1
|
Pang TD, Verrier RL, Schachter SC. Management recommendations to reduce cardiac risk in chronic epilepsy. Epilepsy Behav Rep 2025; 29:100738. [PMID: 39975581 PMCID: PMC11835611 DOI: 10.1016/j.ebr.2024.100738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 02/21/2025] Open
Abstract
Multifactorial lines of evidence in adults point to a critical linkage between chronic epilepsy and elevated risk for cardiovascular disease and premature cardiac death. Diverse pathophysiological processes appear to be involved that include accelerated atherosclerosis, myocardial infarction, abnormal autonomic tone, heart failure, atrial and ventricular arrhythmias, and hyperlipidemia. Seizure-induced surges in catecholamines and hypoxia may be conducive to cardiovascular damage and the Epileptic Heart condition. The current review provides a systematic strategy for clinical management to reduce risk for cardiovascular disease in adult patients with epilepsy. The proposed approach includes adherence to cardiovascular risk guidelines, incorporation of standard monitoring using electrocardiographic and echocardiographic markers, and regular assessment of plasma lipid profiles. Attention is drawn to the arrhythmogenic risks associated with antiseizure medications (ASMs) with sodium channel blocking properties that can disrupt cardiac conduction and repolarization and predispose to ventricular and atrial arrhythmias. Caution is warranted regarding the use of enzyme-inducing ASMs that can increase plasma lipid levels. The ultimate goals of the proposed management recommendations are to mitigate cardiac risk and reduce premature cardiac death in individuals with chronic epilepsy.
Collapse
Affiliation(s)
- Trudy D. Pang
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Richard L. Verrier
- Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Steven C. Schachter
- Departments of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
2
|
Chan SW, Chun A, Nguyen L, Bubolz B, Anderson AE, Lai YC. Associations between epilepsy, respiratory impairment, and minor ECG abnormalities in children. Seizure 2024; 122:39-44. [PMID: 39326248 DOI: 10.1016/j.seizure.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
OBJECTIVE We sought to examine the effects of acute seizures and respiratory derangement on the cardiac electrical properties reflected on the electrocardiogram (ECG); and to analyze their potential interactions with a diagnosis of epilepsy in children. METHODS Emergency center (EC) visits with seizure or epilepsy diagnostic codes from 1/2011-12/2013 were included if they had ECG within 24 h of EC visit. Patients were excluded if they had pre-existing cardiac conditions, ion channelopathy, or were taking specific cardiac medications. Control subjects were 1:1 age and gender matched. Abnormal ECG was defined as changes in rhythm, PR, QRS, or corrected QT intervals; QRS axis or morphology; ST segment; or T wave morphology from normal standards. We identified independent associations between clinical factors and abnormal ECG findings using multivariable logistic regression modeling. RESULTS Ninety-five children with epilepsy presented to the EC with seizures, respiratory distress, and other concerns. Three hundred children without epilepsy presented with seizures. There was an increased prevalence of minor ECG abnormalities in children with epilepsy (49 %) compared to the control subjects (29 %) and those without epilepsy (36 %). Epilepsy (OR: 1.61, 95 %CI: 1.01-2.6), need for supplemental oxygen (OR 3.06, 95 % CI: 1.45-6.44) or mechanical ventilation (OR: 2.5, 95 % CI: 1.03-6.05) were independently associated with minor ECG abnormalities. Secondary analyses further demonstrated an independent association between level of respiratory support and ECG abnormalities only in the epilepsy group. SIGNIFICANCE Independent association of increased respiratory support with minor ECG abnormalities suggests a potential respiratory influence on the hearts of children with epilepsy.
Collapse
Affiliation(s)
- See Wai Chan
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Angela Chun
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Pediatric Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Linh Nguyen
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Emergency Medicine, Orlando Health, Orlando, FL, USA
| | - Beth Bubolz
- Division of Pediatric Emergency Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Pediatric Emergency Medicine, The Ohio State University School of Medicine, Columbus, OH, USA
| | - Anne E Anderson
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yi-Chen Lai
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
3
|
Slater JD, Benbadis S, Verrier RL. The brain-heart connection: Value of concurrent ECG and EEG recordings in epilepsy management. Epilepsy Behav Rep 2024; 28:100726. [PMID: 39559393 PMCID: PMC11570938 DOI: 10.1016/j.ebr.2024.100726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024] Open
Abstract
Concurrent electrocardiogram (ECG) and electroencephalogram (EEG) recording both ictally and interictally has significant value in the comprehensive management of epilepsy. This review highlights the diagnostic utility of simultaneous ECG and EEG monitoring in differentiating between epileptic and cardiac events, detecting cardiac abnormalities, and identifying autonomic dysfunction. The critical role of this combined approach to defining the mechanisms underlying cardiac morbidity and sudden cardiac death in patients with epilepsy and in guiding therapeutic interventions is underscored. The "Epileptic Heart Syndrome" is examined, illustrating how chronic epilepsy can adversely affect cardiac structure and function, leading to increased risk for interictal cardiac arrhythmias, morbidities, and mortality. The findings emphasize the need for standardized protocols for routine concurrent ECG and EEG recording in epilepsy monitoring units both ictally and interictally to ensure comprehensive patient care, improve diagnostic accuracy, and potentially reduce epilepsy-related morbidity and mortality. Future research directions are proposed to address existing gaps and to advance the technology and methodology for concurrent monitoring including wearable and computer-based monitoring systems.
Collapse
Affiliation(s)
| | - Selim Benbadis
- Department of Epilepsy/Neurology, University of South Florida, Tampa General Hospital, Tampa, FL, USA
| | - Richard L. Verrier
- Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
4
|
Algin DI, Erdinc O. Association of hyperventilation-induced heart rate variability and sudden unexpected death in epilepsy in drug-resistant epilepsy. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-7. [PMID: 39489150 DOI: 10.1055/s-0044-1791517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
BACKGROUND Within the general epilepsy population, the incidence of Sudden Unexpected Death in Epilepsy (SUDEP) ranges from approximately 0.35 to 2.3 per 1,000 individuals per year. OBJECTIVE We aimed to evaluate the relationship between SUDEP risk factors and heart rate variability (HRV) parameters as a potential biomarker of SUDEP in patients with drug-resistant epilepsy (DRE). METHODS There were 52 patients diagnosed with DRE and under follow-up, and controls including 45 healthy subjects, included in the study. Hyperventilation-induced HRV (HRVHV) parameters, including the standard deviation of all RR intervals (SDRR), mean heart rate (HR), root mean squares of successive differences (RMSSD), SD of mean NN intervals recordings (SDANN), and HRV triangular index, were assessed during resting. To predict the risk of SUDEP, the relationship between HRV parameters and SUDEP risks was evaluated using the Risk Assessment for Sudden Death in Epilepsy (SUDEP-7) Risk Inventory. RESULTS No statistically significant difference was found in sympathetic skin response (SSR) latency and amplitudes between the patient and control groups. In comparing healthy control subjects with patients experiencing DRE, we observed significant decreases in SDRRHV and hyperventilation-induced RMSSD (RMSSDHV) values, specifically within HRVHV. Notably, a significant correlation emerged concerning the RMSSDHV values (p < 0.01), when examining the correlation between the SUDEP-7 inventory and HRVHV parameters. CONCLUSION This correlation between RMSSDHV and the SUDEP-7 Risk Inventory in patients with DRE represents a novel and consequential finding, suggesting its potential as an indicator of SUDEP risk.
Collapse
Affiliation(s)
- Demet Ilhan Algin
- Eskisehir Osmangazi University Faculty of Medicine, Department of Neurology, Eskisehir, Turkey
| | - Oguz Erdinc
- Eskisehir Osmangazi University Faculty of Medicine, Department of Neurology, Eskisehir, Turkey
| |
Collapse
|
5
|
Iyer SH, Hinman JE, Warren T, Matthews SA, Simeone TA, Simeone KA. Altered ventilatory responses to hypercapnia-hypoxia challenges in a preclinical SUDEP model involve orexin neurons. Neurobiol Dis 2024; 199:106592. [PMID: 38971479 PMCID: PMC11648317 DOI: 10.1016/j.nbd.2024.106592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024] Open
Abstract
Failure to recover from repeated hypercapnia and hypoxemia (HH) challenges caused by severe GCS and postictal apneas may contribute to sudden unexpected death in epilepsy (SUDEP). Our previous studies found orexinergic dysfunction contributes to respiratory abnormalities in a preclinical model of SUDEP, Kcna1-/- mice. Here, we developed two gas challenges consisting of repeated HH exposures and used whole body plethysmography to determine whether Kcna1-/- mice have detrimental ventilatory responses. Kcna1-/- mice exhibited an elevated ventilatory response to a mild repeated hypercapnia-hypoxia (HH) challenge compared to WT. Moreover, 71% of Kcna1-/- mice failed to survive a severe repeated HH challenge, whereas all WT mice recovered. We next determined whether orexin was involved in these differences. Pretreating Kcna1-/- mice with a dual orexin receptor antagonist rescued the ventilatory response during the mild challenge and all subjects survived the severe challenge. In ex vivo extracellular recordings in the lateral hypothalamus of coronal brain slices, we found reducing pH either inhibits or stimulates putative orexin neurons similar to other chemosensitive neurons; however, a significantly greater percentage of putative orexin neurons from Kcna1-/-mice were stimulated and the magnitude of stimulation was increased resulting in augmentation of the calculated chemosensitivity index relative to WT. Collectively, our data suggest that increased chemosensitive activity of orexin neurons may be pathologic in the Kcna1-/- mouse model of SUDEP, and contribute to elevated ventilatory responses. Our preclinical data suggest that those at high risk for SUDEP may be more sensitive to HH challenges, whether induced by seizures or other means; and the depth and length of the HH exposure could dictate the probability of survival.
Collapse
Affiliation(s)
- Shruthi H Iyer
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Jillian E Hinman
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Ted Warren
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Stephanie A Matthews
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Timothy A Simeone
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Kristina A Simeone
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA.
| |
Collapse
|
6
|
Quintino C, Malheiros-Lima MR, Ghazale PP, Braga PPP, Maia OAC, de Oliveira CEG, Andrade FW, Schoorlemmer GH, Moreira TS, da Matta DH, Colugnati DB, Pansani AP. The latency to awake from induced-obstructive sleep apnea is reduced in rats with chronic epilepsy. Epilepsy Behav 2024; 157:109848. [PMID: 38823073 DOI: 10.1016/j.yebeh.2024.109848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/03/2024]
Abstract
OSA is known to increase the risk for SUDEP in persons with epilepsy, but the relationship between these two factors is not clear. Also, there is no study showing the acute responses to obstructive apnea in a chronic epilepsy model. Therefore, this study aimed to characterize cardiorespiratory responses to obstructive apnea and chemoreceptor stimulation in rats. In addition, we analyzed respiratory centers in the brain stem by immunohistochemistry. Epilepsy was induced with pilocarpine. About 30-60 days after the first spontaneous seizure, tracheal and thoracic balloons, and electrodes for recording the electroencephalogram, electromyogram, and electrocardiogram were implanted. Intermittent apneas were made by inflation of the tracheal balloon during wakefulness, NREM sleep, and REM sleep. During apnea, respiratory effort increased, and heart rate fell, especially with apneas made during wakefulness, both in control rats and rats with epilepsy. Latency to awake from apnea was longer with apneas made during REM than NREM, but rats with epilepsy awoke more rapidly than controls with apneas made during REM sleep. Rats with epilepsy also had less REM sleep. Cardiorespiratory responses to stimulation of carotid chemoreceptors with cyanide were similar in rats with epilepsy and controls. Immunohistochemical analysis of Phox2b, tryptophan hydroxylase, and NK1 in brain stem nuclei involved in breathing and sleep (retrotrapezoid nucleus, pre-Bötzinger complex, Bötzinger complex, and caudal raphe nuclei) revealed no differences between control rats and rats with epilepsy. In conclusion, our study showed that rats with epilepsy had a decrease in the latency to awaken from apneas during REM sleep, which may be related to neuroplasticity in some other brain regions related to respiratory control, awakening mechanisms, and autonomic modulation.
Collapse
Affiliation(s)
- Cláudio Quintino
- Department of Physiological Sciences, Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Milene R Malheiros-Lima
- Department of Physiology and Biophysics, Institute of Biomedical Science, Universidade de São Paulo, São Paulo, Brazil
| | - Poliana Peres Ghazale
- Department of Physiological Sciences, Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Pedro Paulo Pereira Braga
- Department of Physiological Sciences, Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Octávio A C Maia
- Department of Physiology and Biophysics, Institute of Biomedical Science, Universidade de São Paulo, São Paulo, Brazil
| | | | - Felipe Waks Andrade
- Institute of Mathematics and Statistics, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Guus H Schoorlemmer
- Physiology Department, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, Universidade de São Paulo, São Paulo, Brazil
| | | | - Diego Basile Colugnati
- Department of Physiological Sciences, Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Aline Priscila Pansani
- Department of Physiological Sciences, Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
7
|
Verrier RL, Schachter SC. The Epileptic Heart Syndrome: Epidemiology, pathophysiology and clinical detection. Epilepsy Behav Rep 2024; 27:100696. [PMID: 39184194 PMCID: PMC11342885 DOI: 10.1016/j.ebr.2024.100696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
Population studies report elevated incidence of cardiovascular events in patients with chronic epilepsy. Multiple pathophysiologic processes have been implicated, including accelerated atherosclerosis, myocardial infarction, altered autonomic tone, heart failure, atrial and ventricular arrhythmias, and hyperlipidemia. These deleterious influences on the cardiovascular system have been attributed to seizure-induced surges in catecholamines and hypoxemic damage to the heart and coronary vasculature. Certain antiseizure medications can accelerate heart disease through enzyme-inducing increases in plasma lipids and/or increasing risk for life-threatening ventricular arrhythmias as a result of sodium channel blockade. In this review, we propose that this suite of pathophysiologic processes constitutes "The Epileptic Heart Syndrome." We further propose that this condition can be diagnosed using standard electrocardiography, echocardiography, and lipid panels. The ultimate goal of this syndromic approach is to evaluate cardiac risk in patients with chronic epilepsy and to promote improved diagnostic strategies to reduce premature cardiac death.
Collapse
Affiliation(s)
- Richard L. Verrier
- Departments of Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, United States
| | - Steven C. Schachter
- Departments of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, United States
- Department of Neurology, Massachusetts General Hospital, 125 Nashua Street, Suite #324, Boston, MA 02114, United States
| |
Collapse
|
8
|
Bartlett-Lee B, Dervan L, Miyake C, Watson RS, Chan SW, Anderson AE, Lai YC. Association of minor electrocardiographic (ECG) abnormalities with epilepsy duration in children: A manifestation of the epileptic heart? Seizure 2024; 118:1-7. [PMID: 38613877 DOI: 10.1016/j.seizure.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024] Open
Abstract
PURPOSE Cardiac abnormalities resulting from chronic epilepsy ("the epileptic heart") constitute a well-recognized comorbidity. However, the association of cardiac alterations with epilepsy duration remains understudied. We sought to evaluate this association using electrocardiogram (ECG). METHODS We prospectively enrolled children between 1 months and 18 years of age without known cardiac conditions or ion channelopathies during routine clinic visits. ECGs were categorized as abnormal if there were alterations in rhythm; PR, QRS, or corrected QT interval; QRS axis or morphology; ST segment or T wave. An independent association between ECG abnormalities and epilepsy duration was evaluated using multivariable logistic regression modeling. RESULTS 213 children were enrolled. 100 ECGs (47%) exhibited at least one alteration; most commonly in the ST segment (37, 17%) and T wave (29, 11%). Children with normal ECGs had shorter epilepsy duration as compared to those with ECG abnormalities (46 [18-91] months vs. 73 [32-128 months], p = 0.004). A multivariable logistic regression model demonstrated that increasing epilepsy duration was independently associated with the presence of ECG abnormalities (OR=1.09, 95% CI=1.02-1.16, p = 0.008), adjusted for seizure frequency, generalized tonic-clonic/focal to bilateral tonic-clonic seizures as the predominant seizure type, and number of channel-modifying anti-seizure medications. Increasing epilepsy duration was also independently associated with the presence of ST/T wave abnormalities (OR=1.09, 95% CI=1.01-1.16, p = 0.017), adjusted for the same covariates. SIGNIFICANCE Increasing epilepsy duration is independently associated with the presence of minor ECG abnormalities. Additional studies are needed to evaluate whether this finding may represent a manifestation of the "epileptic heart".
Collapse
Affiliation(s)
- Brittnie Bartlett-Lee
- Division of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, 6651 Main street, Houston, TX 77030, United States
| | - Leslie Dervan
- Department of Pediatrics, University of Washington School of Medicine, Seattle Children's Research Institute, M/S FA2.112, 4800 Sand Point Way NE, Seattle, WA 98105, United States; Centers for Clinical and Translational Research, Seattle Children's Research Institute, M/S FA2.112, 4800 Sand Point Way NE, Seattle, WA 98105, United States
| | - Christina Miyake
- Division of Pediatric Cardiology, Baylor College of Medicine, 6651 Main street, Houston, TX 77030, United States
| | - R Scott Watson
- Department of Pediatrics, University of Washington School of Medicine, Seattle Children's Research Institute, M/S FA2.112, 4800 Sand Point Way NE, Seattle, WA 98105, United States; Centers for Child Health, Behavior, and Development, Seattle Children's Research Institute, M/S FA2.112, 4800 Sand Point Way NE, Seattle, WA 98105, United States
| | - See Wai Chan
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, 6651 Main street, Houston, TX 77030, United States
| | - Anne E Anderson
- Division of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, 6651 Main street, Houston, TX 77030, United States
| | - Yi-Chen Lai
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, 6651 Main street, Houston, TX 77030, United States.
| |
Collapse
|
9
|
Alam KA, Svalastoga P, Martinez A, Glennon JC, Haavik J. Potassium channels in behavioral brain disorders. Molecular mechanisms and therapeutic potential: A narrative review. Neurosci Biobehav Rev 2023; 152:105301. [PMID: 37414376 DOI: 10.1016/j.neubiorev.2023.105301] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Potassium channels (K+-channels) selectively control the passive flow of potassium ions across biological membranes and thereby also regulate membrane excitability. Genetic variants affecting many of the human K+-channels are well known causes of Mendelian disorders within cardiology, neurology, and endocrinology. K+-channels are also primary targets of many natural toxins from poisonous organisms and drugs used within cardiology and metabolism. As genetic tools are improving and larger clinical samples are being investigated, the spectrum of clinical phenotypes implicated in K+-channels dysfunction is rapidly expanding, notably within immunology, neurosciences, and metabolism. K+-channels that previously were considered to be expressed in only a few organs and to have discrete physiological functions, have recently been found in multiple tissues and with new, unexpected functions. The pleiotropic functions and patterns of expression of K+-channels may provide additional therapeutic opportunities, along with new emerging challenges from off-target effects. Here we review the functions and therapeutic potential of K+-channels, with an emphasis on the nervous system, roles in neuropsychiatric disorders and their involvement in other organ systems and diseases.
Collapse
Affiliation(s)
| | - Pernille Svalastoga
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway; Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | | | - Jeffrey Colm Glennon
- Conway Institute for Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Norway.
| |
Collapse
|
10
|
Giussani G, Falcicchio G, La Neve A, Costagliola G, Striano P, Scarabello A, Mostacci B, Beghi E. Sudden unexpected death in epilepsy: A critical view of the literature. Epilepsia Open 2023; 8:728-757. [PMID: 36896633 PMCID: PMC10472423 DOI: 10.1002/epi4.12722] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a sudden, unexpected, witnessed or unwitnessed, non-traumatic and non-drowning death, occurring in benign circumstances, in an individual with epilepsy, with or without evidence for a seizure and excluding documented status epilepticus in which postmortem examination does not reveal other causes of death. Lower diagnostic levels are assigned when cases met most or all of these criteria, but data suggested more than one possible cause of death. The incidence of SUDEP ranged from 0.09 to 2.4 per 1000 person-years. Differences can be attributed to the age of the study populations (with peaks in the 20-40-year age group) and the severity of the disease. Young age, disease severity (in particular, a history of generalized TCS), having symptomatic epilepsy, and the response to antiseizure medications (ASMs) are possible independent predictors of SUDEP. The pathophysiological mechanisms are not fully known due to the limited data available and because SUDEP is not always witnessed and has been electrophysiologically monitored only in a few cases with simultaneous assessment of respiratory, cardiac, and brain activity. The pathophysiological basis of SUDEP may vary according to different circumstances that make that particular seizure, in that specific moment and in that patient, a fatal event. The main hypothesized mechanisms, which could contribute to a cascade of events, are cardiac dysfunction (included potential effects of ASMs, genetically determined channelopathies, acquired heart diseases), respiratory dysfunction (included postictal arousal deficit for the respiratory mechanism, acquired respiratory diseases), neuromodulator dysfunction, postictal EEG depression and genetic factors.
Collapse
Affiliation(s)
- Giorgia Giussani
- Laboratory of Neurological Disorders, Mario Negri Institute for Pharmacological Research IRCCSMilanItaly
| | - Giovanni Falcicchio
- Department of Basic Medical Sciences, Neurosciences and Sense OrgansUniversity of BariBariItaly
| | - Angela La Neve
- Department of Basic Medical Sciences, Neurosciences and Sense OrgansUniversity of BariBariItaly
| | | | - Pasquale Striano
- IRCCS Istituto “Giannina Gaslini”GenovaItaly
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversity of GenovaGenovaItaly
| | - Anna Scarabello
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | - Barbara Mostacci
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | - Ettore Beghi
- Laboratory of Neurological Disorders, Mario Negri Institute for Pharmacological Research IRCCSMilanItaly
| |
Collapse
|
11
|
Joyal KG, Kreitlow BL, Buchanan GF. The role of sleep state and time of day in modulating breathing in epilepsy: implications for sudden unexpected death in epilepsy. Front Neural Circuits 2022; 16:983211. [PMID: 36082111 PMCID: PMC9445500 DOI: 10.3389/fncir.2022.983211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death among patients with refractory epilepsy. While the exact etiology of SUDEP is unknown, mounting evidence implicates respiratory dysfunction as a precipitating factor in cases of seizure-induced death. Dysregulation of breathing can occur in epilepsy patients during and after seizures as well as interictally, with many epilepsy patients exhibiting sleep-disordered breathing (SDB), such as obstructive sleep apnea (OSA). The majority of SUDEP cases occur during the night, with the victim found prone in or near a bed. As breathing is modulated in both a time-of-day and sleep state-dependent manner, it is relevant to examine the added burden of nocturnal seizures on respiratory function. This review explores the current state of understanding of the relationship between respiratory function, sleep state and time of day, and epilepsy. We highlight sleep as a particularly vulnerable period for individuals with epilepsy and press that this topic warrants further investigation in order to develop therapeutic interventions to mitigate the risk of SUDEP.
Collapse
Affiliation(s)
- Katelyn G. Joyal
- Interdisciplinary Graduate Program in Neuroscience, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Benjamin L. Kreitlow
- Interdisciplinary Graduate Program in Neuroscience, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Gordon F. Buchanan
- Interdisciplinary Graduate Program in Neuroscience, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- *Correspondence: Gordon F. Buchanan
| |
Collapse
|
12
|
Gu L, Yu Q, Shen Y, Wang Y, Xu Q, Zhang H. The role of monoaminergic neurons in modulating respiration during sleep and the connection with SUDEP. Biomed Pharmacother 2022; 150:112983. [PMID: 35453009 DOI: 10.1016/j.biopha.2022.112983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death among epilepsy patients, occurring even more frequently in cases with anti-epileptic drug resistance. Despite some advancements in characterizing SUDEP, the underlying mechanism remains incompletely understood. This review summarizes the latest advances in our understanding of the pathogenic mechanisms of SUDEP, in order to identify possible targets for the development of new strategies to prevent SUDEP. Based on our previous research along with the current literature, we focus on the role of sleep-disordered breathing (SDB) and its related neural mechanisms to consider the possible roles of monoaminergic neurons in the modulation of respiration during sleep and the occurrence of SUDEP. Overall, this review suggests that targeting the monoaminergic neurons is a promising approach to preventing SUDEP. The proposed roles of SDB and related monoaminergic neural mechanisms in SUDEP provide new insights for explaining the pathogenesis of SUDEP.
Collapse
Affiliation(s)
- LeYuan Gu
- Department of Anesthesiology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China; Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qian Yu
- Department of Anesthesiology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China; Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yue Shen
- Department of Anesthesiology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China; Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - YuLing Wang
- Department of Anesthesiology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China; Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qing Xu
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - HongHai Zhang
- Department of Anesthesiology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China; Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310006, China.
| |
Collapse
|
13
|
Hamdy RM, Elaziz OHA, El attar RS, Abdel-Tawab H, Kotb FM. Evaluation of QT dispersion in epileptic patients and its association with SUDEP risk. Epilepsy Res 2022; 180:106860. [DOI: 10.1016/j.eplepsyres.2022.106860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 01/06/2022] [Accepted: 01/16/2022] [Indexed: 11/03/2022]
|
14
|
Chahal CAA, Tester DJ, Fayyaz AU, Jaliparthy K, Khan NA, Lu D, Khan M, Sahoo A, Rajendran A, Knight JA, Simpson MA, Behr ER, So EL, St. Louis EK, Reichard RR, Edwards WD, Ackerman MJ, Somers VK. Confirmation of Cause of Death Via Comprehensive Autopsy and Whole Exome Molecular Sequencing in People With Epilepsy and Sudden Unexpected Death. J Am Heart Assoc 2021; 10:e021170. [PMID: 34816733 PMCID: PMC9075361 DOI: 10.1161/jaha.121.021170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/13/2021] [Indexed: 01/14/2023]
Abstract
Background Sudden cardiac arrest is the leading mode of death in the United States. Epilepsy affects 1% of Americans; yet epidemiological data show a prevalence of 4% in cases of sudden cardiac arrest. Sudden unexpected death in epilepsy (SUDEP) may share features with sudden cardiac arrest. The objective of this study was to report autopsy and genomic findings in a large cohort of SUDEP cases. Methods and Results Mayo Clinic Sudden Death Registry containing cases (ages 0-90 years) of sudden unexpected and unexplained deaths 1960 to present was queried. Exome sequencing performed on decedent cases. From 13 687 cases of sudden death, 656 (4.8%) had a history of seizures, including 368 confirmed by electroencephalography, 96 classified as SUDEP, 58 as non-SUDEP, and 214 as unknown (insufficient records). Mean age of death in SUDEP was 37 (±19.7) years; 56 (58.3%) were male; 65% of deaths occurred at night; 54% were found in bed; and 80.6% were prone. Autopsies were obtained in 83 cases; bystander coronary artery disease was frequently reported as cause of death; nonspecific fibrosis was seen in 32.6% of cases, in structurally normal hearts. There were 4 cases of Dravet syndrome with pathogenic variants in SCN1A gene. Using whole exome sequencing in 11 cases, 18 ultrarare nonsynonymous variants were identified in 6 cases including CACNB2, RYR2, CLNB, CACNA1H, and CLCN2. Conclusions This study examined one of the largest single-center US series of SUDEP cases. Several cases were reclassified as SUDEP, 15% had an ECG when alive, and 11 (11.4%) had blood for whole exome sequencing analysis. The most frequent antemortem genetic finding was pathogenic variants in SCN1A; postmortem whole exome sequencing identified 18 ultrarare variants.
Collapse
Affiliation(s)
- C. Anwar A. Chahal
- Mayo Clinic Graduate School of Biomedical SciencesMayo ClinicRochesterMN
- WellSpan Center for Inherited Cardiovascular DiseasesWellSpan HealthPA
- Department of Cardiovascular MedicineMayo ClinicRochesterMN
- Division of CardiologyDepartment of MedicineUniversity of PennsylvaniaPhiladelphiaPA
| | - David J. Tester
- Department of Cardiovascular MedicineMayo ClinicRochesterMN
- Department of Molecular Pharmacology & Experimental TherapeuticsWindland Smith Rice Sudden Death Genomic LaboratoryMayo ClinicRochesterMN
| | - Ahmed U. Fayyaz
- Department of Cardiovascular MedicineMayo ClinicRochesterMN
- Department of Laboratory Medicine & PathologyMayo ClinicRochesterMN
| | - Keerthi Jaliparthy
- Department of Cardiovascular MedicineMayo ClinicRochesterMN
- Department of MedicineMayo ClinicRochesterMN
- Mayo Clinic College of MedicineMayo ClinicRochesterMN
| | | | - Dongmei Lu
- Department of Cardiovascular MedicineMayo ClinicRochesterMN
- Mayo Clinic College of MedicineMayo ClinicRochesterMN
| | - Mariha Khan
- Department of Cardiovascular MedicineMayo ClinicRochesterMN
| | | | | | | | | | - Elijah R. Behr
- Cardiology Section and Cardiovascular Clinical Academic GroupSt George’s, University of LondonLondonUnited Kingdom
- St George’s University Hospitals’ NHS Foundation TrustLondonUnited Kingdom
| | - Elson L. So
- Department of NeurologyMayo ClinicRochesterMN
| | - Erik K. St. Louis
- Mayo Clinic College of MedicineMayo ClinicRochesterMN
- Department of NeurologyMayo ClinicRochesterMN
- Mayo Center for Sleep MedicineMayo ClinicRochesterMN
| | - R. Ross Reichard
- Department of Laboratory Medicine & PathologyMayo ClinicRochesterMN
| | | | | | - Virend K. Somers
- Department of Cardiovascular MedicineMayo ClinicRochesterMN
- Mayo Clinic College of MedicineMayo ClinicRochesterMN
| |
Collapse
|
15
|
Shlobin NA, Sander JW. Reducing Sudden Unexpected Death in Epilepsy: Considering Risk Factors, Pathophysiology and Strategies. Curr Treat Options Neurol 2021. [DOI: 10.1007/s11940-021-00691-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abstract
Purpose of Review
Sudden Unexpected Death in Epilepsy (SUDEP) is the commonest cause of epilepsy-related premature mortality in people with chronic epilepsy. It is the most devastating epilepsy outcome. We describe and discuss risk factors and possible pathophysiological mechanisms to elucidate possible preventative strategies to avert SUDEP.
Recent Findings
Sudden death accounts for a significant proportion of premature mortality in people with epilepsy compared to the general population. Unmodifiable risk factors include a history of neurologic insult, younger age of seizure-onset, longer epilepsy duration, a history of convulsions, symptomatic epilepsy, intellectual disability, and non-ambulatory status. Modifiable risk factors include the presence of convulsive seizures, increased seizure frequency, timely and appropriate use of antiseizure medications, polytherapy, alcoholism, and supervision while sleeping. Pathophysiology is unclear, but several possible mechanisms such as direct alteration of cardiorespiratory function, pulmonary impairment, electrocerebral shutdown, adenosine dysfunction, and genetic susceptibility suggested.
Summary
Methods to prevent SUDEP include increasing awareness of SUDEP, augmenting knowledge of unmodifiable risk factors, obtaining full seizure remission, addressing lifestyle factors such as supervision and prone positioning, and enacting protocols to increase the detection of and intervention for SUDEP. Further studies are required to characterize precisely and comprehensively SUDEP risk factors and pathophysiological drivers and develop evidence-based algorithms to minimize SUDEP in people with epilepsy.
Collapse
|
16
|
Noori NM, Teimouri A, Khajeh A. Electrocardiography Parameters Changes in Epilepsy and Febrile Convulsion Children Compared with Controls. JOURNAL OF PEDIATRIC EPILEPSY 2021. [DOI: 10.1055/s-0040-1713907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractEpilepsy and febrile convulsion are the most common neurological diseases with significant effect on cardiac functions. This study aimed to evaluate electrocardiography parameters alterations in epilepsy and febrile convulsion children compared with controls. In this comparison study, 270 children analyzed who shared equally in epilepsy, febrile convulsion, and healthy that aged from 0.5 to 5 years. The participants were collected from Ali ibn Abi Talib Hospital of Zahedan, Iran. Epilepsy confirmed based on definition of having at least two unprovoked seizures in 24 hours. Febrile convulsion was confirmed based on its definition by the International League against Epilepsy. Healthy children selected from those referred to the hospital with fever and without any underline diseases. Electrocardiography was performed by a pediatric cardiologist. Data were analyzed using SPSS 19 with p < 0.05 significant level. Heart rate was higher in epilepsy (129.64 ± 27.63) compared with control (108.78 ± 26.01) and febrile convulsion (125.79 ± 25.38; X
2 = 28.701, p < 0.001). S wave in lead V1 was higher in controls (0.72 ± 0.36) compared with epilepsy (0.58 ± 0.45) and febrile convulsion (0.58 ± 0.36). QT dispersion and QTc dispersion levels were higher in epilepsy than febrile convulsion children that both were higher than controls. Concluded that R in aVL, LV mass (LVM), QT dispersion, and QTc dispersion were higher significantly in epilepsy compared with febrile convulsion children. To maintain a good strategic treatment in patients with epilepsy and febrile convulsion, there is a need to assess alternations in ECG parameters, especially QT interval changes that lead to better comprehensive autonomic changes.
Collapse
Affiliation(s)
- Noor Mohammad Noori
- Children & Adolescent Health Research Center, School of Medicine, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Alireza Teimouri
- Children & Adolescent Health Research Center, School of Medicine, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ali Khajeh
- Children & Adolescent Health Research Center, School of Medicine, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
17
|
Chan SW, Dervan LA, Watson RS, Anderson AE, Lai YC. Epilepsy duration is an independent factor for electrocardiographic changes in pediatric epilepsy. Epilepsia Open 2021; 6:588-596. [PMID: 34235879 PMCID: PMC8408606 DOI: 10.1002/epi4.12519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 11/23/2022] Open
Abstract
Objective Cardiac alterations represent a potential epilepsy‐associated comorbidity. Whether cardiac changes occur as a function of epilepsy duration is not well understood. We sought to evaluate whether cardiac alterations represented a time‐dependent phenomenon in pediatric epilepsy. Methods We retrospectively followed pediatric epilepsy patients without preexisting cardiac conditions or ion channelopathies who had history of pediatric intensive care unit admission for convulsive seizures or status epilepticus between 4/2014 and 7/2017. All available 12‐lead electrocardiograms (ECGs) from these patients between 1/2006 and 5/2019 were included. We examined ECG studies for changes in rhythm; PR, QRS, or corrected QT intervals; QRS axis or morphology; ST segment; or T wave. Data were analyzed using multivariable models containing covariates associated with ECG changes or epilepsy duration from the univariate analyses. Results 127 children with 323 ECGs were included in the analyses. The median epilepsy duration was 3.9 years (IQR 1.3‐8.4 years) at the time of an ECG study and a median of 2 ECGs (IQR 1‐3) per subject. The clinical encounters associated with ECGs ranged from well‐child visits to status epilepticus. We observed changes in 171 ECGs (53%), with 83 children (65%) had at least 1 ECG with alterations. In a multivariable logistic regression model adjusting for potentially confounding variables and accounting for clustering by patient, epilepsy duration was independently associated with altered ECGs for each year of epilepsy (OR: 1.1, 95% CI: 1.0‐1.2, P = .002). Extrapolating from this model, children with epilepsy durations of 10 and 15 years had 2.9 and 4.9 times the odds of having ECG changes, respectively. Significance Cardiac alterations may become more common with increasing epilepsy duration in select pediatric epilepsy patients. Future studies are needed to determine the potential clinical implications and the generalizability of these observations.
Collapse
Affiliation(s)
- See Wai Chan
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Leslie A Dervan
- Department of Pediatrics, University of Washington, Seattle, WA, USA.,Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Robert Scott Watson
- Department of Pediatrics, University of Washington, Seattle, WA, USA.,Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA, USA
| | - Anne E Anderson
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yi-Chen Lai
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
18
|
Verrier RL, Pang TD, Nearing BD, Schachter SC. Epileptic heart: A clinical syndromic approach. Epilepsia 2021; 62:1780-1789. [PMID: 34236079 DOI: 10.1111/epi.16966] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
Prevention of premature death in patients with chronic epilepsy remains a major challenge. Multiple pathophysiologic factors have been implicated, with intense investigation of cardiorespiratory mechanisms. Up to four in five patients with chronic epilepsy exhibit cardiovascular comorbidities. These findings led us to propose the concept of an "epileptic heart," defined as "a heart and coronary vasculature damaged by chronic epilepsy as a result of repeated surges in catecholamines and hypoxemia leading to electrical and mechanical dysfunction." Among the most prominent changes documented in the literature are high incidence of myocardial infarction and arrhythmia, altered autonomic tone, diastolic dysfunction, hyperlipidemia, and accelerated atherosclerosis. This suite of pathologic changes prompted us to propose for the first time in this review a syndromic approach for improved clinical detection of the epileptic heart condition. In this review, we discuss the key pathophysiologic mechanisms underlying the candidate criteria along with standard and novel techniques that permit evaluation of each of these factors. Specifically, we present evidence of the utility of standard 12-lead, ambulatory, and multiday patch-based electrocardiograms, along with measures of cardiac electrical instability, including T-wave alternans, heart rate variability to detect altered autonomic tone, echocardiography to detect diastolic dysfunction, and plasma biomarkers for assessing hyperlipidemia and accelerated atherosclerosis. Ultimately, the proposed clinical syndromic approach is intended to improve monitoring and evaluation of cardiac risk in patients with chronic epilepsy to foster improved therapeutic strategies to reduce premature cardiac death.
Collapse
Affiliation(s)
- Richard L Verrier
- Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Trudy D Pang
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Bruce D Nearing
- Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Steven C Schachter
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.,Consortia for Improving Medicine with Innovation and Technology, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Soh MS, Bagnall RD, Bennett MF, Bleakley LE, Mohamed Syazwan ES, Phillips AM, Chiam MDF, McKenzie CE, Hildebrand M, Crompton D, Bahlo M, Semsarian C, Scheffer IE, Berkovic SF, Reid CA. Loss-of-function variants in K v 11.1 cardiac channels as a biomarker for SUDEP. Ann Clin Transl Neurol 2021; 8:1422-1432. [PMID: 34002542 PMCID: PMC8283159 DOI: 10.1002/acn3.51381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 01/14/2023] Open
Abstract
Objective To compare the frequency and impact on the channel function of KCNH2 variants in SUDEP patients with epilepsy controls comprising patients older than 50 years, a group with low SUDEP risk, and establish loss‐of‐function KCNH2 variants as predictive biomarkers of SUDEP risk. Methods We searched for KCNH2 variants with a minor allele frequency of <5%. Functional analysis in Xenopus laevis oocytes was performed for all KCNH2 variants identified. Results KCNH2 variants were found in 11.1% (10/90) of SUDEP individuals compared to 6.0% (20/332) of epilepsy controls (p = 0.11). Loss‐of‐function KCNH2 variants, defined as causing >20% reduction in maximal amplitude, were observed in 8.9% (8/90) SUDEP patients compared to 3.3% (11/332) epilepsy controls suggesting about threefold enrichment (nominal p = 0.04). KCNH2 variants that did not change channel function occurred at a similar frequency in SUDEP (2.2%; 2/90) and epilepsy control (2.7%; 9/332) cohorts (p > 0.99). Rare KCNH2 variants (<1% allele frequency) associated with greater loss of function and an ~11‐fold enrichment in the SUDEP cohort (nominal p = 0.03). In silico tools were unable to predict the impact of a variant on function highlighting the need for electrophysiological analysis. Interpretation These data show that loss‐of‐function KCNH2 variants are enriched in SUDEP patients when compared to an epilepsy population older than 50 years, suggesting that cardiac mechanisms contribute to SUDEP risk. We propose that genetic screening in combination with functional analysis can identify loss‐of‐function KCNH2 variants that could act as biomarkers of an individual’s SUDEP risk.
Collapse
Affiliation(s)
- Ming S Soh
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Richard D Bagnall
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Mark F Bennett
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.,Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia
| | - Lauren E Bleakley
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Erlina S Mohamed Syazwan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - A Marie Phillips
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.,School of Biosciences, University of Melbourne, Melbourne, VIC, Australia
| | - Mathew D F Chiam
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Chaseley E McKenzie
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Michael Hildebrand
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia.,Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Douglas Crompton
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia.,Neurology Department, Northern Health, Epping, VIC, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Ingrid E Scheffer
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.,Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia.,Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.,Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC, Australia
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia
| | - Christopher A Reid
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.,Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia
| |
Collapse
|
20
|
Electrocardiographic Abnormalities and Mortality in Epilepsy Patients. ACTA ACUST UNITED AC 2021; 57:medicina57050504. [PMID: 34065703 PMCID: PMC8156797 DOI: 10.3390/medicina57050504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/04/2021] [Accepted: 05/14/2021] [Indexed: 12/19/2022]
Abstract
Background and Objectives: People with epilepsy (PWE) have a 2–3 times higher mortality rate than the general population. Sudden unexpected death in epilepsy (SUDEP) comprises a significant proportion of premature deaths, whereas sudden cardiac death (SCD) is among the leading causes of sudden death in the general population. Cardiac pathologies are significantly more prevalent in PWE. Whether electrocardiographic (ECG) parameters are associated with remote death in PWE has yet to be elucidated. The study objective was to assess whether interictal ECG parameters are associated with mortality in the long-term. Materials and Methods: The study involved 471 epilepsy patients who were hospitalized after a bilateral tonic-clonic seizure(s). ECG parameters were obtained on the day of hospitalization (heart rate, PQ interval, QRS complex, QT interval, heart rate corrected QT interval (QTc), ST segment and T wave changes), as well as reported ECG abnormalities. Mortality data were obtained from the Latvian National Cause-of-Death database 3–11, mean 7.0 years after hospitalization. The association between the ECG parameters and the long-term clinical outcome were examined. Results: At the time of assessment, 75.4% of patients were alive and 24.6% were deceased. Short QTc interval (odds ratio (OR) 4.780; 95% confidence interval (CI) 1.668–13.698; p = 0.004) was associated with a remote death. After the exclusion of known comorbidities with high mortality rates, short QTc (OR 4.631) and ECG signs of left ventricular hypertrophy (OR 5.009) were associated with a remote death. Conclusions: The association between routine 12-lead rest ECG parameters—short QTc interval and a pattern of left ventricular hypertrophy—and remote death in epilepsy patients was found. To the best of our knowledge, this is the first study to associate rest ECG parameters with remote death in an epileptic population.
Collapse
|
21
|
Verrier RL, Pang TD, Nearing BD, Schachter SC. The Epileptic Heart: Concept and clinical evidence. Epilepsy Behav 2020; 105:106946. [PMID: 32109857 DOI: 10.1016/j.yebeh.2020.106946] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/07/2020] [Accepted: 01/23/2020] [Indexed: 12/18/2022]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is generally considered to result from a seizure, typically convulsive and usually but not always occurring during sleep, followed by a sequence of events in the postictal period starting with respiratory distress and progressing to eventual cardiac asystole and death. Yet, recent community-based studies indicate a 3-fold greater incidence of sudden cardiac death in patients with chronic epilepsy than in the general population, and that in 66% of cases, the cardiac arrest occurred during routine daily activity and without a temporal relationship with a typical seizure. To distinguish a primarily cardiac cause of death in patients with epilepsy from the above description of SUDEP, we propose the concept of the "Epileptic Heart" as "a heart and coronary vasculature damaged by chronic epilepsy as a result of repeated surges in catecholamines and hypoxemia leading to electrical and mechanical dysfunction." This review starts with an overview of the pathophysiological and other lines of evidence supporting the biological plausibility of the Epileptic Heart, followed by a description of tools that have been used to generate new electrocardiogram (EKG)-derived data in patients with epilepsy that strongly support the Epileptic Heart concept and its propensity to cause sudden cardiac death in patients with epilepsy independent of an immediately preceding seizure.
Collapse
Affiliation(s)
- Richard L Verrier
- Harvard Medical School, Beth Israel Deaconess Medical Center, Division of Cardiovascular Medicine and Department of Neurology, Boston, MA United States of America.
| | - Trudy D Pang
- Harvard Medical School, Beth Israel Deaconess Medical Center, Division of Cardiovascular Medicine and Department of Neurology, Boston, MA United States of America
| | - Bruce D Nearing
- Harvard Medical School, Beth Israel Deaconess Medical Center, Division of Cardiovascular Medicine and Department of Neurology, Boston, MA United States of America
| | - Steven C Schachter
- Harvard Medical School, Beth Israel Deaconess Medical Center, Division of Cardiovascular Medicine and Department of Neurology, Boston, MA United States of America
| |
Collapse
|
22
|
Shmuely S, Surges R, Helling RM, Gunning WB, Brilstra EH, Verhoeven JS, Cross JH, Sisodiya SM, Tan HL, Sander JW, Thijs RD. Cardiac arrhythmias in Dravet syndrome: an observational multicenter study. Ann Clin Transl Neurol 2020; 7:462-473. [PMID: 32207228 PMCID: PMC7187713 DOI: 10.1002/acn3.51017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 11/11/2022] Open
Abstract
Objectives We ascertained the prevalence of ictal arrhythmias to explain the high rate of sudden unexpected death in epilepsy (SUDEP) in Dravet syndrome (DS). Methods We selected cases with clinical DS, ≥6 years, SCN1A mutation, and ≥1 seizure/week. Home‐based ECG recordings were performed for 20 days continuously. Cases were matched for age and sex to two epilepsy controls with no DS and ≥1 major motor seizure during video‐EEG. We determined the prevalence of peri‐ictal asystole, bradycardia, QTc changes, and effects of convulsive seizures (CS) on heart rate, heart rate variability (HRV), and PR/QRS. Generalized estimating equations were used to account for multiple seizures within subjects, seizure type, and sleep/wakefulness. Results We included 59 cases. Ictal recordings were obtained in 45 cases and compared to 90 controls. We analyzed 547 seizures in DS (300 CS) and 169 in controls (120 CS). No asystole occurred. Postictal bradycardia was more common in controls (n = 11, 6.5%) than cases (n = 4, 0.7%; P = 0.002). Peri‐ictal QTc‐lengthening (≥60ms) occurred more frequently in DS (n = 64, 12%) than controls (n = 8, 4.7%, P = 0.048); pathologically prolonged QTc was rare (once in each group). In DS, interictal HRV was lower compared to controls (RMSSD P = 0.029); peri‐ictal values did not differ between the groups. Prolonged QRS/PR was rare and more common in controls (QRS: one vs. none; PR: three vs. one). Interpretation We did not identify major arrhythmias in DS which can directly explain high SUDEP rates. Peri‐ictal QTc‐lengthening was, however, more common in DS. This may reflect unstable repolarization and an increased propensity for arrhythmias.
Collapse
Affiliation(s)
- Sharon Shmuely
- Stichting Epilepsie Instellingen Nederland - SEIN, Achterweg 5, 2103 SW Heemstede, Dokter Denekampweg 20, 8025 BV, Zwolle, The Netherlands.,NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Bonn, Germany.,Centre for Rare Diseases Bonn (ZSEB), University Hospital Bonn, Bonn, Germany
| | - Robert M Helling
- Stichting Epilepsie Instellingen Nederland - SEIN, Achterweg 5, 2103 SW Heemstede, Dokter Denekampweg 20, 8025 BV, Zwolle, The Netherlands
| | - W Boudewijn Gunning
- Stichting Epilepsie Instellingen Nederland - SEIN, Achterweg 5, 2103 SW Heemstede, Dokter Denekampweg 20, 8025 BV, Zwolle, The Netherlands
| | - Eva H Brilstra
- Department of Medical Genetics, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Judith S Verhoeven
- Academic Centre for Epileptology Kempenhaeghe, 5590AB Heeze, Heeze, The Netherlands
| | - J Helen Cross
- UCL NIHR BRC Great Ormond Street Institute of Child Health (ICH), 30 Guilford St, London, WC1N 1EH, UK
| | - Sanjay M Sisodiya
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK.,Chalfont Centre for Epilepsy, Bucks, SL9 0RJ, UK
| | - Hanno L Tan
- Heart Centre, Department of Experimental and Clinical Cardiology, Amsterdam University Medical Centres, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Netherlands Heart Institute, Moreelsepark 1, 3511 EP, Utrecht, The Netherlands
| | - Josemir W Sander
- Stichting Epilepsie Instellingen Nederland - SEIN, Achterweg 5, 2103 SW Heemstede, Dokter Denekampweg 20, 8025 BV, Zwolle, The Netherlands.,NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK.,Chalfont Centre for Epilepsy, Bucks, SL9 0RJ, UK
| | - Roland D Thijs
- Stichting Epilepsie Instellingen Nederland - SEIN, Achterweg 5, 2103 SW Heemstede, Dokter Denekampweg 20, 8025 BV, Zwolle, The Netherlands.,NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK.,Department of Neurology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| |
Collapse
|
23
|
Iyer SH, Aggarwal A, Warren TJ, Hallgren J, Abel PW, Simeone TA, Simeone KA. Progressive cardiorespiratory dysfunction in Kv1.1 knockout mice may provide temporal biomarkers of pending sudden unexpected death in epilepsy (SUDEP): The contribution of orexin. Epilepsia 2020; 61:572-588. [PMID: 32030748 PMCID: PMC11818939 DOI: 10.1111/epi.16434] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 12/19/2019] [Accepted: 01/06/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Immediately preceding sudden unexpected death in epilepsy (SUDEP), patients experienced a final generalized tonic-clonic seizure (GTCS), rapid ventilation, apnea, bradycardia, terminal apnea, and asystole. Whether a progressive pathophysiology develops and increases risk of SUDEP remains unknown. Here, we determined (a) heart rate, respiratory rate, and blood oxygen saturation (SaO2 ) in low-risk and high-risk knockout (KO) mice; and (b) whether blocking receptors for orexin, a cardiorespiratory neuromodulator, influences cardiorespiratory function mice or longevity in high-risk KO mice. METHODS Heart rate and SaO2 were determined noninvasively with ECGenie and pulse oximetry. Respiration was determined with noninvasive airway mechanics technology. The role of orexin was determined within subject following acute treatment with a dual orexin receptor antagonist (DORA, 100 mg/kg). The number of orexin neurons in the lateral hypothalamus was determined with immunohistochemistry. RESULTS Intermittent bradycardia was more prevalent in high-risk KO mice, an effect that may be the result of increased parasympathetic drive. High-risk KO mice had more orexin neurons in the lateral hypothalamus. Blocking of orexin receptors differentially influenced heart rate in KO, but not wild-type (WT) mice. When DORA administration increased heart rate, it also decreased heart rate variability, breathing frequency, and/or hypopnea-apnea. Blocking orexin receptors prevented the methacholine (MCh)-induced increase in breathing frequency in KO mice and reduced MCh-induced seizures, via a direct or indirect mechanism. DORA improved oxygen saturation in KO mice with intermittent hypoxia. Daily administration of DORA to high-risk KO mice increased longevity. SIGNIFICANCE High-risk KO mice have a unique cardiorespiratory phenotype that is characterized by progressive changes in five interdependent endpoints. Blocking of orexin receptors attenuates some of these endpoints and increases longevity, supporting the notion that windows of opportunity for intervention exist in this preclinical SUDEP model.
Collapse
Affiliation(s)
- Shruthi H. Iyer
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, U.S.A
| | - Ankita Aggarwal
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, U.S.A
| | - Ted J. Warren
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, U.S.A
| | - Jodi Hallgren
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, U.S.A
| | - Peter W. Abel
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, U.S.A
| | - Timothy A. Simeone
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, U.S.A
| | - Kristina A. Simeone
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, U.S.A
| |
Collapse
|
24
|
Kruse SW, Dayton KG, Purnell BS, Rosner JI, Buchanan GF. Effect of monoamine reuptake inhibition and α 1 blockade on respiratory arrest and death following electroshock-induced seizures in mice. Epilepsia 2019; 60:495-507. [PMID: 30723893 PMCID: PMC6467066 DOI: 10.1111/epi.14652] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/26/2018] [Accepted: 01/03/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in patients with refractory epilepsy. Although the mechanisms for SUDEP are incompletely understood, seizure-induced respiratory arrest (S-IRA) has been strongly and consistently implicated. A body of evidence indicates that serotonin (5-HT), a modulator of breathing, plays a critical role in SUDEP. Because the 5-HT and norepinephrine (NE) systems interact in many biologic processes and NE is known to modulate breathing and seizures, we hypothesized that NE may play a role in S-IRA and SUDEP. METHODS We examined the effects of pharmacologic manipulation of 5-HT and NE on S-IRA and death following maximal electroshock (MES)-induced seizures in adult wild-type (WT) mice, genetically 5-HT neuron-deficient (Lmx1bf/f/p ) mice, and chemically NE neuron-deficient mice. Mice were treated with pharmacologic agents targeting the serotonergic and noradrenergic systems and subjected to seizure induction via MES while breathing was measured via whole-body plethysmography. RESULTS S-IRA and death was reduced in WT mice with NE reuptake inhibitors (NRIs), reboxetine and atomoxetine, selective serotonin reuptake inhibitors (SSRIs), fluoxetine and citalopram, and the dual 5-HT/NE reuptake inhibitor (SNRI), duloxetine. S-IRA and death was also reduced in Lmx1bf/f/p mice with reboxetine and fluoxetine. The protective effects of the reuptake inhibitors were prevented by the α1 antagonist, prazosin. Citalopram did not reduce S-IRA and death in NE neuron-deficient mice. SIGNIFICANCE These data suggest that 5-HT and NE critically interact in the modulation of breathing following a seizure and potentially inform preventive strategies for SUDEP.
Collapse
Affiliation(s)
- Stephen W. Kruse
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242
| | - Kyle G. Dayton
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242
| | - Benton S. Purnell
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242
| | - Jared I. Rosner
- Secondary Student Training Program, University of Iowa, Iowa City, IA 52242
| | - Gordon F. Buchanan
- Department of Neurology, University of Iowa, Iowa City, IA 52242
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242
- Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
25
|
Ictal hypoxemia: A systematic review and meta-analysis. Seizure 2018; 63:7-13. [DOI: 10.1016/j.seizure.2018.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/01/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022] Open
|
26
|
|
27
|
Ruthirago D, Julayanont P, Karukote A, Shehabeldin M, Nugent K. Sudden unexpected death in epilepsy: ongoing challenges in finding mechanisms and prevention. Int J Neurosci 2018; 128:1052-1060. [PMID: 29667458 DOI: 10.1080/00207454.2018.1466780] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Purpose/aim of the study: To summarize recent studies on the pathophysiology and preventive strategies for SUDEP. Materials and methods: Databases and literature review. Results: Patients with epilepsy have a significantly higher risk of death than the general population. Sudden unexpected death in epilepsy (SUDEP) is the leading cause of sudden death among patients with epilepsy. Despite on-going research, there are still deficits in our knowledge about the mechanisms, genetic factors, and prevention of SUDEP. Current evidence suggests that cardiac arrhythmias, respiratory dysfunction, and brainstem arousal system dysfunction are the major mechanisms of SUDEP, and animal models support the role of neurotransmitters, especially serotonin and adenosine, in pathophysiology of SUDEP. Several mutations in the neurocardiogenic channelopathy genes have been identified as a possible cause of epilepsy and increased SUDEP risk. The lack of awareness that SUDEP can be a potential cause of premature death has been found in several surveys. In addition, medical legal cases demonstrate the need for more education about this condition. Several preventive strategies to reduce SUDEP have been proposed, including effective seizure control, nocturnal supervision, seizure monitoring, devices to protect the airway, and selective serotonin reuptake inhibitors. Further research is needed to determine the efficacy of these interventions. Conclusions: The major mechanisms of SUDEP include cardiac arrhythmias, respiratory dysfunction, and brainstem arousal system dysfunction. Effective control of seizures is the only effective strategy to prevent SUDEP. Other preventive interventions require more research.
Collapse
Affiliation(s)
- Doungporn Ruthirago
- a Department of Neurology , Texas Tech University Health Science Center , Lubbock , TX , USA
| | - Parunyou Julayanont
- a Department of Neurology , Texas Tech University Health Science Center , Lubbock , TX , USA
| | - Amputch Karukote
- b Department of Internal Medicine, Faculty of Medicine, Ramathibodi Hospital , Mahidol University , Bangkok , Thailand
| | - Mohamed Shehabeldin
- a Department of Neurology , Texas Tech University Health Science Center , Lubbock , TX , USA
| | - Kenneth Nugent
- c Department of Internal Medicine , Texas Tech University Health Science Center , Lubbock , TX , USA
| |
Collapse
|
28
|
Ba-Armah DM, Donner EJ, Ochi A, Go C, McCoy B, Snead C, Drake J, Jones KC. "Saved by the Bell": Near SUDEP during intracranial EEG monitoring. Epilepsia Open 2018; 3:98-102. [PMID: 29588994 PMCID: PMC5839318 DOI: 10.1002/epi4.12093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2017] [Indexed: 01/13/2023] Open
Abstract
SUDEP is the sudden unexpected death of a person with epilepsy, when no structural or toxicological cause of death can be found. The majority of witnessed cases are reported to be preceded by a convulsive seizure and postictal hypoventilation. Here, we report an 8‐year‐old girl with drug‐resistant focal seizures secondary to a focal cortical dysplasia type IIb. While undergoing invasive intracranial monitoring with subdural and depth electrodes, she had a clinical apnea event recorded on video, followed by bradycardia, which required resuscitation. Her intracranial electroencephalogram (EEG) during the event showed diffuse slowing and attenuation of cortical activity, with bradycardia that responded to positive pressure ventilation with oxygen. This near SUDEP event was not preceded by either an electroclinical or electrographic seizure. This is the first report of a witnessed, near‐SUDEP event during intracranial monitoring. It emphasizes the fact that near‐SUDEP can occur without a preceding seizure.
Collapse
Affiliation(s)
- Duaa M Ba-Armah
- Pediatric Neurology/Epilepsy Department of Pediatrics King Abdullah Specialized Children Hospital, KASCH Riyadh Saudi Arabia
| | - Elizabeth J Donner
- Division of Neurology Department of Pediatrics The Hospital for Sick Children Toronto Ontario Canada
| | - Ayako Ochi
- Division of Neurology Department of Pediatrics The Hospital for Sick Children Toronto Ontario Canada
| | - Cristina Go
- Division of Neurology Department of Pediatrics The Hospital for Sick Children Toronto Ontario Canada
| | - Bláthnaid McCoy
- Division of Neurology Department of Pediatrics The Hospital for Sick Children Toronto Ontario Canada
| | - Carter Snead
- Division of Neurology Department of Pediatrics The Hospital for Sick Children Toronto Ontario Canada
| | - James Drake
- Division of Neurosurgery Department of Surgery The Hospital for Sick Children Toronto Ontario Canada
| | - Kevin C Jones
- The Division of Neurology Department of Pediatrics McMaster Children's Hospital Hamilton Ontario Canada
| |
Collapse
|
29
|
Ali W, Bubolz BA, Nguyen L, Castro D, Coss-Bu J, Quach MM, Kennedy CE, Anderson AE, Lai YC. Epilepsy is associated with ventricular alterations following convulsive status epilepticus in children. Epilepsia Open 2017; 2:432-440. [PMID: 29430560 PMCID: PMC5800777 DOI: 10.1002/epi4.12074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Objective Convulsive status epilepticus can exert profound cardiovascular effects in adults, including ventricular depolarization–repolarization abnormalities. Whether status epilepticus adversely affects ventricular electrical properties in children is less understood. Therefore, we sought to characterize ventricular alterations and the associated clinical factors in children following convulsive status epilepticus. Methods We conducted a 2‐year retrospective case–control study. Children between 1 month and 21 years of age were included if they were admitted to the pediatric intensive care unit with primary diagnosis of convulsive status epilepticus and had 12‐lead electrocardiogram (ECG) within 24 h of admission. Children with heart disease or ion channelopathy, or who were on vasoactive medications were excluded. Age‐matched control subjects had no history of seizures or epilepsy. The primary outcome was ventricular abnormalities represented by ST segment changes, abnormal T wave, QRS axis deviation, and corrected QT (QTc) interval prolongation. The secondary outcomes included QT/RR relationship, beat‐to‐beat QTc interval variability, ECG interval measurement between groups, and clinical factors associated with ECG abnormalities. Results Of 317 eligible children, 59 met the inclusion criteria. History of epilepsy was present in 31 children (epileptic) and absent in 28 children (nonepileptic). Compared with the control subjects (n = 31), the status epilepticus groups were more likely to have an abnormal ECG, with overall odds ratios of 3.8 and 7.0 for the nonepileptic and the epileptic groups, respectively. Simple linear regression analysis demonstrated that children with epilepsy exhibited impaired dependence and adaptation of the QT interval on heart rate. Beat‐to‐beat QTc interval variability, a marker of ventricular repolarization instability, was increased in children with epilepsy. Significance Convulsive status epilepticus can adversely affect ventricular electrical properties and stability in children, especially those with epilepsy. These findings suggest that children with epilepsy may be particularly vulnerable to seizure‐induced arrhythmias. Therefore, postictal cardiac surveillance may be warranted in this population.
Collapse
Affiliation(s)
- Wail Ali
- Section of Pediatric Critical Care Medicine, Department of Pediatrics, West Virginia University, Morgantown, WV
| | - Beth A Bubolz
- Section of Pediatric Emergency Medicine, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio
| | - Linh Nguyen
- Section of Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Danny Castro
- Section of Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Jorge Coss-Bu
- Section of Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Michael M Quach
- Section of Pediatric Neurology and Developmental Neuroscience; Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Curtis E Kennedy
- Section of Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Anne E Anderson
- Section of Pediatric Neurology and Developmental Neuroscience; Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Yi-Chen Lai
- Section of Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
30
|
Bagnall RD, Crompton DE, Semsarian C. Genetic Basis of Sudden Unexpected Death in Epilepsy. Front Neurol 2017; 8:348. [PMID: 28775708 PMCID: PMC5517398 DOI: 10.3389/fneur.2017.00348] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/03/2017] [Indexed: 11/13/2022] Open
Abstract
People with epilepsy are at heightened risk of sudden death compared to the general population. The leading cause of epilepsy-related premature mortality is sudden unexpected death in epilepsy (SUDEP). Postmortem investigation of people with SUDEP, including histological and toxicological analysis, does not reveal a cause of death, and the mechanisms of SUDEP remain largely unresolved. In this review we present the possible mechanisms underlying SUDEP, including respiratory dysfunction, cardiac arrhythmia and postictal generalized electroencephlogram suppression. Emerging studies in humans and animal models suggest there may be an underlying genetic basis to SUDEP in some cases. We will highlight a mounting body of evidence for the involvement of genetic risk factors in SUDEP, with a particular focus on the role of cardiac arrhythmia genes in SUDEP.
Collapse
Affiliation(s)
- Richard D Bagnall
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Douglas E Crompton
- Department of Neurology, Northern Health, Melbourne, VIC, Australia.,Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, VIC, Australia
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| |
Collapse
|
31
|
Amin S, Lux A, Calder N, Laugharne M, Osborne J, O'callaghan F. Causes of mortality in individuals with tuberous sclerosis complex. Dev Med Child Neurol 2017; 59:612-617. [PMID: 27935023 DOI: 10.1111/dmcn.13352] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2016] [Indexed: 12/22/2022]
Abstract
AIM The causes of death in patients with tuberous sclerosis complex (TSC) have rarely been studied, with only one published account, which was reported from the Mayo Clinic in 1991. We aimed to investigate mortality in a large cohort of patients with TSC from one of two national referral clinics in the UK. METHOD We identified 284 patients who attended Bath TSC clinic between 1981 and 2015, and ascertained causes of death by reviewing medical records, death certificates, and postmortem reports. RESULTS Sixteen patients died from complications of TSC: eight from TSC kidney diseases; four from sudden unexpected death in epilepsy (SUDEP); two from lymphangioleiomyomatosis; one from a subependymal giant cell astrocytoma; and one from a pancreatic malignancy. The median age of death was 33 years (interquartile range [IQR] 26-46). Mortality was significantly more common in patients with learning disabilities than in those without (13/135 [9%] vs 3/131 [2%]; two-tailed Fisher exact test p=0.020). INTERPRETATION Renal disease is a major cause of mortality in TSC. Lifelong surveillance and early intervention is warranted. SUDEP is also an important cause of mortality. Patients with learning disabilities are at significantly greater risk of early mortality and this implies the need for greater vigilance for TSC-related complications in this group. Female patients are vulnerable to pulmonary and renal disease. Pancreatic lesions are a rare but potentially treatable cause of mortality.
Collapse
Affiliation(s)
- Sam Amin
- Paediatric Neurology, University Hospitals Bristol, Bristol, UK
| | - Andrew Lux
- Paediatric Neurology, University Hospitals Bristol, Bristol, UK
| | - Nuala Calder
- Paediatric Department, Royal United Hospital, Bath, UK
| | | | - John Osborne
- Paediatric Department, Royal United Hospital, Bath, UK
| | - Finbar O'callaghan
- Clinical Neurosciences Section, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
32
|
Blades Golubovic S, Rossmeisl JH. Status epilepticus in dogs and cats, part 1: etiopathogenesis, epidemiology, and diagnosis. J Vet Emerg Crit Care (San Antonio) 2017; 27:278-287. [PMID: 28445615 DOI: 10.1111/vec.12605] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/28/2015] [Accepted: 10/20/2015] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To review current knowledge of the etiopathogenesis, diagnosis, and consequences of status epilepticus (SE) in veterinary patients. DATA SOURCES Human and veterinary literature, including clinical and laboratory research and reviews. ETIOPATHOGENESIS Status epilepticus is a common emergency in dogs and cats, and may be the first manifestation of a seizure disorder. It results from the failure of termination of an isolated seizure. Multiple factors are involved in SE, including initiation and maintenance of neuronal excitability, neuronal network synchronization, and brain microenvironmental contributions to ictogenesis. Underlying etiologies of epilepsy and SE in dogs and cats are generally classified as genetic (idiopathic), structural-metabolic, or unknown. DIAGNOSIS Diagnosis of convulsive SE is usually made based on historical information and the nature of the seizures. Patient specific variables, such as the history, age of seizure onset, and physical and interictal neurological examination findings can help hone the rule out list, and are used to guide selection and prioritization of diagnostic tests. Electroencephalographic monitoring is routinely used in people to diagnose SE and guide patient care decisions, but is infrequently performed in veterinary medicine. Nonconvulsive status epilepticus has been recognized in veterinary patients; routine electroencephalography would aid in the diagnosis of this phenomenon in dogs and cats. CLINICAL SEQUELAE Status epilepticus is a medical emergency that can result in life-threatening complications involving the brain and systemic organs. Status epilepticus often requires comprehensive diagnostic testing, treatment with multiple anticonvulsant agents, and intensive supportive care.
Collapse
Affiliation(s)
| | - John H Rossmeisl
- Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, 24060
| |
Collapse
|
33
|
Goldenholz DM, Kuhn A, Austermuehle A, Bachler M, Mayer C, Wassertheurer S, Inati SK, Theodore WH. Long-term monitoring of cardiorespiratory patterns in drug-resistant epilepsy. Epilepsia 2016; 58:77-84. [PMID: 27864903 DOI: 10.1111/epi.13606] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2016] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Sudden unexplained death in epilepsy (SUDEP) during inpatient electroencephalography (EEG) monitoring has been a rare but potentially preventable event, with associated cardiopulmonary markers. To date, no systematic evaluation of alarm settings for a continuous pulse oximeter (SpO2 ) has been performed. In addition, evaluation of the interrelationship between the ictal and interictal states for cardiopulmonary measures has not been reported. METHODS Patients with epilepsy were monitored using video-EEG, SpO2 , and electrocardiography (ECG). Alarm thresholds were tested systematically, balancing the number of false alarms with true seizure detections. Additional cardiopulmonary patterns were explored using automated ECG analysis software. RESULTS One hundred ninety-three seizures (32 generalized) were evaluated from 45 patients (7,104 h recorded). Alarm thresholds of 80-86% SpO2 detected 63-73% of all generalized convulsions and 20-28% of all focal seizures (81-94% of generalized and 25-36% of focal seizures when considering only evaluable data). These same thresholds resulted in 25-146 min between false alarms. The sequential probability of ictal SpO2 revealed a potential common seizure termination pathway of desaturation. A statistical model of corrected QT intervals (QTc), heart rate (HR), and SpO2 revealed close cardiopulmonary coupling ictally. Joint probability maps of QTc and SpO2 demonstrated that many patients had baseline dysfunction in either cardiac, pulmonary, or both domains, and that ictally there was dissociation-some patients exhibited further dysfunction in one or both domains. SIGNIFICANCE Optimal selection of continuous pulse oximetry thresholds involves a tradeoff between seizure detection accuracy and false alarm frequency. Alarming at 86% for patients that tend to have fewer false alarms and at 80% for those who have more, would likely result in a reasonable tradeoff. The cardiopulmonary findings may lead to SUDEP biomarkers and early seizure termination therapies.
Collapse
Affiliation(s)
| | - Amanda Kuhn
- NINDS, National Institutes of Health, Bethesda, Maryland, U.S.A
| | | | | | | | | | - Sara K Inati
- NINDS, National Institutes of Health, Bethesda, Maryland, U.S.A
| | | |
Collapse
|
34
|
Aurlien D, Gjerstad L, Taubøll E. The role of antiepileptic drugs in sudden unexpected death in epilepsy. Seizure 2016; 43:56-60. [PMID: 27886630 DOI: 10.1016/j.seizure.2016.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/26/2016] [Accepted: 11/05/2016] [Indexed: 01/30/2023] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) primarily affects young adults and is the leading cause of death related directly to seizures. High frequency of generalized tonic-clonic seizures is the most important risk factor, and effective seizure protection is probably the most important measure to prevent these tragic deaths. For several years a potential role of antiepileptic drugs (AEDs) has been discussed, but at present there is wide agreement that choice of AED therapy does not influence the risk. However, although it is well known that the efficacy and safety profiles of AEDs may differ significantly when used in the treatment of genetic epilepsy compared to symptomatic or cryptogenic epilepsy, this has generally been overlooked in epidemiologic studies of possible relationships between AEDs and SUDEP. Consequently important information about drug safety may have been lost. This review challenges the current view that no AED can increase the risk of SUDEP.
Collapse
Affiliation(s)
- Dag Aurlien
- Neuroscience Research Group and Department of Neurology, Stavanger University Hospital, Stavanger, Norway.
| | - Leif Gjerstad
- Department of Neurology, Oslo University Hospital and Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Erik Taubøll
- Department of Neurology, Oslo University Hospital and Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
35
|
The heart of epilepsy: Current views and future concepts. Seizure 2016; 44:176-183. [PMID: 27843098 DOI: 10.1016/j.seizure.2016.10.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/03/2016] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular (CV) comorbidities are common in people with epilepsy. Several mechanisms explain why these conditions tend to co-exist including causal associations, shared risk factors and those resulting from epilepsy or its treatment. Various arrhythmias occurring during and after seizures have been described. Ictal asystole is the most common cause. The converse phenomenon, arrhythmias causing seizures, appears extremely rare and has only been reported in children following cardioinihibitory syncope. Arrhythmias in epilepsy may not only result from seizure activity but also from a shared genetic susceptibility. Various cardiac and epilepsy genes could be implicated but firm evidence is still lacking. Several antiepileptic drugs (AEDs) triggering conduction abnormalities can also explain the co-existence of arrhythmias in epilepsy. Epidemiological studies have consistently shown that people with epilepsy have a higher prevalence of structural cardiac disease and a poorer CV risk profile than those without epilepsy. Shared CV risk factors, genetics and etiological factors can account for a significant part of the relationship between epilepsy and structural cardiac disease. Seizure activity may cause transient myocardial ischaemia and the Takotsubo syndrome. Additionally, certain AEDs may themselves negatively affect CV risk profile in epilepsy. Here we discuss the fascinating borderland of epilepsy and cardiovascular conditions. The review focuses on epidemiology, clinical presentations and possible mechanisms for shared pathophysiology. It concludes with a discussion of future developments and a call for validated screening instruments and guidelines aiding the early identification and treatment of CV comorbidity in epilepsy.
Collapse
|
36
|
Verrier RL, Nearing BD, Olin B, Boon P, Schachter SC. Baseline elevation and reduction in cardiac electrical instability assessed by quantitative T-wave alternans in patients with drug-resistant epilepsy treated with vagus nerve stimulation in the AspireSR E-36 trial. Epilepsy Behav 2016; 62:85-9. [PMID: 27450311 DOI: 10.1016/j.yebeh.2016.06.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Reports of cardiac arrhythmias and cardiac pathology at postmortem examination of patients with epilepsy suggest a possible cardiac component of risk for sudden unexpected death in epilepsy (SUDEP). T-wave alternans (TWA) is an established marker of cardiac electrical instability and risk for sudden death in patients with cardiovascular disease. We determined the TWA level before vagus nerve stimulation (VNS) system implantation and subsequently the effect of VNS on TWA in patients with drug-resistant epilepsy. METHODS Patients (n=28) from the Seizure Detection and Automatic Magnet Mode Performance Study (E-36), a clinical trial of the AspireSR® VNS Therapy System® (NCT01325623), were monitored with ambulatory electrocardiograms (ECGs) ~2weeks before de novo VNS system implantation and following 2- to 4-week VNS titration during a protocol-specified 3- to 5-day epilepsy monitoring unit stay with concurrent EEG/ECG recordings. The TWA level was assessed interictally by the Modified Moving Average (MMA) method. RESULTS At preimplantation baseline, TWA was elevated above the 47-μV abnormality cutpoint in 23 (82%) patients with drug-resistant epilepsy. In 16 (70%) patients, TWA level was reduced during VNS treatment to <47μV, thereby converting positive TWA test results to negative. Peak TWA level in all 28 patients improved (group mean, 43%, from 72±4.3 to 41±2.3μV; p<0.0001). Vagus nerve stimulation was not associated with reduced heart rate (77±1.4 to 75±1.4beats/min; p=0.18). Heart rate variability was unchanged. SIGNIFICANCE These findings suggest significant interictal cardiac electrical instability in this population of patients with drug-resistant epilepsy and suggest that VNS may be a novel approach to reducing risk.
Collapse
Affiliation(s)
- Richard L Verrier
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| | - Bruce D Nearing
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Bryan Olin
- LivaNova PLC, Houston, TX, United States
| | - Paul Boon
- On Behalf of the E-36 Study Group, Ghent University Hospital, Ghent, Belgium
| | - Steven C Schachter
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Massachusetts General Hospital and Center for Integration of Medicine and Innovative Technology, Boston, MA, United States
| |
Collapse
|
37
|
Ravindran K, Powell KL, Todaro M, O'Brien TJ. The pathophysiology of cardiac dysfunction in epilepsy. Epilepsy Res 2016; 127:19-29. [PMID: 27544485 DOI: 10.1016/j.eplepsyres.2016.08.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 08/07/2016] [Accepted: 08/10/2016] [Indexed: 11/15/2022]
Abstract
Alterations in cardiac electrophysiology are an established consequence of long-standing drug resistant epilepsy. Patients with chronic epilepsy display abnormalities in both sinoatrial node pacemaker current as well as ventricular repolarizing current that places them at a greater risk of developing life-threatening cardiac arrhythmias. The development of cardiac arrhythmias secondary to drug resistant epilepsy is believed to be a key mechanism underlying the phenomenon of Sudden Unexpected Death in EPilepsy (SUDEP). Though an increasing amount of studies examining both animal models and human patients have provided evidence that chronic epilepsy can detrimentally affect cardiac function, the underlying pathophysiology remains unclear. Recent work has shown the expression of several key cardiac ion channels to be altered in animal models of genetic and acquired epilepsies. This has led to the currently held paradigm that cardiac ion channel expression may be secondarily altered as a consequence of seizure activity-resulting in electrophysiological cardiac dysfunction. Furthermore, cortical autonomic dysfunction - resulting from seizure activity-has also been suggested to play a role, whereby seizure activity may indirectly influence cardiac function via altering centrally-mediated autonomic output to the heart. In this review, we discuss various cardiac dysrhythmias associated with seizure events-including tachycardia, bradycardia and QT prolongation, both ictally and inter-ictally, as well as the role of the autonomic nervous system. We further discuss key ion channels expressed in both the heart and the brain that have been shown to be altered in epilepsy and may be responsible for the development of cardiac dysrhythmias secondary to chronic epilepsy.
Collapse
Affiliation(s)
- Krishnan Ravindran
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, Australia.
| | - Kim L Powell
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Marian Todaro
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Terence J O'Brien
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, Australia.
| |
Collapse
|
38
|
Rugg-Gunn F, Duncan J, Hjalgrim H, Seyal M, Bateman L. From unwitnessed fatality to witnessed rescue: Nonpharmacologic interventions in sudden unexpected death in epilepsy. Epilepsia 2016; 57 Suppl 1:26-34. [PMID: 26749014 DOI: 10.1111/epi.13231] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2015] [Indexed: 12/18/2022]
Abstract
Sudden unexpected death in epilepsy (SUDEP) risk reduction remains a critical aim in epilepsy care. To date, only aggressive medical and surgical efforts to control seizures have been demonstrated to be of benefit. Incomplete understanding of SUDEP mechanisms limits the development of more specific interventions. Periictal cardiorespiratory dysfunction is implicated in SUDEP; postictal electroencephalography (EEG) suppression, coma, and immobility may also play a role. Nocturnal supervision is protective against SUDEP, presumably by permitting intervention in the case of a life-threatening event. Resuscitative efforts were implemented promptly in near-SUDEP cases but delayed in SUDEP deaths in the Mortality in Epilepsy Monitoring Unit Study (MORTEMUS) study. Nursing interventions--including repositioning, oral suctioning, and oxygen administration--reduce seizure duration, respiratory dysfunction, and EEG suppression in the epilepsy monitoring unit (EMU), but have not been studied in outpatients. Cardiac pacemakers or cardioverter-defibrillator devices may be of benefit in a few select individuals. A role for implantable neurostimulators has not yet been established. Seizure detection devices, including those that monitor generalized tonic-clonic seizure-associated movements or cardiorespiratory parameters, may provide a means to permit timely periictal intervention. However, these and other devices, such as antisuffocation pillows, have not been adequately investigated with respect to SUDEP prevention.
Collapse
Affiliation(s)
- Fergus Rugg-Gunn
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom.,Chalfont Centre for Epilepsy, Chalfont St. Peter, United Kingdom
| | - John Duncan
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | | | - Masud Seyal
- Department of Neurology, University of California Davis, Sacramento, California, U.S.A
| | - Lisa Bateman
- Department of Neurology, Columbia University, New York, New York, U.S.A
| |
Collapse
|
39
|
Holt RL, Arehart E, Hunanyan A, Fainberg NA, Mikati MA. Pediatric Sudden Unexpected Death in Epilepsy: What Have we Learned from Animal and Human Studies, and Can we Prevent it? Semin Pediatr Neurol 2016; 23:127-33. [PMID: 27544469 DOI: 10.1016/j.spen.2016.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Several factors, such as epilepsy syndrome, poor compliance, and increased seizure frequency increase the risks of sudden unexpected death in epilepsy (SUDEP). Animal models have revealed that the mechanisms of SUDEP involve initially a primary event, often a seizure of sufficient type and severity, that occurs in a brain, which is vulnerable to SUDEP due to either genetic or antecedent factors. This primary event initiates a cascade of secondary events starting, as some models indicate, with cortical spreading depolarization that propagates to the brainstem where it results in autonomic dysfunction. Intrinsic abnormalities in brainstem serotonin, adenosine, sodium-postassium ATPase, and respiratory-control systems are also important. The tertiary event, which results from the above dysfunction, consists of either lethal central apnea, pulmonary edema, or arrhythmia. Currently, it is necessary to (1) continue researching SUDEP mechanisms, (2) work on reducing SUDEP risk factors, and (3) address the major need to counsel families about SUDEP.
Collapse
Affiliation(s)
- Rebecca L Holt
- Division of Pediatric Neurology, Lucile Packard Children's Hospital at Stanford University, Palo Alto, CA
| | - Eric Arehart
- Division of Pediatric Neurology, Children's Health Center, Duke University Medical Center, Durham, NC
| | - Arsen Hunanyan
- Division of Pediatric Neurology, Children's Health Center, Duke University Medical Center, Durham, NC
| | - Nina A Fainberg
- Division of Pediatric Neurology, Children's Health Center, Duke University Medical Center, Durham, NC
| | - Mohamad A Mikati
- Division of Pediatric Neurology, Children's Health Center, Duke University Medical Center, Durham, NC.
| |
Collapse
|
40
|
Pansani AP, Colugnati DB, Scorza CA, de Almeida ACG, Cavalheiro EA, Scorza FA. Furthering our understanding of SUDEP: the role of animal models. Expert Rev Neurother 2016; 16:561-72. [PMID: 27029803 DOI: 10.1586/14737175.2016.1169925] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Sudden and unexpected death in epilepsy (SUDEP) is the most common type of death among patients with epilepsy. Here, we address the importance of the experimental models in search of the mechanisms underlying SUDEP. Most studies have investigated the cardiovascular responses in animal models of epilepsy. However, there are few proposed SUDEP models in literature. Hypoventilation, apnea, respiratory distress, pulmonary hypertension, autonomic dysregulation and arrhythmia are common findings in epilepsy models. Impairments on adenosinergic and serotonergic systems, brainstem spreading depolarization, seizure-activation of neural substrates related to cardiorespiratory control, altered autonomic control, and mutations on sodium and potassium channels are hypothesis suggested. Overall, current research highlights the evident multifactorial nature of SUDEP, which involves acute and chronic aspects ranging from systemic to molecular alterations. Thus, we are convinced that elucidation and prevention of SUDEP can be achieved only through the interaction between basic and clinical science.
Collapse
Affiliation(s)
- Aline P Pansani
- a Laboratório Integrado de Fisiopatologia Cardiovascular e Neurológica. Departamento de Ciências Fisiológicas , Universidade Federal de Goiás , Goiânia , Brasil
| | - Diego B Colugnati
- a Laboratório Integrado de Fisiopatologia Cardiovascular e Neurológica. Departamento de Ciências Fisiológicas , Universidade Federal de Goiás , Goiânia , Brasil
| | - Carla A Scorza
- b Disciplina de Neurociência. Departamento de Neurologia/Neurocirurgia , Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP) , São Paulo , Brasil
| | - Antonio-Carlos G de Almeida
- c Laboratório de Neurociência Experimental e Computacional. Departamento de Engenharia de Biossistemas , Universidade Federal de São João del-Rei , São João del-Rei , Brasil
| | - Esper A Cavalheiro
- b Disciplina de Neurociência. Departamento de Neurologia/Neurocirurgia , Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP) , São Paulo , Brasil
| | - Fulvio A Scorza
- b Disciplina de Neurociência. Departamento de Neurologia/Neurocirurgia , Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP) , São Paulo , Brasil
| |
Collapse
|
41
|
Dlouhy BJ, Gehlbach BK, Richerson GB. Sudden unexpected death in epilepsy: basic mechanisms and clinical implications for prevention. J Neurol Neurosurg Psychiatry 2016; 87:402-13. [PMID: 26979537 DOI: 10.1136/jnnp-2013-307442] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 05/13/2015] [Indexed: 12/14/2022]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the most common cause of death in patients with intractable epilepsy. The substantial lifetime risk of SUDEP and the lack of a clear pathophysiological connection between epilepsy itself and sudden death have fuelled increased attention to this phenomenon. Understanding the mechanisms underlying SUDEP is paramount to developing preventative strategies. In this review, we discuss SUDEP population studies, case-control studies, witnessed and monitored cases, as well as human seizure cardiorespiratory findings related to SUDEP, and SUDEP animal models. We integrate these data to suggest the most probable mechanisms underlying SUDEP. Understanding the modifiable risk factors and pathophysiology allows us to discuss potential preventative strategies.
Collapse
Affiliation(s)
- Brian J Dlouhy
- Department of Neurosurgery, University of Iowa, Iowa City, Iowa, USA
| | - Brian K Gehlbach
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - George B Richerson
- Department of Neurology, University of Iowa, Iowa City, Iowa, USA Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
42
|
Seizures and brain regulatory systems: consciousness, sleep, and autonomic systems. J Clin Neurophysiol 2016; 32:188-93. [PMID: 25233249 DOI: 10.1097/wnp.0000000000000133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Research into the physiologic underpinnings of epilepsy has revealed reciprocal relationships between seizures and the activity of several regulatory systems in the brain. This review highlights recent progress in understanding and using the relationships between seizures and the arousal or consciousness system, the sleep-wake and associated circadian system, and the central autonomic network.
Collapse
|
43
|
Bagnall RD, Crompton DE, Petrovski S, Lam L, Cutmore C, Garry SI, Sadleir LG, Dibbens LM, Cairns A, Kivity S, Afawi Z, Regan BM, Duflou J, Berkovic SF, Scheffer IE, Semsarian C. Exome-based analysis of cardiac arrhythmia, respiratory control, and epilepsy genes in sudden unexpected death in epilepsy. Ann Neurol 2016; 79:522-34. [PMID: 26704558 DOI: 10.1002/ana.24596] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 12/14/2015] [Accepted: 12/20/2015] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The leading cause of epilepsy-related premature mortality is sudden unexpected death in epilepsy (SUDEP). The cause of SUDEP remains unknown. To search for genetic risk factors in SUDEP cases, we performed an exome-based analysis of rare variants. METHODS Demographic and clinical information of 61 SUDEP cases were collected. Exome sequencing and rare variant collapsing analysis with 2,936 control exomes were performed to test for genes enriched with damaging variants. Additionally, cardiac arrhythmia, respiratory control, and epilepsy genes were screened for variants with frequency of <0.1% and predicted to be pathogenic with multiple in silico tools. RESULTS The 61 SUDEP cases were categorized as definite SUDEP (n = 54), probable SUDEP (n = 5), and definite SUDEP plus (n = 2). We identified de novo mutations, previously reported pathogenic mutations, or candidate pathogenic variants in 28 of 61 (46%) cases. Four SUDEP cases (7%) had mutations in common genes responsible for the cardiac arrhythmia disease, long QT syndrome (LQTS). Nine cases (15%) had candidate pathogenic variants in dominant cardiac arrhythmia genes. Fifteen cases (25%) had mutations or candidate pathogenic variants in dominant epilepsy genes. No gene reached genome-wide significance with rare variant collapsing analysis; however, DEPDC5 (p = 0.00015) and KCNH2 (p = 0.0037) were among the top 30 genes, genome-wide. INTERPRETATION A sizeable proportion of SUDEP cases have clinically relevant mutations in cardiac arrhythmia and epilepsy genes. In cases with an LQTS gene mutation, SUDEP may occur as a result of a predictable and preventable cause. Understanding the genetic basis of SUDEP may inform cascade testing of at-risk family members.
Collapse
Affiliation(s)
- Richard D Bagnall
- Agnes Ginges Center for Molecular Cardiology, Centenary Institute, Sydney, Australia.,Sydney Medical School, University of Sydney, Sydney, Australia
| | - Douglas E Crompton
- Neurology Department, Northern Health, Melbourne, Australia.,Epilepsy Research Center, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
| | - Slavé Petrovski
- Epilepsy Research Center, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia.,Institute for Genomic Medicine, Columbia University, New York, NY
| | - Lien Lam
- Agnes Ginges Center for Molecular Cardiology, Centenary Institute, Sydney, Australia.,Sydney Medical School, University of Sydney, Sydney, Australia
| | - Carina Cutmore
- Agnes Ginges Center for Molecular Cardiology, Centenary Institute, Sydney, Australia.,Sydney Medical School, University of Sydney, Sydney, Australia
| | - Sarah I Garry
- Epilepsy Research Center, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
| | - Lynette G Sadleir
- Department of Pediatrics and Child Health, School of Medicine and Health Sciences, University of Otago, Wellington, New Zealand
| | - Leanne M Dibbens
- Epilepsy Research Program, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Anita Cairns
- Neurosciences Department, Lady Cilento Children's Hospital, Brisbane, Australia
| | - Sara Kivity
- Epilepsy Unit, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel
| | - Zaid Afawi
- Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Brigid M Regan
- Epilepsy Research Center, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
| | - Johan Duflou
- Sydney Medical School, University of Sydney, Sydney, Australia.,Department of Forensic Medicine, Sydney, Australia
| | - Samuel F Berkovic
- Epilepsy Research Center, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
| | - Ingrid E Scheffer
- Epilepsy Research Center, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia.,Department of Neurology, The Royal Children's Hospital, Parkville, Melbourne, Victoria, Australia.,Florey Institute of Neurosciences and Mental Health, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia
| | - Christopher Semsarian
- Agnes Ginges Center for Molecular Cardiology, Centenary Institute, Sydney, Australia.,Sydney Medical School, University of Sydney, Sydney, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
44
|
Abstract
Sudden unexpected death in epilepsy is likely caused by a cascade of events affecting the vegetative nervous system leading to cardiorespiratory failure and death. Multiple genetic, electrophysiological, neurochemical, and pharmacological cardiac alterations have been associated with epilepsy, which can affect autonomic regulation of the heart and predispose patients to sudden unexpected death in epilepsy. These cardiac and autonomic changes are more frequently seen in patients with longstanding and medication refractory epilepsy and may be a prerequisite for sudden unexpected death in epilepsy. Cardiac changes are also observed within the immediate periictal period in patients with and without preexisting cardiac pathology and could be the tipping point in the cascade of events compromising autonomic, respiratory, and cardiac function during an epileptic convulsion. Better understanding if and how these cardiac alterations can make a particular individual with epilepsy more susceptible to sudden unexpected death in epilepsy will hopefully lead us to more effective preventative strategies.
Collapse
|
45
|
Abstract
SUMMARY Sudden unexpected death in epilepsy (SUDEP) remains a leading cause of epilepsy-related death, and yet, its pathogenic mechanisms remain ill-defined. Although epidemiological studies of SUDEP in heterogenous populations have established a number of clinical associations, evaluation and stratification of individual risk remains difficult. Thus, potential markers as predictors of risk of SUDEP are important not only clinically but also for research on SUDEP prevention. Recordings from rare monitored cases of SUDEP demonstrate postictal generalized EEG suppression after terminal seizures, raising expectations that postictal generalized EEG suppression may identify individuals at higher risk. In this review, we consider the literature on postictal generalized EEG suppression and evaluate its relevance and utility as a possible marker of SUDEP.
Collapse
|
46
|
|
47
|
Abstract
PURPOSE OF REVIEW Human and experimental research has identified cardioautonomic and respiratory dysfunction as a frequent accompaniment in human and animal model events of sudden unexpected death in epilepsy (SUDEP). This review aims to provide an overview of the scientific evidence behind the currently accepted risk factors and working hypotheses regarding SUDEP pathophysiology. RECENT FINDINGS Epidemiological analysis of public health burden of SUDEP has shown that it rates second only to stroke in the years of potential life lost. Clinical and experimental studies uncovered the dynamic cardiorespiratory dysfunction interictally and imminently to SUDEP, and model systems have facilitated discoveries in SUDEP mechanistic understanding and application of pilot therapeutic interventions. Pilot molecular profiling of human SUDEP has uncovered complex genomic structure in the candidate gene network. SUMMARY Extensive clinical and experimental work has established a rationale for the conceptual thinking about SUDEP mechanisms. The application of the global molecular profiling will be invaluable in unraveling the individually unique genomic complexities and interactions that underlie the physiological signature of each patient. At the same time, sophisticated model systems will be critical in the iterative translation of human genetics, physiology, pharmacological interventions, and in testing preventive interventions.
Collapse
Affiliation(s)
- Alica M Goldman
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
48
|
Lamberts RJ, Blom MT, Novy J, Belluzzo M, Seldenrijk A, Penninx BW, Sander JW, Tan HL, Thijs RD. Increased prevalence of ECG markers for sudden cardiac arrest in refractory epilepsy. J Neurol Neurosurg Psychiatry 2015; 86:309-13. [PMID: 24946773 PMCID: PMC4345521 DOI: 10.1136/jnnp-2014-307772] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND AIM People with epilepsy are at increased risk of sudden cardiac arrest (SCA) due to ECG-confirmed ventricular tachycardia/fibrillation, as seen in a community-based study. We aimed to determine whether ECG-risk markers of SCA are more prevalent in people with epilepsy. METHODS In a cross-sectional, retrospective study, we analysed the ECG recordings of 185 people with refractory epilepsy and 178 controls without epilepsy. Data on epilepsy characteristics, cardiac comorbidity, and drug use were collected, and general ECG variables (heart rate (HR), PQ and QRS intervals) assessed. We analysed ECGs for three markers of SCA risk: severe QTc prolongation (male >450 ms, female >470 ms), Brugada ECG pattern, and early repolarisation pattern (ERP). Multivariate regression models were used to analyse differences between groups, and to identify associated clinical and epilepsy-related characteristics. RESULTS People with epilepsy had higher HR (71 vs 62 bpm, p<0.001) and a longer PQ interval (162.8 vs 152.6 ms, p=0.001). Severe QTc prolongation and ERP were more prevalent in people with epilepsy (QTc prolongation: 5% vs 0%; p=0.002; ERP: 34% vs 13%, p<0.001), while the Brugada ECG pattern was equally frequent in both groups (2% vs 1%, p>0.999). After adjustment for covariates, epilepsy remained associated with ERP (ORadj 2.4, 95% CI 1.1 to 5.5) and severe QTc prolongation (ORadj 9.9, 95% CI 1.1 to 1317.7). CONCLUSIONS ERP and severe QTc prolongation appear to be more prevalent in people with refractory epilepsy. Future studies must determine whether this contributes to increased SCA risk in people with epilepsy.
Collapse
Affiliation(s)
- R J Lamberts
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - M T Blom
- Department of Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands
| | - J Novy
- NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, London and Epilepsy Society, Chalfont St Peter, UK
| | - M Belluzzo
- NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, London and Epilepsy Society, Chalfont St Peter, UK Neurology Unit, Azienda Ospedaliero-Universitaria Ospedali Riuniti, Trieste, Italy
| | - A Seldenrijk
- Department of Psychiatry, EMGO Institute for Health and Care Research and Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - B W Penninx
- Department of Psychiatry, EMGO Institute for Health and Care Research and Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - J W Sander
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, London and Epilepsy Society, Chalfont St Peter, UK
| | - H L Tan
- Department of Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands
| | - R D Thijs
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, London and Epilepsy Society, Chalfont St Peter, UK LUMC Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
49
|
Kothare SV, Singh K. Cardiorespiratory abnormalities during epileptic seizures. Sleep Med 2014; 15:1433-9. [PMID: 25311834 DOI: 10.1016/j.sleep.2014.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 07/17/2014] [Accepted: 08/22/2014] [Indexed: 01/01/2023]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a leading cause of death in young and otherwise healthy patients with epilepsy, and sudden death is at least 20 times more common in epilepsy patients as compared to patients without epilepsy. A significant proportion of patients with epilepsy experience cardiac and respiratory complications during seizures. These cardiorespiratory complications are suspected to be a significant risk factor for SUDEP. Sleep physicians are increasingly involved in the care of epilepsy patients and a recognition of these changes in relation to seizures while a patient is under their care may improve their awareness of these potentially life-threatening complications that may occur during sleep studies. This paper details these cardiopulmonary changes that take place in relation to epileptic seizures and how these changes may relate to the occurrence of SUDEP.
Collapse
Affiliation(s)
- Sanjeev V Kothare
- Comprehensive Epilepsy Center, Department of Neurology, New York University Langone Medical Center, New York, NY, USA.
| | - Kanwaljit Singh
- Comprehensive Epilepsy Center, Department of Neurology, New York University Langone Medical Center, New York, NY, USA; Department of Pediatrics (Neurology), University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
50
|
Buchanan GF, Murray NM, Hajek MA, Richerson GB. Serotonin neurones have anti-convulsant effects and reduce seizure-induced mortality. J Physiol 2014; 592:4395-410. [PMID: 25107926 DOI: 10.1113/jphysiol.2014.277574] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in patients with refractory epilepsy. Defects in central control of breathing are important contributors to the pathophysiology of SUDEP, and serotonin (5-HT) system dysfunction may be involved. Here we examined the effect of 5-HT neurone elimination or 5-HT reduction on seizure risk and seizure-induced mortality. Adult Lmx1b(f/f/p) mice, which lack >99% of 5-HT neurones in the CNS, and littermate controls (Lmx1b(f/f)) were subjected to acute seizure induction by maximal electroshock (MES) or pilocarpine, variably including electroencephalography, electrocardiography, plethysmography, mechanical ventilation or pharmacological therapy. Lmx1b(f/f/p) mice had a lower seizure threshold and increased seizure-induced mortality. Breathing ceased during most seizures without recovery, whereas cardiac activity persisted for up to 9 min before terminal arrest. The mortality rate of mice of both genotypes was reduced by mechanical ventilation during the seizure or 5-HT2A receptor agonist pretreatment. The selective serotonin reuptake inhibitor citalopram reduced mortality of Lmx1b(f/f) but not of Lmx1b(f/f/p) mice. In C57BL/6N mice, reduction of 5-HT synthesis with para-chlorophenylalanine increased MES-induced seizure severity but not mortality. We conclude that 5-HT neurones raise seizure threshold and decrease seizure-related mortality. Death ensued from respiratory failure, followed by terminal asystole. Given that SUDEP often occurs in association with generalised seizures, some mechanisms causing death in our model might be shared with those leading to SUDEP. This model may help determine the relationship between seizures, 5-HT system dysfunction, breathing and death, which may lead to novel ways to prevent SUDEP.
Collapse
Affiliation(s)
- Gordon F Buchanan
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06520, USA Veteran's Affairs Medical Center, West Haven, CT, 06516, USA
| | - Nicholas M Murray
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Michael A Hajek
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - George B Richerson
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06520, USA Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA Veteran's Affairs Medical Center, Iowa City, IA, 52242, USA
| |
Collapse
|