1
|
COVID-19 Vaccination and Alcohol Consumption: Justification of Risks. Pathogens 2023; 12:pathogens12020163. [PMID: 36839435 PMCID: PMC9967163 DOI: 10.3390/pathogens12020163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Since the beginning of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, pharmaceutical companies and research institutions have been actively working to develop vaccines, and the mass roll-out of vaccinations against COVID-19 began in January 2021. At the same time, during lockdowns, the consumption of alcoholic beverages increased. During the peak of vaccination, consumption remained at high levels around the world, despite the gradual relaxation of quarantine restrictions. Two of the popular queries on search engines were whether it is safe to drink alcohol after vaccination and whether this will affect the effectiveness of vaccines. Over the past two years, many studies have been published suggesting that excessive drinking not only worsens the course of an acute respiratory distress syndrome caused by the SARS-CoV-2 virus but can also exacerbate post-COVID-19 syndrome. Despite all sorts of online speculation, there is no specific scientific data on alcohol-induced complications after vaccination in the literature. Most of the published vaccine clinical trials do not include groups of patients with a history of alcohol-use disorders. This review analyzed the well-known and new mechanisms of action of COVID-19 vaccines on the immune system and the effects of alcohol and its metabolites on these mechanisms.
Collapse
|
2
|
Osna NA, Rasineni K, Ganesan M, Donohue TM, Kharbanda KK. Pathogenesis of Alcohol-Associated Liver Disease. J Clin Exp Hepatol 2022; 12:1492-1513. [PMID: 36340300 PMCID: PMC9630031 DOI: 10.1016/j.jceh.2022.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022] Open
Abstract
Excessive alcohol consumption is a global healthcare problem with enormous social, economic, and clinical consequences. While chronic, heavy alcohol consumption causes structural damage and/or disrupts normal organ function in virtually every tissue of the body, the liver sustains the greatest damage. This is primarily because the liver is the first to see alcohol absorbed from the gastrointestinal tract via the portal circulation and second, because the liver is the principal site of ethanol metabolism. Alcohol-induced damage remains one of the most prevalent disorders of the liver and a leading cause of death or transplantation from liver disease. Despite extensive research on the pathophysiology of this disease, there are still no targeted therapies available. Given the multifactorial mechanisms for alcohol-associated liver disease pathogenesis, it is conceivable that a multitherapeutic regimen is needed to treat different stages in the spectrum of this disease.
Collapse
Key Words
- AA, Arachidonic acid
- ADH, Alcohol dehydrogenase
- AH, Alcoholic hepatitis
- ALD, Alcohol-associated liver disease
- ALDH, Aldehyde dehydrogenase
- ALT, Alanine transaminase
- ASH, Alcohol-associated steatohepatitis
- AST, Aspartate transaminase
- AUD, Alcohol use disorder
- BHMT, Betaine-homocysteine-methyltransferase
- CD, Cluster of differentiation
- COX, Cycloxygenase
- CTLs, Cytotoxic T-lymphocytes
- CYP, Cytochrome P450
- CYP2E1, Cytochrome P450 2E1
- Cu/Zn SOD, Copper/zinc superoxide dismutase
- DAMPs, Damage-associated molecular patterns
- DC, Dendritic cells
- EDN1, Endothelin 1
- ER, Endoplasmic reticulum
- ETOH, Ethanol
- EVs, Extracellular vesicles
- FABP4, Fatty acid-binding protein 4
- FAF2, Fas-associated factor family member 2
- FMT, Fecal microbiota transplant
- Fn14, Fibroblast growth factor-inducible 14
- GHS-R1a, Growth hormone secretagogue receptor type 1a
- GI, GOsteopontinastrointestinal tract
- GSH Px, Glutathione peroxidase
- GSSG Rdx, Glutathione reductase
- GST, Glutathione-S-transferase
- GWAS, Genome-wide association studies
- H2O2, Hydrogen peroxide
- HA, Hyaluronan
- HCC, Hepatocellular carcinoma
- HNE, 4-hydroxynonenal
- HPMA, 3-hydroxypropylmercapturic acid
- HSC, Hepatic stellate cells
- HSD17B13, 17 beta hydroxy steroid dehydrogenase 13
- HSP 90, Heat shock protein 90
- IFN, Interferon
- IL, Interleukin
- IRF3, Interferon regulatory factor 3
- JAK, Janus kinase
- KC, Kupffer cells
- LCN2, Lipocalin 2
- M-D, Mallory–Denk
- MAA, Malondialdehyde-acetaldehyde protein adducts
- MAT, Methionine adenosyltransferase
- MCP, Macrophage chemotactic protein
- MDA, Malondialdehyde
- MIF, Macrophage migration inhibitory factor
- Mn SOD, Manganese superoxide dismutase
- Mt, Mitochondrial
- NK, Natural killer
- NKT, Natural killer T-lymphocytes
- OPN, Osteopontin
- PAMP, Pathogen-associated molecular patterns
- PNPLA3, Patatin-like phospholipase domain containing 3
- PUFA, Polyunsaturated fatty acid
- RIG1, Retinoic acid inducible gene 1
- SAH, S-adenosylhomocysteine
- SAM, S-adenosylmethionine
- SCD, Stearoyl-CoA desaturase
- STAT, Signal transduction and activator of transcription
- TIMP1, Tissue inhibitor matrix metalloproteinase 1
- TLR, Toll-like receptor
- TNF, Tumor necrosis factor-α
- alcohol
- alcohol-associated liver disease
- ethanol metabolism
- liver
- miRNA, MicroRNA
- p90RSK, 90 kDa ribosomal S6 kinase
Collapse
Affiliation(s)
- Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
| | - Karuna Rasineni
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
| | - Terrence M. Donohue
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
3
|
Riaz F, Wei P, Pan F. Fine-tuning of regulatory T cells is indispensable for the metabolic steatosis-related hepatocellular carcinoma: A review. Front Cell Dev Biol 2022; 10:949603. [PMID: 35912096 PMCID: PMC9337771 DOI: 10.3389/fcell.2022.949603] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
The majority of chronic hepatic diseases are caused by nutritional imbalance. These nutritional inequities include excessive intake of alcohol and fat, which causes alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD), respectively. The pathogenesis of hepatic diseases is mainly dependent on oxidative stress, autophagy, DNA damage, and gut microbiota and their metabolites. These factors influence the normal physiology of the liver and impact the hepatic microenvironment. The hepatic microenvironment contains several immune cells and inflammatory cytokines which interact with each other and contribute to the progression of chronic hepatic diseases. Among these immune cells, Foxp3+ CD4+ regulatory T cells (Tregs) are the crucial subset of CD4+ T cells that create an immunosuppressive environment. This review emphasizes the function of Tregs in the pathogenesis of ALD and NAFLD and their role in the progression of NAFLD-associated hepatocellular carcinoma (HCC). Briefly, Tregs establish an immunosuppressive landscape in the liver by interacting with the innate immune cells and gut microbiota and their metabolites. Meanwhile, with the advancement of steatosis, these Tregs inhibit the proliferation, activation and functions of other cytotoxic T cells and support the progression of simple steatosis to HCC. Briefly, it can be suggested that targeting Tregs can act as a favourable prognostic indicator by modulating steatosis and insulin resistance during the pathogenesis of hepatic steatosis and NAFLD-associated HCC.
Collapse
Affiliation(s)
- Farooq Riaz
- Center for Cancer Immunology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ping Wei
- Center for Cancer Immunology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Chongqing Key Laboratory of Pediatrics, Department of otolaryngology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Fan Pan
- Center for Cancer Immunology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Fan Pan,
| |
Collapse
|
4
|
Athayde LA, de Aguiar SLF, Miranda MCG, Brito RVJ, de Faria AMC, Nobre SAM, Andrade MC. Lactococcus lactis Administration Modulates IgE and IL-4 Production and Promotes Enterobacteria Growth in the Gut from Ethanol-Intake Mice. Protein Pept Lett 2021; 28:1164-1179. [PMID: 34315363 DOI: 10.2174/0929866528666210727102019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND It is well known that alcohol can trigger inflammatory effects in the gastrointestinal tract (GIT) interfering with mucosal homeostasis. OBJECTIVE This study evaluated the effectiveness of Lactococcus lactis treatment in controlling the increase in molecular biomarkers related to allergic inflammation, and the effect on the diversity and abundance of the Enterobacteriaceae family in the GIT after high-dose acute administration of ethanol. METHODS Mice received ethanol or saline solution by gavage for four consecutive days, and 24 h after the last administration the animals were given L. lactis or M17 broth orally ad libitum for two consecutive days. The animals were subsequently sacrificed and dissected. RESULTS L. lactis treatment was able to restore basal levels of secretory immunoglobulin A in the gastric mucosa, serum total immunoglobulin E, interleukin (IL)-4 production in gastric and intestinal tissues, and IL-10 levels in gastric tissue. L. lactis treatment encouraged the diversification of the Enterobacteriaceae population, particularly the commensal species, in the GIT. CONCLUSION This research opens a field of studies regarding the modulatory effect of L. lactis on immunological and microbial changes induced after alcohol intake.
Collapse
|
5
|
Wang X, Chen X, Lu L, Yu X. Alcoholism and Osteoimmunology. Curr Med Chem 2021; 28:1815-1828. [PMID: 32334496 DOI: 10.2174/1567201816666190514101303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/09/2020] [Accepted: 03/26/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Chronic consumption of alcohol has an adverse effect on the skeletal system, which may lead to osteoporosis, delayed fracture healing and osteonecrosis of the femoral head. Currently, the treatment is limited, therefore, there is an urgent need to determine the underline mechanism and develop a new treatment. It is well-known that normal bone remodeling relies on the balance between osteoclast-mediated bone resorption and - mediated bone formation. Various factors can destroy the balance, including the dysfunction of the immune system. In this review, we summarized the relevant research in the alcoholic osteopenia with a focus on the abnormal osteoimmunology signals. We provided a new theoretical basis for the prevention and treatment of the alcoholic bone. METHODS We searched PubMed for publications from 1 January 1980 to 1 February 2020 to identify relevant and recent literature, summarizing evaluation and the prospect of alcoholic osteopenia. Detailed search terms were 'alcohol', 'alcoholic osteoporosis', 'alcoholic osteopenia' 'immune', 'osteoimmunology', 'bone remodeling', 'osteoporosis treatment' and 'osteoporosis therapy'. RESULTS A total of 135 papers are included in the review. About 60 papers described the mechanisms of alcohol involved in bone remodeling. Some papers were focused on the pathogenesis of alcohol on bone through osteoimmune mechanisms. CONCLUSION There is a complex network of signals between alcohol and bone remodeling and intercellular communication of osteoimmune may be a potential mechanism for alcoholic bone. Studying the osteoimmune mechanism is critical for drug development specific to the alcoholic bone disorder.
Collapse
Affiliation(s)
- Xiuwen Wang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiang Chen
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lingyun Lu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Ganesan M, Eikenberry A, Poluektova LY, Kharbanda KK, Osna NA. Role of alcohol in pathogenesis of hepatitis B virus infection. World J Gastroenterol 2020; 26:883-903. [PMID: 32206001 PMCID: PMC7081008 DOI: 10.3748/wjg.v26.i9.883] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/09/2020] [Accepted: 02/15/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) and alcohol abuse often contribute to the development of end-stage liver disease. Alcohol abuse not only causes rapid progression of liver disease in HBV infected patients but also allows HBV to persist chronically. Importantly, the mechanism by which alcohol promotes the progression of HBV-associated liver disease are not completely understood. Potential mechanisms include a suppressed immune response, oxidative stress, endoplasmic reticulum and Golgi apparatus stresses, and increased HBV replication. Certainly, more research is necessary to gain a better understanding of these mechanisms such that treatment(s) to prevent rapid liver disease progression in alcohol-abusing HBV patients could be developed. In this review, we discuss the aforementioned factors for the higher risk of liver diseases in alcohol-induced HBV pathogenies and suggest the areas for future studies in this field.
Collapse
Affiliation(s)
- Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, United States
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE 68105, United States
| | - Allison Eikenberry
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, United States
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE 68105, United States
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, United States
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE 68105, United States
| | - Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, United States
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE 68105, United States
| |
Collapse
|
7
|
Xu J, Ma HY, Liu X, Rosenthal S, Baglieri J, McCubbin R, Sun M, Koyama Y, Geoffroy CG, Saijo K, Shang L, Nishio T, Maricic I, Kreifeldt M, Kusumanchi P, Roberts A, Zheng B, Kumar V, Zengler K, Pizzo DP, Hosseini M, Contet C, Glass CK, Liangpunsakul S, Tsukamoto H, Gao B, Karin M, Brenner DA, Koob GF, Kisseleva T. Blockade of IL-17 signaling reverses alcohol-induced liver injury and excessive alcohol drinking in mice. JCI Insight 2020; 5:131277. [PMID: 32051339 DOI: 10.1172/jci.insight.131277] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/26/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic alcohol abuse has a detrimental effect on the brain and liver. There is no effective treatment for these patients, and the mechanism underlying alcohol addiction and consequent alcohol-induced damage of the liver/brain axis remains unresolved. We compared experimental models of alcoholic liver disease (ALD) and alcohol dependence in mice and demonstrated that genetic ablation of IL-17 receptor A (IL-17ra-/-) or pharmacological blockade of IL-17 signaling effectively suppressed the increased voluntary alcohol drinking in alcohol-dependent mice and blocked alcohol-induced hepatocellular and neurological damage. The level of circulating IL-17A positively correlated with the alcohol use in excessive drinkers and was further increased in patients with ALD as compared with healthy individuals. Our data suggest that IL-17A is a common mediator of excessive alcohol consumption and alcohol-induced liver/brain injury, and targeting IL-17A may provide a novel strategy for treatment of alcohol-induced pathology.
Collapse
Affiliation(s)
- Jun Xu
- Department of Medicine.,Department of Surgery, and
| | | | - Xiao Liu
- Department of Medicine.,Department of Surgery, and
| | | | | | | | | | | | - Cedric G Geoffroy
- Department of Neurosciences, School of Medicine, UCSD, San Diego, California, USA.,Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, Texas, USA
| | - Kaoru Saijo
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | | | | | | | - Max Kreifeldt
- Department of Neuroscience, Scripps Research Institute, La Jolla, California, USA
| | - Praveen Kusumanchi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Indiana University, Indianapolis, Indiana, USA.,Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Amanda Roberts
- Department of Neuroscience, Scripps Research Institute, La Jolla, California, USA
| | - Binhai Zheng
- Department of Neurosciences, School of Medicine, UCSD, San Diego, California, USA
| | | | | | | | | | - Candice Contet
- Department of Neuroscience, Scripps Research Institute, La Jolla, California, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, School of Medicine, UCSD, San Diego, California, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Indiana University, Indianapolis, Indiana, USA.,Roudebush VA Medical Center, Indianapolis, Indiana, USA.,Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Michael Karin
- Department of Pharmacology, School of Medicine, UCSD, San Diego, California, USA
| | | | - George F Koob
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, USA
| | | |
Collapse
|
8
|
Kurnaz S, Yazici AB, Nursal AF, Cetinay Aydin P, Ongel Atar A, Aydin N, Kincir Z, Pehlivan S. CNR2 rs2229579 and COMT Val158Met variants, but not CNR2 rs2501432, IL-17 rs763780 and UCP2 rs659366, contribute to susceptibility to substance use disorder in the Turkish population. PSYCHIAT CLIN PSYCH 2019. [DOI: 10.1080/24750573.2019.1688030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Selin Kurnaz
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ahmet Bulent Yazici
- Department of Psychiatry, Sakarya University Training and Research Hospital, Sakarya, Turkey
| | - Ayse Feyda Nursal
- Department of Medical Genetics, Faculty of Medicine, Hitit University, Corum, Turkey
| | - Pinar Cetinay Aydin
- Department of Psychiatry, Bakirkoy Mazhar Osman Training and Research Hospital for Psychiatry, Istanbul, Turkey
| | - Ayca Ongel Atar
- Department of Psychiatry, Bakirkoy Mazhar Osman Training and Research Hospital for Psychiatry, Istanbul, Turkey
| | - Nazan Aydin
- Department of Psychiatry, Bakirkoy Mazhar Osman Training and Research Hospital for Psychiatry, Istanbul, Turkey
| | - Zeliha Kincir
- Department of Psychiatry, Bakirkoy Mazhar Osman Training and Research Hospital for Psychiatry, Istanbul, Turkey
| | - Sacide Pehlivan
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
9
|
Sex difference in IgE sensitization associated with alcohol consumption in the general population. Sci Rep 2019; 9:12131. [PMID: 31431645 PMCID: PMC6702201 DOI: 10.1038/s41598-019-48305-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 07/30/2019] [Indexed: 01/09/2023] Open
Abstract
The association of alcohol consumption and immunoglobulin E (IgE) sensitization is debated. Few population-based studies have investigated whether such associations differ by sex. We explored the association of alcohol consumption with IgE sensitization in the general population, stratified by sex. We analyzed data for 1,723 adults from the 2010 Korean National Health and Nutrition Examination Survey. We divided subjects into three groups according to their self-reported alcohol consumption or serum level of gamma-glutamyltransferase (GGT), an objective marker of alcohol consumption. After adjustments, the odds ratios (ORs) of male high-risk drinkers were 2.09 (95% confidence interval [CI], 1.34–3.28) for total IgE and 1.71 (95% CI, 1.03–2.83) for Dermatophagoides farinae (DF)-specific IgE compared with male low-risk drinkers. In females, the dog-specific IgE level was associated with high-risk drinking (OR, 11.74; 95% CI, 2.04–67.24). The ORs of males in the high-serum-GGT group were 2.73 (95% CI, 1.72–4.33) for total IgE and 2.17 (95% CI, 1.35–3.47) for DF-specific IgE compared with those in the low-serum-GGT group. This study suggests a possible link between alcohol consumption and IgE sensitization, moreover, the risk of IgE sensitization was significantly higher in male high-risk drinkers. Therefore, clinicians should consider the risk of IgE sensitization possibly afflicting male high-risk drinkers.
Collapse
|
10
|
Li S, Tan HY, Wang N, Feng Y, Wang X, Feng Y. Recent Insights Into the Role of Immune Cells in Alcoholic Liver Disease. Front Immunol 2019; 10:1328. [PMID: 31244862 PMCID: PMC6581703 DOI: 10.3389/fimmu.2019.01328] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
Accumulating clinical and experimental evidences have demonstrated that both innate and adaptive immunity are involved in the pathogenesis of alcoholic liver disease (ALD), in which the role of immunity is to fuel the inflammation and to drive the progression of ALD. Various immune cells are implicated in the pathogenesis of ALD. The activation of innate immune cells induced by alcohol and adaptive immune response triggered by oxidative modification of hepatic constituents facilitate the persistent hepatic inflammation. Meanwhile, the suppressed antigen-presenting capability of various innate immune cells and impaired function of T cells may consequently lead to an increased risk of infection in the patients with advanced ALD. In this review, we summarized the significant recent findings of immune cells participating in ALD. The pathways and molecules involved in the regulation of specific immune cells, and novel mediators protecting the liver from alcoholic injury via affecting these cells are particularly highlighted. This review aims to update the knowledge about immunity in the pathogenesis of ALD, which may facilitate to enhancement of currently available interventions for ALD treatment.
Collapse
Affiliation(s)
- Sha Li
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Hor-Yue Tan
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Ning Wang
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Yigang Feng
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xuanbin Wang
- Laboratory of Chinese Herbal Pharmacology, Laboratory of Wudang Local Chinese Medicine Research, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Yibin Feng
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
Kim A, McCullough RL, Poulsen KL, Sanz-Garcia C, Sheehan M, Stavitsky AB, Nagy LE. Hepatic Immune System: Adaptations to Alcohol. Handb Exp Pharmacol 2018; 248:347-367. [PMID: 29374837 DOI: 10.1007/164_2017_88] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Both the innate and adaptive immune systems are critical for the maintenance of healthy liver function. Immune activity maintains the tolerogenic capacity of the liver, modulates hepatocellular response to various stresses, and orchestrates appropriate cellular repair and turnover. However, in response to heavy, chronic alcohol exposure, the finely tuned balance of pro- and anti-inflammatory functions in the liver is disrupted, leading to a state of chronic inflammation in the liver. Over time, this non-resolving inflammatory response contributes to the progression of alcoholic liver disease (ALD). Here we review the contributions of the cellular components of the immune system to the progression of ALD, as well as the pathophysiological roles for soluble and circulating mediators of immunity, including cytokines, chemokines, complement, and extracellular vesicles, in ALD. Finally, we compare the role of the innate immune response in health and disease in the liver to our growing understanding of the role of neuroimmunity in the development and maintenance of a healthy central nervous system, as well as the progression of neuroinflammation.
Collapse
Affiliation(s)
- Adam Kim
- Department of Pathobiology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, OH, USA
| | - Rebecca L McCullough
- Department of Pathobiology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kyle L Poulsen
- Department of Pathobiology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, OH, USA
| | - Carlos Sanz-Garcia
- Department of Pathobiology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, OH, USA
| | - Megan Sheehan
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Abram B Stavitsky
- Department of Pathobiology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Laura E Nagy
- Department of Pathobiology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, OH, USA.
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Gastroenterology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, OH, USA.
- Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA.
| |
Collapse
|
12
|
Muñoz-Cano R, Pascal M, Araujo G, Goikoetxea MJ, Valero AL, Picado C, Bartra J. Mechanisms, Cofactors, and Augmenting Factors Involved in Anaphylaxis. Front Immunol 2017; 8:1193. [PMID: 29018449 PMCID: PMC5623009 DOI: 10.3389/fimmu.2017.01193] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/08/2017] [Indexed: 01/12/2023] Open
Abstract
Anaphylaxis is an acute and life-threatening systemic reaction. Many triggers have been described, including food, drug, and hymenoptera allergens, which are the most frequently involved. The mechanisms described in anaphylactic reactions are complex and implicate a diversity of pathways. Some of these mechanisms may be key to the development of the anaphylactic reaction, while others may only modify its severity. Although specific IgE, mast cells, and basophils are considered the principal players in anaphylaxis, alternative mechanisms have been proposed in non-IgE anaphylactic reactions. Neutrophils, macrophages, as well as basophils, have been involved, as have IgG-dependent, complement and contact system activation. A range of cationic substances can induce antibody-independent mast cells activation through MRGPRX2 receptor. Cofactors and augmenting factors may explain why, in some patients, food allergen exposure can cause anaphylaxis, while in other clinical scenario it can be tolerated or elicits a mild reaction. With the influence of these factors, food allergic reactions may be induced at lower doses of allergen and/or become more severe. Exercise, alcohol, estrogens, and some drugs such as Non-steroidal anti-inflammatory drugs, angiotensin-converting enzyme inhibitors, β-blockers, and lipid-lowering drugs are the main factors described, though their mechanisms and signaling pathways are poorly understood.
Collapse
Affiliation(s)
- Rosa Muñoz-Cano
- Unitat d'Allergia, Servei de Pneumologia, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mariona Pascal
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Servei d'Immunologia, Centre de Diagnòstic Biomèdic (CDB), Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - Giovanna Araujo
- Unitat d'Allergia, Servei de Pneumologia, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - M J Goikoetxea
- Allergy and Immunology Department, Universidad de Navarra, Navarra, Spain
| | - Antonio L Valero
- Unitat d'Allergia, Servei de Pneumologia, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Cesar Picado
- Unitat d'Allergia, Servei de Pneumologia, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Joan Bartra
- Unitat d'Allergia, Servei de Pneumologia, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
13
|
Boule LA, Kovacs EJ. Alcohol, aging, and innate immunity. J Leukoc Biol 2017; 102:41-55. [PMID: 28522597 DOI: 10.1189/jlb.4ru1016-450r] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/24/2017] [Accepted: 04/13/2017] [Indexed: 12/15/2022] Open
Abstract
The global population is aging: in 2010, 8% of the population was older than 65 y, and that is expected to double to 16% by 2050. With advanced age comes a heightened prevalence of chronic diseases. Moreover, elderly humans fair worse after acute diseases, namely infection, leading to higher rates of infection-mediated mortality. Advanced age alters many aspects of both the innate and adaptive immune systems, leading to impaired responses to primary infection and poor development of immunologic memory. An often overlooked, yet increasingly common, behavior in older individuals is alcohol consumption. In fact, it has been estimated that >40% of older adults consume alcohol, and evidence reveals that >10% of this group is drinking more than the recommended limit by the National Institute on Alcohol Abuse and Alcoholism. Alcohol consumption, at any level, alters host immune responses, including changes in the number, phenotype, and function of innate and adaptive immune cells. Thus, understanding the effect of alcohol ingestion on the immune system of older individuals, who are already less capable of combating infection, merits further study. However, there is currently almost nothing known about how drinking alters innate immunity in older subjects, despite innate immune cells being critical for host defense, resolution of inflammation, and maintenance of immune homeostasis. Here, we review the effects of aging and alcohol consumption on innate immune cells independently and highlight the few studies that have examined the effects of alcohol ingestion in aged individuals.
Collapse
Affiliation(s)
- Lisbeth A Boule
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery (GITES), University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA; .,The Mucosal Inflammation Program (MIP), University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA.,The Investigations in Metabolism, Aging, Gender and Exercise (IMAGE) Research Group, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA; and
| | - Elizabeth J Kovacs
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery (GITES), University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA; .,The Mucosal Inflammation Program (MIP), University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA.,The Investigations in Metabolism, Aging, Gender and Exercise (IMAGE) Research Group, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA; and.,The Immunology Graduate Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
14
|
Avishai E, Yeghiazaryan K, Golubnitschaja O. Impaired wound healing: facts and hypotheses for multi-professional considerations in predictive, preventive and personalised medicine. EPMA J 2017; 8:23-33. [PMID: 28620441 PMCID: PMC5471802 DOI: 10.1007/s13167-017-0081-y] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 01/29/2017] [Indexed: 12/14/2022]
Abstract
Whereas the physiologic wound healing (WH) successfully proceeds through the clearly defined sequence of the individual phases of wound healing, chronic non-healing wounds/ulcers fail to complete the individual stages and the entire healing process. There are many risk factors both modifiable (such as stress, smoking, inappropriate alcohol consumption, malnutrition, obesity, diabetes, cardio-vascular disease, etc.) and non-modifiable (such as genetic diseases and ageing) strongly contributing to the impaired WH. Current statistics demonstrate that both categories are increasingly presented in the populations, which causes dramatic socio-economic burden to the healthcare sector and society at large. Consequently, innovative concepts by predictive, preventive and personalised medicine are crucial to be implemented in the area. Individual risk factors, causality, functional interrelationships, molecular signature, predictive diagnosis, and primary and secondary prevention are thoroughly analysed followed by the expert recommendations in this paper.
Collapse
Affiliation(s)
- Eden Avishai
- Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Kristina Yeghiazaryan
- Radiological Clinic, Medical Faculty, Friedrich-Wilhels-University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Olga Golubnitschaja
- Radiological Clinic, Medical Faculty, Friedrich-Wilhels-University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| |
Collapse
|
15
|
Thompson MG, Navarro F, Chitsike L, Ramirez L, Kovacs EJ, Watkins SK. Alcohol exposure differentially effects anti-tumor immunity in females by altering dendritic cell function. Alcohol 2016; 57:1-8. [PMID: 27916138 DOI: 10.1016/j.alcohol.2016.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/17/2016] [Accepted: 10/17/2016] [Indexed: 12/18/2022]
Abstract
Dendritic cells (DCs) are a critical component of anti-tumor immunity due to their ability to induce a robust immune response to antigen (Ag). Alcohol was previously shown to reduce DC ability to present foreign Ag and promote pro-inflammatory responses in situations of infection and trauma. However the impact of alcohol exposure on generation of an anti-tumor response, especially in the context of generation of an immune vaccine has not been examined. In the clinic, DC vaccines are typically generated from autologous blood, therefore prior exposure to substances such as alcohol may be a critical factor to consider regarding the effectiveness in generating an immune response. In this study, we demonstrate for the first time that ethanol differentially affects DC and tumor Ag-specific T cell responses depending on sex. Signaling pathways were found to be differentially regulated in DC in females compared to males and these differences were exacerbated by ethanol treatment. DC from female mice treated with ethanol were unable to activate Ag-specific cytotoxic T cells (CTL) as shown by reduced expression of CD44, CD69, and decreased production of granzyme B and IFNγ. Furthermore, although FOXO3, an immune suppressive mediator of DC function, was found to be upregulated in DC from female mice, ethanol related suppression was independent of FOXO3. These findings demonstrate for the first time differential impacts of alcohol on the immune system of females compared to males and may be a critical consideration for determining the effectiveness of an immune based therapy for cancer in patients that consume alcohol.
Collapse
Affiliation(s)
- Matthew G Thompson
- Loyola University Chicago, Department of Surgery, Cardinal Bernardin Cancer Center, Maywood, IL 60153, USA
| | - Flor Navarro
- Loyola University Chicago, Department of Surgery, Cardinal Bernardin Cancer Center, Maywood, IL 60153, USA
| | - Lennox Chitsike
- Loyola University Chicago, Department of Surgery, Cardinal Bernardin Cancer Center, Maywood, IL 60153, USA
| | - Luis Ramirez
- Loyola University Chicago, Department of Surgery, Cardinal Bernardin Cancer Center, Maywood, IL 60153, USA
| | - Elizabeth J Kovacs
- Loyola University Chicago, Department of Surgery, Cardinal Bernardin Cancer Center, Maywood, IL 60153, USA; University of Colorado Denver, Department of Surgery, Aurora, CO, USA
| | - Stephanie K Watkins
- Loyola University Chicago, Department of Surgery, Cardinal Bernardin Cancer Center, Maywood, IL 60153, USA.
| |
Collapse
|
16
|
Abstract
Acute and chronic alcohol use leads to an impaired immune response and dysregulated inflammatory state that contributes to a markedly increased risk of infection. Via shared mechanisms of immune-mediated injury, alcohol can alter the clinical course of viral infections such as hepatitis B, hepatitis C, and human immunodeficiency virus. These effects are most evident in patients with alcoholic hepatitis and cirrhosis. This article provides an overview of alcohol's effect on the immune system and contribution to the risks and outcomes of specific infectious diseases.
Collapse
Affiliation(s)
- Christine Chan
- Division of Gastroenterology and Hepatology, Northwestern University Feinberg School of Medicine, 676 North St. Clair Street, Chicago, IL 60611, USA
| | - Josh Levitsky
- Division of Gastroenterology and Hepatology, Northwestern University Feinberg School of Medicine, 676 North St. Clair Street, Chicago, IL 60611, USA.
| |
Collapse
|
17
|
Alcohol intake alters immune responses and promotes CNS viral persistence in mice. Behav Brain Res 2016; 312:1-8. [PMID: 27269869 DOI: 10.1016/j.bbr.2016.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 12/24/2022]
Abstract
Chronic hepatitis C virus (HCV) infection leads to progressive liver disease and is associated with a variety of extrahepatic effects, including central nervous system (CNS) damage and neuropsychiatric impairments. Alcohol abuse can exacerbate these adverse effects on brain and behavior, but the molecular mechanisms are not well understood. This study investigated the role of alcohol in regulating viral persistence and CNS immunopathology in mice infected with lymphocytic choriomeningitis virus (LCMV), a model for HCV infections in humans. Female and male BALB/c mice (n=94) were exposed to alcohol (ethanol; EtOH) and water (or water only) using a two-bottle choice paradigm, followed one week later by infection with either LCMV clone 13 (causes chronic infection similar to chronic HCV), LCMV Armstrong (causes acute infection), or vehicle. Mice were monitored for 60days post-infection and continued to receive 24-h access to EtOH and water. Animals infected with LCMV clone 13 drank more EtOH, as compared to those with an acute or no viral infection. Six weeks after infection with LCMV clone 13, mice with EtOH exposure evidenced higher serum viral titers, as compared to mice without EtOH exposure. EtOH intake was also associated with reductions in virus-specific CD8(+) T cell frequencies (particularly CD11a(hi) subsets) and evidence of persistent CNS viremia in chronically infected mice. These findings support the hypothesis that EtOH use and chronic viral infection can result in combined toxic effects accelerating CNS damage and neuropsychiatric dysfunction and suggest that examining the role of EtOH in regulating viral persistence and CNS immunopathology in mice infected with LCMV can lead to a more comprehensive understanding of comorbid alcohol use disorder and chronic viral infection.
Collapse
|
18
|
Teixeira MCA, Pacheco FTF, Souza JN, Silva MLS, Inês EJ, Soares NM. Strongyloides stercoralis Infection in Alcoholic Patients. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4872473. [PMID: 28105424 PMCID: PMC5220430 DOI: 10.1155/2016/4872473] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/13/2016] [Indexed: 12/28/2022]
Abstract
The course of Strongyloides stercoralis infection is usually asymptomatic with a low discharge of rhabditoid larva in feces. However, the deleterious effects of alcohol consumption seem to enhance the susceptibility to infection, as shown by a fivefold higher strongyloidiasis frequency in alcoholics than in nonalcoholics. Moreover, the association between S. stercoralis infection and alcoholism presents a risk for hyperinfection and severe strongyloidiasis. There are several possible mechanisms for the disruption of the host-parasite equilibrium in ethanol-addicted patients with chronic strongyloidiasis. One explanation is that chronic ethanol intake stimulates the hypothalamic-pituitary-adrenal (HPA) axis to produce excessive levels of endogenous cortisol, which in turn can lead to a deficiency in type 2 T helper cells (Th2) protective response, and also to mimic the parasite hormone ecdysone, which promotes the transformation of rhabditiform larvae to filariform larvae, leading to autoinfection. Therefore, when untreated, alcoholic patients are continuously infected by this autoinfection mechanism. Thus, the early diagnosis of strongyloidiasis and treatment can prevent serious forms of hyperinfection in ethanol abusers.
Collapse
Affiliation(s)
- Marcia C. A. Teixeira
- Faculdade de Farmácia, Universidade Federal da Bahia, 40170115 Salvador, BA, Brazil
- *Marcia C. A. Teixeira:
| | - Flavia T. F. Pacheco
- Faculdade de Farmácia, Universidade Federal da Bahia, 40170115 Salvador, BA, Brazil
| | - Joelma N. Souza
- Faculdade de Farmácia, Universidade Federal da Bahia, 40170115 Salvador, BA, Brazil
| | - Mônica L. S. Silva
- Faculdade de Farmácia, Universidade Federal da Bahia, 40170115 Salvador, BA, Brazil
| | - Elizabete J. Inês
- Faculdade de Farmácia, Universidade Federal da Bahia, 40170115 Salvador, BA, Brazil
| | - Neci M. Soares
- Faculdade de Farmácia, Universidade Federal da Bahia, 40170115 Salvador, BA, Brazil
| |
Collapse
|
19
|
Skin Immunization Obviates Alcohol-Related Immune Dysfunction. Biomolecules 2015; 5:3009-28. [PMID: 26561838 PMCID: PMC4693267 DOI: 10.3390/biom5043009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/21/2015] [Accepted: 09/30/2015] [Indexed: 01/12/2023] Open
Abstract
Alcoholics suffer from immune dysfunction that can impede vaccine efficacy. If ethanol (EtOH)-induced immune impairment is in part a result of direct exposure of immune cells to EtOH, then reduced levels of exposure could result in less immune dysfunction. As alcohol ingestion results in lower alcohol levels in skin than blood, we hypothesized that the skin immune network may be relatively preserved, enabling skin-targeted immunizations to obviate the immune inhibitory effects of alcohol consumption on conventional vaccines. We employed the two most common chronic EtOH mouse feeding models, the liver-damaging Lieber-DeCarli (LD) and liver-sparing Meadows-Cook (MC) diets, to examine the roles of EtOH and/or EtOH-induced liver dysfunction on alcohol related immunosuppression. Pair-fed mice were immunized against the model antigen ovalbumin (OVA) by DNA immunization or against flu by administering the protein-based influenza vaccine either systemically (IV, IM), directly to liver (hydrodynamic), or cutaneously (biolistic, ID). We measured resulting tissue EtOH levels, liver stress, regulatory T cell (Treg), and myeloid-derived suppressor cell (MDSC) populations. We compared immune responsiveness by measuring delayed-type hypersensitivity (DTH), antigen-specific cytotoxic T lymphocyte (CTL), and antibody induction as a function of delivery route and feeding model. We found that, as expected, and independent of the feeding model, EtOH ingestion inhibits DTH, CTL lysis, and antigen-specific total IgG induced by traditional systemic vaccines. On the other hand, skin-targeted vaccines were equally immunogenic in alcohol-exposed and non-exposed subjects, suggesting that cutaneous immunization may result in more efficacious vaccination in alcohol-ingesting subjects.
Collapse
|
20
|
Traphagen N, Tian Z, Allen-Gipson D. Chronic Ethanol Exposure: Pathogenesis of Pulmonary Disease and Dysfunction. Biomolecules 2015; 5:2840-53. [PMID: 26492278 PMCID: PMC4693259 DOI: 10.3390/biom5042840] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/04/2015] [Accepted: 09/28/2015] [Indexed: 12/18/2022] Open
Abstract
Ethanol (EtOH) is the world’s most commonly used drug, and has been widely recognized as a risk factor for developing lung disorders. Chronic EtOH exposure affects all of the organ systems in the body and increases the risk of developing pulmonary diseases such as acute lung injury and pneumonia, while exacerbating the symptoms and resulting in increased mortality in many other lung disorders. EtOH and its metabolites inhibit the immune response of alveolar macrophages (AMs), increase airway leakage, produce damaging reactive oxygen species (ROS), and disrupt the balance of antioxidants/oxidants within the lungs. In this article, we review the role of EtOH exposure in the pathogenesis and progression of pulmonary disease.
Collapse
Affiliation(s)
- Nicole Traphagen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida Health, Tampa, FL 33612, USA.
| | - Zhi Tian
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida Health, Tampa, FL 33612, USA.
| | - Diane Allen-Gipson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida Health, Tampa, FL 33612, USA.
- Department of Internal Medicine, Division of Allergy and Immunology, University of South Florida Health, Tampa, FL 33612, USA.
| |
Collapse
|
21
|
Alvarenga DM, Perez DA, Gomes-Santos AC, Miyoshi A, Azevedo V, Coelho-Dos-Reis JGA, Martins-Filho OA, Faria AMC, Cara DC, Andrade MC. Previous Ingestion of Lactococcus lactis by Ethanol-Treated Mice Preserves Antigen Presentation Hierarchy in the Gut and Oral Tolerance Susceptibility. Alcohol Clin Exp Res 2015; 39:1453-64. [PMID: 26110492 DOI: 10.1111/acer.12770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/04/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Ethanol (EtOH) consumption is able to disturb the ovalbumin (OVA)-oral tolerance induction by interfering on the function of antigen presenting cells (APC), down-regulating dendritic cells (DCs) and macrophages and up-regulating B-lymphocytes and their function, which results in an overall allergic-type immune status. In this study, the potential of a priori administration of Lactococcus lactis (LL) in avoiding loss of oral tolerance in EtOH-treated mice was investigated. METHODS Female C57BL/6 mice received, by oral route, ad libitum wild-type (WT) LL or heat-shock protein producer (Hsp65) LL for 4 consecutive days. Seven days later, mice were submitted to short-term high-dose EtOH treatment. After 24 hours, stomach, intestine, spleen, mesenteric lymph nodes (mLN) specimens were collected for biomarkers analysis. Following EtOH-treatment protocol, a group of animals underwent single-gavage OVA-tolerance protocol and sera samples collected for antibody analysis. RESULTS The ingestion of WT LL or Hsp65 LL is able to restore oral tolerance to OVA in EtOH-treated mice, by reducing local and systemic allergic outcomes such as gastric mast cells and gut-interleukin-4, as well as serum IgE. WT LL treatment prevents the decrease of mLN regulatory T cells induced by the EtOH treatment. Moreover, LL treatment preserves APC hierarchy and antigen presentation commitment in EtOH-treated mice, with conserved DC and macrophage activity over B lymphocytes in mLN and preserved macrophage activity over DC and B-cell subsets in the spleen. CONCLUSIONS The present findings suggest that a priori ingestion of LL preserves essential mechanisms associated with oral tolerance induction that are disturbed by EtOH ingestion. Maintenance of mucosal homeostasis by preserving APC hierarchy and antigen presentation commitment could be associated with T-regulatory subset activities in the gastrointestinal tract.
Collapse
Affiliation(s)
- Débora M Alvarenga
- Universidade Federal de Minas Gerais (UFMG), ICB, UFMG, Belo Horizonte, MG, Brazil
| | - Denise A Perez
- Universidade Federal de Minas Gerais (UFMG), ICB, UFMG, Belo Horizonte, MG, Brazil
| | - Ana C Gomes-Santos
- Universidade Federal de Minas Gerais (UFMG), ICB, UFMG, Belo Horizonte, MG, Brazil
| | - Anderson Miyoshi
- Universidade Federal de Minas Gerais (UFMG), ICB, UFMG, Belo Horizonte, MG, Brazil
| | - Vasco Azevedo
- Universidade Federal de Minas Gerais (UFMG), ICB, UFMG, Belo Horizonte, MG, Brazil
| | | | | | - Ana Maria C Faria
- Universidade Federal de Minas Gerais (UFMG), ICB, UFMG, Belo Horizonte, MG, Brazil
| | - Denise C Cara
- Universidade Federal de Minas Gerais (UFMG), ICB, UFMG, Belo Horizonte, MG, Brazil
| | - Marileia C Andrade
- Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, MG, Brazil
| |
Collapse
|
22
|
Sakazaki F, Ogino H, Arakawa T, Okuno T, Ueno H. Low-dose ethanol aggravates allergic dermatitis in mice. Alcohol 2014; 48:501-8. [PMID: 24953256 DOI: 10.1016/j.alcohol.2014.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Alcohol injures dendritic cells and suppresses cellular immunity, while some evidence indicates that drinking alcohol aggravates allergic asthma. This study investigated the effect of low doses of ethanol in enhancing allergic reactions in the skin of mice. Liquid food containing alcohol was administered to conventional NC/Nga mice to induce alcoholic hepatic steatosis, and spontaneous dermatitis was evaluated. BALB/c mice were administered approximately 1 g/kg body weight of ethanol by gavage, and contact hypersensitivity (CHS) or active cutaneous anaphylaxis (ACA) was induced. Spleens were collected 24 h after the elicitation of CHS and mRNA expressions of interferon (IFN)-γ, interleukin (IL)-4, IL-6, IL-10, and IL-18 were measured by quantitative RT-PCR. Alcohol-containing diet exaggerated spontaneous dermatitis in conventional NC/Nga mice and contact hypersensitivity in BALB/c mice. Ethanol administered by gavage for 5 days enhanced contact hypersensitivity in BALB/c mice. Ethanol administration with gavage also enhanced ACA of BALB/c mice. Ethanol did not affect mRNA expression of IFN-γ and IL-4, but did enhance IL-6, IL-10, and IL-18 mRNA expression. Histological evaluation revealed an absence of hepatic steatosis in mice administered ethanol by gavage for 5 days. In ethanol-administered mice, inflamed areas presented as lesions or a local extreme accumulation of mononuclear cells in the epidermis. These findings suggest that ethanol enhances the expression of inflammatory cytokines independently from T helper (Th)1/Th2 cytokine phenotypes, causing abnormalities in the epidermis resulting in exacerbated allergic reactivity.
Collapse
|
23
|
|
24
|
Alonso M, Gomez-Rial J, Gude F, Vidal C, Gonzalez-Quintela A. Influence of experimental alcohol administration on serum immunoglobulin levels: contrasting effects on IgE and other immunoglobulin classes. Int J Immunopathol Pharmacol 2012; 25:645-55. [PMID: 23058015 DOI: 10.1177/039463201202500311] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In humans, alcoholic liver disease is associated with hypergammaglobulinemia, particularly with high serum concentrations of IgA. Furthermore, alcohol consumption is associated with high concentrations of IgE and low concentrations of IgG. However, there is little experimental evidence to corroborate these observational findings. The objective of the present study was to investigate the potential short-term effects of alcohol administration on serum immunoglobulin concentrations in mice, and the potential influence of sex and strain on these effects. Eight mouse groups were defined by strain (Swiss vs C57BL/6), sex (male vs female), and experimental procedure (alcohol administration vs control diet). Alcohol was administered in a semi-liquid diet (6.5%v/v); control animals received an isocaloric semi-liquid diet. Immunoglobulin concentrations (IgE, IgA, IgM, IgG1, IgG2a, IgG2b, and IgG3) were measured at baseline and weekly thereafter for 4 weeks. Serum Th1 (interferon-gamma) and Th2 (IL-4 and IL-13) cytokines were measured at week 4. We found significant variations in baseline immunoglobulin concentrations depending upon mouse sex and strain. Alcohol administration was quickly followed by an increase in serum IgE concentrations in all experimental groups. IgE increase was correlated with serum IL-13 increase. In contrast, alcohol administration was not associated with significant changes in serum IgA and IgM concentration, and appeared to decrease IgG subclass concentrations. Alcohol effects on immunoglobulin concentrations were independent of mouse strain and sex. In conclusion, alcohol administration in mice had contrasting effects on IgE and other immunoglobulin classes. This experimental evidence confirms observational results in humans.
Collapse
Affiliation(s)
- M Alonso
- Departments of Internal Medicine, Complejo Hospitalario Universitario, Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
25
|
Zwolak A, Jastrzebska I, Surdacka A, Kasztelan-Szczerbińska B, Łozowski CT, Roliński J, Skrzydło-Radomańska B, Radwan P, Daniluk J. Peripheral blood dendritic cells in alcoholic and autoimmune liver disorders. Hum Exp Toxicol 2012; 31:438-446. [PMID: 22076495 DOI: 10.1177/0960327111426582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Little is known about effects of alcohol consumption on dendritic cell (DC) function and resultant immune response. However, quantitative and qualitative disturbances of DCs are speculated to be involved in alcohol-related as well as in other liver pathology. The present study aimed to evaluate changes in circulating DC subsets in alcoholic liver disease (N = 43), autoimmune hepatitis (N = 26) and primary biliary cirrhosis (N = 20). DCs isolated from the peripheral blood of recruited participants were stained with monoclonal antibodies against blood dendritic cell antigens (BDCAs) and estimated using the flow cytometry. Myeloid DCs were defined as BDCA-1(+)/CD19(-) cells, and lymphoid DCs as BDCA-2(+)/CD123(+) cells. Total numbers of circulating DCs in subjects with some liver diseases were markedly lower than in the healthy participants (p = 0.03). There was a significantly lower percentage of circulating BDCA-2(+)/CD123(+) (p = 0.02), and a tendency for the percentage of circulating BDCA-1(+)/CD19(-) cells to decrease in patients with liver diseases compared to the controls (p = 0.09). These results may suggest that decreased numbers of DCs may be responsible for reduced adaptive immune responses and increased susceptibility to infections and cancer development observed in patients exposed to alcohol. Moreover, numerical abnormalities of DCs may contribute to the breakdown of self-tolerance, a feature of autoimmune diseases.
Collapse
Affiliation(s)
- A Zwolak
- Department of Internal Medicine and Internal Medicine in Nursing, Medical University of Lublin, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ballas ZK, Cook RT, Shey MR, Coleman RA. A dynamic flux in natural killer cell subsets as a function of the duration of alcohol ingestion. Alcohol Clin Exp Res 2011; 36:826-34. [PMID: 22150608 DOI: 10.1111/j.1530-0277.2011.01678.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Chronic ethanol (EtOH) consumption is associated with a wide variety of immune abnormalities including changes in T cells, B cells, dendritic cells, and natural killer (NK) cells. However, there is conflicting information as to the direction of such immune changes. The hypothesis that was tested in this report is that, for NK cells, the changes can vary as a function of the duration of alcohol ingestion. METHODS Using the Meadows-Cook murine model of chronic alcohol ingestion, the changes in NK cell function and subset distribution were examined as a function of the duration of alcohol ingestion. RESULTS Acute alcohol ingestion resulted in decreased number and cytotoxic function of NK cells with no effect on intracellular interferon gamma expression. These abnormalities normalized after 12 to 14 days of alcohol ingestion and there was an increase of NK cell number and cytotoxicity after 8 weeks of continued EtOH ingestion. Ten weeks of continued alcohol consumption results in a significant decrease in the Ly49H+ CD11b+ CD27- splenic NK cell subset; this difference continued to be significant at 30 weeks. CONCLUSIONS This report may explain some of the conflicting data in the literature that examined NK cell activity in alcoholic patients. It is apparent that various abnormalities can be seen in NK cell activity and subset distribution with the flux being a function of the duration of alcohol ingestion. The demonstration of a decrease in the Ly49H+ subset (which is known to be involved in resisting murine cytomegalovirus infection) may explain the reported increase in susceptibility to some viral infections in chronic alcohol abuse. Another novel finding is that changes of some subsets of NK cells are not evident until at least 10 weeks of continued EtOH consumption.
Collapse
Affiliation(s)
- Zuhair K Ballas
- Iowa City VA Medical Center, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, USA.
| | | | | | | |
Collapse
|
27
|
Porretta E, Happel KI, Teng XS, Ramsay A, Mason CM. The impact of alcohol on BCG-induced immunity against Mycobacterium tuberculosis. Alcohol Clin Exp Res 2011; 36:310-7. [PMID: 22014229 DOI: 10.1111/j.1530-0277.2011.01624.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Alcoholics are at heightened risk for developing active tuberculosis. This study evaluates chronic alcohol consumption in a murine model of vaccination with Mycobacterium bovis Bacille Calmette-Guèrin (BCG) and subsequent pulmonary infection with virulent Mycobacterium tuberculosis. METHODS BALB/c mice were administered the Lieber-DeCarli liquid ethanol diet or pair-fed the liquid control diet for 3 weeks either before or after subcutaneous vaccination with M. bovis BCG. At least 3 weeks after BCG vaccination, groups of mice on the aforesaid diets were challenged with intratracheal infection with M. tuberculosis H37Rv. Lung mycobacterial burden, and lung and lung-associated lymph node CD4(+) lymphocyte production of tuberculosis-specific interferon (IFN)-γ were assayed. Popliteal lymph node lymphocytes from both dietary regimens undergoing BCG vaccination (in the absence of M. tuberculosis infection) were also evaluated for purified protein derivative-induced IFN-γ production by ELISpot assay. RESULTS Mice begun on alcohol prior to vaccination with M. bovis BCG demonstrated impaired control of pulmonary challenge with virulent M. tuberculosis, as well as impaired lung CD4(+) and popliteal lymph node T-cell IFN-γ responses. If BCG vaccination was delivered prior to initiation of alcohol feeding, the mice remained protected against a subsequent challenge with M. tuberculosis, and BCG-induced immunity was not impaired in either the lung or the popliteal lymph nodes. CONCLUSIONS Alcohol consumption blunts the development of the adaptive immune response to M. bovis BCG vaccination, which impairs the control of a secondary challenge with M. tuberculosis, but only if the alcohol exposure is begun prior to BCG vaccination. These results provide insight into mechanisms by which alcohol consumption impairs antimycobacterial immunity, including in response to vaccination and subsequent pathogenic challenge.
Collapse
Affiliation(s)
- Elizabeth Porretta
- Pulmonary/Critical Care Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
BACKGROUND/AIMS We have compared dendritic cell (DC) function derived from the alcoholic liver disease (ALD) sensitive Long-Evans (LE) and resistant Fischer rat strains to determine if the influence of ethanol on DCs was dependent on ALD. METHODS The LE and Fischer rats were fed an ethanol-containing or isocaloric control liquid diet for 8 weeks and comparisons were made to LE rats injected with thioacetamide as a liver disease control. DCs were isolated from the spleen after expansion with human Fms-like tyrosine kinase receptor 3 ligand plasmid. Maturation markers CD86, CD80, CD40 and MHC-II were analysed by flow cytometry with or without lipopolysaccharide and poly I:C stimulation. Production of tumour necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin (IL)-12p40 and IL-10 cytokines and the antigen presentation ability of DCs was determined. RESULTS Only LE rats developed ALD characterized by liver injury, elevated alanine aminotransferase levels and steatosis; CD86 and CD40 expression was decreased in LE but not Fischer rats. Reduced TNF-α, IFN-γ, IL-12, proinflammatory and enhanced IL-10 cytokine production was found in DCs isolated from ethanol-fed LE but not Fischer rats. Allostimulatory activity was reduced in LE compared with the Fischer strain. In contrast, DCs isolated from thioacetamide-induced liver damage displayed a reduction only in IL-12p40; TNF-α, IL-10 and IFN-α production as well as antigen presenting ability remained intact compared with controls. CONCLUSIONS ALD sensitive LE rats exhibited characteristics of a suppressed DC phenotype that was not observed following thioacetamide-induced liver disease, which suggests an important role for ALD in altering the host cellular and humoral immune responses.
Collapse
Affiliation(s)
- Dechun Feng
- The Department of Medicine, Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI 02905, USA
| | | | | | | |
Collapse
|
29
|
Eken A, Ortiz V, Wands JR. Ethanol inhibits antigen presentation by dendritic cells. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1157-66. [PMID: 21562114 PMCID: PMC3147329 DOI: 10.1128/cvi.05029-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 04/29/2011] [Indexed: 12/26/2022]
Abstract
Previous studies suggest that altered virus-specific T-cell responses observed during chronic ethanol exposure may be due to abnormal functioning of dendritic cells (DCs). Here we explored the effects of ethanol on exogenous antigen presentation by DCs. BALB/c, C57BL/6, and CBA/caj mice were fed ethanol or an isocaloric control diet for 8 weeks. The splenic DC population was expanded using an Flt3L expression plasmid via tail vein injection. DCs were purified and assessed for antigen presentation and processing and for peptide-major histocompatibility complex class I and II (MHCI and MHCII) formation on the cell surface. Interleukin-2 (IL-2) was measured as an indicator of antigen-specific T-cell activation by DCs in coculture. Antigen processing and peptide-MHCII complexes were evaluated by flow cytometry. We observed that ethanol not only suppressed allogeneic peptide presentation to T cells by DCs but also altered presentation of exogenous ovalbumin (OVA) peptide 323-339 to an OVA-specific DO11 T-cell line as well as to OVA-sensitized primary T cells. Smaller amounts of peptide-MHCII complexes were found on the DCs isolated from the spleens of ethanol-fed mice. In contrast to MHCII presentation, cross-presentation of exogenous OVA peptide via MHCI by DCs remained intact. More importantly, ethanol-exposed DCs had reduced B7-DC and enhanced ICOS-L (inhibitory) costimulatory molecule expression. Ethanol inhibits exogenous and allogeneic antigen presentation and affects the formation of peptide-MHCII complexes, as well as altering costimulatory molecule expression on the cell surface. Therefore, DC presentation of peptides in a favorable costimulatory protein environment is required to subsequently activate T cells and appears to be a critical target for the immunosuppressive effects of ethanol.
Collapse
Affiliation(s)
- Ahmet Eken
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University
| | - Vivian Ortiz
- Liver Research Center, Rhode Island Hospital
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Jack R. Wands
- Liver Research Center, Rhode Island Hospital
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
30
|
Gonzalez-Quintela A, Gomez-Rial J, Valcarcel C, Campos J, Sanz ML, Linneberg A, Gude F, Vidal C. Immunoglobulin-E reactivity to wine glycoproteins in heavy drinkers. Alcohol 2011; 45:113-22. [PMID: 20843643 DOI: 10.1016/j.alcohol.2010.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 08/07/2010] [Accepted: 08/07/2010] [Indexed: 01/12/2023]
Abstract
N-glycans from plant and invertebrate allergens can induce extensive immunoglobulin-E (IgE) cross-reactivity in vitro. IgE antibodies against these N-glycans, also termed cross-reactive carbohydrate determinants or CCDs, are prevalent in alcohol drinkers. This study investigated the prevalence and biological significance of IgE antibodies to N-glycans from wine glycoproteins in heavy drinkers. A structured questionnaire, skin prick tests, serum IgE levels, IgE-immunoblotting to wine extracts, and basophil activation tests were used to characterize 20 heavy drinkers and 10 control subjects. Eleven heavy drinkers (55%) showed IgE binding to proteins in wine extracts. The proteins were identified by mass spectrometry as grape-derived vacuolar invertase and thaumatin-like protein. Immunoblot reactivity was closely associated with the presence of IgE to CCDs and was inhibited by preincubation with a glycoconjugate containing bromelain-type N-glycans. The same conjugate, CCD-bearing allergens, and wine extracts activated basophils in patients with high-titer CCD-specific IgE but not in healthy controls. There was no relationship between immunoblot reactivity and consumption of any specific type of wine. No patient reported symptoms of hypersensitivity to Hymenoptera venom, food, or wine. In conclusion, heavy drinkers frequently show IgE reactivity to the N-glycans of wine glycoproteins. Glycans and wine glycoprotein extracts can induce basophil activation in sensitized alcoholics. The clinical significance of these findings remains to be elucidated.
Collapse
|
31
|
Fan J, Edsen-Moore MR, Turner LE, Cook RT, Legge KL, Waldschmidt TJ, Schlueter AJ. Mechanisms by which chronic ethanol feeding limits the ability of dendritic cells to stimulate T-cell proliferation. Alcohol Clin Exp Res 2011; 35:47-59. [PMID: 21039629 PMCID: PMC3058243 DOI: 10.1111/j.1530-0277.2010.01321.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND As initiators of immune responses, dendritic cells (DCs) are required for antigen (Ag)-specific activation of naïve T cells in the defense against infectious agents. The increased susceptibility to and severity of infection seen in chronic alcoholics could be because of impaired DCs initiation of naïve T-cell responses. Specifically, these DCs may not provide adequate Signals 1 (Ag presentation), 2 (costimulation), or 3 (cytokine production) to these T cells. METHODS Using the Meadows-Cook murine model of chronic alcohol abuse, the ability of ethanol (EtOH)-exposed DCs to stimulate T-cell proliferation, acquire and process Ag, express costimulatory molecules, and produce inflammatory cytokines was assessed. RESULTS Normal naïve T cells primed by EtOH-exposed DCs showed decreased proliferation in vitro and in vivo, compared to water-fed control mice. These EtOH-exposed DCs, after activation by CpG or tumor necrosis factor alpha (TNFα), were less able to upregulate costimulatory molecules CD40, CD80, or CD86, and produced less IL-12 p40, TNFα, and IFNα than DCs from water-fed mice. TLR9 and TNF receptor expression were also reduced in/on EtOH-exposed DCs. No evidence of defective Ag acquisition or processing as a result of EtOH feeding was identified. CONCLUSIONS Inadequate proliferation of normal T cells following stimulation by EtOH-exposed DCs is likely a result of diminished Signal 2 and Signal 3. Lack of adequate inflammatory stimulation of EtOH-exposed DCs because of diminished receptors for inflammatory mediators appears to be at least partially responsible for their dysfunction. These findings provide a mechanism to explain increased morbidity and mortality from infectious diseases in alcoholics and suggest targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ji Fan
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Szabo G, Wands JR, Eken A, Osna NA, Weinman SA, Machida K, Wang HJ. Alcohol and hepatitis C virus--interactions in immune dysfunctions and liver damage. Alcohol Clin Exp Res 2010; 34:1675-86. [PMID: 20608905 PMCID: PMC3253556 DOI: 10.1111/j.1530-0277.2010.01255.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hepatitis C virus infection affects 170 million people worldwide, and the majority of individuals exposed to HCV develop chronic hepatitis leading to progressive liver damage, cirrhosis, and hepatocellular cancer. The natural history of HCV infection is influenced by genetic and environmental factors of which chronic alcohol use is an independent risk factor for cirrhosis in HCV-infected individuals. Both the hepatitis C virus and alcohol damage the liver and result in immune alterations contributing to both decreased viral clearance and liver injury. This review will capture the major components of the interactions between alcohol and HCV infection to provide better understanding for the molecular basis of the dangerous combination of alcohol use and HCV infection. Common targets of HCV and alcohol involve innate immune recognition and dendritic cells, the critical cell type in antigen presentation and antiviral immunity. In addition, both alcohol and HCV affect intracellular processes critical for hepatocyte and immune cell functions including mitochondrial and proteasomal activation. Finally, both chronic alcohol use and hepatitis C virus infection increase the risk of hepatocellular cancer. The common molecular mechanisms underlying the pathological interactions between alcohol and HCV include the modulation of cytokine production, lipopolysaccharide (LPS)-TLR4 signaling, and reactive oxygen species (ROS) production. LPS-induced chronic inflammation is not only a major cause of progressive liver injury and fibrosis, but it can also contribute to modification of the tissue environment and stem cells to promote hepatocellular cancer development. Alteration of these processes by alcohol and HCV produces an environment of impaired antiviral immune response, greater hepatocellular injury, and activation of cell proliferation and dedifferentiation.
Collapse
Affiliation(s)
- Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
- Corresponding authors: Gyongyi Szabo, MD, PhD, Department of Medicine, LRB215 University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605 Tel: (508) 856-5275 FAX: (508) 856-4770, , H. Joe Wang, PhD, Division of Metabolism and Health Effect, National Institute on Alcohol Abuse and Alcoholism, 5635 Fishers Lane, room 2029, MSC 9304, Bethesda, MD 20892-9304, Tel: 301-451-0747, Fax: 301-594-0673,
| | - Jack R. Wands
- The Liver Research Center, Brown Alpert Medical School and Rhode Island Hospital, Providence, RI02903
| | - Ahmet Eken
- The Liver Research Center, Brown Alpert Medical School and Rhode Island Hospital, Providence, RI02903
| | - Natalia A. Osna
- Dept Internal Medicine, University of Nebraska Medical Center and VA Medical Center, Omaha, NE68198
| | - Steven A. Weinman
- Liver Center and Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS66160
| | - Keigo Machida
- Southern California Research Center for ALPD and Cirrhosis, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033
- Departments of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033
| | - H. Joe Wang
- Division of Metabolism and Health Effects, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD20892
- Corresponding authors: Gyongyi Szabo, MD, PhD, Department of Medicine, LRB215 University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605 Tel: (508) 856-5275 FAX: (508) 856-4770, , H. Joe Wang, PhD, Division of Metabolism and Health Effect, National Institute on Alcohol Abuse and Alcoholism, 5635 Fishers Lane, room 2029, MSC 9304, Bethesda, MD 20892-9304, Tel: 301-451-0747, Fax: 301-594-0673,
| |
Collapse
|
33
|
Lemonnier E, Argote C. [Fatal varicella: atypical presentation and stabbing outcome]. ANNALES FRANCAISES D'ANESTHESIE ET DE REANIMATION 2010; 29:254. [PMID: 20356706 DOI: 10.1016/j.annfar.2010.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|
34
|
Achur RN, Freeman WM, Vrana KE. Circulating cytokines as biomarkers of alcohol abuse and alcoholism. J Neuroimmune Pharmacol 2009; 5:83-91. [PMID: 20020329 DOI: 10.1007/s11481-009-9185-z] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 11/17/2009] [Indexed: 01/04/2023]
Abstract
There are currently no consistent objective biochemical markers of alcohol abuse and alcoholism. Development of reliable diagnostic biomarkers that permit accurate assessment of alcohol intake and patterns of drinking is of prime importance to treatment and research fields. Diagnostic biomarker development in other diseases has demonstrated the utility of both open, systems biology, screening for biomarkers and more rational focused efforts on specific biomolecules or families of biomolecules. Long-term alcohol consumption leads to altered inflammatory cell and adaptive immune responses with associated pathologies and increased incidence of infections. This has led researchers to focus attention on identifying cytokine biomarkers in models of alcohol abuse. Alcohol is known to alter cytokine levels in plasma and a variety of tissues including lung, liver, and very importantly brain. A number of cytokine biomarker candidates have been identified, including: tumor necrosis factor-alpha, interleukin (IL)-1-alpha, IL-1-beta, IL-6, IL-8, IL-12, and monocyte chemoattractant protein-1. This is an emerging and potentially exciting avenue of research in that circulating cytokines may contribute to diagnostic biomarker panels, and a combination of multiple biomarkers may significantly increase the sensitivity and specificity of the biochemical tests aiding reliable and accurate detection of excessive alcohol intake.
Collapse
Affiliation(s)
- Rajeshwara N Achur
- Post-graduate Department of Studies and Research in Biochemistry, Kuvempu University, Shankaraghatta, Shimoga, Karnataka 577451, India
| | | | | |
Collapse
|
35
|
Andrade MC, Albernaz MJS, Araújo MSS, Santos BP, Teixeira-Carvalho A, Faria AMC, Martins-Filho OA. Short-term administration of ethanol in mice deviates antigen presentation activity towards B cells. Scand J Immunol 2009; 70:226-37. [PMID: 19703012 DOI: 10.1111/j.1365-3083.2009.02289.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alcohol has a variety of short- and long-term effects on cell-mediated and humoral immune response. Herein, we have characterized the impact of high-dose EtOH administration on phenotypic and functional features of murine APC subsets, including dendritic cell (DC), macrophages and B cells. Impaired cytokine synthesis and Leishmania-phagocytosis was observed in peritoneal macrophages following EtOH administration. Moreover, EtOH exposure led to decreased levels of splenic myeloid DC and increased percentage of macrophages with no changes in splenic lymphoid DC and B cells. Adverse effects of short-term EtOH administration also resulted in impaired OVA-endocytosis by DC and macrophages. In contrast, EtOH consumption upregulates OVA-internalization by B cells. These changes on APC hierarchy may play a role shifting the fate of the immune response after EtOH ingestion. In addition to an overall downregulation of Toll-like receptor-TLR-4 expression by splenic APC, a downregulation of TLR-2 expression in macrophages was observed. Moreover, EtOH exposure altered the expression of co-signalling molecules on splenic APC, downregulating CD40 on macrophages and upregulating CD80 on B cells, with no impact on DC subsets. The net result of changes in TLR-mediated and co-stimulatory signals may determine the altered immunological status induced by acute consumption of alcohol. A direct impact of high-dose EtOH administration in the activation status of splenic CD4(+) T cells was observed. Together, our results demonstrated that short-term high-dose EtOH administration has differential impact on APC populations, downregulating splenic macrophages and DC activity but up-regulating B lymphocyte function as APC, and ultimately yielding a micro-environment that led to increased activation of CD4(+) T cells.
Collapse
Affiliation(s)
- M C Andrade
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, 30190-002 MG, Brazil.
| | | | | | | | | | | | | |
Collapse
|
36
|
Vidal C, Vizcaino L, Díaz-Peromingo J, Garrido M, Gomez-Rial J, Linneberg A, Gonzalez-Quintela A. Immunoglobulin-E Reactivity to a Glycosylated Food Allergen (Peanuts) Due to Interference With Cross-Reactive Carbohydrate Determinants in Heavy Drinkers. Alcohol Clin Exp Res 2009; 33:1322-8. [DOI: 10.1111/j.1530-0277.2009.00961.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
37
|
Abstract
This review will focus on the prevalence of hepatitis c virus (HCV) infection in alcoholics with and without liver disease. Evidence will be presented to demonstrate that ethanol and chronic HCV infection synergistically accelerate liver injury. Some of the major postulated mechanisms responsible for disease progression include high rates of apoptosis, lipid peroxidation, and generation of free radicals and reactive oxygen species with reduced antioxidant capacity of the liver. Acquisition and persistence of HCV infection may be due to the adverse effects of ethanol on humoral and cellular immune responses to HCV. Dendritic cells (DC) appear to be one of the major targets for ethanol's action and DC dysfunction impairs the ability of the host to generate viral specific cluster of differentiation 4 (CD4+) and cluster of differentiation 8 (CD8+) immune responses. There is a relationship between increased alcohol intake and decreased response to interferon (IFN) therapy, which may be reversed by abstinence. Clinical studies are needed to optimize treatment responses in alcoholic patients with chronic HCV infection.
Collapse
Affiliation(s)
- Larry Siu
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Julie Foont
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Jack R. Wands
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
38
|
Xu X, Chen D, Mei L, Deng H. Is ethanol consumption beneficial for oral lichen planus? Med Hypotheses 2009; 72:640-2. [PMID: 19232837 DOI: 10.1016/j.mehy.2008.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 10/10/2008] [Accepted: 10/11/2008] [Indexed: 11/24/2022]
Abstract
Oral lichen planus (OLP), one of the most common oral mucosa diseases, is an auto-immune disease characterized histologically by basal keratinocyte damage and interface lymphocyte reaction. Previous studies have proved ethanol consumption can suppress immune system in many aspects, including inhibiting lymphocytes proliferation and their function, modifying antigen-presentation, etc. Pathogenesis of the OLP mainly comprises of antigen-presentation, lymphocytes activation and keratinocyte apoptosis, all of which may be inhibited by ethanol consumption. Thus, we put forth our hypothesis that chronic ethanol consumption may decrease OLP incidence and OLP treatment except the erosive type may benefit from ethanol consumption. In the discussion, we also talk about the extent of ethanol consumption. Still ethanol abuse is not commended, for it may increase incidence of many other diseases, and moderate ethanol consumption may be potentially beneficial for other auto-immune diseases.
Collapse
Affiliation(s)
- Xiaomeng Xu
- Department of Oral Prophylaxis and Hygiene, Wenzhou Stomatology Hospital, Wenzhou Medical College, No. 113, West Xueyuan Road, Wenzhou City, Zhejiang 325027, China.
| | | | | | | |
Collapse
|
39
|
Abstract
BACKGROUND Multiple line of clinical and experimental evidence demonstrates that both acute, moderate, and chronic, excessive alcohol use result in various abnormalities in the functions of the immune system. METHODS Medline and PubMed databases were used to identify published reports with particular interest in the period of 2000-2008 in the subject of alcohol use, infection, inflammation, innate, and adaptive immunity. RESULTS This review article summarizes recent findings relevant to acute or chronic alcohol use-induced immunomodulation and its consequences on host defense against microbial pathogens and tissue injury. Studies with in vivo and in vitro alcohol administration are both discussed. The effects of alcohol on lung infections, trauma and burn injury, liver, pancreas, and cardiovascular diseases are evaluated with respect to the role of immune cells. Specific changes in innate immune response and abnormalities in adaptive immunity caused by alcohol intake are detailed. CONCLUSION Altered inflammatory cell and adaptive immune responses after alcohol consumption result in increased incidence and poor outcome of infections and other organ-specific immune-mediated effects.
Collapse
Affiliation(s)
- Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | | |
Collapse
|
40
|
Dietert RR, Zelikoff JT. Early-life environment, developmental immunotoxicology, and the risk of pediatric allergic disease including asthma. ACTA ACUST UNITED AC 2009; 83:547-60. [PMID: 19085948 DOI: 10.1002/bdrb.20170] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Incidence of childhood allergic disease including asthma (AD-A) has risen since the mid-20th century with much of the increase linked to changes in environment affecting the immune system. Childhood allergy is an early life disease where predisposing environmental exposures, sensitization, and onset of symptoms all occur before adulthood. Predisposition toward allergic disease (AD) is among the constellation of adverse outcomes following developmental immunotoxicity (DIT; problematic exposure of the developing immune system to xenobiotics and physical environmental factors). Because novel immune maturation events occur in early life, and the pregnancy state itself imposes certain restrictions on immune functional development, the period from mid-gestation until 2 years after birth is one of particular concern relative to DIT and AD-A. Several prenatal-perinatal risk factors have been identified as contributing to a DIT-mediated immune dysfunction and increased risk of AD. These include maternal smoking, environmental tobacco smoke, diesel exhaust and traffic-related particles, heavy metals, antibiotics, environmental estrogens and other endocrine disruptors, and alcohol. Diet and microbial exposure also significantly influence immune maturation and risk of allergy. This review considers (1) the critical developmental windows of vulnerability for the immune system that appear to be targets for risk of AD, (2) a model in which the immune system of the DIT-affected infant exhibits immune dysfunction skewed toward AD, and (3) the lack of allergy-relevant safety testing of drugs and chemicals that could identify DIT hazards and minimize problematic exposure of pregnant women and children.
Collapse
Affiliation(s)
- Rodney R Dietert
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
41
|
Antigen-presenting cells under the influence of alcohol. Trends Immunol 2008; 30:13-22. [PMID: 19059005 DOI: 10.1016/j.it.2008.09.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/18/2008] [Accepted: 09/19/2008] [Indexed: 12/16/2022]
Abstract
The negative influence of alcohol (ethanol) and its metabolites on innate and adaptive immunity is well-recognized. Much attention has recently been focused on the impact of acute and chronic alcohol exposure on antigen-presenting cells (APC). In particular, insights have been gained into how the properties of human blood monocytes and rodent macrophages are influenced by alcohol in vitro and in vivo. Here, we review the impact of alcohol on various aspects of APC function and the underlying mechanisms, including its effects on intracellular signaling events. We also discuss new information regarding the influence of alcohol on various APC populations in the liver, a primary site of alcohol metabolism.
Collapse
|
42
|
Coutinho V, Vidal C, Garrido M, Gude F, Lojo S, Linneberg A, Gonzalez-Quintela A. Interference of cross-reactive carbohydrates in the determination of specific IgE in alcohol drinkers and strategies to minimize it: the example of latex. Ann Allergy Asthma Immunol 2008; 101:394-401. [PMID: 18939728 DOI: 10.1016/s1081-1206(10)60316-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Cross-reactive carbohydrate determinants (CCDs) are N-glycans in plant and invertebrate proteins that interfere with specific IgE determinations. The prevalence of IgE to Man2XylFucGlcNAc2 (MUXF), the CCD from bromelain, may be increased in heavy drinkers. OBJECTIVE To further investigate the relationship of alcohol consumption to CCD specific IgE. Latex was used as an example for investigating CCD interference with in vitro allergy testing and how to minimize the interference by using nonglycosylated recombinant allergens and inhibition assays. METHODS We determined the levels of IgE to CCD markers (MUXF and ascorbate oxidase) and natural rubber latex in 270 adults without a history of latex allergy (73 abstainers or occasional drinkers, 76 light drinkers, 47 moderate drinkers, and 74 heavy drinkers). In cases with latex reactivity, we performed inhibition assays with MUXF and screened for IgE to a panel of recombinant latex allergens. Fourteen-day serologic follow-up was available for a subset of individuals. RESULTS Moderate to heavy drinkers displayed an increased prevalence of IgE to CCD markers. The presence of CCD specific IgE was closely associated with latex IgE reactivity. Inhibition studies and the absence of reactivity to nonglycosylated recombinant latex allergens indicated CCD interference in latex IgE determinations. Serum levels of specific IgE decreased with alcohol abstention. CONCLUSIONS In this population, alcohol consumption is associated with an increased prevalence of IgE reactivity to natural rubber latex due to CCD interference. The use of nonglycosylated recombinant allergens and inhibition assays may help to minimize CCD interference in populations in which IgE to CCDs is common.
Collapse
Affiliation(s)
- Vitor Coutinho
- Instituto Superior de Saúde do Alto Ave (ISAVE), Povoa de Lanhoso, Portugal
| | | | | | | | | | | | | |
Collapse
|
43
|
Edsen-Moore MR, Fan J, Ness KJ, Marietta JR, Cook RT, Schlueter AJ. Effects of chronic ethanol feeding on murine dendritic cell numbers, turnover rate, and dendropoiesis. Alcohol Clin Exp Res 2008; 32:1309-20. [PMID: 18540909 DOI: 10.1111/j.1530-0277.2008.00699.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Chronic alcoholics have increased susceptibility to and severity of infection, which are likely to be a result of impaired immune defense mechanisms. The contribution of dendritic cells (DC) to these immune defense changes is not well understood. Alterations in DC numbers, dendropoiesis, and lifespan have not been specifically studied in vivo in chronic ethanol (EtOH) exposure models. As DC play an essential role in initiating immune responses, alterations in these DC characteristics would help explain changes observed in adaptive immune responses. METHODS Mice received 20% EtOH (w/v) in the drinking water for up to 28 weeks, with mouse chow ad libitum. In EtOH-fed and water control mice, DC were enumerated by flow cytometry. The effect of EtOH on DC precursor numbers was determined by differentiation in vitro in the presence of granulocyte-macrophage colony-stimulating factor and interleukin-4, and the effect of an EtOH environment on untreated DC differentiation was measured following bone marrow transfer to irradiated hosts. DC turnover rate was also examined by bromodeoxyuridine incorporation and loss. RESULTS The percentage and absolute numbers of DC were decreased in spleen and increased in thymus beginning as early as 4 weeks of EtOH feeding. In addition, the overall cellularity of spleen and thymus were altered by this regimen. However, chronic EtOH consumption did not adversely affect DC precursor numbers, differentiation abilities, or turnover rates. CONCLUSIONS Decreased splenic DC numbers observed following chronic murine EtOH consumption are not because of altered DC precursor numbers or differentiation, nor increased DC turnover rate. Similarly, increased thymic DC numbers are not the result of alterations in DC precursor differentiation or turnover rate. Compartment size plays a role in determining splenic and thymic DC numbers following chronic EtOH feeding. EtOH-induced alterations in total DC numbers provide several mechanisms to partially explain why chronic alcoholics have increased susceptibility to infections.
Collapse
|
44
|
Friedrich N, Husemoen LLN, Petersmann A, Nauck M, Völzke H, Linneberg A. The association between alcohol consumption and biomarkers of alcohol exposure with total serum immunoglobulin E levels. Alcohol Clin Exp Res 2008; 32:983-90. [PMID: 18445104 DOI: 10.1111/j.1530-0277.2008.00655.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND A number of studies have shown that self-reported alcohol intake is positively associated with total serum immunoglobin E (IgE) levels. The purpose of the present study was to investigate the association of self-reported alcohol consumption and different biomarkers of alcohol exposure to total serum IgE levels in a general adult population. METHODS A total of 3,443 subjects aged 20 to 79 years from the population-based cross-sectional Study of Health in Pomerania (SHIP) were included in the analyses. Information on alcohol consumption and serum carbohydrate-deficient transferrin (CDT), gamma-glutamyl transferase (GGT), aspartate-amino transferase (ASAT), andalanine-amino transferase (ALAT) levels were measured. Multivariable linear regression models were performed separately in atopic and nonatopic subjects. RESULTS In nonatopic subjects positive associations between self-reported alcohol consumption as well as all considered biomarkers of alcohol exposure and total serum IgE levels were found. Further the results also suggested positive associations between alcohol consumption as well as alcohol biomarkers and total serum IgE level in atopic subjects, even though not all tests for linear trend reached statistical significance. CONCLUSIONS In conclusion, biomarkers of alcohol exposure were positively associated with total serum IgE levels supporting that the positive association between self-reported alcohol intake and IgE levels observed in previous studies is real and not due to misclassification of alcohol intake or confounding by other factors that may be linked to both alcohol intake and total serum IgE levels.
Collapse
Affiliation(s)
- Nele Friedrich
- Institute for Community Medicine, Ernst Moritz Arndt University, Greifswald, Germany.
| | | | | | | | | | | |
Collapse
|
45
|
Linneberg A, Roursgaard M, Hersoug LG, Larsen ST. Effects of Alcohol Consumption on the Allergen-Specific Immune Response in Mice. Alcohol Clin Exp Res 2008; 32:553-6. [DOI: 10.1111/j.1530-0277.2008.00644.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
46
|
Waldschmidt TJ, Cook RT, Kovacs EJ. Alcohol and inflammation and immune responses: summary of the 2006 Alcohol and Immunology Research Interest Group (AIRIG) meeting. Alcohol 2008; 42:137-42. [PMID: 18358993 DOI: 10.1016/j.alcohol.2007.11.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2007] [Accepted: 11/29/2007] [Indexed: 01/08/2023]
Abstract
The 11th annual meeting of the Alcohol and Immunology Research Interest Group was held at Loyola University Medical Center, Maywood, Illinois on November 17, 2006. The Alcohol and Immunology Research Interest Group meeting is held annually to exchange new findings and ideas that arise from ongoing research examining the effects of alcohol intake on the immune system. The event consisted of five sessions, two of which featured plenary talks from invited speakers, two with oral presentations from selected abstracts, and a final poster session. Participants presented new data on a variety of topics including the effects of ethanol on key cells of the immune system (neutrophils, dendritic cells, NK cells), B cell responses, the capacity to clear infectious agents, and the barrier functions of skin, lung, and intestine.
Collapse
|
47
|
Ness KJ, Fan J, Wilke WW, Coleman RA, Cook RT, Schlueter AJ. Chronic ethanol consumption decreases murine Langerhans cell numbers and delays migration of Langerhans cells as well as dermal dendritic cells. Alcohol Clin Exp Res 2008. [PMID: 18241312 DOI: 10.1111/j.1530-0277.2007.00614.x.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Chronic alcoholics experience increased incidence and severity of infections, the mechanism of which is incompletely understood. Dendritic cells (DC) migrate from peripheral locations to lymph nodes (LN) to initiate adaptive immunity against infection. Little is known about how chronic alcohol exposure affects skin DC numbers or migration. METHODS Mice received 20% EtOH in the drinking water for up to 35 weeks. Baseline Langerhans cell (LC) and dermal DC (dDC) numbers were enumerated by immunofluorescence (IF). LC repopulation after inflammation was determined following congenic bone marrow (BM) transplant and ultraviolet (UV) irradiation. Net LC loss from epidermis was determined by IF following TNF-alpha or CpG stimulation. LC and dDC migration into LN was assessed by flow cytometry following epicutaneous FITC administration. RESULTS Chronic EtOH consumption caused a baseline reduction in LC but not dDC numbers. The deficit was not corrected following transplantation with non-EtOH-exposed BM and UV irradiation, supporting the hypothesis that the defect is intrinsic to the skin environment rather than LC precursors. Net loss of LC from epidermis following inflammation was greatly reduced in EtOH-fed mice versus controls. Ethanol consumption for at least 4 weeks led to delayed LC migration into LN, and consumption for at least 8 weeks led to delayed dDC migration into LN following epicutaneous FITC application. CONCLUSIONS Chronic EtOH consumption causes decreased density of epidermal LC, which likely results in decreased epidermal immunosurveillance. It also results in altered migratory responsiveness and delayed LC and dDC migration into LN, which likely delays activation of adaptive immunity. Decreased LC density at baseline appears to be the result of an alteration in the skin environment rather than an intrinsic LC defect. These findings provide novel mechanisms to at least partially explain why chronic alcoholics are more susceptible to infections, especially those following skin penetration.
Collapse
Affiliation(s)
- Kristin J Ness
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|
48
|
Ness KJ, Fan J, Wilke WW, Coleman RA, Cook RT, Schlueter AJ. Chronic ethanol consumption decreases murine Langerhans cell numbers and delays migration of Langerhans cells as well as dermal dendritic cells. Alcohol Clin Exp Res 2008; 32:657-68. [PMID: 18241312 DOI: 10.1111/j.1530-0277.2007.00614.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Chronic alcoholics experience increased incidence and severity of infections, the mechanism of which is incompletely understood. Dendritic cells (DC) migrate from peripheral locations to lymph nodes (LN) to initiate adaptive immunity against infection. Little is known about how chronic alcohol exposure affects skin DC numbers or migration. METHODS Mice received 20% EtOH in the drinking water for up to 35 weeks. Baseline Langerhans cell (LC) and dermal DC (dDC) numbers were enumerated by immunofluorescence (IF). LC repopulation after inflammation was determined following congenic bone marrow (BM) transplant and ultraviolet (UV) irradiation. Net LC loss from epidermis was determined by IF following TNF-alpha or CpG stimulation. LC and dDC migration into LN was assessed by flow cytometry following epicutaneous FITC administration. RESULTS Chronic EtOH consumption caused a baseline reduction in LC but not dDC numbers. The deficit was not corrected following transplantation with non-EtOH-exposed BM and UV irradiation, supporting the hypothesis that the defect is intrinsic to the skin environment rather than LC precursors. Net loss of LC from epidermis following inflammation was greatly reduced in EtOH-fed mice versus controls. Ethanol consumption for at least 4 weeks led to delayed LC migration into LN, and consumption for at least 8 weeks led to delayed dDC migration into LN following epicutaneous FITC application. CONCLUSIONS Chronic EtOH consumption causes decreased density of epidermal LC, which likely results in decreased epidermal immunosurveillance. It also results in altered migratory responsiveness and delayed LC and dDC migration into LN, which likely delays activation of adaptive immunity. Decreased LC density at baseline appears to be the result of an alteration in the skin environment rather than an intrinsic LC defect. These findings provide novel mechanisms to at least partially explain why chronic alcoholics are more susceptible to infections, especially those following skin penetration.
Collapse
Affiliation(s)
- Kristin J Ness
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|