categories of autoimmune encephalitis and genetic disorders. However, despite extensive investigations, most cases of NORSE and FIRES remain cryptogenic. Recent studies have pointed towards the key role of autoinflammation as a unifying pathophysiological mechanism in these cases. These findings also support the use of immunomodulatory treatment in this setting. Consensus recommendations on the management of NORSE and FIRES have recently been published. SUMMARY NORSE and FIRES remain challenging conditions to diagnose and treat. Recent findings from clinical and basic research and new recommendations, reviewed in this article, contribute to an emerging framework for management and future research.
Collapse
Affiliation(s)
- Claudine Sculier
- Service de Neurologie Pédiatrique, Hôpital Universitaire de Bruxelles - Hôpital Erasme
| | - Nicolas Gaspard
- Service de Neurologie, Hôpital Universitaire de Bruxelles - Hôpital Erasme, Bruxelles, Belgique
- Neurology Department, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
15
|
Taraschenko O, Pavuluri S, Schmidt CM, Pulluru YR, Gupta N. Seizure burden and neuropsychological outcomes of new-onset refractory status epilepticus: Systematic review. Front Neurol 2023; 14:1095061. [PMID: 36761344 PMCID: PMC9902772 DOI: 10.3389/fneur.2023.1095061] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/02/2023] [Indexed: 01/26/2023] Open
Abstract
Background Long-term sequelae of the new onset refractory status epilepticus (NORSE) include the development of epilepsy, cognitive deficits, and behavioral disturbances. The prevalence of these complications has been previously highlighted in case reports and case series: however, their full scope has not been comprehensively assessed. Methods We conducted a systematic review of the literature (PROSPERO ID CRD42022361142) regarding neurological and functional outcomes of NORSE at 30 days or longer following discharge from the hospital. A systematic review protocol was developed using guidance from the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Results Of the 1,602 records for unique publications, 33 reports on adults and 52 reports on children met our inclusion criteria. They contained the description of 280 adults and 587 children of whom only 75.7 and 85% of patients, respectively had data on long-term follow-up. The mean age of adult and pediatric patients was 34.3 and 7.9 years, respectively; and the longest duration of follow up were 11 and 20 years, respectively. Seizure outcomes received major attention and were highlighted for 93.4 and 96.6% of the adult and pediatric NORSE patients, respectively. Seizures remained medically refractory in 41.1% of adults and 57.7% of children, while seizure freedom was achieved in only 26 and 23.3% of these patients, respectively. The long-term cognitive outcome data was provided for just 10.4% of the adult patients. In contrast, cognitive health data were supplied for 68.9% of the described children of whom 31.9% were moderately or severely disabled. Long-term functional outcomes assessed with various standardized scales were reported in 62.2 and 25.5% of the adults and children, respectively with majority of patients not being able to return to a pre-morbid level of functioning. New onset psychiatric disorders were reported in 3.3% of adults and 11.2% of children recovering from NORSE. Conclusion These findings concur with previous observations that the majority of adult and pediatric patients continue to experience recurrent seizures and suffer from refractory epilepsy. Moderate to severe cognitive disability, loss of functional independence, and psychiatric disorders represent a hallmark of chronic NORSE signifying the major public health importance of this disorder.
Collapse
Affiliation(s)
- Olga Taraschenko
- Division of Epilepsy, Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Spriha Pavuluri
- Division of Epilepsy, Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Cynthia M. Schmidt
- Leon S. McGoogan Health Sciences Library, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yashwanth Reddy Pulluru
- Division of Epilepsy, Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Navnika Gupta
- Division of Epilepsy, Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
16
|
Caraballo R. Ketogenic Diet and Drug-Resistant Epilepsy. PHARMACORESISTANCE IN EPILEPSY 2023:479-498. [DOI: 10.1007/978-3-031-36526-3_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
17
|
Nabbout R, Matricardi S, De Liso P, Dulac O, Oualha M. Ketogenic diet for super-refractory status epilepticus (SRSE) with NORSE and FIRES: Single tertiary center experience and literature data. Front Neurol 2023; 14:1134827. [PMID: 37122314 PMCID: PMC10133555 DOI: 10.3389/fneur.2023.1134827] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Background and purpose Ketogenic diet (KD) is an emerging treatment option for super-refractory status epilepticus (SRSE). We evaluated the effectiveness of KD in patients presenting SRSE including NORSE (and its subcategory FIRES). Methods A retrospective review of the medical records was performed at the Necker Enfants Malades Hospital. All children with SRSE in whom KD was started during the last 10 years were included. A systematic search was carried out for all study designs, including at least one patient of any age with SRSE in whom KD was started. The primary outcome was the responder rate and Kaplan-Meier survival curves were generated for the time-to-KD response. As secondary outcomes, Cox proportional hazard models were created to assess the impact of NORSE-related factors on KD efficacy. Results Sixteen children received KD for treatment of SRSE, and three had NORSE presentation (one infectious etiology, two FIRES). In medical literature, 1,613 records were initially identified, and 75 were selected for review. We selected 276 patients receiving KD during SRSE. The most common etiology of SRSE was acute symptomatic (21.3%), among these patients, 67.7% presented with NORSE of immune and infectious etiologies. Other etiologies were remote symptomatic (6.8%), progressive symptomatic (6.1%), and SE in defined electroclinical syndromes (14.8%), including two patients with genetic etiology and NORSE presentation. The etiology was unknown in 50.7% of the patients presenting with cryptogenic NORSE, of which 102 presented with FIRES. Overall, most patients with NORSE benefit from KD (p < 0.004), but they needed a longer time to achieve RSE resolution after starting KD compared with other non-NORSE SRSE (p = 0.001). The response to KD in the NORSE group with identified etiology compared to the cryptogenic NORSE was significantly higher (p = 0.01), and the time to achieve SE resolution after starting KD was shorter (p = 0.04). Conclusions The search for underlying etiology should help to a better-targeted therapy. KD can have good efficacy in NORSE; however, the time to achieve SE resolution seems to be longer in cryptogenic cases. These findings highlight the therapeutic role of KD in NORSE, even though this favorable response needs to be better confirmed in prospective controlled studies.
Collapse
Affiliation(s)
- Rima Nabbout
- Reference Center for Rare Epilepsies, Department of Pediatric Neurology, Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris, University Paris Cité, Member of ERN EpiCARE, Paris, France
- Imagine Institute, National Institute of Health and Medical Research, Mixed Unit of Research 1163, University Paris Cité, Paris, France
- *Correspondence: Rima Nabbout ;
| | - Sara Matricardi
- Reference Center for Rare Epilepsies, Department of Pediatric Neurology, Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris, University Paris Cité, Member of ERN EpiCARE, Paris, France
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Paola De Liso
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, Member of ERN EpiCARE, Rome, Italy
| | - Olivier Dulac
- Reference Center for Rare Epilepsies, Department of Pediatric Neurology, Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris, University Paris Cité, Member of ERN EpiCARE, Paris, France
| | - Mehdi Oualha
- Pediatric Intensive Care Unit, Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris, Université de Paris, Paris, France
| |
Collapse
|
18
|
Seizures, Epilepsy, and NORSE Secondary to Autoimmune Encephalitis: A Practical Guide for Clinicians. Biomedicines 2022; 11:biomedicines11010044. [PMID: 36672553 PMCID: PMC9855825 DOI: 10.3390/biomedicines11010044] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022] Open
Abstract
The most recent International League Against Epilepsy (ILAE) classification has included "immune etiology" along with other well-known causes of epilepsy. This was possible thanks to the progress in detection of pathogenic neural antibodies (Abs) in a subset of patients, and resulted in an increased interest in identifying potentially treatable causes of otherwise refractory seizures. Most autoimmune encephalitides (AE) present with seizures, but only a minority of cases evolve to long-term epilepsy. The risk of epilepsy is higher for patients harboring Abs targeting intracellular antigens (T cell-mediated and mostly paraneoplastic, such as Hu, CV2/CRMP5, Ma2, GAD65 Abs), compared with patients with neuronal surface Abs (antibody-mediated and less frequently paraneoplastic, such as NMDAR, GABAbR, LGI1, CASPR2 Abs). To consider these aspects, conceptual definitions for two entities were provided: acute symptomatic seizures secondary to AE, and autoimmune-associated epilepsy, which reflect the different pathophysiology and prognoses. Through this manuscript, we provide an up-to-date review on the current state of knowledge concerning diagnosis and management of patients with Ab-mediated encephalitis and associated epilepsy. Special emphasis is placed on clinical aspects, such as brain magnetic resonance imaging (MRI) and cerebrospinal fluid (CSF) specificities, electroencephalographic (EEG) findings, cancer screening and suggestions for a rational therapeutic approach.
Collapse
|
19
|
Pavone P, Corsello G, Raucci U, Lubrano R, Parano E, Ruggieri M, Greco F, Marino S, Falsaperla R. Febrile infection-related Epilepsy Syndrome (FIRES): a severe encephalopathy with status epilepticus. Literature review and presentation of two new cases. Ital J Pediatr 2022; 48:199. [PMID: 36527084 PMCID: PMC9756623 DOI: 10.1186/s13052-022-01389-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
FIRES is defined as a disorder that requires a prior febrile infection starting between 2 weeks and 24 h before the onset of the refractory status epilepticus with or without fever at the onset of status epilepticus. The patients, previously normal, present in the acute phase recurrent seizures and status epilepticus followed by a severe course with usually persistent seizures and residual cognitive impairment. Boundary with "new onset refractory status epilepticus (NORSE) has not clearly established. Pathogenetic hypothesis includes inflammatory or autoimmune mechanism with a possible genetic predisposition for an immune response dysfunction.Various types of treatment have been proposed for the treatment of the acute phase of the disorder to block the rapid seizures evolution to status epilepticus and to treat status epilepticus itself. Prognosis is usually severe both for control of the seizures and for cognitive involvement.FIRES is an uncommon but severe disorder which must be carefully considered in the differential diagnosis with other epileptic encephalopathy.
Collapse
Affiliation(s)
- Piero Pavone
- Department of Clinical and Experimental Medicine, University Hospital "Policlinico-San Marco", Catania, Catania, Italy.
| | - Giovanni Corsello
- Department of Health Promotion, Mather and Child Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
| | - Umberto Raucci
- Department of Emergency and Clinical Pediatrics, Bambin Gesù Children's Hospital IRCCS, Rome, Italy
| | - Riccardo Lubrano
- Pediatrics and Neonatology Unit, Maternal-Child Department, Santa Maria Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Enrico Parano
- Unit of Catania, Institute for Research and Biomedical Innovation (IRIB), National Council of Research, Catania, Italy
| | - Martino Ruggieri
- Department of Clinical and Experimental Medicine, University Hospital "Policlinico-San Marco", Catania, Catania, Italy
| | - Filippo Greco
- Department of Clinical and Experimental Medicine, University Hospital "Policlinico-San Marco", Catania, Catania, Italy
| | - Silvia Marino
- Unit of Pediatrics and Pediatric Emergency, AOU "Policlinico"- PO "San Marco", University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, AOU "Policlinico"- PO "San Marco", University of Catania, Catania, Italy
| |
Collapse
|
20
|
Intravenous ganaxolone in pediatric super-refractory status epilepticus: A single hospital experience. Epilepsy Behav Rep 2022; 20:100567. [PMID: 36325100 PMCID: PMC9619166 DOI: 10.1016/j.ebr.2022.100567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/29/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Synaptic GABAA receptor (GABAAR) internalization contributes to the drug resistant nature of super-refractory status epilepticus (SRSE). Ganaxolone is a 3β-methylated synthetic analog of the endogenous neuroactive steroid, allopregnanolone, that has positive allosteric modulatory activity on synaptic and extrasynaptic GABAA receptors. Ganaxolone is currently in clinical trials to treat rare pediatric seizure disorders and established and refractory SE. Two pediatric patients with SRSE (age 17 and age 7) were treated under emergency investigational new drug (E-IND) applications with intravenous (IV) ganaxolone administered as an initial bolus and a maintenance infusion for up to 4.5 days with intermittent IV boluses as-needed followed by taper on day 5 and transitioned to chronic treatment using ganaxolone suspension. Adjunctive ganaxolone was effective in terminating SRSE in both patients, safely permitting IV anesthetics to be weaned. Seizure control has been maintained after transitioning to enteric ganaxolone. Further investigation of ganaxolone as a safe and effective treatment for SRSE is warranted.
Collapse
Key Words
- AMPA, alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid
- ASMs, anti-seizure medications
- E-IND, emergency investigational new drug
- FIRES, fever-induced refractory epilepsy syndrome
- GABAAR, GABAA receptors
- GNX, ganaxolone
- KA, kainate
- NMDA, N-methyl-d-aspartate
- NORSE, new onset refractory status epilepticus
- Neurosteroids
- Pediatric
- SE, status epilepticus
- SRSE, super-refractory status epilepticus
- Status epilepticus
- Super-refractory status epilepticus
Collapse
|
21
|
Dietary Treatments for Epilepsy. Neurol Clin 2022; 40:785-797. [DOI: 10.1016/j.ncl.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Wickstrom R, Taraschenko O, Dilena R, Payne ET, Specchio N, Nabbout R, Koh S, Gaspard N, Hirsch LJ. International consensus recommendations for management of New Onset Refractory Status Epilepticus (NORSE) incl. Febrile Infection-Related Epilepsy Syndrome (FIRES): Statements and Supporting Evidence. Epilepsia 2022; 63:2840-2864. [PMID: 35997591 PMCID: PMC9828002 DOI: 10.1111/epi.17397] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/14/2022] [Accepted: 08/18/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To develop consensus-based recommendations for the management of adult and paediatric patients with NORSE/FIRES based on best evidence and experience. METHODS The Delphi methodology was followed. A facilitator group of 9 experts was established, who defined the scope, users and suggestions for recommendations. Following a review of the current literature, recommendation statements concerning diagnosis, treatment and research directions were generated which were then voted on a scale of 1 (strongly disagree) to 9 (strongly agree) by a panel of 48 experts in the field. Consensus that a statement was appropriate was reached if the median score was greater or equal to 7, and inappropriate if the median score was less than or equal to 3. The analysis of evidence was mapped to the results of each statement included in the Delphi survey. RESULTS Overall, 85 recommendation statements achieved consensus. The recommendations are divided into five sections: 1) disease characteristics, 2) diagnostic testing and sampling, 3) acute treatment, 4) treatment in the post-acute phase, and 5) research, registries and future directions in NORSE/FIRES. The detailed results and discussion of all 85 statements are outlined herein. A corresponding summary of findings and practical flowsheets are presented in a companion article. SIGNIFICANCE This detailed analysis offers insight into the supporting evidence and the current gaps in the literature that are associated with expert consensus statements related to NORSE/FIRES. The recommendations generated by this consensus can be used as a guide for the diagnosis, evaluation, and management of patients with NORSE/FIRES, and for planning of future research.
Collapse
Affiliation(s)
- Ronny Wickstrom
- Neuropaediatric UnitDepartment of Women's and Children's HealthKarolinska Institutet and Karolinska University HospitalStockholmSweden
| | - Olga Taraschenko
- Department of Neurological SciencesUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Robertino Dilena
- Neuropathophysiology UnitFoundation IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Eric T. Payne
- Department of Pediatrics, Section of NeurologyAlberta Children's HospitalCalgaryAlbertaCanada
| | - Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of NeurosciencesBambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARERomeItaly
| | - Rima Nabbout
- Department of Pediatric Neurology, APHP, Member of EPICARE ERN, Centre de Reference Epilepsies RaresUniversite de Paris, Institut Imagine, INSERM 1163ParisFrance
| | - Sookyong Koh
- Department of Pediatrics, Children's Hospital and Medical CenterUniversity of NebraskaOmahaNebraskaUSA
| | | | - Lawrence J. Hirsch
- Department of Neurology, Comprehensive Epilepsy CenterYale UniversityNew HavenConnecticutUSA
| | | |
Collapse
|
23
|
Wang M, Yu J, Xiao X, Zhang B, Tang J. Changes of biochemical biomarkers in the serum of children with convulsion status epilepticus: a prospective study. BMC Neurol 2022; 22:196. [PMID: 35624413 PMCID: PMC9137178 DOI: 10.1186/s12883-022-02686-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 04/20/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Convulsive status epilepticus (CSE) is a common neurologic emergency with high morbidity and mortality. This single center study is aimed to assess changes of serum biochemical biomarkers after seizure, and their associations with the development of CSE. METHODS From January 2015 to October 2016, a total of 57 CSE patients, and 30 healthy controls without central nervous system diseases were enrolled in Children's Hospital of Soochow University. CSE patients were further divided into viral encephalitis (VEN, 13 cases), primary generalized epilepsy (PGE, 30 cases), and complex febrile seizures (CFS, 14 cases). The levels of serum biochemical biomarkers were measured using the corresponding commercial ELISA kits. Logistic regression analysis was performed to identify the associations between these biomarkers and diseases. RESULTS At the 1st and 4th day of CSE, neuron-specific enolase (NSE; 1st day: 20.553 ± 5.360, 4th day: 10.094 ± 3.426) and vascular endothelial growth factor (VEGF; 1st day: 153.504 ± 31.246, 4th day: 138.536 ± 25.221) in the CSE group were increased compared to the control (NSE: 6.138 ± 1.941; VEGF: 119.210 ± 31.681). Both the levels of S-100 calcium binding protein B (S-100B; 1st day: 0.738 ± 0.391) and C-reactive protein (CRP; 1st day: 11.128 ± 12.066) were elevated at 1st day of CSE (S-100B: 0.387 ± 0.040; CRP: 3.915 ± 2.064). For glial fibrillary acidic protein (GFAP), it was remarkably upregulated at 4th day of CSE (3.998 ± 1.211). NSE (P = 0.000), S-100B (P = 0.000), CRP (P = 0.011), and VEGF (P = 0.000) at 1st day of CSE, and NSE (P = 0.000), VEGF (P = 0.005), and GFAP (P = 0.000) at 4th day of CSE were significantly associated with the occurrence of CSE. Besides, NSE (P = 0.002), S-100B (P = 0.001), and VEGF (P = 0.002) at 4th day of CSE were significantly associated with VEN. CONCLUSIONS The levels of serum NSE, S-100B, CRP, VEGF, and GFAP are associated with CSE.
Collapse
Affiliation(s)
- Manli Wang
- Department of Neurology, Children's Hospital of Soochow University, No.92, Zhongnanjie Road, Suzhou, 215025, Jiangsu, China
| | - Jian Yu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215025, Jiangsu, China
| | - Xiao Xiao
- Department of Neurology, Children's Hospital of Soochow University, No.92, Zhongnanjie Road, Suzhou, 215025, Jiangsu, China
| | - Bingbing Zhang
- Department of Neurology, Children's Hospital of Soochow University, No.92, Zhongnanjie Road, Suzhou, 215025, Jiangsu, China
| | - Jihong Tang
- Department of Neurology, Children's Hospital of Soochow University, No.92, Zhongnanjie Road, Suzhou, 215025, Jiangsu, China.
| |
Collapse
|
24
|
Pinto LF, Oliveira JPSD, Midon AM. Status epilepticus: review on diagnosis, monitoring and treatment. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:193-203. [PMID: 35976303 PMCID: PMC9491413 DOI: 10.1590/0004-282x-anp-2022-s113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Status epilepticus (SE) is a frequent neurological emergency associated with high morbidity and mortality. According to the new ILAE 2015 definition, SE results either from the failure of the mechanisms responsible for seizure termination or initiation, leading to abnormally prolonged seizures. The definition has different time points for convulsive, focal and absence SE. Time is brain. There are changes in synaptic receptors leading to a more proconvulsant state and increased risk of brain lesion and sequelae with long duration. Management of SE must include three pillars: stop seizures, stabilize patients to avoid secondary lesions and treat underlying causes. Convulsive SE is defined after 5 minutes and is a major emergency. Benzodiazepines are the initial treatment, and should be given fast and an adequate dose. Phenytoin/fosphenytoin, levetiracetam and valproic acid are evidence choices for second line treatment. If SE persists, anesthetic drugs are probably the best option for third line treatment, despite lack of evidence. Midazolam is usually the best initial choice and barbiturates should be considered for refractory cases. Nonconvulsive status epilepticus has a similar initial approach, with benzodiazepines and second line intravenous (IV) agents, but after that, aggressiveness should be balanced considering risk of lesion due to seizures and medical complications caused by aggressive treatment. Usually, the best approach is the use of sequential IV antiepileptic drugs (oral/tube are options if IV options are not available). EEG monitoring is crucial for diagnosis of nonconvulsive SE, after initial control of convulsive SE and treatment control. Institutional protocols are advised to improve care.
Collapse
Affiliation(s)
- Lecio Figueira Pinto
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, Grupo de Epilepsia, São Paulo SP, Brazil
| | | | - Aston Marques Midon
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, São Paulo SP, Brazil
| |
Collapse
|
25
|
Harrar D, Mondok L, Adams S, Farias-Moeller R. Zebras Seize the Day. Crit Care Clin 2022; 38:349-373. [DOI: 10.1016/j.ccc.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Briassoulis G, Stefanogianni C, Zaganas I, Raissaki M, Briassoulis P, Ilia S. Specific characteristics and current diagnostic and treatment modalities performance of super refractory status epilepticus in children: A comparative study. Eur J Paediatr Neurol 2022; 37:32-39. [PMID: 35051734 DOI: 10.1016/j.ejpn.2022.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/28/2021] [Accepted: 01/02/2022] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Super-refractory status epilepticus (SRSE) is associated with significant morbidity and mortality in children. We explored the clinical spectrum, specific characteristics, and outcome in SRSE patients admitted in a pediatric intensive care unit (PICU) and investigated how well current diagnostic or treatment modalities perform compared to Status Epilepticus (SE) and Refractory SE (RSE) patients. METHODS Retrospective analysis of PICU patients admitted with convulsive SE during 2009-2019. Eighty-six patients were classified as SE, RSE, and SRSE. New-onset RSE (NORSE) and febrile infection-related epilepsy syndrome (FIRES) were also identified. Functional outcome was evaluated by the modified Rankin scale. RESULTS Patients with SRSE (n = 20) had longer weaning off anesthetics (p = 0.014), length of stay, mechanical ventilation duration, higher illness severity scores, and poorer outcome compared to SE (n = 13) or RSE (n = 53) patients (all p < 0.001). Diagnosis, mainly expressed by high prevalence of NORSE (n = 13) and FIRES (n = 9), was independently associated with SRSE (p = 0.024). Abnormal MRI findings (p = 0.005), and epilepsy-related pathogenic variants identified by whole-exome sequencing (WES) were mostly found in SRSE patients. Compared to intravenous immunoglobulins and steroid pulses, plasmapheresis and ketogenic diet, more often used in SRSE (p < 0.01), contributed better to seizure control. Only SRSE (AUROC > 0.80, 95% CI = 0.68-0.94, p < 0.001) and diagnosis (AUROC > 0.70, 95% CI = 0.55-0.83, p = 0.02) could predict a poor outcome. CONCLUSION The majority of SRSE patients are characterized by considerable functional decline and morbidity. WES analysis may reveal epilepsy-related pathogenic variants while early aggressive immunotherapy and/or ketogenic diet might prove beneficial. Multicenter studies for prediction models of outcome are needed.
Collapse
Affiliation(s)
- George Briassoulis
- Pediatric Intensive Care Unit, University Hospital, School of Medicine, University of Crete, Heraklion, Crete, Greece.
| | - Chrysavgi Stefanogianni
- Pediatric Intensive Care Unit, University Hospital, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Ioannis Zaganas
- Neurology Department, Neurogenetics Laboratory, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Maria Raissaki
- Department of Radiology, University Hospital, School of Medicine, University of Crete, Greece
| | - Panagiotis Briassoulis
- Pediatric Intensive Care Unit, University Hospital, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Stavroula Ilia
- Pediatric Intensive Care Unit, University Hospital, School of Medicine, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
27
|
Tong X, Cai Q, Cao D, Yu L, Sun D, Yang G, Wang J, Li H, Li Z, Wang J, Huang S, Ding M, Fang F, Wang Q, Luo R, Liao J, Qin J. Chinese expert recommendations on ketogenic diet therapy for super-refractory status epilepticus. ACTA EPILEPTOLOGICA 2022. [DOI: 10.1186/s42494-021-00078-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractSuper-refractory status epilepticus (SRSE) is a serious and life-threatening neurological condition. Ketogenic diet (KD) is a diet characterized by high fat, low carbohydrate, and moderate protein. As KD shows effectiveness in controlling seizures in more than half of SRSE patients, it can be a treatment option for SRSE. Currently, KD treatment for SRSE is based on personal experience and observational evidence has been published. In the context of a lack of a validated guideline, we convened a multicenter expert panel within the China Association Against Epilepsy (CAAE) Ketogenic Diet Commission to work out the Chinese expert recommendations on KD for SRSE. We summarize and discuss the latest clinical practice of KD for SRSE in critical care settings. Recommendations are given on patient selection, the timing of KD, diet implementation, and follow-up. More research data are needed in this area to support better clinical practice.
Collapse
|
28
|
Obara K, Ono T. Ketogenic Diet for a Young Adult Patient With Chronic-Phase Febrile Infection-Related Epilepsy Syndrome. Cureus 2022; 14:e22099. [PMID: 35165646 PMCID: PMC8830588 DOI: 10.7759/cureus.22099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2022] [Indexed: 11/06/2022] Open
Abstract
Febrile infection-related epilepsy syndrome (FIRES) is a rare disease, whereby refractory status epilepticus (a severe epileptic syndrome) occurs in previously healthy individuals following a febrile illness. Here, we report a patient with FIRES who received ketogenic diet (KD) therapy initiated in the chronic phase. A 21-year-old man presented with status epilepticus, following fever and headache. In the acute phase, his seizures were refractory to conventional antiepileptic drugs and were suppressed only by intravenous anesthetics. In the chronic phase, he showed frequent seizures with concurrent severe cognitive decline. Twenty-seven months after onset, the patient was started on KD. Consequently, his seizure frequency rapidly reduced while his cognitive function slowly improved, albeit incompletely. Recently, KD has been shown to both reduce seizures and improve cognitive prognoses in children with FIRES. Although early KD may help in both seizure control and cognitive prognosis, it is likely that KD can be applied to adult patients with chronic FIRES.
Collapse
|
29
|
Can dietary patterns prevent cognitive impairment and reduce Alzheimer's disease risk: exploring the underlying mechanisms of effects. Neurosci Biobehav Rev 2022; 135:104556. [PMID: 35122783 DOI: 10.1016/j.neubiorev.2022.104556] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is one of the fastest growing cognitive decline-related neurological diseases. To date, effective curative strategies have remained elusive. A growing body of evidence indicates that dietary patterns have significant effects on cognitive function and the risk of developing AD. Previous studies on the association between diet and AD risk have mainly focused on individual food components and specific nutrients, and the mechanisms responsible for the beneficial effects of dietary patterns on AD are not well understood. This article provides a comprehensive overview of the effects of dietary patterns, including the Mediterranean diet (MedDiet), dietary approaches to stop hypertension (DASH) diet, Mediterranean-DASH diet intervention for neurological delay (MIND), ketogenic diet, caloric restriction, intermittent fasting, methionine restriction, and low-protein and high-carbohydrate diet, on cognitive impairment and summarizes the underlying mechanisms by which dietary patterns attenuate cognitive impairment, especially highlighting the modulation of dietary patterns on cognitive impairment through gut microbiota. Furthermore, considering the variability in individual metabolic responses to dietary intake, we put forward a framework to develop personalized dietary patterns for people with cognitive disorders or AD based on individual gut microbiome compositions.
Collapse
|
30
|
Machado RA, Patel J, Elsayed MS. The role of ketamine-induced beta activity in the treatment of refractory status epilepticus. Is the EEG useful to determine responder's rate? A retrospective study. Epilepsy Behav 2022; 127:108512. [PMID: 34974373 DOI: 10.1016/j.yebeh.2021.108512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Multiple investigations have been done to evaluate the possible effect of ketamine in the treatment of status epilepticus (SE). OBJECTIVES To evaluate the electrographic effect of ketamine on EEG, and its clinical utility following-up refractory and super refractory status epilepticus (SRSE). METHODS Retrospective review of 24 patients with SE. Clinical record and Video-electroencephalogram (video-EEG) of all included patients were reviewed. The patients' EEGs were then monitored for any immediate changes after administration of the first dose of ketamine as well as at the time patients would be predicted to have peak serum concentration of ketamine. Patients with cessation of electrographic seizures and no SE recurrence within the same admissions were categorized as "Responders". Statistical differences between qualitative variables were analyzed using chi square test. Differences between median were analyzed by Mann-Whitney U test. Difference between groups were considered significant when p < 0.05. RESULTS We identified 24 patients with SE. Twelve out of 24 (50%) had SRSE and 12 out of 24 (50%) had refractory status epilepticus (RSE). The appearance of superimposed beta activity after ketamine was initiated was associated with a higher responder rate (100% versus 33.3% in the responder group versus the non-responder group respectively). Notably, the presence of a burst suppression pattern had no significant association with one group compared to the other (41.6% versus 33.3%, in the responder group vs the non-responder group respectively). CONCLUSIONS Background superimposed beta activity induced by ketamine is an early and reliable EEG finding associated with status epilepticus termination.
Collapse
Affiliation(s)
| | - Janaki Patel
- Wayne State University/Detroit Medical Center, United States
| | - Mona S Elsayed
- Adult Comprehensive Epilepsy Program, Wayne State University/Detroit Medical Center, United States
| |
Collapse
|
31
|
Chomtho S, Uaariyapanichkul J, Chomtho K. Outcomes of parenteral vs enteral ketogenic diet in pediatric super-refractory status epilepticus. Seizure 2022; 96:79-85. [DOI: 10.1016/j.seizure.2022.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/12/2022] [Accepted: 01/31/2022] [Indexed: 11/25/2022] Open
|
32
|
Périn B, Szurhaj W. New onset refractory status epilepticus: State of the art. Rev Neurol (Paris) 2022; 178:74-83. [PMID: 35031143 DOI: 10.1016/j.neurol.2021.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022]
Abstract
NORSE (new onset refractory status epilepticus) has recently been defined as a clinical presentation, not a specific diagnosis, in a patient without active epilepsy or other preexisting relevant neurological disorder, with new onset of refractory status epilepticus without a clear acute or active structural, toxic or metabolic cause. It includes the concept of FIRES described in children with a similar condition but preceded by a 2-14-day febrile illness. NORSE constitutes the acute phase of an entity preceded by a prodromal phase which may be accompanied by numerous manifestations (febrile episode, behavioural changes, headache, …), and followed by a chronic phase marked by long-term neurological sequelae, cognitive impairment, epilepsy and functional disability. There are many causes of NORSE: autoimmune, infectious, genetic, toxic, … but in half of the cases, despite an exhaustive assessment, the cause remains undetermined. Paraneoplastic and non-paraneoplastic autoimmune encephalitis remains by far the leading cause of NORSE. For these reasons, immunotherapy should be considered rapidly in parallel with the treatment of the status epilepticus, including in cryptogenic NORSE. Good communication with the family is important because the management of the acute phase is long and difficult. Although mortality remains high (11-22%), and sequelae can be severe, the majority of survivors can have a good or fair outcome.
Collapse
Affiliation(s)
- B Périn
- Department of clinical neurophysiology, Amiens University Medical Center, France
| | - W Szurhaj
- Department of clinical neurophysiology, Amiens University Medical Center, France; Équipe CHIMERE EA7516, université Picardie Jules-Verne, France.
| |
Collapse
|
33
|
Perulli M, Cicala G, Turrini I, Musto E, Quintiliani M, Gambardella ML, Pulitanò SM, Bompard S, Staccioli S, Carmillo L, Di Sante G, Ria F, Veredice C, Contaldo I, Battaglia D. Fighting autoinflammation in FIRES: The role of interleukins and early immunomodulation. Epilepsy Behav Rep 2022; 18:100531. [PMID: 35356746 PMCID: PMC8958320 DOI: 10.1016/j.ebr.2022.100531] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 01/11/2023] Open
|
34
|
Vallecoccia MS, Martinotti A, Siddi C, Dominedò C, Cingolani E. Use of Unconventional Therapies in Super-refractory Status Epilepticus: A Case Report and Literature Review. Clin EEG Neurosci 2022; 53:70-73. [PMID: 33233961 DOI: 10.1177/1550059420975612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Super-refractory status epilepticus (SRSE) is a life-threatening condition characterized by the persistence or recurrence of seizures despite the use of first- and second-line antiepileptic drugs and the continuous infusion of anesthetics for more than 24 hours. This has always been a challenge for the physician, given the high mortality and morbidity related to this condition. Unfortunately, there are currently no definitive data to guide the therapy, since most of the therapeutic approaches regarding SRSE come from anecdotal evidence. Here, we present a case report of long-persisting new-onset SRSE treated with unconventional therapies recently reported to be successful such as ketamine, ketogenic diet, and tocilizumab, that could have played an important role in the management of this patient. A review of the literature regarding those is also included. SRSE has been reported to have long hospital length of stay, with a small percentage of patients returning to baseline functional status. Moreover, recent evidence showed that functional and cognitive outcome could depend on seizure duration, so prolonged duration of epileptic activity with abnormalities on the magnetic resonance imaging (MRI) could be seen as a reason to discontinue treatment. However, despite many weeks of seizures and a noncomforting MRI, our patient was discharged with a good functional status.
Collapse
Affiliation(s)
| | | | - Chiara Siddi
- Department of Shock and Trauma Center, S. Camillo-Forlanini Hospital, Rome, Italy
| | - Cristina Dominedò
- Department of Shock and Trauma Center, S. Camillo-Forlanini Hospital, Rome, Italy
| | - Emiliano Cingolani
- Department of Shock and Trauma Center, S. Camillo-Forlanini Hospital, Rome, Italy
| |
Collapse
|
35
|
Vasquez A, Farias-Moeller R, Sánchez-Fernández I, Abend NS, Amengual-Gual M, Anderson A, Arya R, Brenton JN, Carpenter JL, Chapman K, Clark J, Gaillard WD, Glauser T, Goldstein JL, Goodkin HP, Guerriero RM, Lai YC, McDonough TL, Mikati MA, Morgan LA, Novotny EJ, Ostendorf AP, Payne ET, Peariso K, Piantino J, Riviello JJ, Sands TT, Sannagowdara K, Tasker RC, Tchapyjnikov D, Topjian A, Wainwright MS, Wilfong A, Williams K, Loddenkemper T. Super-Refractory Status Epilepticus in Children: A Retrospective Cohort Study. Pediatr Crit Care Med 2021; 22:e613-e625. [PMID: 34120133 DOI: 10.1097/pcc.0000000000002786] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To characterize the pediatric super-refractory status epilepticus population by describing treatment variability in super-refractory status epilepticus patients and comparing relevant clinical characteristics, including outcomes, between super-refractory status epilepticus, and nonsuper-refractory status epilepticus patients. DESIGN Retrospective cohort study with prospectively collected data between June 2011 and January 2019. SETTING Seventeen academic hospitals in the United States. PATIENTS We included patients 1 month to 21 years old presenting with convulsive refractory status epilepticus. We defined super-refractory status epilepticus as continuous or intermittent seizures lasting greater than or equal to 24 hours following initiation of continuous infusion and divided the cohort into super-refractory status epilepticus and nonsuper-refractory status epilepticus groups. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We identified 281 patients (157 males) with a median age of 4.1 years (1.3-9.5 yr), including 31 super-refractory status epilepticus patients. Compared with nonsuper-refractory status epilepticus group, super-refractory status epilepticus patients had delayed initiation of first nonbenzodiazepine-antiseizure medication (149 min [55-491.5 min] vs 62 min [33.3-120.8 min]; p = 0.030) and of continuous infusion (495 min [177.5-1,255 min] vs 150 min [90-318.5 min]; p = 0.003); prolonged seizure duration (120 hr [58-368 hr] vs 3 hr [1.4-5.9 hr]; p < 0.001) and length of ICU stay (17 d [9.5-40 d] vs [1.8-8.8 d]; p < 0.001); more medical complications (18/31 [58.1%] vs 55/250 [22.2%] patients; p < 0.001); lower return to baseline function (7/31 [22.6%] vs 182/250 [73.4%] patients; p < 0.001); and higher mortality (4/31 [12.9%] vs 5/250 [2%]; p = 0.010). Within the super-refractory status epilepticus group, status epilepticus resolution was attained with a single continuous infusion in 15 of 31 patients (48.4%), two in 10 of 31 (32.3%), and three or more in six of 31 (19.4%). Most super-refractory status epilepticus patients (30/31, 96.8%) received midazolam as first choice. About 17 of 31 patients (54.8%) received additional treatments. CONCLUSIONS Super-refractory status epilepticus patients had delayed initiation of nonbenzodiazepine antiseizure medication treatment, higher number of medical complications and mortality, and lower return to neurologic baseline than nonsuper-refractory status epilepticus patients, although these associations were not adjusted for potential confounders. Treatment approaches following the first continuous infusion were heterogeneous, reflecting limited information to guide clinical decision-making in super-refractory status epilepticus.
Collapse
Affiliation(s)
- Alejandra Vasquez
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Division of Child and Adolescent Neurology, Department of Neurology, Mayo Clinic, Rochester, MN
| | - Raquel Farias-Moeller
- Department of Neurology, Division of Pediatric Neurology, Children's Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, WI
| | - Iván Sánchez-Fernández
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Child Neurology, Hospital Sant Joan de Déu, Universidad de Barcelona, Barcelona, Spain
| | - Nicholas S Abend
- Division of Neurology, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Marta Amengual-Gual
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Pediatric Neurology Unit, Department of Pediatrics, Hospital Universitari Son Espases, Universitat de les Illes Balears, Palma, Spain
| | - Anne Anderson
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Ravindra Arya
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - James N Brenton
- Department of Neurology and Pediatrics, University of Virginia Health System, Charlottesville, VA
| | - Jessica L Carpenter
- Center for Neuroscience, Children's National Medical Center, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Kevin Chapman
- Departments of Pediatrics and Neurology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO
| | - Justice Clark
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - William D Gaillard
- Center for Neuroscience, Children's National Medical Center, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Tracy Glauser
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Joshua L Goldstein
- Ruth D. & Ken M. Davee Pediatric Neurocritical Care Program, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Howard P Goodkin
- Department of Neurology and Pediatrics, University of Virginia Health System, Charlottesville, VA
| | - Rejean M Guerriero
- Division of Pediatric Neurology, Washington University Medical Center, Washington University School of Medicine, Saint Louis, MO
| | - Yi-Chen Lai
- Section of Pediatric Critical Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Tiffani L McDonough
- Division of Child Neurology, Department of Neurology, Columbia University Medical Center, Columbia University, New York, NY
- Division of Pediatric Neurology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Mohamad A Mikati
- Division of Pediatric Neurology, Duke University Medical Center, Duke University, Durham, NC
| | - Lindsey A Morgan
- Department of Neurology, Division of Pediatric Neurology, University of Washington, Seattle, WA
| | - Edward J Novotny
- Department of Neurology, Division of Pediatric Neurology, University of Washington, Seattle, WA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA
| | - Adam P Ostendorf
- Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University. Columbus, OH
| | - Eric T Payne
- Division of Child and Adolescent Neurology, Department of Neurology, Mayo Clinic, Rochester, MN
| | - Katrina Peariso
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Juan Piantino
- Department of Pediatrics, Division Pediatric Neurology, Neuro-Critical Care Program, Oregon Health and Science University, Portland, OR
| | - James J Riviello
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Tristan T Sands
- Division of Child Neurology, Department of Neurology, Columbia University Medical Center, Columbia University, New York, NY
| | - Kumar Sannagowdara
- Department of Neurology, Division of Pediatric Neurology, Children's Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, WI
| | - Robert C Tasker
- Division of Critical Care, Departments of Neurology, Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Dmitry Tchapyjnikov
- Division of Pediatric Neurology, Duke University Medical Center, Duke University, Durham, NC
| | - Alexis Topjian
- Critical Care and Pediatrics, The Children's Hospital of Philadelphia, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Mark S Wainwright
- Department of Neurology, Division of Pediatric Neurology, University of Washington, Seattle, WA
| | - Angus Wilfong
- Department of Child Health, University of Arizona College of Medicine and Barrow's Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ
| | - Korwyn Williams
- Department of Child Health, University of Arizona College of Medicine and Barrow's Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ
| | - Tobias Loddenkemper
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
36
|
Ko A, Kwon HE, Kim HD. Updates on the ketogenic diet therapy for pediatric epilepsy. Biomed J 2021; 45:19-26. [PMID: 34808422 PMCID: PMC9133260 DOI: 10.1016/j.bj.2021.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/25/2021] [Accepted: 11/07/2021] [Indexed: 12/11/2022] Open
Abstract
The ketogenic diet (KD) is a high-fat, low-carbohydrate diet, in which fat, instead of glucose, acts as a major energy source through the production of ketone bodies. The KD was formally introduced in 1921 to mimic the biochemical changes associated with fasting and gained recognition as a potent treatment for pediatric epilepsy in the mid-1990s. Recent clinical and scientific knowledge supports the use of the KD in drug-resistant epilepsy patients for its anti-seizure efficacy, safety, and tolerability. The KD is also receiving growing attention as a potential treatment option for other neurological disorders. This article will review on the recent updates on the KD, focusing on its mechanisms of action, its alternatives, expansion on its use in terms of age groups and different regions in the world, and future issues.
Collapse
Affiliation(s)
- Ara Ko
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hye Eun Kwon
- Department of Pediatrics, International St. Mary's Hospital, Catholic Kwandong University, College of Medicine, Incheon, Republic of Korea
| | - Heung Dong Kim
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
37
|
Hong B, Luo R, Cao D, Zhang M, Fang K, Guo J, Liao J. Blood pressure, body mass index lowering and ketogenesis in Qigong Bigu. ACTA EPILEPTOLOGICA 2021. [DOI: 10.1186/s42494-021-00058-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Hypertension is one of the most common comorbid conditions of epilepsy. Hypertension and epilepsy may be related to each other. Qigong Bigu practice induces a similar effect as fasting in the first week. As ketogenesis is induced during ketogenic diet therapy, we hypothesize that ketogenesis is detectable and related body weight loss would occur during the first week of Qigong Bigu practice.
Methods
During the prospective observational study, 34 healthy adult participants attended the Qigong Bigu practice for one week. The blood pressure, body weight, calorie consumption, blood glucose and beta-hydroxybutyrate level were measured.
Results
The body weight and body mass index decreased by 2.39 ± 1.34 kg (95%CI 1.92–2.85) and 0.94 ± 0.57 (95%CI 0.73–1.15), respectively, after five days of practice (P < 0.001). The systolic and diastolic blood pressure decreased by 17.86 ± 14.17 mmHg (95%CI 12.36–23.35) and 9.75 ± 7.45 mmHg (95%CI 6.86–12.64), respectively (P < 0.001). The average five-day calorie consumption was 1197.47 ± 569.97 kcal (95%CI 998.60–1396.35). Meanwhile, no symptomatic hypoglycemia or other significant side effects were observed. The blood beta-hydroxybutyrate level increased to a nutritional level of 1.15 ± 1.12 mmol/L (95%CI 0.76–1.62). The calorie consumption negatively correlated to the beta-hydroxybutyrate level in the blood. The loss of body weight and the decrease of body mass index were positively correlated to the blood beta-hydroxybutyrate level.
Conclusions
Qigong Bigu can decrease the blood pressure, the body weight and the body mass index in healthy adult participants. The fasting stage of Qigong Bigu is accompanied by ketogenesis. Clinical trial of Qigong Bigu in hypertension and epilepsy patients might be worthwhile. The blood beta-hydroxybutyrate might be used as a biomarker to evaluate the effect of Qigong Bigu practice during fasting.
Trial registration
ChiCTR1800016923.
Collapse
|
38
|
Wickström R, Ygberg S, Lindefeldt M, Dahlin M. Altered cytokine levels in cerebrospinal fluid following ketogenic diet of children with refractory epilepsy. Epilepsy Res 2021; 177:106775. [PMID: 34597959 DOI: 10.1016/j.eplepsyres.2021.106775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/02/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
Ketogenic diet is an effective treatment which has the potential to achieve a significant seizure reduction in drug-resistant epilepsy. The mechanism behind this effect is unclear, but one hypothesis is that the mechanism is anti-inflammatory. In this prospective study on pediatric patients we compared levels of cytokines and chemokines in the cerebrospinal fluid before and after three months on treatment to evaluate a possible anti-inflammatory effect. We analyzed 34 cytokines and chemokines in the cerebrospinal fluid of pediatric patients (n = 21) with refractory epilepsy by a multiplex assay. Beta-hydroxybutyric acid was measured in blood and cerebrospinal fluid. Seizure frequency in relation to diet treatment was assessed. For 9 different cytokines (CCL 7, CCL 21, CCL 22, CCL 25, CCL 27, IL-2, IL-10, CX3CL1 and MIF), a significant decrease ranging from 7 to 27% was seen after three months as compared to levels before the diet. In contrast, no cytokine displayed a significant increase during diet. A seizure reduction ≥ 50 % was seen in 15/21 patients (71 %) but no significant differences in cytokine decreases were found between responders and non-responders during treatment. A non-significant trend towards higher initial pre-treatment levels of cytokines was seen in responders, which were reduced following treatment. The levels of betahydroxybutyric acid were not related to seizure response. We conclude that while it is not possible to state a primary anti-inflammatory effect by dietary treatment from these data, an unequivocal immunological effect is seen and may be a part of the mechanism of ketogenic dietary treatment.
Collapse
Affiliation(s)
- Ronny Wickström
- Neuropaediatric Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sofia Ygberg
- Neuropaediatric Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Marie Lindefeldt
- Neuropaediatric Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Dahlin
- Neuropaediatric Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Dietary interventions may play a role in the pathophysiology of common neurological disorders such as Alzheimer's disease, Parkinson's disease, stroke, migraines, multiple sclerosis, and epilepsy. This article describes the most common and impactful dietary regimens for commonly encountered neurological disorders. RECENT FINDINGS Plant-based, low-fat, high-fiber diets, rich in antioxidants and other lifestyle interventions may reduce the burden and disability of common neurological disorders. The ketogenic diet, the diet of choice for the treatment of refractory epilepsy, is such an example. Diverse neurological disorders demonstrate several common pathophysiological mechanisms including increased oxidative stress, neuroinflammation, and disrupted metabolism. Dietary interventions can potentially influence these pathophysiological processes and thus favorably alter clinical outcomes. Adequate dietary choices should be considered as part of a continuum of healthy lifestyle choices.
Collapse
|
40
|
Abstract
AbstractThe ketogenic diet (KD) is a high-fat, low-carbohydrate diet, in which fat is used as the primary energy source through the production of ketone bodies (KBs) in place of glucose. The KD was formally introduced in 1921 to mimic the biochemical changes associated with fasting and gained recognition as a potent treatment for pediatric epilepsy in the mid-1990s. The clinical and basic scientific knowledge that supports the anti-seizure efficacy, safety, and feasibility of using the KD in patients with epilepsy is huge. Additionally, the International Ketogenic Diet Study Group’s consensus guidelines provide practical information in 2009 and 2018. The KD is a broad-spectrum therapy for drug resistant epilepsy and is gaining attention as a potential therapy for other neurological disorders. This article will review recent aspects on the use of the KD, including its mechanisms of action, KD alternatives, expanding its use across different age groups and regions, its use as a treatment for other neurologic disorders, and future research subjects.
Collapse
|
41
|
Li WJ, Xue CL, Zhang Y, Wu LH, Chen DM, Chen F, Xu J, Li Z, Miao HJ. Ketogenic diet (KD) therapy in the acute phase of febrile infection-related epilepsy syndrome (FIRES): a case report. Transl Pediatr 2021; 10:2392-2397. [PMID: 34733679 PMCID: PMC8506052 DOI: 10.21037/tp-21-121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/29/2021] [Indexed: 11/20/2022] Open
Abstract
Management of frequent epileptic seizures in febrile infection-related epilepsy (FIRES) is often challenging. FIRES is an uncommon disease condition. Children with FIRES develop refractory epilepsy with severe cognitive deficits that affect the function of the temporal and frontal lobes. However, better seizure control during the acute stage of FIRES could protect against injury to the nervous system. Ketogenic diet (KD) can effectively resolve super-refractory status epilepticus (SRSE) in the acute phase and improve the prognosis of FIRES. We present the case of a previously healthy 3-year-old male with new-onset status epilepticus (SE) admitted to the paediatric intensive care unit for 55 days. Despite treatment with multiple anti-epileptic agents in addition to IV anaesthetics, the patient remained in SRSE and continued to have generalised epileptic activity on electroencephalography (EEG). KD therapy was initiated on the 14th day of the onset, and the patient achieved complete neurological recovery following the KD. Throughout the remainder of admission, the patient was successfully weaned off the ventilator, tolerated oral meals, and worked with occupational and physical therapists to return to his baseline functional status. The convulsions were well controlled after discharge. We discuss the treatment strategies for FIRES and highlight the role of KD therapy in the acute phase to control disease progression and improve the prognosis, and early diagnosis of FIRES and early initiation of KD therapy combined with anti-epileptic drugs (AEDs) could improve the prognosis.
Collapse
Affiliation(s)
- Wen-Jing Li
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Chun-Ling Xue
- Department of Emergency, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Zhang
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Li-Hui Wu
- Department of Emergency, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Dong-Mei Chen
- Department of Emergency, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Xu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhuo Li
- Department of Emergency, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hong-Jun Miao
- Department of Emergency, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
42
|
Rachfalska N, Pietruszewski J, Paprocka J. Dramatic Course of Paediatric Cryptogenic Febrile Infection-Related Epilepsy Syndrome with Unusual Chronic Phase Presentation-A Case Report with Literature Study. Brain Sci 2021; 11:1030. [PMID: 34439649 PMCID: PMC8392460 DOI: 10.3390/brainsci11081030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/03/2022] Open
Abstract
Febrile Infection-Related Epilepsy Syndrome (FIRES) is a catastrophic, extremely rare epileptic encephalopathy. It strikes previously healthy school-aged children and is usually cryptogenic. Its dramatic onset with refractory status epilepticus is always preceded by a nonspecific febrile illness. The seizure activity in FIRES may last for several weeks with little to no response to antiepileptic treatment, usually resulting in the usage of anaesthetics. This acute phase is followed by a chronic, refractory epilepsy and cognitive deficit, that persist for the rest of the patient's life. Still to this day no definite cause has been described. In this study we review the current finding in FIRES and describe a case of a 4-year-old patient with a dramatic course of the acute phase in FIRES and unusual presentation of the chronic phase, which is dominated by extrapyramidal symptoms such as dystonia. This case highlights that the clinical presentation of FIRES may differ from those frequently described in literature.
Collapse
Affiliation(s)
- Natalia Rachfalska
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Jerzy Pietruszewski
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| |
Collapse
|
43
|
Dozières-Puyravel B, Höhn S, Auvin S. Considering safety and patient tolerance in the use of ketogenic diet in the management of refractory and super-refractory status epilepticus: a systematic review. Expert Rev Neurother 2021; 21:1303-1308. [PMID: 34275391 DOI: 10.1080/14737175.2021.1956905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Early use of the ketogenic diet (KD) is described as having a particular interest for super-refractory status epilepticus and febrile infection-related epilepsy syndrome. The authors conducted a systematic review of the available data on the KD for refractory and super-refractory status epilepticus. AREAS COVERED Following a systematic bibliographic search, the authors found 15 published papers: 2 prospective and 13 retrospective studies. Most often, the primary aim of the retrospective studies was the efficacy evaluation of the KD for refractory or super-refractory status epilepticus. Four studies focused on the use of KD for NORSE/FIRES. These initial studies suggested that KD was effective in these conditions, and that it showed mild and manageable side effects. EXPERT OPINION The published studies provided enough preliminary data to validate the feasibility and safety of the use of KD for refractory and super-refractory status epilepticus. Further studies demonstrating the efficacy of the KD in these indications are needed. Possible design and endpoints are discussed.
Collapse
Affiliation(s)
- Blandine Dozières-Puyravel
- Service de Neurologie Pédiatrique, Hôpital Robert-Debré, APHP, Paris, France.,Université de Paris, Paris, France
| | - Sophie Höhn
- Service de Neurologie Pédiatrique, Hôpital Robert-Debré, APHP, Paris, France.,Université de Paris, Paris, France
| | - Stéphane Auvin
- Service de Neurologie Pédiatrique, Hôpital Robert-Debré, APHP, Paris, France.,Université de Paris, Paris, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
44
|
Nass RD, Taube J, Bauer T, Rüber T, Surges R, Helmstaedter C. Permanent loss of independence in adult febrile-infection-related epilepsy syndrome survivors: an underestimated and unsolved challenge. Eur J Neurol 2021; 28:3061-3071. [PMID: 34091969 DOI: 10.1111/ene.14958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/27/2021] [Accepted: 06/02/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND PURPOSE Febrile-infection-related epilepsy syndrome (FIRES) is an exceedingly rare and devastating subtype of new-onset refractory status epilepticus, which causes refractory epilepsy and permanent neurocognitive impairment. METHODS This was a long-term follow-up of adult FIRES survivors treated between 2005 and 2018 as part of the EpiCARE initiative, a European Reference Network for rare and complex epilepsies. Clinical, electroencephalography, imaging and functional outcome measures are described using the Scores of Independence for Neurologic and Geriatric Rehabilitation, the modified Rankin Scale and the Global Assessment of Severity of Epilepsy Scale. RESULTS Six patients with refractory epilepsy following FIRES were evaluated. Despite general improvement after intensive care unit discharge, disease severity was still high at follow-up in all patients. The functional outcome, as assessed by the modified Rankin Scale, was moderately impaired in 2/6 patients. In contrast, the Scores of Independence for Neurologic and Geriatric Rehabilitation indicated a loss of independence in 5/6, serious problems in memory and planning/problem-solving in 4/6 and serious attentional problems in 3/6 patients. CONCLUSIONS Febrile-infection-related epilepsy syndrome survivors may regain vital functions and mobility but experience a significant loss of independence and participation due to recurring seizures, structural brain damage and neurocognitive decline. Minimization of disastrous outcomes through the systematic evaluation of rescue therapies within a network of specialized centres is crucial.
Collapse
Affiliation(s)
| | - Julia Taube
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Tobias Bauer
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Theodor Rüber
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | | |
Collapse
|
45
|
Shin YW. Understanding new-onset refractory status epilepticus from an immunological point of view. ENCEPHALITIS 2021; 1:61-67. [PMID: 37469848 PMCID: PMC10295883 DOI: 10.47936/encephalitis.2021.00045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/11/2021] [Accepted: 05/21/2021] [Indexed: 07/21/2023] Open
Abstract
New-onset refractory status epilepticus (NORSE) is unexpected onset of refractory status epilepticus in individuals with no preexisting relevant neurologic condition. The etiologies remain largely cryptogenic; treatment is challenging after failure to control seizures despite use of multiple antiepileptic drugs and anesthetic agents. Frequent fever and other infectious prodromes, elevated proinflammatory cytokine/chemokine levels, and limbic or multifocal brain lesions indicate active inflammation in NORSE. Among identified causes, autoimmune encephalitis is the most common and accounts for more than one-third of all known NORSE cases, followed by infection-related etiologies. Although more evidence is needed, anti-cytokine therapies with tocilizumab and anakinra along with other immunotherapeutic agents used in autoimmune encephalitis can aid in alleviating or hindering the inflammatory cascade and controlling seizures.
Collapse
Affiliation(s)
- Yong-Won Shin
- Center for Hospital Medicine, Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
46
|
Kirmani BF, Au K, Ayari L, John M, Shetty P, Delorenzo RJ. Super-Refractory Status Epilepticus: Prognosis and Recent Advances in Management. Aging Dis 2021; 12:1097-1119. [PMID: 34221552 PMCID: PMC8219503 DOI: 10.14336/ad.2021.0302] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Super-refractory status epilepticus (SRSE) is a life-threatening neurological emergency with high morbidity and mortality. It is defined as “status epilepticus (SE) that continues or recurs 24 hours or more after the onset of anesthesia, including those cases in which SE recurs on the reduction or withdrawal of anesthesia.” This condition is resistant to normal protocols used in the treatment of status epilepticus and exposes patients to increased risks of neuronal death, neuronal injury, and disruption of neuronal networks if not treated in a timely manner. It is mainly seen in patients with severe acute onset brain injury or presentation of new-onset refractory status epilepticus (NORSE). The mortality, neurological deficits, and functional impairments are significant depending on the duration of status epilepticus and the resultant brain damage. Research is underway to find the cure for this devastating neurological condition. In this review, we will discuss the wide range of therapies used in the management of SRSE, provide suggestions regarding its treatment, and comment on future directions. The therapies evaluated include traditional and alternative anesthetic agents with antiepileptic agents. The other emerging therapies include hypothermia, steroids, immunosuppressive agents, electrical and magnetic stimulation therapies, emergent respective epilepsy surgery, the ketogenic diet, pyridoxine infusion, cerebrospinal fluid drainage, and magnesium infusion. To date, there is a lack of robust published data regarding the safety and effectiveness of various therapies, and there continues to be a need for large randomized multicenter trials comparing newer therapies to treat this refractory condition.
Collapse
Affiliation(s)
- Batool F Kirmani
- 1Texas A&M University College of Medicine, College Station, TX, USA.,3Epilepsy and Functional Neurosurgery Program, Department of Neurology, CHI St. Joseph Health, Bryan, TX, USA
| | - Katherine Au
- 2George Washington University, School of Medicine & Health Sciences, Washington DC, USA
| | - Lena Ayari
- 1Texas A&M University College of Medicine, College Station, TX, USA
| | - Marita John
- 1Texas A&M University College of Medicine, College Station, TX, USA
| | - Padmashri Shetty
- 4M. S. Ramaiah Medical College, M. S. Ramaiah Nagar, Bengaluru, Karnataka, India
| | - Robert J Delorenzo
- 5Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA
| |
Collapse
|
47
|
Lin WS, Hsu TR. Hypothesis: Febrile infection-related epilepsy syndrome is a microglial NLRP3 inflammasome/IL-1 axis-driven autoinflammatory syndrome. Clin Transl Immunology 2021; 10:e1299. [PMID: 34141434 PMCID: PMC8204115 DOI: 10.1002/cti2.1299] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/22/2021] [Accepted: 05/27/2021] [Indexed: 11/08/2022] Open
Abstract
FIRES (febrile infection-related epilepsy syndrome) is a protracted neuroinflammatory condition of obscure cause. It mainly afflicts school-age children and often leads to permanent neurological sequelae. Most treatments to date have been of limited efficacy, while ketogenic diet and anti-interleukin-1 therapy appear beneficial for some patients. Research into this clinical entity is hampered by its rarity and complexity. Nonetheless, accumulating evidence derived from basic investigations and clinical observations converges to implicate the autoinflammatory nature of this syndrome. A closer analysis of current literature suggests that microglia and the NLRP3 inflammasome might be the pivotal cellular and molecular players in FIRES pathogenesis, respectively. Through evidence synthesis, herein we formulate the working hypothesis of overactivation of microglial NLRP3 inflammasome/interleukin-1 axis as the driving event in FIRES by creating a proinflammatory and proconvulsive milieu. The reverberation between neuroinflammation and seizure forms a vicious cycle. The unique properties of microglia might also contribute to unopposed IL-1 signalling and incessant sterile neuroinflammation in this context. The potential therapeutic relevance of the proposed conceptual framework is discussed.
Collapse
Affiliation(s)
- Wei-Sheng Lin
- Department of Pediatrics Taipei Veterans General Hospital Taipei Taiwan.,Institute of Clinical Medicine and Faculty of Medicine National Yang Ming Chiao Tung University Taipei Taiwan
| | - Ting-Rong Hsu
- Department of Pediatrics Taipei Veterans General Hospital Taipei Taiwan.,Institute of Clinical Medicine and Faculty of Medicine National Yang Ming Chiao Tung University Taipei Taiwan
| |
Collapse
|
48
|
Breu M, Häfele C, Glatter S, Trimmel-Schwahofer P, Golej J, Male C, Feucht M, Dressler A. Ketogenic Diet in the Treatment of Super-Refractory Status Epilepticus at a Pediatric Intensive Care Unit: A Single-Center Experience. Front Neurol 2021; 12:669296. [PMID: 34149600 PMCID: PMC8209375 DOI: 10.3389/fneur.2021.669296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/12/2021] [Indexed: 01/01/2023] Open
Abstract
Background: To evaluate the use of the ketogenic diet (KD) for treatment of super-refractory status epilepticus (SRSE) at a pediatric intensive care unit (PICU). Design: A retrospective analysis of all pediatric patients treated for SRSE with the KD at our center was performed using patient data from our prospective longitudinal KD database. Setting: SRSE is defined as refractory SE that continues or recurs 24 h or more after initiation of anesthetic drugs. We describe the clinical and electroencephalographic (EEG) findings of all children treated with KD at our PICU. The KD was administered as add-on after failure of standard treatment. Response was defined as EEG seizure resolution (absence of seizures and suppression–burst ratio ≥50%). Patients: Eight consecutive SRSE patients (four females) treated with KD were included. Median age at onset of SRSE was 13.6 months (IQR 0.9–105), and median age at KD initiation was 13.7 months (IQR 1.9 months to 8.9 years). Etiology was known in 6/8 (75%): genetic in 4 (50%), structural in 1 (12.5%), and autoimmune/inflammatory in 1 (12.5%). Main Results: Time from onset of SRSE to initiation of KD was median 6 days (IQR 1.3–9). Time until clinically relevant ketosis (beta-hydroxybutyrate (BHB) >2 mmol/L in serum) was median 68.0 h (IQR 27.3–220.5). Higher ketosis was achieved when a higher proportion of enteral feeds was possible. Four (50%) patients responded to KD treatment within 7 days. During follow-up (median 4.2 months, IQR 1.6–12.3), 5/8 patients—three of them responders—died within 3–12 months after SRSE. Conclusions: In eight patients with SRSE due to severe etiologies including Alpers syndrome, we report an initial 50% response to KD. KD was used early in SRSE and sufficient levels of ketosis were reached early in most patients. Higher ketosis was achieved with combined enteral and parenteral feedings.
Collapse
Affiliation(s)
- Markus Breu
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Chiara Häfele
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Sarah Glatter
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | | | - Johann Golej
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Christoph Male
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Martha Feucht
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Anastasia Dressler
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| |
Collapse
|
49
|
Baba S, Okanishi T, Ohsugi K, Suzumura R, Niimi K, Shimizu S, Sakihama H, Itamura S, Hirano K, Nishimura M, Fujimoto A, Enoki H. Possible Role of High-Dose Barbiturates and Early Administration of Parenteral Ketogenic Diet for Reducing Development of Chronic Epilepsy in Febrile Infection-Related Epilepsy Syndrome: A Case Report. Neuropediatrics 2021; 52:133-137. [PMID: 33231274 DOI: 10.1055/s-0040-1716903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We describe the efficacy of high-dose barbiturates and early administration of a parenteral ketogenic diet (KD) as initial treatments for acute status epilepticus (SE) in an 8-year-old girl with febrile infection-related epilepsy syndrome (FIRES). The patient was admitted to our hospital with refractory focal SE. Abundant epileptic discharges over the left frontal region were observed on electroencephalogram (EEG). Treatment with continuous infusion of thiamylal for 4 hours, increased incrementally to 40 mg/kg/h, successfully ended the clinical SE, and induced a burst-suppression coma. The infusion rate was then gradually decreased to 4 mg/kg/h over the next 12 hours. Parenteral KD was administered from days 6 to 21 of illness. Continuous infusion of thiamylal was switched to midazolam on day 10 without causing seizures or EEG exacerbations. The patient has remained seizure free in the 15 months since hospital discharge. The effectiveness of KD for the treatment of FIRES has attracted attention amongst clinicians, but KD treatment may need to last for 2 to 4 days before it can stop SE, a time period that could cause irreversible brain damage. Considering the severity of SE in our patient and the dose of barbiturates needed to treat it, we consider this case to have had a good clinical outcome. The results suggest that rapid termination of seizure using high-dose barbiturates in conjunction with early administration of parenteral KD could reduce the development of chronic epilepsy in patients with FIRES.
Collapse
Affiliation(s)
- Shimpei Baba
- Department of Child Neurology, Comprehensive Epilepsy Center, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
| | - Tohru Okanishi
- Department of Child Neurology, Comprehensive Epilepsy Center, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
| | - Koichi Ohsugi
- Department of Emergency & Critical Care Medicine, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
| | - Rika Suzumura
- Division of Nutrition, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
| | - Keiko Niimi
- Division of Rehabilitation, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
| | - Sayuri Shimizu
- Division of Rehabilitation, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
| | - Hiroshi Sakihama
- Department of Pediatrics, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
| | - Shinji Itamura
- Department of Child Neurology, Comprehensive Epilepsy Center, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
| | - Keiko Hirano
- Department of Pediatrics, Iwata City Hospital, Okubo, Iwata, Shizuoka, Japan
| | - Mitsuyo Nishimura
- Division of Clinical Laboratory, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
| | - Ayataka Fujimoto
- Department of Epilepsy and Surgery, Comprehensive Epilepsy Center, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
| | - Hideo Enoki
- Department of Child Neurology, Comprehensive Epilepsy Center, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
50
|
Schoeler NE, Simpson Z, Zhou R, Pujar S, Eltze C, Cross JH. Dietary Management of Children With Super-Refractory Status Epilepticus: A Systematic Review and Experience in a Single UK Tertiary Centre. Front Neurol 2021; 12:643105. [PMID: 33776895 PMCID: PMC7994594 DOI: 10.3389/fneur.2021.643105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/17/2021] [Indexed: 12/16/2022] Open
Abstract
Ketogenic diet therapies (KDT) are high-fat, low carbohydrate diets used as an effective treatment option for drug-resistant epilepsy. There is limited research on the efficacy of KDT for super-refractory status epilepticus (SRSE). We systematically review evidence for use of KDT in children with SRSE and present a single UK tertiary centre's experience. Thirty one articles were included, of which 24 were “medium” or “low” quality. One hundred and forty seven children with SRSE started KDT, of which 141 (96%) achieved ketosis. KDT was started mean 5.3 days (range 1–420) after status epilepticus (SE) started. SRSE resolved in 85/141 (60%) children after mean 6.3 days (range 0–19) post SE onset, but it is unclear whether further treatments were initiated post-KDT. 13/141 (9%) children died. Response to KDT was more likely when initiated earlier (p = 0.03) and in females (p = 0.01). Adverse side effects were reported in 48/141 (34%), mostly gastrointestinal; potentially serious adverse effects occurred in ≤4%. Eight children with SRSE, all diagnosed with febrile infection-related epilepsy syndrome, were treated with KDT at Great Ormond Street Hospital for Children. KDT was initiated enterally at mean day 13.6+/− 5.1 of admission. Seven of 8 (88%) children reported adverse side effects, which were potentially serious in 4/8 (50%), including metabolic acidosis, hypoglycaemia and raised amylase. SE ceased in 6/8 (75%) children after mean 25+/− 9.4 days post onset, but other treatments were often started concomitantly and all children started other treatments post-KDT. Two of 8 (25%) children died during admission and another died post-admission. Four of the remaining 5 children continue to have drug-resistant seizures, one of whom remains on KDT; seizure burden was unknown for one child. Our findings indicate that KDT is possible and safe in children with SRSE. Cessation of SRSE may occur in almost two-thirds of children initiated with KDT, but a causal effect is difficult to determine due to concomitant treatments, treatments started post-KDT and the variable length of time post-KDT onset when SRSE cessation occurs. Given that serious adverse side effects seem rare and response rates are (cautiously) favorable, KDT should be considered as an early treatment option in this group.
Collapse
Affiliation(s)
- Natasha E Schoeler
- Developmental Neurosciences Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Zoe Simpson
- Department of Dietetics, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Runming Zhou
- Developmental Neurosciences Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Suresh Pujar
- Department of Paediatric and Neurology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Christin Eltze
- Department of Paediatric and Neurology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - J H Cross
- Developmental Neurosciences Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom.,Department of Paediatric and Neurology, Great Ormond Street Hospital for Children, London, United Kingdom.,Young Epilepsy, Lingfield, United Kingdom
| |
Collapse
|