1
|
Jia Z, Zhang Y, Cao L, Wang J, Liang H. Research hotspots and trends of immunotherapy and melanoma: A bibliometric analysis during 2014-2024. Hum Vaccin Immunother 2025; 21:2464379. [PMID: 40012099 PMCID: PMC11869780 DOI: 10.1080/21645515.2025.2464379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/22/2025] [Accepted: 02/05/2025] [Indexed: 02/28/2025] Open
Abstract
Over the last decade, the increasing global prevalence of melanoma has sparked growing interest in immunotherapies, which show significant potential against this form of skin cancer. This research aims to offer a framework to guide future studies and inspire new research directions. In this study, we used the Web of Science Core Collection to collect papers on immunotherapy and melanoma published between 2014 and 2024. With Excel and visualization tools like VOSviewer, COOC 13.2, Citespace, and Bibliometrix (R-Tool of R-Studio), we analyzed the data to spot trends and new focuses in the research. Our findings indicate a substantial surge in research activity concerning immunotherapy and melanoma between 2014 and 2024. The USA and China emerged as leading contributors, engaging in extensive and close collaborative efforts with European counterparts. Furthermore, seven of the top 10 research institutions are located in the USA, with the MD Anderson Cancer Center in Texas being the most productive. In addition, the Journal of Cancer Immunotherapy is the journal with the most articles published in the field. Professor Georgina V. Long from the Melanoma Institute at the University of Sydney was one of the most productive scholars. Keyword analysis shows that immune checkpoint inhibitors, tumor microenvironment and targeted therapies are key areas of interest for the research community. This paper uses bibliometric analysis to outline research trends and key points in immunotherapy and melanoma from 2014 to 2024, which helps understand the current research and guides future research directions.
Collapse
Affiliation(s)
- Zixuan Jia
- Department of Urology, People’s Hospital of Longhua, Shenzhen, Guangdong, China
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Youao Zhang
- Department of Urology, People’s Hospital of Longhua, Shenzhen, Guangdong, China
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Luyan Cao
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland
| | - Jieyan Wang
- Department of Urology, People’s Hospital of Longhua, Shenzhen, Guangdong, China
| | - Hui Liang
- Department of Urology, People’s Hospital of Longhua, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Pinho JO, Coelho M, Pimpão C, Konwar J, Godinho-Santos A, Noiva RM, Thomas SR, Casini A, Soveral G, Gaspar MM. Liposomal Formulation of an Organogold Complex Enhancing Its Activity as Antimelanoma Agent-In Vitro and In Vivo Studies. Pharmaceutics 2024; 16:1566. [PMID: 39771545 PMCID: PMC11678262 DOI: 10.3390/pharmaceutics16121566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: The therapeutic management of melanoma, the most aggressive form of skin cancer, remains challenging. In the search for more effective therapeutic options, metal-based complexes are being investigated for their anticancer properties. Cisplatin was the first clinically approved platinum-based drug and, based on its success, other metals (e.g., gold) are being used to design novel compounds. Methods: the antimelanoma potential of a new organometallic cyclometalated Au(III) complex [[Au(CNOxN)Cl2] (CNOxN = 2-(phenyl-(2-pyridinylmethylene)aminoxy acetic acid))] (ST004) was evaluated in vitro and in vivo. Furthermore, the gold-based complex was incorporated in liposomes to overcome solubility and stability problems, to promote accumulation at melanoma sites and to maximize the therapeutic effect while controlling its reactivity. The antiproliferative activity of ST004 formulations was assessed in murine (B16F10) and human (A375 and MNT-1) melanoma cell lines after 24 and 48 h incubation periods. The proof-of-concept of the antimelanoma properties of ST004 formulations was carried out in subcutaneous and metastatic murine melanoma models. Results: the developed liposomal formulations showed a low mean size (around 100 nm), high homogeneity (with a low polydispersity index) and high incorporation efficiency (51 ± 15%). ST004 formulations exhibited antiproliferative activity with EC50 values in the μmolar range being cell-line- and incubation-period-dependent. On the opposite side, the benchmark antimelanoma compound, dacarbazine (DTIC), presented an EC50 > 100 μM. Cell cycle analysis revealed an arrest in G0/G1 phase for Free-ST004 in all cell lines. In turn, LIP-ST004 led to a G0/G1 halt in B16F10, and to an arrest in S phase in A375 and MNT-1 cells. Preliminary mechanistic studies in human red blood cells suggest that gold-based inhibition of glycerol permeation acts through aquaglyceroporin 3 (AQP3). In a metastatic murine melanoma, a significant reduction in lung metastases in animals receiving LIP-ST004, compared to free gold complex and DTIC, was observed. Conclusion: This study highlights the antimelanoma potential of a new gold-based complex. Additional studies, namely in vivo biodistribution profile and therapeutic validation of this organogold complex in other melanoma models, are expected to be performed in further investigations.
Collapse
Affiliation(s)
- Jacinta O. Pinho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.O.P.); (M.C.); (C.P.); (A.G.-S.); (G.S.)
| | - Mariana Coelho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.O.P.); (M.C.); (C.P.); (A.G.-S.); (G.S.)
| | - Catarina Pimpão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.O.P.); (M.C.); (C.P.); (A.G.-S.); (G.S.)
| | - Jahnobi Konwar
- Faculty of Pharmacy, Jagiellonian University Medical College, 31-008 Krakow, Poland;
| | - Ana Godinho-Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.O.P.); (M.C.); (C.P.); (A.G.-S.); (G.S.)
| | - Rute M. Noiva
- CIISA, Interdisciplinary Centre of Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Sophie R. Thomas
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, 85747 Garching bei München, Germany; (S.R.T.); (A.C.)
- Faculty of Chemistry, Department of Inorganic Chemistry, University of Vienna, Währinger Straße 42, A-1090 Wien, Austria
| | - Angela Casini
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, 85747 Garching bei München, Germany; (S.R.T.); (A.C.)
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.O.P.); (M.C.); (C.P.); (A.G.-S.); (G.S.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.O.P.); (M.C.); (C.P.); (A.G.-S.); (G.S.)
- IBEB—Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
3
|
Chen Y, Tang S, Cai F, Wan Y. Strategies for Small Extracellular Vesicle-Based Cancer Immunotherapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0421. [PMID: 39040921 PMCID: PMC11260559 DOI: 10.34133/research.0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed vesicles released by cells. EVs encapsulate proteins and nucleic acids of their parental cell and efficiently deliver the cargo to recipient cells. These vesicles act as mediators of intercellular communication and thus play a crucial role in various physiological and pathological processes. Moreover, EVs hold promise for clinical use. They have been explored as drug delivery vehicles, therapeutic agents, and targets for disease diagnosis. In the landscape of cancer research, while strides have been made in EV-focused cancer physiopathology, liquid biopsy, and drug delivery, the exploration of EVs as immunotherapeutic agents may not have seen substantial progress to date. Despite promising findings reported in cell and animal studies, the clinical translation of EV-based cancer immunotherapeutics encounters challenges. Here, we review the existing strategies used in EV-based cancer immunotherapy, aiming to propel the development of this emerging yet crucial field.
Collapse
Affiliation(s)
- Yundi Chen
- Department of Breast Surgery, Tongji Hospital, School of Medicine,
Tongji University, Shanghai, China
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering,
Binghamton University, Binghamton, NY, USA
| | - Shasha Tang
- Department of Breast Surgery, Tongji Hospital, School of Medicine,
Tongji University, Shanghai, China
| | - Fengfeng Cai
- Department of Breast Surgery, Tongji Hospital, School of Medicine,
Tongji University, Shanghai, China
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering,
Binghamton University, Binghamton, NY, USA
| |
Collapse
|
4
|
Zhang J, Joshua AM, Li Y, O'Meara CH, Morris MJ, Khachigian LM. Targeted therapy, immunotherapy, and small molecules and peptidomimetics as emerging immunoregulatory agents for melanoma. Cancer Lett 2024; 586:216633. [PMID: 38281663 DOI: 10.1016/j.canlet.2024.216633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024]
Abstract
Primary cutaneous melanoma is the most lethal of all skin neoplasms and its incidence is increasing. Clinical management of advanced melanoma in the last decade has been revolutionised by the availability of immunotherapies and targeted therapies, used alone and in combination. This article summarizes advances in the treatment of late-stage melanoma including use of protein kinase inhibitors, antibody-based immune checkpoint inhibitors, adoptive immunotherapy, vaccines and more recently, small molecules and peptidomimetics as emerging immunoregulatory agents.
Collapse
Affiliation(s)
- Jingwen Zhang
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Anthony M Joshua
- Kinghorn Cancer Centre, St Vincent's Hospital, Garvan Institute of Medical Research, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Yue Li
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Connor H O'Meara
- Department of Otorhinolaryngology, Head & Neck Surgery, ANU Medical School and Canberra Health Services, Australian National University, Acton, Canberra, ACT, Australia
| | - Margaret J Morris
- Department of Pharmacology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Levon M Khachigian
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia.
| |
Collapse
|
5
|
Xavier PL, Marção M, Simões RL, Job MEG, de Francisco Strefezzi R, Fukumasu H, Malta TM. Machine learning determines stemness associated with simple and basal-like canine mammary carcinomas. Heliyon 2024; 10:e26714. [PMID: 38439848 PMCID: PMC10909659 DOI: 10.1016/j.heliyon.2024.e26714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024] Open
Abstract
Simple and complex carcinomas are the most common type of malignant Canine Mammary Tumors (CMTs), with simple carcinomas exhibiting aggressive behavior and poorer prognostic. Stemness is an ability associated with cancer initiation, malignancy, and therapeutic resistance, but is still few elucidated in canine mammary tumor subtypes. Here, we first validated, using CMT samples, a previously published canine one-class logistic regression machine learning algorithm (OCLR) to predict stemness (mRNAsi) in canine cancer cells. Then, using the canine mRNAsi, we observed that simple carcinomas exhibit higher stemness than complex carcinomas and other histological subtypes. Also, we confirmed that stemness is higher and associated with basal-like CMTs and with NMF2 metagene signature, a tumor-specific DNA-repair metagene signature. Using correlation analysis, we selected the top 50 genes correlated with higher stemness, and the top 50 genes correlated with lower stemness and further performed a gene set enrichment analysis to observe the biological processes enriched for these genes. Finally, we suggested two promise stemness-associated targets in CMTs, POLA2 and APEX1, especially in simple carcinomas. Thus, our work elucidates stemness as a potential mechanism behind the aggressiveness and development of canine mammary tumors, especially in simple carcinomas, describing evidence of a promising strategy to target this disease.
Collapse
Affiliation(s)
- Pedro L.P. Xavier
- Laboratory of Comparative and Translational Oncology (LOCT), Department of Veterinary Medicine, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Maycon Marção
- Cancer Epigenomics Laboratory, Department of Clinical Analysis, Toxicology and Food Sciences, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Renan L.S. Simões
- Cancer Epigenomics Laboratory, Department of Clinical Analysis, Toxicology and Food Sciences, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maria Eduarda G. Job
- Laboratory of Comparative and Translational Oncology (LOCT), Department of Veterinary Medicine, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Ricardo de Francisco Strefezzi
- Laboratory of Comparative and Translational Oncology (LOCT), Department of Veterinary Medicine, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Heidge Fukumasu
- Laboratory of Comparative and Translational Oncology (LOCT), Department of Veterinary Medicine, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Tathiane M. Malta
- Cancer Epigenomics Laboratory, Department of Clinical Analysis, Toxicology and Food Sciences, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
6
|
Tan Y, Lu Y, Chen S, Zou C, Qin B. Immunotherapy for ocular melanoma: a bibliometric and visualization analysis from 1991 to 2022. Front Oncol 2023; 13:1161759. [PMID: 37324010 PMCID: PMC10265996 DOI: 10.3389/fonc.2023.1161759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Background In recent years, new therapeutic options to overcome the mechanisms of tumor immune suppression be effective in the treatment of cutaneous melanoma. These approaches have also been applied in ocular melanoma. The aim of this study is to present the current status and research hotspots of immunotherapy for ocular melanoma from a bibliometric perspective and to explore the field of immunotherapy for malignant ocular melanoma research. Methods In this study, the Web of Science Core Collection database (WoSCC) and Pubmed were selected to search the literature related to immunotherapy of ocular melanoma. Using VOSviewer, CiteSpace, the R package "bibliometrix," and the bibliometric online platform through the construction and visualization of bibliometric networks, the country/region, institution, journal, author, and keywords were analyzed to predict the most recent trends in research pertaining to ocular melanoma and immunotherapy. Results A total of 401 papers and 144 reviews related to immunotherapy of ocular melanoma were included. The United States is the main driver of research in the field, ranking first in terms of the number of publications, total citations, and H-index. The UNIVERSITY OF TEXAS SYSTEM is the most active institution, contributing the most papers. Jager, Martine is the most prolific author, and Carvajal, Richard is the most frequently cited author. CANCERS is the most published journal in the field and J CLIN ONCOL is the most cited journal. In addition to ocular melanoma and immunotherapy, the most popular keywords were "uveal melanoma" and "targeted therapy". According to keyword co-occurrence and burst analysis, uveal melanoma, immunotherapy, melanoma, metastases, bap1, tebentafusp, bioinformatics, conjunctival melanoma, immune checkpoint inhibitors, ipilimumab, pembrolizumab, and other research topics appear to be at the forefront of this field's research and have the potential to remain a hot research topic in the future. Conclusion This is the first bibliometric study in the last 30 years to comprehensively map the knowledge structure and trends in the field of research related to ocular melanoma and immunotherapy. The results comprehensively summarize and identify research frontiers for scholars studying immunotherapy associated with ocular melanoma.
Collapse
Affiliation(s)
- Yao Tan
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Yijie Lu
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Sheng Chen
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Hospital of Jinan University, Shenzhen, China
| | - Chang Zou
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
- Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China
- School of Life and Health Sciences, The Chinese University of Kong Hong, Shenzhen, Guangdong, China
| | - Bo Qin
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
- Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China
| |
Collapse
|
7
|
Jindal M, Kaur M, Nagpal M, Singh M, Aggarwal G, Dhingra GA. Skin Cancer Management: Current Scenario And Future Perspectives. Curr Drug Saf 2023; 18:143-158. [PMID: 35422227 DOI: 10.2174/1574886317666220413113959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/04/2021] [Accepted: 01/16/2022] [Indexed: 11/22/2022]
Abstract
Skin cancer is a life-threatening disease and has caused significant loss to human health across the globe. Its prevalence has been increasing every year and is one of the common malignancies in the case of organ transplant recipients, of which 95% constitute basal cell and squamous cell carcinomas. The prime factor causing skin cancer is UV radiation. Around the 20th century, sunlight was the primary cause of skin cancer. A novel hypothesis by US scientists stated that cutaneous melanoma was mainly due to recurrent exposure to the sun, whereas keratinocyte cancer occurred due to progressive accumulation of sun exposure. Management of skin cancer is done via various approaches, including cryotherapy, radiotherapy, and photodynamic therapy. Post-discovery of X-rays, radiotherapy has proven to treat skin cancers to some extent, but the indications are uncertain since it depends upon the type of tumour and surgical treatment required for the patient. Due to various limitations of skin cancer treatment and increased severity, there is a requirement for cost-effective, novel, and efficient treatment. Various nanocarriers such as SLNs, magnetic nanoparticles, gold nanoparticles, carbon nanotubes, etc., are the potential carriers in the management and prognosis of both non-melanoma and melanoma skin cancer. Various research and review databases and patent reports have been studied, and information compiled to extract the results. The review also discusses the role of various nanocarriers in treating and diagnosing skin cancer.
Collapse
Affiliation(s)
- Mehak Jindal
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway, Rajpura, India
| | - Malkiet Kaur
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway, Rajpura, India
| | - Manju Nagpal
- Chitkara College of Pharmacy, Chitkara University
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway, Rajpura, India
| | - Geeta Aggarwal
- Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, Sector-3 MB Road, New Delhi 110017, India
| | | |
Collapse
|
8
|
Kadhim MM, Abdullaha SA, Zedan Taban T, Ahmed Hamza T, Mahdi Rheima A, Hachim SK. Application of pure and Ti-decorated AlP nano-sheet in the dacarbazine anti-cancer drug delivery: DFT calculations. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Al-Otaibi JS, Mary YS, Mary YS, Ullah Z, Yadav R, Gupta N, Churchill DG. Adsorption properties of dacarbazine with graphene/fullerene/metal nanocages - Reactivity, spectroscopic and SERS analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120677. [PMID: 34872861 DOI: 10.1016/j.saa.2021.120677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/26/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
Drug delivery devices are an effective way to minimize anticancer drug toxicity and nanostructures are used in the targeted drug delivery. In the present work, adsorption and interaction behavior of 4-(dimethylaminodiazenyl)-1H-imidazole-5-carboxamide (DAIC) with nano complexes (graphene, fullerene and fullerene like metal cages) are reported theoretically. From the reactivity studies, the electrophilicity index of DAIC-nanoclusters are increasing and this gives the bioactivity of the nanocluster systems. Adsorption energy is highest in the case of AlP and lowest in the case of BP clusters. Mulliken charge distribution of all systems is an evidence for chemical enhancement. DAIC adsorption over nanocages causes changes in electronic properties resulting in chemical enhancement and variation in Raman spectra which suggests that nanocages could be a good candidate for DAIC detection.
Collapse
Affiliation(s)
- Jamelah S Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Saudi Arabia
| | | | | | - Zakir Ullah
- Convergence Research Center for Insect Vectors, Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Songdo-dong, Incheon 22012, South Korea
| | - Rohitash Yadav
- Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh, India
| | - Nitin Gupta
- Centre for Converging Technologies, Central University of Rajasthan, Ajmer, India
| | - David G Churchill
- Department of Chemistry, Molecular Logic Gate Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for Health Science and Technology (KIHST) (Therapeutic Bioengineering Section), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
10
|
Mirsalari H, Maleki A, Raissi H, Soltanabadi A. The assessment of boron nitride nanotubes and functionalized carbon nanotubes as containers for anticancer drug delivery of dacarbazine and effect of urea on adsorption process by molecular dynamics. Struct Chem 2022. [DOI: 10.1007/s11224-022-01900-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Xiong W, Guo Z, Zeng B, Wang T, Zeng X, Cao W, Lian D. Dacarbazine-Loaded Targeted Polymeric Nanoparticles for Enhancing Malignant Melanoma Therapy. Front Bioeng Biotechnol 2022; 10:847901. [PMID: 35252156 PMCID: PMC8892180 DOI: 10.3389/fbioe.2022.847901] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Dacarbazine (DTIC) dominates chemotherapy for malignant melanoma (MM). However, the hydrophobicity, photosensitivity, instability, and toxicity to normal cells of DTIC limit its efficacy in treating MM. In the present study, we constructed star-shaped block polymers nanoparticles (NPs) based on Cholic acid -poly (lactide-co-glycolide)-b-polyethylene glycol (CA-PLGA-b-PEG) for DTIC encapsulation and MM targeted therapy. DTIC-loaded CA-PLGA-b-PEG NPs (DTIC-NPs) were employed to increase the drug loading and achieve control release of DTIC, followed by further modification with nucleic acid aptamer AS1411 (DTIC-NPs-Apt), which played an important role for active targeted therapy of MM. In vitro, DTIC-NPs-Apt showed good pH-responsive release and the strongest cytotoxicity to A875 cells compared with DTIC-NPs and free DTIC. In vivo results demonstrated that the versatile DTIC-NPs-Apt can actively target the site of MM and exhibited excellent anti-tumor effects with no obvious side effects. Overall, this research provided multi-functional NPs, which endow a new option for the treatment of MM.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Plastic and Burn Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- *Correspondence: Wei Xiong,
| | - Zhengdong Guo
- Department of Plastic and Burn Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Baoyan Zeng
- Department of Plastic and Burn Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Teng Wang
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Xiaowei Zeng
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Wei Cao
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Daizheng Lian
- Department of Radiation Oncology, Shenzhen People’s Hospital The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
12
|
Adoptive NK Cell Therapy: A Promising Treatment Prospect for Metastatic Melanoma. Cancers (Basel) 2021; 13:cancers13184722. [PMID: 34572949 PMCID: PMC8471577 DOI: 10.3390/cancers13184722] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The incidence of metastatic melanoma has been increasing over the past years with current therapies showing limited efficacy to cure the disease. Therefore, other options are being investigated, such as adoptive cell therapy (ACT) where activated immune cells are infused into a patient to attack melanoma. Natural killer (NK) cells are part of the innate immune system and extremely suitable for this kind of therapy since they show minimal toxicities in the clinical setting. In this review, we focus on current strategies for NK cell therapy and the development of new approaches that hold great promise for the treatment of advanced melanoma. Abstract Adoptive cell therapy (ACT) represents a promising alternative approach for patients with treatment-resistant metastatic melanoma. Lately, tumor infiltrating lymphocyte (TIL) therapy and chimeric antigen receptor (CAR)-T cell therapy have shown improved clinical outcome, compared to conventional chemotherapy or immunotherapy. Nevertheless, they are limited by immune escape of the tumor, cytokine release syndrome, and manufacturing challenges of autologous therapies. Conversely, the clinical use of Natural Killer (NK) cells has demonstrated a favorable clinical safety profile with minimal toxicities, providing an encouraging treatment alternative. Unlike T cells, NK cells are activated, amongst other mechanisms, by the downregulation of HLA class I molecules, thereby overcoming the hurdle of tumor immune escape. However, impairment of NK cell function has been observed in melanoma patients, resulting in deteriorated natural defense. To overcome this limitation, “activated” autologous or allogeneic NK cells have been infused into melanoma patients in early clinical trials, showing encouraging clinical benefit. Furthermore, as several NK cell-based therapeutics are being developed for different cancers, an emerging variety of approaches to increase migration and infiltration of adoptively transferred NK cells towards solid tumors is under preclinical investigation. These developments point to adoptive NK cell therapy as a highly promising treatment for metastatic melanoma in the future.
Collapse
|
13
|
Zhao P, Qiu L, Zhou S, Li L, Qian Z, Zhang H. Cancer Cell Membrane Camouflaged Mesoporous Silica Nanoparticles Combined with Immune Checkpoint Blockade for Regulating Tumor Microenvironment and Enhancing Antitumor Therapy. Int J Nanomedicine 2021; 16:2107-2121. [PMID: 33737808 PMCID: PMC7966413 DOI: 10.2147/ijn.s295565] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/27/2021] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Although anti-programmed cell death protein 1 antibody (aPD1) immunotherapy and chemotherapy has made much progress in the treatment of melanoma, the efficacy still needs to be further improved. METHODS Cancer treatment has been greatly enhanced by the use of nanotechnology. Cancer cell membrane (CCM)-camouflaged nanoparticles have shown promising potential in tumor therapy due to their excellent homologous-targeting ability, long blood circulation and immune escape. This work presents a biocompatible and tumor acidic environmental responsive CCM-camouflaged mesoporous silica nanoparticle (CMSN) that is loaded with dacarbazine (DTIC) and combined with aPD1 to achieve better antitumor efficacy. RESULTS In vitro cell experiments demonstrated that DTIC@CMSN exhibits a better anti-tumor killing efficiency and a stronger ability to promote the apoptosis of tumor cells than free DTIC. In vivo antitumor results demonstrated that combination therapy of DTIC@CMSN chemotherapy and aPD1 immunotherapy remarkably suppress the melanoma growth and prolong survival time due to highly selective tumor killing, activation of tumor-specific T cells, and regulation of the immunosuppressive tumor microenvironment. In addition, safety evaluation studies of DTIC@CMSN also demonstrate their increased tumor accumulation and decreased systemic toxicity. CONCLUSION This study provides a promising nano-platform for the combination of chemotherapy with immunotherapy, which is potentially useful for the treatment of melanoma.
Collapse
Affiliation(s)
- Peiqi Zhao
- Department of Lymphoma, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People’s Republic of China
| | - Lihua Qiu
- Department of Lymphoma, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People’s Republic of China
| | - Shiyong Zhou
- Department of Lymphoma, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People’s Republic of China
| | - Lanfang Li
- Department of Lymphoma, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People’s Republic of China
| | - Zhengzi Qian
- Department of Lymphoma, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People’s Republic of China
| | - Huilai Zhang
- Department of Lymphoma, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People’s Republic of China
| |
Collapse
|
14
|
Idzik TJ, Myk ZM, Struk Ł, Perużyńska M, Maciejewska G, Droździk M, Sośnicki JG. Arylation of enelactams using TIPSOTf: reaction scope and mechanistic insight. Org Chem Front 2021. [DOI: 10.1039/d0qo01396j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Triisopropylsilyltrifluoromethanesulfonate can be effectively used for the arylation of a wide range of enelactams. The multinuclear NMR study provided deep insights into the reaction mechanism.
Collapse
Affiliation(s)
- Tomasz J. Idzik
- West Pomeranian University of Technology
- Szczecin
- Faculty of Chemical Technology and Engineering
- Department of Organic and Physical Chemistry
- Szczecin
| | - Zofia M. Myk
- West Pomeranian University of Technology
- Szczecin
- Faculty of Chemical Technology and Engineering
- Department of Organic and Physical Chemistry
- Szczecin
| | - Łukasz Struk
- West Pomeranian University of Technology
- Szczecin
- Faculty of Chemical Technology and Engineering
- Department of Organic and Physical Chemistry
- Szczecin
| | - Magdalena Perużyńska
- Pomeranian Medical University
- Department of Experimental & Clinical Pharmacology
- 70-111 Szczecin
- Poland
| | | | - Marek Droździk
- Pomeranian Medical University
- Department of Experimental & Clinical Pharmacology
- 70-111 Szczecin
- Poland
| | - Jacek G. Sośnicki
- West Pomeranian University of Technology
- Szczecin
- Faculty of Chemical Technology and Engineering
- Department of Organic and Physical Chemistry
- Szczecin
| |
Collapse
|
15
|
Antitumor effect of a pyrazolone-based-complex [Cu(PMPP-SAL)(EtOH)] against murine melanoma B16 cell in vitro and in vivo. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2020; 70:561-575. [PMID: 32412431 DOI: 10.2478/acph-2020-0040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/10/2020] [Indexed: 01/19/2023]
Abstract
Pyrazolone-based derivative metal complexes were reported to have cytotoxicity in some tumor cells. In this study, the antitumor effect of [Cu(PMPP-SAL)(EtOH)] (PMPP-SAL = N-(1-phenyl-3-methyl-4-propenylidene-5-pyrazolone)- salicylidene hydrazide anion) in murine melanoma B16 cells in vitro and in vivo was investigated. The results showed that [Cu(PMPP-SAL)(EtOH)] inhibited the survival of B16 cells in vitro, and the IC50 value was superior to cisplatin (DDP) (p < 0.001). B16 cell apoptosis was significantly higher in comparison to the control group (DMSO) (p < 0.01), and cell cycle arrest occurred at the G0/G1 phase. When challenged C57 BL/6J mice were treated with [Cu(PMPPSAL)(EtOH)], a smaller volume of B16 solid tumors were reported than the control group (p < 0.01), with lower positive expression indices of CD 34, vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) (p < 0.01). Moreover, the tumor growth was suppressed in mice due to the induction of apoptosis, as detected by the TUNEL assay (p < 0.001). In summary, [Cu(PMPP-SAL)(EtOH)] effectively inhibited the growth of B16 cells in vitro and in vivo due to the induction of apoptosis and the inhibition of intra-tumoral angiogenesis, demonstrating its therapeutic potential in melanoma treatment.
Collapse
|
16
|
Mirsalari H, Maleki A, Raissi H, Soltanabadi A. Investigation of the Pristine and Functionalized Carbon Nanotubes as a Delivery System for the Anticancer Drug Dacarbazine: Drug Encapsulation. J Pharm Sci 2020; 110:2005-2016. [PMID: 33186581 DOI: 10.1016/j.xphs.2020.10.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022]
Abstract
Carbon Nanotubes (CNTs) have been used as the systems in drug delivery due to their exceptional physical and chemical properties. In this study, the adsorption of an anticancer drug Dacarbazine (DAC) into the inner and outer surface of pristine and Functionalized Carbon Nanotubes (FCNTs) with four carboxylic acid groups was investigated in aqueous solution using the Molecular Dynamics (MD) simulations. Our simulation results showed that in spite of the adsorption of drug molecules on the outer sidewall of pristine and functionalized nanotubes, the spontaneous encapsulation of DAC molecule into the cavity of CNTs and FCNTs is observed. The simulations show that the arrangement of the DAC molecule into the CNTs and FCNTs is controlled by π-π interactions.
Collapse
Affiliation(s)
- Halimeh Mirsalari
- Department of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran
| | - Afsaneh Maleki
- Department of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran.
| | - Heidar Raissi
- Chemistry Department, University of Birjand, Birjand, Iran
| | - Azim Soltanabadi
- Department of Physical Chemistry, Faculty of Chemistry, Razi University, Kermanshah. Iran
| |
Collapse
|
17
|
Proliferation index and pseudoprogression as predictors of the therapeutic efficacy of suicide gene therapy for canine melanoma. Melanoma Res 2020; 30:126-135. [PMID: 32142496 DOI: 10.1097/cmr.0000000000000567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In our veterinary clinical trials, the combination of systemic immunotherapy with local herpes simplex virus thymidine kinase/ganciclovir suicide gene (SG) treatment induced tumor pseudoprogression as part of a strong local antitumor response. This phenomenon could be owing to tumor inflammation, increased vascular permeability and to different tumor growth rates before, during and after SG therapy. The proliferation index (PI: the fraction of viable cells in S, G2/M, and hyperdiploid phases) would reflect the in-vivo and in-vitro proportion of proliferating melanoma cells in the absence of treatment (PIB) or in response to SG (PISG). The extent of in-vivo and in-vitro melanoma cells responses to SG exhibited a reverse correlation with PIB and a direct correlation with PISG. Then, the final SG outcome depended on the balance between PIB-dependent 'regrowth resistance' versus 'regrowth sensitivity' to SG treatment. In all the cell lines derived from canine tumors presenting partial responses to SG treatment, PISG prevailed over PIB. Conversely, as more aggressive was the tumor (greater PIB of the cell line), the more the balance displacement towards 'regrowth resistance' over SG 'regrowth sensitivity'. All these parameters could have a prognostic value for SG treatment response and provide a glimpse at the clinical benefit of this therapy.
Collapse
|
18
|
Zippel D, Yalon T, Nevo Y, Markel G, Asher N, Schachter J, Goitein D, Segal TA, Nissan A, Hazzan D. The non-responding adrenal metastasis in melanoma: The case for minimally invasive adrenalectomy in the age of modern therapies. Am J Surg 2020; 220:349-353. [DOI: 10.1016/j.amjsurg.2019.11.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 10/25/2022]
|
19
|
Kim Y, Gil J, Pla I, Sanchez A, Betancourt LH, Lee B, Appelqvist R, Ingvar C, Lundgren L, Olsson H, Baldetorp B, Kwon HJ, Oskolás H, Rezeli M, Doma V, Kárpáti S, Szasz AM, Németh IB, Malm J, Marko-Varga G. Protein Expression in Metastatic Melanoma and the Link to Disease Presentation in a Range of Tumor Phenotypes. Cancers (Basel) 2020; 12:E767. [PMID: 32213878 PMCID: PMC7140007 DOI: 10.3390/cancers12030767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/11/2020] [Accepted: 03/18/2020] [Indexed: 12/31/2022] Open
Abstract
Malignant melanoma is among the most aggressive skin cancers and it has among the highest metastatic potentials. Although surgery to remove the primary tumor is the gold standard treatment, once melanoma progresses and metastasizes to the lymph nodes and distal organs, i.e., metastatic melanoma (MM), the usual outcome is decreased survival. To improve survival rates and life span, advanced treatments have focused on the success of targeted therapies in the MAPK pathway that are based on BRAF (BRAF V600E) and MEK. The majority of patients with tumors that have higher expression of BRAF V600E show poorer prognosis than patients with a lower level of the mutated protein. Based on the molecular basis of melanoma, these findings are supported by distinct tumor phenotypes determined from differences in tumor heterogeneity and protein expression profiles. With these aspects in mind, continued challenges are to: (1) deconvolute the complexity and heterogeneity of MM; (2) identify the signaling pathways involved; and (3) determine protein expression to develop targeted therapies. Here, we provide an overview of the results from protein expression in MM and the link to disease presentation in a variety of tumor phenotypes and how these will overcome the challenges of clinical problems and suggest new promising approaches in metastatic melanoma and cancer therapy.
Collapse
Affiliation(s)
- Yonghyo Kim
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.L.); (H.O.); (B.B.)
| | - Jeovanis Gil
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.L.); (H.O.); (B.B.)
| | - Indira Pla
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| | - Aniel Sanchez
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| | - Lazaro Hiram Betancourt
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
| | - Boram Lee
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
| | - Roger Appelqvist
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
| | - Christian Ingvar
- Department of Surgery, Clinical Sciences, Lund University, Skåne University Hospital Lund, 222 42 Lund, Sweden;
| | - Lotta Lundgren
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.L.); (H.O.); (B.B.)
| | - Håkan Olsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.L.); (H.O.); (B.B.)
| | - Bo Baldetorp
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.L.); (H.O.); (B.B.)
| | - Ho Jeong Kwon
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea;
| | - Henriett Oskolás
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
| | - Melinda Rezeli
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
| | - Viktoria Doma
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (V.D.); (S.K.)
| | - Sarolta Kárpáti
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (V.D.); (S.K.)
| | - A. Marcell Szasz
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Department of Bioinformatics, Semmelweis University, 1091 Budapest, Hungary
| | - István Balázs Németh
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary;
| | - Johan Malm
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea;
- Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjiku Shinjiku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
20
|
Borgheti-Cardoso LN, Viegas JSR, Silvestrini AVP, Caron AL, Praça FG, Kravicz M, Bentley MVLB. Nanotechnology approaches in the current therapy of skin cancer. Adv Drug Deliv Rev 2020; 153:109-136. [PMID: 32113956 DOI: 10.1016/j.addr.2020.02.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/16/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
Abstract
Skin cancer is a high burden disease with a high impact on global health. Conventional therapies have several drawbacks; thus, the development of effective therapies is required. In this context, nanotechnology approaches are an attractive strategy for cancer therapy because they enable the efficient delivery of drugs and other bioactive molecules to target tissues with low toxic effects. In this review, nanotechnological tools for skin cancer will be summarized and discussed. First, pathology and conventional therapies will be presented, followed by the challenges of skin cancer therapy. Then, the main features of developing efficient nanosystems will be discussed, and next, the most commonly used nanoparticles (NPs) described in the literature for skin cancer therapy will be presented. Subsequently, the use of NPs to deliver chemotherapeutics, immune and vaccine molecules and nucleic acids will be reviewed and discussed as will the combination of physical methods and NPs. Finally, multifunctional delivery systems to codeliver anticancer therapeutic agents containing or not surface functionalization will be summarized.
Collapse
|
21
|
Lobos-González L, Silva V, Araya M, Restovic F, Echenique J, Oliveira-Cruz L, Fitzpatrick C, Briones M, Villegas J, Villota C, Vidaurre S, Borgna V, Socias M, Valenzuela S, Lopez C, Socias T, Varas M, Díaz J, Burzio LO, Burzio VA. Targeting antisense mitochondrial ncRNAs inhibits murine melanoma tumor growth and metastasis through reduction in survival and invasion factors. Oncotarget 2018; 7:58331-58350. [PMID: 27507060 PMCID: PMC5295434 DOI: 10.18632/oncotarget.11110] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/19/2016] [Indexed: 01/23/2023] Open
Abstract
We reported that knockdown of the antisense noncoding mitochondrial RNAs (ASncmtRNAs) induces apoptotic death of several human tumor cell lines, but not normal cells, suggesting this approach for selective therapy against different types of cancer. In order to translate these results to a preclinical scenario, we characterized the murine noncoding mitochondrial RNAs (ncmtRNAs) and performed in vivo knockdown in syngeneic murine melanoma models. Mouse ncmtRNAs display structures similar to the human counterparts, including long double-stranded regions arising from the presence of inverted repeats. Knockdown of ASncmtRNAs with specific antisense oligonucleotides (ASO) reduces murine melanoma B16F10 cell proliferation and induces apoptosis in vitro through downregulation of pro-survival and metastasis markers, particularly survivin. For in vivo studies, subcutaneous B16F10 melanoma tumors in C57BL/6 mice were treated systemically with specific and control antisense oligonucleotides (ASO). For metastasis studies, tumors were resected, followed by systemic administration of ASOs and the presence of metastatic nodules in lungs and liver was assessed. Treatment with specific ASO inhibited tumor growth and metastasis after primary tumor resection. In a metastasis-only assay, mice inoculated intravenously with cells and treated with the same ASO displayed reduced number and size of melanoma nodules in the lungs, compared to controls. Our results suggest that ASncmtRNAs could be potent targets for melanoma therapy. To our knowledge, the ASncmtRNAs are the first potential non-nuclear targets for melanoma therapy.
Collapse
Affiliation(s)
- Lorena Lobos-González
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Medicina, Universidad de Chile, Independencia, Santiago, Chile
| | - Verónica Silva
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Mariela Araya
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Franko Restovic
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Present address: Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javiera Echenique
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Luciana Oliveira-Cruz
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Christopher Fitzpatrick
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Ciencias Biológicas, Universidad Andrés Bello, República, Santiago, Chile
| | - Macarena Briones
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Jaime Villegas
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Ciencias Biológicas, Universidad Andrés Bello, República, Santiago, Chile
| | - Claudio Villota
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Ciencias Biológicas, Universidad Andrés Bello, República, Santiago, Chile
| | - Soledad Vidaurre
- Andes Biotechnologies SpA, Santiago, Chile.,Facultad de Salud, Deporte y Recreación, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Vincenzo Borgna
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Servicio de Urología, Hospital Barros-Lucco-Trudeau, Santiago, Chile
| | | | | | - Constanza Lopez
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Teresa Socias
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | | | - Jorge Díaz
- Facultad de Medicina, Universidad de Chile, Independencia, Santiago, Chile
| | - Luis O Burzio
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Ciencias Biológicas, Universidad Andrés Bello, República, Santiago, Chile
| | - Verónica A Burzio
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Ciencias Biológicas, Universidad Andrés Bello, República, Santiago, Chile
| |
Collapse
|
22
|
Dacarbazine nanoparticle topical delivery system for the treatment of melanoma. Sci Rep 2017; 7:16517. [PMID: 29184162 PMCID: PMC5705606 DOI: 10.1038/s41598-017-16878-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/17/2017] [Indexed: 01/08/2023] Open
Abstract
Dacarbazine (DZ) is poorly soluble in water with the short half-life in blood circulation, low rate of response with the toxic effect which ultimately limits its utilization of the treatment of skin cancer. In view of this background current study was designed for development of dacarbazine laden nanoparticle (DZNP) and dacarbazine laden nanocream (DZNC) topical delivery system for the treatment of melanoma. Firstly DZNP was prepared. By using DZNP its cream formulation prepared for topic drug delivery for melanoma. Dacarbazine nanoparticle and its cream were evaluated for morphology, drug load capacity, efficiency of nanoencapsulation and size of particle and zeta potential, Transmission Electron Microscopy (TEM), determination of pH, spreadability and viscosity, in vitro drug release capacity and its cytotoxic potential. The particle size of DZNP and DZNC was 16.3 ± 8.1 nm and 16.9 ± 7.8 nm respectively. pH value and spreadability of nanoparticle cream were found to be 6.7 ± 0.14 g cm/sec and 55.23 ± 3.13 g cm/sec respectively. Nanoencapsulation efficiency and Drug loading capacity were 67.4 ± 3.5% and 6.73 mg/10 mg respectively. IC50 of dacarbazine nanoparticle was 0.19 mg/ml while it was 0.63 mg/ml for nanoparticle cream. It can be concluded that DZNP and its cream can be effectively used as a topical formulation for the treatment of melanoma.
Collapse
|
23
|
Abstract
The field of genomic biomarkers in melanoma has evolved dramatically in the past few decades. Whereas much of the prior focus was on molecular assessment of tumor tissue, circulating tumor cells (CTCs), and cell-free circulating tumor DNA (ctDNA) as sources of a "liquid biopsy" in cancer patients provide promising potential as a method to assess tumor progression, identify targets for therapy, and evaluate clinical response to treatment. Blood biomarker assays have the advantage of being noninvasive, allow for dynamic evaluation of disease over a serial time frame, and help to address the issue of tissue sampling bias and tumor heterogeneity. However, there remains an assortment of technologies and techniques to isolate and detect CTCs and ctDNA and a standardized method has yet to be established. Despite these challenges, multiple studies have already demonstrated the clinical prognostic utility of blood-based genomic biomarker assays. With the advent of next-generation sequencing and genome-wide ctDNA analysis, this will undoubtedly lead to an improved understanding of tumor progression, help to identify new targets for treatment, and improve monitoring of treatment response and development of resistance.
Collapse
Affiliation(s)
- Kelly Huynh
- Department of Surgical Oncology, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA 90404
| | - Dave S B Hoon
- Department of Molecular Oncology John Wayne Cancer Institute at Providence Saint John's Health Center Santa Monica, California
| |
Collapse
|
24
|
Fan M, Zeng Y, Ruan H, Zhang Z, Gong T, Sun X. Ternary Nanoparticles with a Sheddable Shell Efficiently Deliver MicroRNA-34a against CD44-Positive Melanoma. Mol Pharm 2017; 14:3152-3163. [PMID: 28759238 DOI: 10.1021/acs.molpharmaceut.7b00377] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Minmin Fan
- Key Laboratory of
Drug Targeting and Drug Delivery Systems, Ministry of Education, West
China School of Pharmacy, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Polymer Materials
Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Ye Zeng
- Key Laboratory of
Drug Targeting and Drug Delivery Systems, Ministry of Education, West
China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Huitong Ruan
- Key Laboratory of
Drug Targeting and Drug Delivery Systems, Ministry of Education, West
China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of
Drug Targeting and Drug Delivery Systems, Ministry of Education, West
China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of
Drug Targeting and Drug Delivery Systems, Ministry of Education, West
China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of
Drug Targeting and Drug Delivery Systems, Ministry of Education, West
China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
25
|
Deoxyarbutin displays antitumour activity against melanoma in vitro and in vivo through a p38-mediated mitochondria associated apoptotic pathway. Sci Rep 2017; 7:7197. [PMID: 28775302 PMCID: PMC5543205 DOI: 10.1038/s41598-017-05416-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/30/2017] [Indexed: 02/05/2023] Open
Abstract
Deoxyarbutin (DeoxyArbutin, dA), a natural compound widely used in skin lighting, displayed selectively cytotoxicity in vitro. In the study, we found that dA significantly inhibited viability/proliferation of B16F10 melanoma cells, induced tumour cell arrest and apoptosis. Furthermore, dA triggered its pro-apoptosis through damaging the mitochondrial function (membrane potential loss, ATP depletion and ROS overload generation etc.) and activating caspase-9, PARP, caspase-3 and the phosphorylation of p38. Treatment with p38 agonist confirmed the involvement of p38 pathway triggered by dA in B16F10 cells. The in vivo finding also revealed that administration of dA significantly decreased the tumour volume and tumour metastasis in B16F10 xenograft model by inhibiting tumour proliferation and inducing tumour apoptosis. Importantly, the results indicated that dA was specific against tumour cell lines and had no observed systemic toxicity in vivo. Taken together, our study demonstrated that dA could combate tumour in vitro and in vivo by inhibiting the proliferation and metastasis of tumour via a p38-mediated mitochondria associated apoptotic pathway.
Collapse
|
26
|
The combination of bleomycin with suicide or interferon-β gene transfer is able to efficiently eliminate human melanoma tumor initiating cells. Biomed Pharmacother 2016; 83:290-301. [PMID: 27399807 DOI: 10.1016/j.biopha.2016.06.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/23/2016] [Accepted: 06/16/2016] [Indexed: 12/30/2022] Open
Abstract
We explored the potential of a chemogene therapy combination to eradicate melanoma tumor initiating cells, key producers of recurrence and metastatic spread. Three new human melanoma cell lines, two obtained from lymph nodes and one from spleen metastasis were established and characterized. They were cultured as monolayers and spheroids and, in both spatial configurations they displayed sensitivity to single treatments with bleomycin (BLM) or human interferon-β (hIFNβ) gene or herpes simplex virus thymidine kinase/ganciclovir suicide gene (SG) lipofection. However, the combination of bleomycin with SG or hIFNβ gene transfer displayed greater antitumor efficacy. The three cell lines exhibited a proliferative behavior consistent with melan A and gp100 melanoma antigens expression, and BRAF V600E mutation. BLM and both genetic treatments increased the fraction of more differentiated and treatment-sensitive cells. Simultaneously, they significantly decreased the sub-population of tumor initiating cells. There was a significant correlation between the cytotoxicity of treatments with BLM and gene transfer and the fraction of cells exhibiting (i) high proliferation index, and (ii) high intracellular levels of reactive oxygen species. Conversely, the fraction of cells surviving to our treatments closely paralleled their (i) colony and (ii) melanosphere forming capacity. A very significant finding was that the combination of BLM with SG or hIFNβ gene almost abrogated the clonogenic capacity of the surviving cells. Altogether, the results presented here suggest that the combined chemo-gene treatments are able to eradicate tumor initiating cells, encouraging further studies aimed to apply this strategy in the clinic.
Collapse
|
27
|
Prediction of the engendering mechanism and specific genes of primary melanoma by bioinformatics analysis. DERMATOL SIN 2016. [DOI: 10.1016/j.dsi.2015.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
28
|
Yang B, Li Q, Zhao H, Liu H, Tang T, Jiang C. Local anesthetic thoracoscopy for the diagnosis of metastatic pleural melanoma originated from oral malignant melanoma: case report and comments. World J Surg Oncol 2015; 13:326. [PMID: 26628037 PMCID: PMC4666196 DOI: 10.1186/s12957-015-0741-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 11/23/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oral malignant melanoma (OMM) is an aggressive tumor with very low survival rate and easy to metastasize. Pleural metastatic melanoma via primary OMM is rare. CASE PRESENTATION In this report, we presented a case of metastatic malignant melanoma of the pleura originated from OMM. A 54-year-old man without primary skin lesion was diagnosed multiple nodular shadows, pleural invasion, and pleural effusion by chest computed tomography (CT). One cyst-form tumor on the tongue base was observed by bronchoscopy, which was diagnosed as OMM by pathological examination and then was resected. After getting the tumor tissues from the pleura by pleural biopsy surgery, the diagnosis of pathological examination was pleural metastatic melanoma. Furthermore, tumor cells displayed a positive immunoreaction for melanocytic markers S100 and HMB-45 combining with positive vimentin and cytokeratin AE1/AE3. The patient was therefore diagnosed with metastatic melanoma of the left pleura and the primary melanoma was OMM. CONCLUSIONS According to this case, we could draw the conclusion that pleural metastasis from OMM was very rare and thoracoscopy preceded under local anesthesia is an important method for its accurate diagnosis.
Collapse
Affiliation(s)
- Bingjun Yang
- Department of Thoracic Surgery, Tianjin Union Medicine Centre, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, People's Republic of China.
| | - Qingzhao Li
- School of Public Health, North China University of Science and Technology, Tangshan, 063001, Hebei, People's Republic of China.
| | - Hui Zhao
- Department of Thoracic Surgery, Tianjin Union Medicine Centre, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, People's Republic of China.
| | - Huibin Liu
- Office of Clinical Drug Trial Institution, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, People's Republic of China.
| | - Tao Tang
- Department of Pathology, Tianjin Union Medicine Centre, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, People's Republic of China.
| | - Chunyang Jiang
- Department of Thoracic Surgery, Tianjin Union Medicine Centre, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, People's Republic of China.
| |
Collapse
|
29
|
Rossi ÚA, Finocchiaro LME, Glikin GC. Interferon-β gene transfer inhibits melanoma cells adhesion and migration. Cytokine 2015; 89:201-208. [PMID: 26597133 DOI: 10.1016/j.cyto.2015.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/08/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023]
Abstract
We evaluated the effects of expression of interferon-β (IFNβ) after lipofection on melanoma cells adhesion and migration. Three canine mucosal (Ak, Br and Ol) and one human dermal (SB2) melanomas were assayed. By means of the wound healing assay, we found a significant inhibitory effect of canine IFNβ gene expression on cells migration in Br and Ol monolayers. This effect could be reproduced on unlipofected Ol cells with conditioned culture media obtained from canine IFNβ gene-lipofected Ol cells, and with recombinant human IFNβ on unlipofected SB2 cells. Furthermore, IFNβ gene expression of the four tested tumor cells significantly inhibited their adhesion to extracellular matrix (ECM) proteins and their spreading from multicellular spheroids onto gelatin coating. The addition of catalase reverted the increase of reactive oxygen species (ROS) in Ol cells and the inhibition of cell migration in monolayers (Ol) and spheroids (Ol an SB2) produced by canine and human IFNβ expression, suggesting the involvement of ROS as mediators of IFNβ action on the cells interactions with ECM. Together with its known immune, antiangiogenic and cytotoxic effects, the present data strongly support more studies exploring the clinical potential of IFNβ for cancer therapy.
Collapse
Affiliation(s)
- Úrsula A Rossi
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo", Universidad de Buenos Aires, Argentina
| | - Liliana M E Finocchiaro
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo", Universidad de Buenos Aires, Argentina
| | - Gerardo C Glikin
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo", Universidad de Buenos Aires, Argentina.
| |
Collapse
|
30
|
Lindsay CR, Spiliopoulou P, Waterston A. Blinded by the light: why the treatment of metastatic melanoma has created a new paradigm for the management of cancer. Ther Adv Med Oncol 2015; 7:107-21. [PMID: 25755683 DOI: 10.1177/1758834014566619] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Until recently, treatment for metastatic melanoma was characterised by a limited availability of treatment options that offer objective survival benefit. Cytotoxic agents fundamentally lack the ability to achieve disease control and cytokine therapy with interleukin-2 has an unacceptably high - for the use across all patient cohorts - rate of toxicities. The validation of braf as an oncogene driving melanoma tumorigenesis, as well as the discovery of the role of CTLA-4 receptor in the evasion of anticancer immune response by melanoma, has revolutionised our treatment options against a disease with dismal prognosis. Quick implementation of translational discoveries brought about BRAF/MEK inhibition in clinic, while at the same time, wider experience with CTLA-4 blockade enabled clinicians to manage previously fatal immune-related toxicities with greater confidence. The suitability for clinical use of other oncogenic drivers such as NRAS and c-kit is currently being tested whilst the PD-1/PD-L1/PD-L2 axis has emerged as a new immunotherapy target with exciting early phase results. The recent exponential progress in treatment of melanoma has set an example of translational medicine and the current review aims to explain why, as well as suggesting new goals for the future.
Collapse
Affiliation(s)
| | - Pavlina Spiliopoulou
- Medical Oncology, Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow G12 0YN, UK
| | | |
Collapse
|
31
|
eIF4E is an adverse prognostic marker of melanoma patient survival by increasing melanoma cell invasion. J Invest Dermatol 2015; 135:1358-1367. [PMID: 25562667 DOI: 10.1038/jid.2014.552] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/01/2014] [Accepted: 12/11/2014] [Indexed: 12/26/2022]
Abstract
Human cutaneous melanoma is a devastating skin cancer because of its invasive nature and high metastatic potential. We used tissue microarray to study the role of human eukaryotic translation initiation factor 4E (eIF4E) in melanoma progression in 448 melanocytic lesions and found that high eIF4E expression was significantly increased in primary melanomas compared with dysplastic nevi (P<0.001), and further increased in metastatic melanomas (P<0.001). High eIF4E expression was associated with melanoma thickness (P=0.046), and poor overall and disease-specific 5-year survival of all, and primary melanoma patients, especially those with tumors ≥1 mm thick. Multivariate Cox regression analysis revealed that eIF4E is an independent prognostic marker. eIF4E knockdown (KD) in melanoma cells resulted in a significant increase in apoptosis (sub-G1 populations) and decrease in cell proliferation, and also resulted in downregulation of mesenchymal markers and upregulation of E-cadherin. In addition, eIF4E KD led to a decrease in melanoma cell invasion, matrix metalloproteinase-2 expression and activity, c-myc and BCL2 expression, and an increase in cleaved PARP and cleaved caspase-3 expression and chemosensitivity. Taken together, our data suggest that the eIF4E may promote melanoma cell invasion and metastasis, and may also serve as a promising prognostic marker and a potential therapeutic target for melanoma.
Collapse
|
32
|
Sharma SK, Huang YY, Hamblin MR. Melanoma Resistance to Photodynamic Therapy. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2015. [DOI: 10.1007/978-3-319-12730-9_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
33
|
Serologic evidence of autoimmunity in E2696 and E1694 patients with high-risk melanoma treated with adjuvant interferon alfa. Melanoma Res 2014; 24:150-7. [PMID: 24509407 DOI: 10.1097/cmr.0000000000000050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We evaluated Eastern Cooperative Group phase II and III trials E2696 and E1694 to assess the incidence and prognostic significance of autoimmunity induced by adjuvant high-dose interferon-α2b (HDI). In E2696, patients with resectable high-risk melanoma were randomized to receive vaccination with GM2-KLH/QS-1 (GMK) plus concurrent HDI, GMK plus sequential HDI, or GMK alone. E1694 randomized patients to either HDI or GMK. Sera from 103 patients in E2696 and 691 patients in E1694 banked at baseline and up to three subsequent time points were tested by ELISA for the development of five autoantibodies. In E2696, autoantibodies were induced in 16 patients (23.2%; n=69) receiving HDI and GMK and two patients (5.9%; n=34) receiving GMK alone (P=0.031). Of 691 patients in E1694, 67 (19.1%) who received HDI (n=350) developed autoantibodies, but only 16 patients (4.7%) developed autoantibodies in the vaccine group (n=341; P<0.001). Almost all induced autoantibodies were detected at ≥12 weeks after the initiation of therapy. A 1-year landmark analysis among resected stage III patients treated with HDI in E1694 showed a trend toward a survival advantage associated with HDI-induced autoimmunity (hazard ratio=0.80; 95% confidence interval: 0.50-1.98; P=0.33). Therefore, adjuvant HDI therapy is associated with the induction of autoimmunity that should be further investigated prospectively as a surrogate marker of adjuvant therapeutic benefit. This potential biomarker develops over the course of up to 1 year, and cannot be used to alter the course of therapy. Studies of the genetic determinants of this response may better discriminate patients more likely to benefit from HDI immunomodulatory therapy.
Collapse
|
34
|
Metastatic malignant melanoma: computed tomography-guided 125I seed implantation treatment. Melanoma Res 2014; 24:137-43. [PMID: 24589507 DOI: 10.1097/cmr.0000000000000028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The aim of this study is to evaluate the therapeutic efficacy of computed tomography (CT)-guided interstitial iodine-125 (I) seed implantation for metastatic malignant melanoma treatment. From November 2008 to May 2011, 24 patients with metastatic malignant melanoma who had undergone surgery for excision of primary lesions and repeated chemotherapy underwent CT-guided I seed implantation. Their clinical situations, biochemical indicators, MRIs, and CTs were observed. The follow-up time ranged from 5 to 24 months (mean 19.6 months). The local control rates of metastatic malignant melanoma after surgery excision for primary lesion after 2, 6, 12, and 24 months were 86.8, 78.6, 62.1, and 55.0%, respectively. One patient died of liver failure 5 months after brachytherapy and another died of a metastatic brain tumor 8 months after brachytherapy. Two patients died of lung dysfunction from pulmonary metastases 15 months after brachytherapy. All other patients survived throughout the follow-up period. The 2-year survival rate was 83.3%. During the procedure, one patient presented with minimal bleeding from the applicator route and another presented with pneumothorax with 20% pulmonary compression, which improved after intraprocedure suctioning. Four patients had low-grade fever on day 3. Three showed mild decreases in their white blood cell counts. CT-guided I seed implantation is a safe, feasible, and promising approach to the treatment of patients with metastatic malignant melanoma after surgery excision for primary lesions and repeated chemotherapy, but large-scale randomized clinical trials should be conducted before the technique can be used routinely.
Collapse
|
35
|
Huang YY, Vecchio D, Avci P, Yin R, Garcia-Diaz M, Hamblin MR. Melanoma resistance to photodynamic therapy: new insights. Biol Chem 2014; 394:239-50. [PMID: 23152406 DOI: 10.1515/hsz-2012-0228] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 11/06/2012] [Indexed: 01/11/2023]
Abstract
Melanoma is the most dangerous form of skin cancer, with a steeply rising incidence and a poor prognosis in its advanced stages. Melanoma is highly resistant to traditional chemotherapy and radiotherapy, although modern targeted therapies such as BRAF inhibitors are showing some promise. Photodynamic therapy (PDT, the combination of photosensitizing dyes and visible light) has been tested in the treatment of melanoma with some promising results, but melanoma is generally considered to be resistant to it. Optical interference by the highly-pigmented melanin, the antioxidant effect of melanin, the sequestration of photosensitizers inside melanosomes, defects in apoptotic pathways, and the efflux of photosensitizers by ATP-binding cassette transporters have all been implicated in melanoma resistance to PDT. Approaches to overcoming melanoma resistance to PDT include: the discovery of highly active photosensitizers absorbing in the 700-800-nm near infrared spectral region; interventions that can temporarily reduce the amount or pigmentation of the melanin; compounds that can reverse apoptotic defects or inhibit drug-efflux of photosensitizers; and immunotherapy approaches that can take advantage of the ability of PDT to activate the host immune system against the tumor being treated.
Collapse
Affiliation(s)
- Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
36
|
Lu J, Zhang G, Cheng Y, Tang Y, Dong Z, McElwee KJ, Li G. Reduced expression of SRY-box containing gene 17 correlates with an unfavorable melanoma patient survival. Oncol Rep 2014; 32:2571-9. [PMID: 25310020 DOI: 10.3892/or.2014.3534] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/31/2014] [Indexed: 11/06/2022] Open
Abstract
SRY-box containing gene 17 (Sox17), a transcription factor, is considered as an antagonist to canonical Wnt/β‑catenin signaling in several types of malignant tumors. As the influence of Sox17 in the pathogenesis of human melanoma is still unknown, the investigation of Sox17 expression in melanoma is warranted and its prognostic value is of great interest. In the present study, Sox17 expression was examined in 525 cases of melanocytic lesions (33 common acquired nevi, 59 dysplastic nevi, 291 primary melanomas and 142 metastatic melanomas) at different stages by tissue microarray. The correlation of Sox17 expression with melanoma progression and its prognostic value in melanoma patients were examined. We also analyzed the correlation between Sox17 and cyclin-dependent kinase inhibitor p27 expression in 374 melanoma samples. The results showed that Sox17 expression was significantly decreased in primary and metastatic melanoma compared to common acquired nevi and dysplastic nevi (P=2.4x10-17). Furthermore, Sox17 expression was inversely correlated with American Joint Committee on Cancer stage (P=4.6x10-15), thickness (P=0.00004) and ulceration (P=0.03). Notably, reduced Sox17 expression was correlated with a poorer overall and disease-specific 5- and 10-year survival of the patients. Multivariate Cox regression analyses indicated that Sox17 is an independent prognostic marker for melanoma patients. Moreover, we found a significant positive correlation between Sox17 and p27 expression in melanoma biopsies; their concomitant expression was closely correlated with the survival of melanoma patients. Taken together, decreased Sox17 expression is correlated with melanoma progression, an unfavorable survival of melanoma patients and is an independent molecular prognostic factor for melanoma.
Collapse
Affiliation(s)
- Jing Lu
- Department of Dermatology and Skin Science, Research Pavilion, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V5Z 1L8, Canada
| | - Guohong Zhang
- Department of Dermatology and Skin Science, Research Pavilion, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V5Z 1L8, Canada
| | - Yabin Cheng
- Department of Dermatology and Skin Science, Research Pavilion, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V5Z 1L8, Canada
| | - Yun Tang
- Department of Dermatology and Skin Science, Research Pavilion, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V5Z 1L8, Canada
| | - Ziming Dong
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Kevin J McElwee
- Department of Dermatology and Skin Science, Research Pavilion, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V5Z 1L8, Canada
| | - Gang Li
- Department of Dermatology and Skin Science, Research Pavilion, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V5Z 1L8, Canada
| |
Collapse
|
37
|
Interleukin-6 drives melanoma cell motility through p38α-MAPK-dependent up-regulation of WNT5A expression. Mol Oncol 2014; 8:1365-78. [PMID: 24954857 PMCID: PMC5528610 DOI: 10.1016/j.molonc.2014.05.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 05/03/2014] [Accepted: 05/19/2014] [Indexed: 12/24/2022] Open
Abstract
Extensive research has demonstrated a tumor-promoting role of increased WNT5A expression in malignant melanoma. However, very little light has been shed upon how WNT5A expression is up-regulated in melanoma. A potential regulator of WNT5A expression is the pro-inflammatory cytokine Interleukin (IL)-6, which shares the ability of WNT5A to increase melanoma cell invasion. Here, we investigate whether IL-6 can promote melanoma cell motility through an increased expression of WNT5A. We clearly demonstrate that the WNT5A-antagonistic peptide Box5 could inhibit IL-6-induced melanoma cell migration and invasion. Furthermore, IL-6 stimulation of the human melanoma cell lines HTB63 and A375 increased the expression of WNT5A in a dose-dependent manner. To identify the signaling mechanism responsible for this up-regulation, we explored the involvement of the three main signals induced by IL-6; STAT3, Akt and ERK 1/2. Of these, only STAT3 was activated by IL-6 in the melanoma cell lines tested. However, the STAT3 inhibitor S3I-201 failed to inhibit IL-6-induced WNT5A up-regulation in HTB63 and A375 cells. Nor did STAT3 siRNA silencing affect the expression of WNT5A. In search of an alternative signaling mechanism, we detected IL-6-induced activation of p38-MAPK in HTB63 and A375 cells. The p38-MAPK inhibitor SB203580 abolished the IL-6-induced WNT5A up-regulation and blocked IL-6-induced melanoma cell invasion. The latter effect could be rescued by the addition of recombinant WNT5A. Notably, immunoprecipitation analysis revealed that only the p38α-MAPK isoform was activated by IL-6, and subsequent siRNA silencing of p38α-MAPK abolished the IL-6-induced up-regulation of WNT5A. Taken together, we demonstrate a novel link between the two melanoma pro-metastatic agents IL-6 and WNT5A explaining how IL-6 can increase melanoma cell invasion and thus promote the metastatic process. This finding provides a basis for future therapeutic intervention of melanoma progression.
Collapse
|
38
|
Shankar R, Radhika R, Thangamani D, Senthil Kumar L, Kolandaivel P. Theoretical studies on interaction of anticancer drugs (dacarbazine, procarbazine and triethylenemelamine) with normal (AT and GC) and mismatch (GG, CC, AA and TT) base pairs. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.913098] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Chiarion-Sileni V, Pigozzo J, Ascierto PA, Simeone E, Maio M, Calabrò L, Marchetti P, De Galitiis F, Testori A, Ferrucci PF, Queirolo P, Spagnolo F, Quaglino P, Carnevale Schianca F, Mandalà M, Di Guardo L, Del Vecchio M. Ipilimumab retreatment in patients with pretreated advanced melanoma: the expanded access programme in Italy. Br J Cancer 2014; 110:1721-6. [PMID: 24619072 PMCID: PMC3974075 DOI: 10.1038/bjc.2014.126] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Retreatment with ipilimumab has been shown to re-establish disease control in some patients with disease progression. Here, we report the efficacy and safety of retreatment with ipilimumab 3 mg kg(-1) among patients participating in an expanded access programme in Italy. METHODS Patients who achieved disease control during induction therapy were retreated with ipilimumab upon progression (3 mg kg(-1) every 3 weeks for up to four doses), providing they had not experienced toxicity that precluded further dosing. Tumour assessments were conducted after retreatment, and patients were monitored throughout for adverse events. RESULTS Of 855 patients treated with ipilimumab, 51 were retreated upon disease progression. Of these, 28 (55%) regained disease control upon retreatment and 42% were alive 2 years after the first induction dose of ipilimumab; median overall survival was 21 months. Eleven patients (22%) had a treatment-related adverse event of any grade during retreatment. These were generally mild-to-moderate and resolved within a median of 4 days. No new types of toxicity were reported. CONCLUSIONS For patients who meet predefined criteria, retreatment with ipilimumab is generally well tolerated and can translate into clinical benefit. This strategy should be compared with other therapeutic options in randomised controlled trials.
Collapse
Affiliation(s)
- V Chiarion-Sileni
- Melanoma Cancer Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata, 64, 35128 Padua, Italy
| | - J Pigozzo
- Melanoma Cancer Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata, 64, 35128 Padua, Italy
| | - P A Ascierto
- Melanoma, Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori Fondazione 'G Pascale', Via Cappella dei Cangiani, 1, 80131 Naples, Italy
| | - E Simeone
- Melanoma, Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori Fondazione 'G Pascale', Via Cappella dei Cangiani, 1, 80131 Naples, Italy
| | - M Maio
- Medical Oncology and Immunotherapy Unit, University Hospital of Siena, Istituto Toscano Tumori, Strada delle Scotte, 14, 53100 Siena, Italy
| | - L Calabrò
- Medical Oncology and Immunotherapy Unit, University Hospital of Siena, Istituto Toscano Tumori, Strada delle Scotte, 14, 53100 Siena, Italy
| | - P Marchetti
- 1] Medical Oncology, Dermopathic Institute of the Immaculate IDI-IRCCS, Via dei Monti di Creta, 104, 00167 Rome, Italy [2] Medical Oncology, Sant'Andrea Hospital, Sapienza University of Rome, Via di Grottarossa, 1035-39, 00189 Rome, Italy
| | - F De Galitiis
- Medical Oncology, Dermopathic Institute of the Immaculate IDI-IRCCS, Via dei Monti di Creta, 104, 00167 Rome, Italy
| | - A Testori
- Divisione Melanoma, Istituto Europeo di Oncologia, Via Ripamonti, 435, 20141 Milan, Italy
| | - P F Ferrucci
- Oncology of Melanoma Unit, Istituto Europeo di Oncologia, Via Ripamonti, 435, 20141 Milan, Italy
| | - P Queirolo
- Department of Medical Oncology A, San Martino Hospital, National Institute for Cancer Research, L.go R. Benzi, 10, 16132 Genoa, Italy
| | - F Spagnolo
- Department of Medical Oncology A, San Martino Hospital, National Institute for Cancer Research, L.go R. Benzi, 10, 16132 Genoa, Italy
| | - P Quaglino
- Dermatologic Clinic, Department of Medical Sciences, University of Torino, San Giovanni Battista di Torino, Via Cherasco, 23, 10126 Turin, Italy
| | - F Carnevale Schianca
- Division of Medical Oncology, Institute for Cancer Research and Treatment, IRCC, Piedmont Oncology Foundation, Strada Provinciale, 142, 10060 Candiolo, Italy
| | - M Mandalà
- Unit of Medical Oncology, Papa Giovanni XXIII Hospital, Piazza OMS-Organizzazione Mondiale della Sanità, 1, 24127 Bergamo, Italy
| | - L Di Guardo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, 1, 20133 Milan, Italy
| | - M Del Vecchio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, 1, 20133 Milan, Italy
| |
Collapse
|
40
|
Altomonte M, Di Giacomo AM, Queirolo P, Ascierto PA, Spagnolo F, Bajetta E, Calabrò L, Danielli R, de Rosa F, Maur M, Chiarion-Sileni V, Ferrucci PF, Giannarelli D, Testori A, Ridolfi R, Maio M. Clinical experience with ipilimumab 10 mg/kg in patients with melanoma treated at Italian centres as part of a European expanded access programme. J Exp Clin Cancer Res 2013; 32:82. [PMID: 24423086 PMCID: PMC4029467 DOI: 10.1186/1756-9966-32-82] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/16/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Patients with advanced melanoma are faced with a poor prognosis and, until recently, limited treatment options. Ipilimumab, a novel immunotherapy that blocks cytotoxic T-lymphocyte-associated antigen-4, was the first agent to improve survival of patients with advanced melanoma in a randomised, controlled phase 3 trial. We used data from an expanded access programme (EAP) at Italian centres to evaluate the clinical activity and safety profile of ipilimumab 10 mg/kg in patients with advanced melanoma in a setting more similar to that of daily practice. METHODS Data were collected from patients enrolled in an ipilimumab EAP across eight participating Italian centres. As per the EAP protocol, patients had life-threatening, unresectable stage III/IV melanoma, had failed or did not tolerate previous treatments and had no other therapeutic option available. Treatment comprised ipilimumab 10 mg/kg every 3 weeks for a total of four doses. If physicians believed patients would continue to derive benefit from ipilimumab treatment, maintenance therapy with ipilimumab 10 mg/kg was provided every 12 weeks. Tumour responses were assessed every 12 weeks using modified World Health Organization criteria and safety continuously monitored. RESULTS Seventy-four pretreated patients with advanced melanoma were treated with ipilimumab 10 mg/kg. Of these, 9 (13.0%) had an objective response, comprising 3 patients with a complete response and 6 with a partial response. Median overall survival was 7.0 months (95% confidence interval, 5.3-8.7) and 16.6% of patients were alive after 3 years. Forty-five patients (60.8%) reported treatment-related adverse events of any grade, which were most commonly low-grade pruritus, pain, fever and diarrhoea. Grade 3 or 4 treatment-related AEs were reported in 8 patients (10.8%). CONCLUSIONS The clinical activity and safety profile of ipilimumab 10 mg/kg in the EAP was similar to that seen in previous clinical trials of ipilimumab in pretreated patient populations.
Collapse
Affiliation(s)
| | | | - Paola Queirolo
- San Martino Hospital, National Institute for Cancer Research, Genoa, Italy
| | - Paolo Antonio Ascierto
- Unit of Melanoma, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumori Fondazione “G. Pascale”, Naples, Italy
| | - Francesco Spagnolo
- San Martino Hospital, National Institute for Cancer Research, Genoa, Italy
| | - Emilio Bajetta
- Istituto di Oncologia, Policlinico di Monza, Monza, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Billaud EMF, Rbah-Vidal L, Vidal A, Besse S, Tarrit S, Askienazy S, Maisonial A, Moins N, Madelmont JC, Miot-Noirault E, Chezal JM, Auzeloux P. Synthesis, Radiofluorination, and in Vivo Evaluation of Novel Fluorinated and Iodinated Radiotracers for PET Imaging and Targeted Radionuclide Therapy of Melanoma. J Med Chem 2013; 56:8455-67. [DOI: 10.1021/jm400877v] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Emilie M. F. Billaud
- Clermont Université, Université d’Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France
- Inserm, U 990, F-63000 Clermont-Ferrand, France
| | - Latifa Rbah-Vidal
- Clermont Université, Université d’Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France
- Inserm, U 990, F-63000 Clermont-Ferrand, France
| | - Aurélien Vidal
- Clermont Université, Université d’Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France
- Inserm, U 990, F-63000 Clermont-Ferrand, France
| | - Sophie Besse
- Clermont Université, Université d’Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France
- Inserm, U 990, F-63000 Clermont-Ferrand, France
| | - Sébastien Tarrit
- Clermont Université, Université d’Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France
- Inserm, U 990, F-63000 Clermont-Ferrand, France
| | - Serge Askienazy
- Cyclopharma Laboratories, Biopôle
Clermont-Limagne, Saint-Beauzire F-63360, France
| | - Aurélie Maisonial
- Clermont Université, Université d’Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France
- Inserm, U 990, F-63000 Clermont-Ferrand, France
| | - Nicole Moins
- Clermont Université, Université d’Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France
- Inserm, U 990, F-63000 Clermont-Ferrand, France
| | - Jean-Claude Madelmont
- Clermont Université, Université d’Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France
- Inserm, U 990, F-63000 Clermont-Ferrand, France
| | - Elisabeth Miot-Noirault
- Clermont Université, Université d’Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France
- Inserm, U 990, F-63000 Clermont-Ferrand, France
| | - Jean-Michel Chezal
- Clermont Université, Université d’Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France
- Inserm, U 990, F-63000 Clermont-Ferrand, France
| | - Philippe Auzeloux
- Clermont Université, Université d’Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France
- Inserm, U 990, F-63000 Clermont-Ferrand, France
| |
Collapse
|
42
|
Pópulo H, Tavares S, Faustino A, Nunes JB, Lopes JM, Soares P. GNAQ and BRAF mutations show differential activation of the mTOR pathway in human transformed cells. PeerJ 2013; 1:e104. [PMID: 23904987 PMCID: PMC3728761 DOI: 10.7717/peerj.104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/23/2013] [Indexed: 12/31/2022] Open
Abstract
Somatic mutations in GNAQ gene were described as being the main oncogenic activation in uveal melanomas, whereas mutations in BRAF gene have been described as a key genetic alteration that contributes to skin melanoma development. We have previously reported differential activation of the MAPK and AKT/mTOR signalling pathways in uveal and skin melanomas harbouring, respectively, GNAQ and BRAF mutations. The aim of this work was to compare the functional effect of GNAQ and BRAF mutations in mTOR and MAPK pathway activation, cell proliferation and apoptosis. In this work, we performed transient transfection of HEK293 cells with BRAFWT, BRAFV 600E, GNAQWT, GNAQQ209P and GNAQQ209L vectors. We treated melanoma cell lines displaying different BRAF and GNAQ mutational status with the mTOR inhibitor RAD001 and with the MEK1/2 inhibitor U0126 and evaluated the effects in the growth of the cell lines and in mTOR and MAPK pathway effectors expression. At variance with the significant increase in the level of pmTOR Ser2448 and pS6 Ser235/236 proteins observed in cells transfected with BRAF vectors, no significant alteration in mTOR pathway effectors was observed in cells transfected with the three GNAQ expressing vectors. Also, GNAQ overexpression enhances Stat3 activation, which might mediate GNAQ oncogenic effects. None of the vectors led to significant differences in proliferation or apoptosis in the transfected cell lines. Cell lines harbouring a BRAF mutation were more sensitive to RAD001 treatment. U0126 leads to the reduction of MAPK and mTOR pathways activation in all cell lines tested. Our results indicate that GNAQ and BRAF activation drive distinct intracellular signalling pathways that may be useful for therapeutic decisions in human melanomas.
Collapse
Affiliation(s)
- Helena Pópulo
- Institute of Molecular Pathology and Immunology, University of Porto , Porto , Portugal
| | | | | | | | | | | |
Collapse
|
43
|
Di Giacomo AM, Calabrò L, Danielli R, Fonsatti E, Bertocci E, Pesce I, Fazio C, Cutaia O, Giannarelli D, Miracco C, Biagioli M, Altomonte M, Maio M. Long-term survival and immunological parameters in metastatic melanoma patients who responded to ipilimumab 10 mg/kg within an expanded access programme. Cancer Immunol Immunother 2013; 62:1021-8. [PMID: 23591982 PMCID: PMC11029072 DOI: 10.1007/s00262-013-1418-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 03/20/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Ipilimumab can result in durable clinical responses among patients with advanced melanoma. However, no predictive marker of clinical activity has yet been identified. We provide preliminary data describing the correlation between immunological parameters and response/survival among patients with advanced melanoma who received ipilimumab 10 mg/kg in an expanded access programme. METHODS Patients received ipilimumab 10 mg/kg every 3 weeks (Q3W) for four doses (induction) and Q12W from week 24 (W24) as maintenance therapy. Tumor assessments were conducted Q12W. Expression of inducible T cell costimulator (ICOS) on CD4(+) and CD8(+) T cells was assessed at baseline, W7, W12 and W24, and the ratio between absolute neutrophils (N) and lymphocytes (L) determined at baseline, W4, W7 and W10. RESULTS Median overall survival among 27 patients was 9.6 months (95 % CI 3.2-16.1), with 3- and 4-year survival rates of 20.4 %. Five patients survived >4 years. Patients with an increase in the number of circulating ICOS(+) T cells at W7 were more likely to experience disease control and have improved survival. An N/L ratio below the median at W7 and W10 was also associated with better survival compared with an N/L ratio above the median. CONCLUSIONS Ipilimumab can induce long-term survival benefits in heavily pretreated patients with metastatic melanoma. Changes in the number of circulating ICOS(+) T cells or N/L ratio during ipilimumab treatment may represent early markers of response. However, given the limited sample size, further investigation is required.
Collapse
Affiliation(s)
- Anna Maria Di Giacomo
- Division of Medical Oncology and Immunotherapy, Department of Oncology, Istituto Toscano Tumori, University Hospital of Siena, Strada delle Scotte 14, 53100 Siena, Italy
| | - Luana Calabrò
- Division of Medical Oncology and Immunotherapy, Department of Oncology, Istituto Toscano Tumori, University Hospital of Siena, Strada delle Scotte 14, 53100 Siena, Italy
| | - Riccardo Danielli
- Division of Medical Oncology and Immunotherapy, Department of Oncology, Istituto Toscano Tumori, University Hospital of Siena, Strada delle Scotte 14, 53100 Siena, Italy
| | - Ester Fonsatti
- Division of Medical Oncology and Immunotherapy, Department of Oncology, Istituto Toscano Tumori, University Hospital of Siena, Strada delle Scotte 14, 53100 Siena, Italy
| | - Erica Bertocci
- Division of Medical Oncology and Immunotherapy, Department of Oncology, Istituto Toscano Tumori, University Hospital of Siena, Strada delle Scotte 14, 53100 Siena, Italy
| | - Isabella Pesce
- Division of Medical Oncology and Immunotherapy, Department of Oncology, Istituto Toscano Tumori, University Hospital of Siena, Strada delle Scotte 14, 53100 Siena, Italy
| | - Carolina Fazio
- Division of Medical Oncology and Immunotherapy, Department of Oncology, Istituto Toscano Tumori, University Hospital of Siena, Strada delle Scotte 14, 53100 Siena, Italy
| | - Ornella Cutaia
- Division of Medical Oncology and Immunotherapy, Department of Oncology, Istituto Toscano Tumori, University Hospital of Siena, Strada delle Scotte 14, 53100 Siena, Italy
| | - Diana Giannarelli
- Statistical Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - Clelia Miracco
- Department of Pathology, University Hospital of Siena, Siena, Italy
| | - Maurizio Biagioli
- Department of Dermatology, University Hospital of Siena, Siena, Italy
| | - Maresa Altomonte
- Division of Medical Oncology and Immunotherapy, Department of Oncology, Istituto Toscano Tumori, University Hospital of Siena, Strada delle Scotte 14, 53100 Siena, Italy
| | - Michele Maio
- Division of Medical Oncology and Immunotherapy, Department of Oncology, Istituto Toscano Tumori, University Hospital of Siena, Strada delle Scotte 14, 53100 Siena, Italy
| |
Collapse
|
44
|
BF-30 selectively inhibits melanoma cell proliferation via cytoplasmic membrane permeabilization and DNA-binding in vitro and in B16F10-bearing mice. Eur J Pharmacol 2013; 707:1-10. [DOI: 10.1016/j.ejphar.2013.03.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 03/13/2013] [Accepted: 03/13/2013] [Indexed: 12/13/2022]
|
45
|
Maleka A, Enblad G, Sjörs G, Lindqvist A, Ullenhag GJ. Treatment of Metastatic Malignant Melanoma With Vemurafenib During Pregnancy. J Clin Oncol 2013; 31:e192-3. [DOI: 10.1200/jco.2012.45.2870] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Aglaia Maleka
- Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Gunilla Enblad
- Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Gunnar Sjörs
- The Children's Hospital, Uppsala University Hospital, Uppsala, Sweden
| | | | | |
Collapse
|
46
|
Differing patterns of circulating regulatory T cells and myeloid-derived suppressor cells in metastatic melanoma patients receiving anti-CTLA4 antibody and interferon-α or TLR-9 agonist and GM-CSF with peptide vaccination. J Immunother 2013; 35:702-10. [PMID: 23090079 DOI: 10.1097/cji.0b013e318272569b] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Changes in the biomarkers of host suppressor immune response were evaluated in patients with melanoma enrolled in 2 trials. Two similar cohorts of patients participating in the 2 studies were evaluated. The first (IFN/treme) tested interferon (IFN)-α2b and tremelimumab in metastatic melanoma and reported a response rate of 24%, 6.4 months median progression-free survival, and 21 months median overall survival. The second [toll-like receptor 9 (TLR)/GM] tested vaccination with MART-1, gp100, tyrosinase given with TLR-9 agonist and granulocyte-macrophage colony-stimulating factor and reported 9% response rate, median progression-free survival of 1.9 months, and median overall survival of 13.4 months. We monitored circulating T regulatory cells (T-reg) and myeloid-derived suppressor cells (MDSC) utilizing multicolor flow cytometry. In "IFN/treme," changes in circulating T-reg and MDSC were compared between baseline, day 29 (end of IFN-α induction) and day 85 (1 course). The CD4(+)CD25hi(+)CD39(+) T-reg percentage was increased most at day 85 (P = 0.018) and less significantly at day 29 (P = 0.09). There was a decrease in the percentage of MDSC populations taken in aggregate, which was most significant for monocytic MDSC (HLA-DR(+) low/CD14(+)) at day 29 (P < 0.0001) and day 85 (P = 0.001). In "TLR-9/GM," changes in T-reg and MDSC were compared between baseline and day 50 (4 vaccinations) and day 90 (8 vaccinations). There were no significant changes in T-reg or MDSC, except for a trend towards decreased (HLA-DR(+) low/CD14(+)) MDSC at day 50 (P = 0.07). Therefore, IFN/treme significantly downregulated MDSC suggesting a role on the significant clinical activity observed in this trial. T-reg findings suggest that IFN/treme induced clinically significant antitumor responses by inhibiting CTLA4 suppressive effects on T effectors, and less so by affecting T-reg.
Collapse
|
47
|
Orgaz JL, Sanz-Moreno V. Emerging molecular targets in melanoma invasion and metastasis. Pigment Cell Melanoma Res 2012; 26:39-57. [PMID: 23095214 DOI: 10.1111/pcmr.12041] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/22/2012] [Indexed: 01/05/2023]
Abstract
Metastatic cutaneous melanoma accounts for the majority of skin cancer deaths due to its aggressiveness and high resistance to current therapies. To efficiently metastasize, invasive melanoma cells need to change their cytoskeletal organization and alter contacts with the extracellular matrix and the surrounding stromal cells. Melanoma cells can use different migratory strategies depending on varying environments to exit the primary tumour mass and invade surrounding and later distant tissues. In this review, we have focused on tumour cell plasticity or the interconvertibility that melanoma cells have as one of the factors that contribute to melanoma metastasis. This has been an area of very intense research in the last 5 yr yielding a vast number of findings. We have therefore reviewed all the possible clinical opportunities that this new knowledge offers to both stratify and treat cutaneous malignant melanoma patients.
Collapse
Affiliation(s)
- Jose L Orgaz
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | | |
Collapse
|
48
|
Development of triazene prodrugs for ADEPT strategy: new insights into drug delivery system based on carboxypeptidase G2 activation. Bioorg Med Chem Lett 2012; 22:6903-8. [PMID: 23041157 DOI: 10.1016/j.bmcl.2012.09.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/06/2012] [Accepted: 09/10/2012] [Indexed: 11/21/2022]
Abstract
Six novel urea triazene prodrugs have been synthesized to apply in antibody-directed enzyme prodrug therapy (ADEPT). The chemical and plasmatic stability of l-glutamate triazene prodrugs were evaluated and the chemical reactivity was mainly attributed to an intramolecular catalysis promoted by the neighbouring carboxylate group of the glutamic moiety. These prodrugs showed an elevated binding to plasma proteins. The L-glutamate triazenes were evaluated as prodrugs of the alkylating agent's monomethyltriazenes, by activation of the bacterial enzyme carboxypeptidase G2 (CPG2). The synthesized prodrugs have been shown to be good substrates for CPG2, and therefore new candidates for ADEPT strategy.
Collapse
|
49
|
|
50
|
Cruz-Muñoz W, Jaramillo ML, Man S, Xu P, Banville M, Collins C, Nantel A, Francia G, Morgan SS, Cranmer LD, O'Connor-McCourt MD, Kerbel RS. Roles for endothelin receptor B and BCL2A1 in spontaneous CNS metastasis of melanoma. Cancer Res 2012; 72:4909-19. [PMID: 22865454 DOI: 10.1158/0008-5472.can-12-2194] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Metastatic spread of melanoma to the central nervous system (CNS) is a common and devastating manifestation of disease progression, which, despite its clinical importance, remains poorly understood with respect to underlying molecular mechanisms. Using a recently developed preclinical model of spontaneous melanoma CNS metastasis, we have identified alterations in expression of endothelin receptor B (EDNRB) as a potential factor that influences brain metastatic potential. Induced overexpression of this gene mediated enhanced overall metastatic disease, and resulted in an increased incidence of spontaneous CNS metastases. In contrast, the overexpression of other highlighted genes, such as BCL2A1, did not affect the incidence of CNS metastases but nevertheless appears to facilitate intracranial tumor growth. The prometastatic effect in the CNS associated with EDNRB appears to be mediated by the interaction with its ligands resulting in enhanced tumor cell proliferation and thus intracranial melanoma growth. That EDNRB contributes to melanoma metastasis is underscored by the fact that its therapeutic inhibition by the EDNRB-specific inhibitor A192621 translated into improved outcomes when treating mice with either visceral metastases or intracranial tumors. The identification of an influential role of EDNRB in CNS melanoma spontaneous metastasis may provide both a target for therapeutic intervention as well as a potential prognostic marker for patients having an increased predisposition for incidence of CNS melanoma metastases.
Collapse
Affiliation(s)
- William Cruz-Muñoz
- Sunnybrook Research Institute, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|