1
|
Chapp AD, Nwakama CA, Collins AR, Mermelstein PG, Thomas MJ. Physiological acetic acid concentrations from ethanol metabolism stimulate accumbens shell medium spiny neurons via NMDAR activation in a sex-dependent manner. Neuropsychopharmacology 2024; 49:885-892. [PMID: 37845488 PMCID: PMC10948831 DOI: 10.1038/s41386-023-01752-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/05/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
Recent studies have implicated the ethanol metabolite, acetic acid, as neuroactive, perhaps even more so than ethanol itself. In this study, we investigated sex-specific metabolism of ethanol (1, 2, and 4 g/kg) to acetic acid in vivo to guide electrophysiology experiments in the accumbens shell (NAcSh), a key node in the mammalian reward circuit. There was a sex-dependent difference in serum acetate production, quantified via ion chromatography only at the lowest dose of ethanol (males > females). Ex vivo electrophysiology recordings of NAcSh medium spiny neurons (MSN) in brain slices demonstrated that physiological concentrations of acetic acid (2 mM and 4 mM) increased NAcSh MSN excitability in both sexes. N-methyl-D-aspartate receptor (NMDAR) antagonists, AP5 and memantine, robustly attenuated the acetic acid-induced increase in excitability. Acetic acid-induced NMDAR-dependent inward currents were greater in females compared to males and were not estrous cycle dependent. These findings suggest a novel NMDAR-dependent mechanism by which the ethanol metabolite, acetic acid, may influence neurophysiological effects in a key reward circuit in the brain from ethanol consumption. Furthermore, these findings also highlight a specific sex-dependent sensitivity in females to acetic acid-NMDAR interactions. This may underlie their more rapid advancement to alcohol use disorder and increased risk of alcohol related neurodegeneration compared to males.
Collapse
Affiliation(s)
- Andrew D Chapp
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, 55445, USA
| | - Chinonso A Nwakama
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, 55445, USA
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Andréa R Collins
- Department of Psychiatry, University of California San Francisco Fresno, Fresno, CA, 93701, USA
| | - Paul G Mermelstein
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, 55445, USA.
- Center for Neural Circuits in Addiction, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Mark J Thomas
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, 55445, USA.
- Center for Neural Circuits in Addiction, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
2
|
Chapp AD, Nwakama CA, Mermelstein PG, Thomas MJ. Physiological acetic acid concentrations from ethanol metabolism stimulate accumbens shell neurons via NMDAR activation in a sex-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539592. [PMID: 37205358 PMCID: PMC10187301 DOI: 10.1101/2023.05.05.539592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Recent studies have implicated the ethanol metabolite, acetic acid, as neuroactive, perhaps even more so than ethanol itself. In this study, we investigated sex-specific metabolism of ethanol (1, 2, and 4g/kg) to acetic acid in vivo to guide electrophysiology experiments in the accumbens shell (NAcSh), a key node in the mammalian reward circuit. There was a sex-dependent difference in serum acetate production, quantified via ion chromatography only at the lowest dose of ethanol (males>females). Ex vivo electrophysiology recordings of NAcSh neurons in brain slices demonstrated that physiological concentrations of acetic acid (2 mM and 4 mM) increased NAcSh neuronal excitability in both sexes. N -methyl- D -aspartate receptor (NMDAR) antagonists, AP5, and memantine robustly attenuated the acetic acid-induced increase in excitability. Acetic acid-induced NMDAR-dependent inward currents were greater in females compared to males. These findings suggest a novel NMDAR-dependent mechanism by which the ethanol metabolite, acetic acid, may influence neurophysiological effects in a key reward circuit in the brain.
Collapse
|
3
|
Hammad AM, Alasmari F, Sari Y. Effect of Modulation of the Astrocytic Glutamate Transporters' Expression on Cocaine-Induced Reinstatement in Male P Rats Exposed to Ethanol. Alcohol Alcohol 2021; 56:210-219. [PMID: 33063090 PMCID: PMC11004936 DOI: 10.1093/alcalc/agaa104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 11/14/2022] Open
Abstract
AIM Reinforcing properties of ethanol and cocaine are mediated in part through the glutamatergic system. Extracellular glutamate concentration is strictly maintained through several glutamate transporters, such as glutamate transporter 1 (GLT-1), cystine/glutamate transporter (xCT) and glutamate aspartate transporter (GLAST). Previous findings revealed that cocaine and ethanol exposure downregulated GLT-1 and xCT, and that β-lactam antibiotics restored their expression. METHODS In this study, we investigated the effect of ampicillin/sulbactam (AMP/SUL) (200 mg/kg, i.p.), a β-lactam antibiotic, on cocaine-induced reinstatement and locomotor activity in male alcohol preferring (P) rats using free choice ethanol (15 and 30%, v/v) and water. We also investigated the effect of co-exposure to ethanol and cocaine (20 mg/kg, i.p.) on GLT-1, xCT and GLAST expression in the nucleus accumbens (NAc) core, NAc shell and dorsomedial prefrontal cortex (dmPFC). RESULTS Cocaine exposure decreased ethanol intake and preference. Cocaine and ethanol co-exposure acquired place preference and increased locomotor activity compared to ethanol-exposed rats. GLT-1 and xCT expression were downregulated after cocaine and ethanol co-exposure in the NAc core and shell, but not in dmPFC. AMP/SUL attenuated reinstatement to cocaine as well attenuated the decrease in locomotor activity and ethanol intake and preference. These effects were associated with upregulation of GLT-1 and xCT expression in the NAc core/shell and dmPFC. GLAST expression was not affected after ethanol and cocaine co-exposure or AMP/SUL treatment. CONCLUSION Our findings demonstrate that astrocytic glutamate transporters within the mesocorticolimbic area are critical targets in modulating cocaine-seeking behavior while being consuming ethanol.
Collapse
Affiliation(s)
- Alaa M Hammad
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Fawaz Alasmari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
4
|
Chapp AD, Mermelstein PG, Thomas MJ. The ethanol metabolite acetic acid activates mouse nucleus accumbens shell medium spiny neurons. J Neurophysiol 2021; 125:620-627. [PMID: 33405999 DOI: 10.1152/jn.00659.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although ethanol consumption leads to an array of neurophysiological alterations involving the neural circuits for reward, the underlying mechanisms remain unclear. Acetic acid is a major metabolite of ethanol with high bioactivity and potentially significant pharmacological importance in regulating brain function. Yet, the impact of acetic acid on reward circuit function has not been well explored. Given the rewarding properties associated with ethanol consumption, we investigated the acute effects of ethanol and/or acetic acid on the neurophysiological function of medium spiny neurons of the nucleus accumbens shell, a key node in the mammalian reward circuit. We find that acetic acid, but not ethanol, provided a rapid and robust boost in neuronal excitability at physiologically relevant concentrations, whereas both compounds enhanced glutamatergic synaptic activity. These effects were consistent across both sexes in C57BL/6J mice. Overall, our data suggest acetic acid is a promising candidate mediator for ethanol effects on mood and motivation that deserves further investigation.NEW & NOTEWORTHY Ethanol consumption disrupts many neurophysiological processes leading to alterations in behavior and physiological function. The possible involvement of acetic acid, produced via ethanol metabolism, has been insufficiently explored. Here, we demonstrate that acetic acid contributes to rapid neurophysiological alterations in the accumbens shell. These findings raise the interesting possibility that ethanol may serve as a prodrug-generating acetic acid as a metabolite-that may influence ethanol consumption-associated behaviors and physiological responses by altering neurophysiological function.
Collapse
Affiliation(s)
- Andrew D Chapp
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota.,Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
| | - Paul G Mermelstein
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota.,Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
| | - Mark J Thomas
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota.,Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
5
|
An amylin and calcitonin receptor agonist modulates alcohol behaviors by acting on reward-related areas in the brain. Prog Neurobiol 2020; 200:101969. [PMID: 33278524 DOI: 10.1016/j.pneurobio.2020.101969] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/16/2020] [Accepted: 11/29/2020] [Indexed: 02/07/2023]
Abstract
Alcohol causes stimulatory behavioral responses by activating reward-processing brain areas including the laterodorsal (LDTg) and ventral tegmental areas (VTA) and the nucleus accumbens (NAc). Systemic administration of the amylin and calcitonin receptor agonist salmon calcitonin (sCT) attenuates alcohol-mediated behaviors, but the brain sites involved in this process remain unknown. Firstly, to identify potential sCT sites of action in the brain, we used immunohistochemistry after systemic administration of fluorescent-labeled sCT. We then performed behavioral experiments to explore how infused sCT into the aforementioned reward-processing brain areas affects acute alcohol-induced behaviors in mice and chronic alcohol consumption in rats. We show that peripheral sCT crosses the blood brain barrier and is detected in all the brain areas studied herein. sCT infused into the LDTg attenuates alcohol-evoked dopamine release in the NAc shell in mice and reduces alcohol intake in rats. sCT into the VTA blocks alcohol-induced locomotor stimulation and dopamine release in the NAc shell in mice and decreases alcohol intake in rats. Lastly, sCT into the NAc shell prevents alcohol-induced locomotor activity in mice. Our data suggest that central sCT modulates the ability of alcohol to activate reward-processing brain regions.
Collapse
|
6
|
Hauser SR, Waeiss RA, Molosh AI, Deehan GA, Bell RL, McBride WJ, Rodd ZA. Atrial natriuretic peptide (ANP): A novel mechanism for reducing ethanol consumption and seeking behaviors in female alcohol preferring (P) rats. Peptides 2020; 134:170403. [PMID: 32882352 PMCID: PMC7725921 DOI: 10.1016/j.peptides.2020.170403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 01/04/2023]
Abstract
Atrial Naturietic Peptide (ANP) is a neuropeptide that regulates function of the hypothalamic-pituitary-adrenal (HPA) axis, immune and neuroimmune system, and epigenetic factors. Research has indicated that ANP may mediate alcohol intake, withdrawal, and craving like behaviors. ANP receptors are present in the mesocorticolimbic (MCL) reward pathway of the brain, which includes the nucleus accumbens (Acb) and the ventral tegmental area (VTA). The objectives of the present study were to examine the effects of ANP microinjected into Acb subregions (Shell (Sh), Core (Co), ventral to AcbSh) on operant ethanol (EtOH) self-administration and into posterior VTA (pVTA) on EtOH-seeking behavior of female alcohol-preferring (P) rats. In the first experiment, ANP (0, 10 μg, or 100 μg) was microinjected into subregions of the Acb to determine its effects on EtOH self-administration. In the second experiment, ANP was microinjected into pVTA to determine its effects on Pavlovian Spontaneous Recovery (PSR) of responding, a measure of context-induced EtOH-seeking behavior. Administration of ANP directly into the AcbSh significantly reduced EtOH self-administration compared to vehicle, whereas ANP into the AcbCo or areas directly ventral to the AcbSh did not alter responding for EtOH. Microinjection of ANP into the pVTA significantly reduced responding on the EtOH-associated lever during the PSR test. The data indicate that activation of ANP systems in the (a) AcbSh can inhibit EtOH intake, and (b) in the pVTA can inhibit EtOH-seeking behavior. The results suggest that manipulations of the ANP system could be a potential target for pharmacotherapeutic intervention to treat alcohol use disorder. Supported in part by AA07462, AA07611, AA10717, AA10721, AA013522, AA019366, AA020908, AA022287, and AA024612.
Collapse
Affiliation(s)
- Sheketha R Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Robert A Waeiss
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrei I Molosh
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gerald A Deehan
- Department of Psychology, East Tennessee State University, Johnson City, TN, USA
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - William J McBride
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zachary A Rodd
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
7
|
Knight CP, Hauser SR, Waeiss RA, Molosh AI, Johnson PL, Truitt WA, McBride WJ, Bell RL, Shekhar A, Rodd ZA. The Rewarding and Anxiolytic Properties of Ethanol within the Central Nucleus of the Amygdala: Mediated by Genetic Background and Nociceptin. J Pharmacol Exp Ther 2020; 374:366-375. [PMID: 32527792 PMCID: PMC7430446 DOI: 10.1124/jpet.119.262097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 04/15/2020] [Indexed: 01/20/2023] Open
Abstract
In humans, alcohol is consumed for its rewarding and anxiolytic effects. The central nucleus of the amygdala (CeA) is considered a neuronal nexus that regulates fear, anxiety, and drug self-administration. Manipulations of the CeA alter ethanol (EtOH) consumption under numerous EtOH self-administration models. The experiments determined whether EtOH is reinforcing/anxiolytic within the CeA, whether selective breeding for high alcohol consumption alters the rewarding properties of EtOH in the CeA, and whether the reinforcing/anxiolytic effects of EtOH in the CeA are mediated by the neuropeptides corticotropin-releasing factor (CRF) and nociceptin. The reinforcing properties of EtOH were determined by having male Wistar and Taconic alcohol-preferring (tP) rats self-administer EtOH directly into the CeA. The expression of anxiety-like behaviors was assessed through multiple behavioral models (social interaction, acoustic startle, and open field). Coadministration of EtOH and a CRF1 antagonist (NBI35965) or nociceptin on self-administration into the CeA and anxiety-like behaviors was determined. EtOH was self-administered directly into the lateral CeA, and tP rats self-administered a lower concentration of EtOH than Wistar rats. EtOH microinjected into the lateral CeA reduced the expression of anxiety-like behaviors, indicating an anxiolytic effect. Coadministration of NBI35965 failed to alter the rewarding/anxiolytic properties of EtOH in the CeA. In contrast, coadministration of the nociceptin enhanced both EtOH reward and anxiolysis in the CeA. Overall, the data indicate that the lateral CeA is a key anatomic location that mediates the rewarding and anxiolytic effects of EtOH, and local nociceptin receptors, but not local CRF1 receptors, are involved in these behaviors. SIGNIFICANCE STATEMENT: Alcohol is consumed for the stimulatory, rewarding, and anxiolytic properties of the drug of abuse. The current data are the first to establish that alcohol is reinforcing and anxiolytic within the lateral central nucleus of the amygdala (CeA) and that the nociceptin system regulates these effects of alcohol within the CeA.
Collapse
Affiliation(s)
- Christopher P Knight
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sheketha R Hauser
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - R Aaron Waeiss
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Andrei I Molosh
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Philip L Johnson
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - William A Truitt
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - William J McBride
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Richard L Bell
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Anantha Shekhar
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Zachary A Rodd
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
8
|
Engleman EA, Ingraham CM, Rodd ZA, Murphy JM, McBride WJ, Ding ZM. The reinforcing effects of ethanol within the prelimbic cortex and ethanol drinking: Involvement of local dopamine D 2 receptor-mediated neurotransmission. Drug Alcohol Depend 2020; 214:108165. [PMID: 32688071 PMCID: PMC7431019 DOI: 10.1016/j.drugalcdep.2020.108165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/21/2020] [Accepted: 06/20/2020] [Indexed: 11/17/2022]
Abstract
Previous studies have identified important mesolimbic regions in supporting the reinforcing effects of ethanol. However, the involvement of the medial prefrontal cortex (mPFC), another key region within the mesocorticolimbic system, in ethanol reinforcement has been understudied. The objective of the current study was to examine the role of the prelimbic (PL) cortex sub-region of the mPFC in ethanol reinforcement and drinking. Intracranial self-administration was used to examine the reinforcing effects of ethanol within the PL cortex. Quantitative microdialysis was used to measure basal extracellular DA concentrations and clearance in the PL cortex following chronic ethanol drinking. In addition, the involvement of dopamine (DA) D2 receptors within the PL cortex on the reinforcing effects of ethanol and ethanol drinking was determined. Ethanol was dose-dependent self-administered into the PL cortex, with significantly more infusions elicited by 100-200 mg% ethanol than vehicle. Co-infusion of the D2 receptor antagonist sulpiride significantly reduced ethanol self-administration. Chronic ethanol drinking significantly elevated basal extracellular DA concentrations without altering DA clearance. Microinjection of sulpiride into the PL cortex selectively reduced ethanol, but not saccharine, drinking. These results indicate that the PL cortex supported the reinforcing effects of ethanol, and that ethanol drinking enhanced basal DA neurotransmission within the PL cortex. In addition, D2 receptor antagonism within the PL cortex reduced ethanol self-administration and drinking. Collectively, these findings revealed important DA mechanisms within the PL cortex in mediating ethanol reinforcement and drinking.
Collapse
Affiliation(s)
- Eric A Engleman
- Department of Psychiatry, Indiana University School of Medicine, 355 West 16th Street, Indianapolis, IN 46202, United States
| | - Cynthia M Ingraham
- Department of Psychiatry, Indiana University School of Medicine, 355 West 16th Street, Indianapolis, IN 46202, United States
| | - Zachary A Rodd
- Department of Psychiatry, Indiana University School of Medicine, 355 West 16th Street, Indianapolis, IN 46202, United States
| | - James M Murphy
- Department of Psychiatry, Indiana University School of Medicine, 355 West 16th Street, Indianapolis, IN 46202, United States
| | - William J McBride
- Department of Psychiatry, Indiana University School of Medicine, 355 West 16th Street, Indianapolis, IN 46202, United States
| | - Zheng-Ming Ding
- Department of Psychiatry, Indiana University School of Medicine, 355 West 16th Street, Indianapolis, IN 46202, United States; Department of Anesthesiology and Perioperative Medicine, Department of Pharmacology, Pennsylvania State University College of Medicine, 700 HMC Crescent Road, Hershey, PA 17033, United States.
| |
Collapse
|
9
|
Hauser SR, Katner SN, Waeiss RA, Truitt WA, Bell RL, McBride WJ, Rodd ZA. Selective breeding for high alcohol preference is associated with increased sensitivity to cannabinoid reward within the nucleus accumbens shell. Pharmacol Biochem Behav 2020; 197:173002. [PMID: 32710885 DOI: 10.1016/j.pbb.2020.173002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 11/30/2022]
Abstract
RATIONALE The rate of cannabinoid intake by those with alcohol use disorder (AUD) exceeds that of the general public. The high prevalence of co-abuse of alcohol and cannabis has been postulated to be predicated upon both a common predisposing genetic factor and the interaction of the drugs within the organism. The current experiments examined the effects of cannabinoids in an animal model of AUD. OBJECTIVES The present study assessed the reinforcing properties of a cannabinoid receptor 1 (CB1) agonist self-administered directly into the nucleus accumbens shell (AcbSh) in female Wistar and alcohol-preferring (P) rats. METHODS Following guide cannulae surgery aimed at AcbSh, subjects were placed in an operant box equipped with an 'active lever' (fixed ratio 1; FR1) that caused the delivery of the infusate and an 'inactive lever' that did not. Subjects were arbitrarily assigned to one of seven groups that self-administered either artificial cerebrospinal fluid (aCSF), or 3.125, 6.25, 12.5, or 25 pmol/100 nl of O-1057, a water-soluble CB1 agonist, dissolved in aCSF. The first four sessions of acquisition are followed by aCSF only infusates in sessions 5 and 6 during extinction, and finally the acquisition dose of infusate during session 7 as reinstatement. RESULTS The CB1 agonist was self-administered directly into the AcbSh. P rats self-administered the CB1 agonist at lower concentrations and at higher rates compared to Wistar rats. CONCLUSIONS Overall, the data indicate selective breeding for high alcohol preference has produced rats divergent in response to cannabinoids within the brain reward pathway. The data support the hypothesis that there can be common genetic factors influencing drug addiction.
Collapse
Affiliation(s)
- Sheketha R Hauser
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Simon N Katner
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Robert A Waeiss
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - William A Truitt
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Richard L Bell
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - William J McBride
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zachary A Rodd
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
10
|
Waeiss RA, Knight CP, Engleman EA, Hauser SR, Rodd ZA. Co-administration of ethanol and nicotine heightens sensitivity to ethanol reward within the nucleus accumbens (NAc) shell and increasing NAc shell BDNF is sufficient to enhance ethanol reward in naïve Wistar rats. J Neurochem 2020; 152:556-569. [PMID: 31721205 PMCID: PMC10826843 DOI: 10.1111/jnc.14914] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/26/2022]
Abstract
Alcohol use disorder most commonly presents as a polydrug disorder where greater than 85% are estimated to smoke. EtOH and nicotine (NIC) co-abuse or exposure results in unique neuroadaptations that are linked to behaviors that promote drug use. The current experiments aimed to identify neuroadaptations within the mesolimbic pathway produced by concurrent EtOH and NIC exposure. The experiments used four overall groups of male Wistar rats consisting of vehicle, EtOH or NIC alone, and EtOH+NIC. Drug exposure through direct infusion into the posterior ventral tegmental area (pVTA) stimulated release of glutamate and dopamine in the nucleus accumbens (NAc) shell, which was quantified through high-performance liquid chromatography. Additionally, brain-derived neurotrophic factor (BDNF) protein levels were measured via enzyme-linked immunosorbent assay (ELISA). A second experiment investigated the effects of drug pretreatment within the pVTA on the reinforcing properties of EtOH within the NAc shell through intracranial self-administration (ICSA). The concluding experiment evaluated the effect of NAc shell pretreatment with BDNF on EtOH reward utilizing ICSA within that region. The data indicated that only EtOH+NIC administration into the pVTA simultaneously increased glutamate, dopamine, and BDNF in the NAc shell. Moreover, only pVTA pretreatment with EtOH+NIC enhanced the reinforcing properties of EtOH in the NAc shell. BDNF pretreatment in the NAc shell was also sufficient to enhance the reinforcing properties of EtOH in the NAc shell. The collected data suggest that concurrent EtOH+NIC exposure results in a distinct neurochemical response and neuroadaptations within the mesolimbic pathway that alter EtOH reward.
Collapse
Affiliation(s)
- Robert A Waeiss
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Christopher P Knight
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Eric A Engleman
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sheketha R Hauser
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Zachary A Rodd
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
11
|
Somkuwar SS, Mandyam CD. Individual Differences in Ethanol Drinking and Seeking Behaviors in Rats Exposed to Chronic Intermittent Ethanol Vapor Exposure is Associated with Altered CaMKII Autophosphorylation in the Nucleus Accumbens Shell. Brain Sci 2019; 9:brainsci9120367. [PMID: 31835746 PMCID: PMC6955871 DOI: 10.3390/brainsci9120367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 11/16/2022] Open
Abstract
Chronic intermittent ethanol vapor exposure (CIE) in rodents produces reliable and high blood ethanol concentration and behavioral symptoms associated with moderate to severe alcohol use disorder (AUD)—for example, escalation of operant ethanol self-administration, a feature suggestive of transition from recreational to addictive use, is a widely replicated behavior in rats that experience CIE. Herein, we present evidence from a subset of rats that do not demonstrate escalation of ethanol self-administration following seven weeks of CIE. These low responders (LR) maintain low ethanol self-administration during CIE, demonstrate lower relapse to drinking during abstinence and reduced reinstatement of ethanol seeking triggered by ethanol cues when compared with high responders (HR). We examined the blood ethanol levels in LR and HR rats during CIE and show higher levels in LR compared with HR. We also examined peak corticosterone levels during CIE and show that LR rats have higher levels compared with HR rats. Lastly, we evaluated the levels of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in the nucleus accumbens shell and reveal that the activity of CaMKII, which is autophosphorylated at site Tyr-286, is significantly reduced in HR rats compared with LR rats. These findings demonstrate that dysregulation of the hypothalamic–pituitary–adrenal axis activity and plasticity-related proteins regulating molecular memory in the nucleus accumbens shell are associated with higher ethanol-drinking and -seeking in HR rats. Future mechanistic studies should evaluate CaMKII autophosphorylation-dependent remodeling of glutamatergic synapses in the ventral striatum as a plausible mechanism for the CIE-induced enhanced ethanol drinking and seeking behaviors.
Collapse
Affiliation(s)
| | - Chitra D Mandyam
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| |
Collapse
|
12
|
Hauser SR, Knight CP, Truitt WA, Waeiss RA, Holt IS, Carvajal GB, Bell RL, Rodd ZA. Adolescent Intermittent Ethanol Increases the Sensitivity to the Reinforcing Properties of Ethanol and the Expression of Select Cholinergic and Dopaminergic Genes within the Posterior Ventral Tegmental Area. Alcohol Clin Exp Res 2019; 43:1937-1948. [DOI: 10.1111/acer.14150] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/10/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Sheketha R. Hauser
- Department of Psychiatry Indiana University School of Medicine Indianapolis Indiana
| | | | - William A. Truitt
- Department of Psychiatry Indiana University School of Medicine Indianapolis Indiana
| | - Robert Aaron Waeiss
- Program in Medical Neuroscience Paul and Carole Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis Indiana
| | - Ian S. Holt
- Department of Psychiatry Indiana University School of Medicine Indianapolis Indiana
| | - Gustavo B. Carvajal
- Department of Psychiatry Indiana University School of Medicine Indianapolis Indiana
| | - Richard L. Bell
- Department of Psychiatry Indiana University School of Medicine Indianapolis Indiana
| | - Zachary A. Rodd
- Department of Psychiatry Indiana University School of Medicine Indianapolis Indiana
| |
Collapse
|
13
|
Waeiss RA, Knight CP, Hauser SR, Pratt LA, McBride WJ, Rodd ZA. Therapeutic challenges for concurrent ethanol and nicotine consumption: naltrexone and varenicline fail to alter simultaneous ethanol and nicotine intake by female alcohol-preferring (P) rats. Psychopharmacology (Berl) 2019; 236:1887-1900. [PMID: 30758525 PMCID: PMC6606358 DOI: 10.1007/s00213-019-5174-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/16/2019] [Indexed: 12/20/2022]
Abstract
RATIONALE AND OBJECTIVES Simultaneous alcohol and nicotine consumption occurs in the majority of individuals with alcohol use disorder (AUD) and nicotine dependence. Varenicline (Var) is used to assist in the cessation of nicotine use, while naltrexone (Nal) is the standard treatment for AUD. Despite evidence that ethanol (EtOH) and nicotine (NIC) co-use produces unique neuroadaptations, preclinical research has focused on the effects of pharmacotherapeutics on a single reinforcer. The current experiments examined the effects of Var and Nal on EtOH, NIC, or EtOH+NIC intake. METHODS Animals were randomly assigned to one of four drinking conditions of 24-h access to a three-bottle choice paradigm, one of which always contained water. Drinking conditions were water only, 0.07 and 0.14 mg/mL NIC (NIC only), 15% and 30% EtOH (EtOH only), or 15% and 30% EtOH with 0.14 mg/mL NIC (EtOH+NIC). The effects of Var (0, 1, or 2 mg/kg) or Nal (0, 1, or 10 mg/kg) injections on maintenance and relapse consumption were determined during four consecutive days. RESULTS Var reduced maintenance and relapse NIC intake but had no effect on EtOH or EtOH+NIC drinking. Conversely, Nal reduced EtOH maintenance and relapse drinking, but had no effect on NIC or EtOH+NIC drinking. DISCUSSION The results indicate the standard pharmacological treatments for nicotine dependence and AUD were effective at reducing consumption of the targeted reinforcer but neither reduced EtOH+NIC co-use/abuse. These findings suggest that co-abuse may promote unique neuroadaptations that require models of polysubstance abuse to develop pharmacotherapeutics to treat AUD and nicotine dependence.
Collapse
Affiliation(s)
- Robert A Waeiss
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Christopher P Knight
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 W. 15th Street, Suite 300B, Indianapolis, IN, 46202-2266, USA
| | - Sheketha R Hauser
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 W. 15th Street, Suite 300B, Indianapolis, IN, 46202-2266, USA
| | - Lauren A Pratt
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - William J McBride
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 W. 15th Street, Suite 300B, Indianapolis, IN, 46202-2266, USA
| | - Zachary A Rodd
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 W. 15th Street, Suite 300B, Indianapolis, IN, 46202-2266, USA.
| |
Collapse
|
14
|
Feltmann K, Borroto‐Escuela DO, Rüegg J, Pinton L, de Oliveira Sergio T, Narváez M, Jimenez‐Beristain A, Ekström TJ, Fuxe K, Steensland P. Effects of Long-Term Alcohol Drinking on the Dopamine D2 Receptor: Gene Expression and Heteroreceptor Complexes in the Striatum in Rats. Alcohol Clin Exp Res 2018; 42:338-351. [PMID: 29205397 PMCID: PMC5817245 DOI: 10.1111/acer.13568] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/28/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND Reduced dopamine D2 receptor (D2R) ligand binding has repeatedly been demonstrated in the striatum of humans with alcohol use disorder (AUD). The attenuated D2R binding has been suggested to reflect a reduced D2R density, which in turn has been proposed to drive craving and relapse. However, results from rodent studies addressing the effects of alcohol drinking on D2R density have been inconsistent. METHODS A validated alcohol drinking model (intermittent access to 20% alcohol) in Wistar rats was used to study the effects of voluntary alcohol drinking (at least 12 weeks) on the D2R in the striatum compared to age-matched alcohol-naïve control rats. Reverse transcriptase quantitative PCR was used to quantify isoform-specific Drd2 gene expression levels. Using bisulfite pyrosequencing, DNA methylation levels of a regulatory region of the Drd2 gene were determined. In situ proximity ligation assay was used to measure densities of D2R receptor complexes: D2R-D2R, adenosine A2A receptor (A2AR)-D2R, and sigma1 receptor (sigma1R)-D2R. RESULTS Long-term voluntary alcohol drinking significantly reduced mRNA levels of the long D2R isoform in the nucleus accumbens (NAc) but did not alter CpG methylation levels in the analyzed sequence of the Drd2 gene. Alcohol drinking also reduced the striatal density of D2R-D2R homoreceptor complexes, increased the density of A2AR-D2R heteroreceptor complexes in the NAc shell and the dorsal striatum, and decreased the density of sigma1R-D2R heteroreceptor complexes in the dorsal striatum. CONCLUSIONS The present results on long-term alcohol drinking might reflect reduced D2R levels through reductions in D2R-D2R homoreceptor complexes and gene expression. Furthermore, based on antagonistic interactions between A2AR and D2R, an increased density of A2AR-D2R heteroreceptor complexes might indicate a reduced affinity and signaling of the D2R population within the complex. Hence, both reduced striatal D2R levels and reduced D2R protomer affinity within the striatal A2AR-D2R complex might underlie reduced D2R radioligand binding in humans with AUD. This supports the hypothesis of a hypodopaminergic system in AUD and suggests the A2AR-D2R heteroreceptor complex as a potential novel treatment target.
Collapse
MESH Headings
- Alcohol Drinking
- Animals
- Central Nervous System Depressants/pharmacology
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Ethanol/pharmacology
- Gene Expression/drug effects
- Male
- Multiprotein Complexes/drug effects
- Multiprotein Complexes/metabolism
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptor, Adenosine A2A/drug effects
- Receptor, Adenosine A2A/metabolism
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Receptors, sigma/drug effects
- Receptors, sigma/metabolism
- Sigma-1 Receptor
Collapse
Affiliation(s)
- Kristin Feltmann
- Center for Psychiatry ResearchDepartment of Clinical NeuroscienceKarolinska Institutet& Stockholm Health Care ServicesStockholm County CouncilStockholmSweden
| | | | - Joëlle Rüegg
- Center for Molecular MedicineDepartment of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
- SwetoxUnit of Toxicology SciencesKarolinska InstitutetSödertäljeSweden
| | - Luca Pinton
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | - Thatiane de Oliveira Sergio
- Center for Psychiatry ResearchDepartment of Clinical NeuroscienceKarolinska Institutet& Stockholm Health Care ServicesStockholm County CouncilStockholmSweden
| | - Manuel Narváez
- Facultad de MedicinaInstituto de Investigación Biomédica de MálagaUniversity of MálagaMalagaSpain
| | | | - Tomas J. Ekström
- Center for Molecular MedicineDepartment of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Kjell Fuxe
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | - Pia Steensland
- Center for Psychiatry ResearchDepartment of Clinical NeuroscienceKarolinska Institutet& Stockholm Health Care ServicesStockholm County CouncilStockholmSweden
| |
Collapse
|
15
|
Ding ZM, Ingraham CM, Hauser SR, Lasek AW, Bell RL, McBride WJ. Reduced Levels of mGlu2 Receptors within the Prelimbic Cortex Are Not Associated with Elevated Glutamate Transmission or High Alcohol Drinking. Alcohol Clin Exp Res 2017; 41:1896-1906. [PMID: 28858384 PMCID: PMC5659915 DOI: 10.1111/acer.13488] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/23/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND A Grm2 cys407* stop codon mutation, which results in a loss of the metabotropic glutamate 2 (mGlu2) receptor protein, was identified as being associated with high alcohol drinking by alcohol-preferring (P) rats. The objectives of the current study were to characterize the effects of reduced levels of mGlu2 receptors on glutamate transmission and alcohol drinking. METHODS Quantitative no-net-flux microdialysis was used to test the hypothesis that basal extracellular glutamate levels in the prelimbic (PL) cortex and nucleus accumbens shell (NACsh) will be higher in P than Wistar rats. A lentiviral-delivered short-hairpin RNA (shRNA)-mediated knockdown was used to test the hypothesis that reduced levels of mGlu2 receptors within the PL cortex will increase voluntary alcohol drinking by Wistar rats. A linear regression analysis was used to test the hypothesis that there will be a significant correlation between the Grm2 cys407* mutation and level of alcohol intake. RESULTS Extracellular glutamate concentrations within the PL cortex (3.6 ± 0.6 vs. 6.4 ± 0.6 μM) and NACsh (3.2 ± 0.4 vs. 6.6 ± 0.6 μM) were significantly lower in female P than female Wistar rats. Western blot detected the presence of mGlu2 receptors in these regions of female Wistar rats, but not female P rats. Micro-infusion of shRNAs into the PL cortex significantly reduced local mGlu2 receptor levels (by 40%), but did not alter voluntary alcohol drinking in male Wistar rats. In addition, there was no significant correlation between the Grm2 mutation and alcohol intake in 36 rodent lines (r = 0.29, p > 0.05). CONCLUSIONS Collectively, these results suggest a lack of association between the loss of mGlu2 receptors and glutamate transmission in the NACsh and PL cortex of female P rats, and between the level of mGlu2 receptors in the PL cortex and alcohol drinking of male Wistar rats.
Collapse
Affiliation(s)
- Zheng-Ming Ding
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Cynthia M. Ingraham
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Sheketha R. Hauser
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Amy W. Lasek
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612
| | - Richard L. Bell
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202
| | - William J. McBride
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
16
|
Lê A, Kalant H. Intravenous self-administration of alcohol in rats-problems with translation to humans. Addict Biol 2017; 22:1665-1681. [PMID: 27480572 PMCID: PMC5290288 DOI: 10.1111/adb.12429] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/24/2016] [Accepted: 06/17/2016] [Indexed: 12/16/2022]
Abstract
Alcohol is consumed orally by humans, and oral self-administration has been successfully modeled in laboratory animals. Over the last several years, attempts have been made to develop a procedure for the reliable intravenous (IV) self-administration of alcohol in rodents. IV self-administration would provide a better tool for investigating neurobiological mechanisms of alcohol reinforcement and dependence because confounding factors associated with oral self-administration, such as variations in orosensory sensitivity to alcohol and/or its absorption, are avoided. A review of the literature shows that rats, mice and non-human primates can initiate and maintain IV self-administration of alcohol. However, there are 50- to 100-fold interspecies differences in the reported alcohol infusion doses required. Most surprising is that the infusion dose (1-2 mg/kg) that reliably maintains IV alcohol self-administration in rats results in total alcohol intakes of only 20-25 mg/kg/hour, which are unlikely to have significant pharmacological effects. The evidence to support IV self-administration of such low doses of alcohol in rats as well as the potential biological mechanisms underlying such self-administration are discussed. The minute amounts of alcohol shown to reliably maintain IV self-administration behavior in rats challenge the relationship between their blood alcohol levels and the rewarding and reinforcing effects of alcohol.
Collapse
Affiliation(s)
- A.D. Lê
- Neurobiology of Alcohol Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto
- Department of Psychiatry, University of Toronto
| | - H. Kalant
- Department of Pharmacology and Toxicology, University of Toronto
- Centre for Addiction and Mental Health, Research Division
| |
Collapse
|
17
|
Lovinger DM, Alvarez VA. Alcohol and basal ganglia circuitry: Animal models. Neuropharmacology 2017; 122:46-55. [PMID: 28341206 DOI: 10.1016/j.neuropharm.2017.03.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 01/18/2023]
Abstract
Brain circuits that include the cortex and basal ganglia make up the bulk of the forebrain, and influence behaviors related to almost all aspects of affective, cognitive and sensorimotor functions. The learning of new actions as well as association of existing action repertoires with environmental events are key functions of this circuitry. Unfortunately, the cortico-basal ganglia circuitry is also the target for all drugs of abuse, including alcohol. This makes the circuitry susceptible to the actions of chronic alcohol exposure that impairs circuit function in ways that contribute to cognitive dysfunction and drug use disorders. In the present review, we describe the connectivity and functions of the associative, limbic and sensorimotor cortico-basal ganglia circuits. We then review the effects of acute and chronic alcohol exposure on circuit function. Finally, we review studies examining the roles of the different circuits and circuit elements in alcohol use and abuse. We attempt to synthesize information from a variety of studies in laboratory animals and humans to generate hypotheses about how the three circuits interact with each other and with the other brain circuits during exposure to alcohol and during the development of alcohol use disorders. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Veronica A Alvarez
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
18
|
Spoelder M, Hesseling P, Styles M, Baars AM, Lozeman-van 't Klooster JG, Lesscher HMB, Vanderschuren LJMJ. Dopaminergic neurotransmission in ventral and dorsal striatum differentially modulates alcohol reinforcement. Eur J Neurosci 2016; 45:147-158. [PMID: 27521051 DOI: 10.1111/ejn.13358] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/14/2016] [Accepted: 08/02/2016] [Indexed: 01/18/2023]
Abstract
Dopaminergic neurotransmission in the striatum has been widely implicated in the reinforcing properties of substances of abuse. However, the striatum is functionally heterogeneous, and previous work has mostly focused on psychostimulant drugs. Therefore, we investigated how dopamine within striatal subregions modulates alcohol-directed behaviour in rats. We assessed the effects of infusion of the dopamine receptor antagonist alpha-flupenthixol into the shell and core of the nucleus accumbens (NAcc) and the dorsolateral striatum (DLS) on responding for alcohol under fixed ratio 1 (FR1) and progressive ratio (PR) schedules of reinforcement. Bilateral infusion of alpha-flupenthixol into the NAcc shell reduced responding for alcohol under both the FR1 (15 μg/side) and the PR schedule (3.75-15 μg/side) of reinforcement. Infusion of alpha-flupenthixol into the NAcc core (7.5-15 μg/side) also decreased responding for alcohol under both schedules. By contrast, alpha-flupenthixol infusion into the DLS did not affect FR1 responding, but reduced responding under the PR schedule (15 μg/side). The decreases in responding were related to earlier termination of responding during the session, whereas the onset and rate of responding remained largely unaffected. Together, these data suggest that dopamine in the NAcc shell is involved in the incentive motivation for alcohol, whereas DLS dopamine comes into play when obtaining alcohol requires high levels of effort. In contrast, NAcc core dopamine appears to play a more general role in alcohol reinforcement. In conclusion, dopaminergic neurotransmission acts in concert in subregions of the striatum to modulate different aspects of alcohol-directed behaviour.
Collapse
Affiliation(s)
- Marcia Spoelder
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Peter Hesseling
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Matthew Styles
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Annemarie M Baars
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - José G Lozeman-van 't Klooster
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Heidi M B Lesscher
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Louk J M J Vanderschuren
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| |
Collapse
|
19
|
Corbit LH, Janak PH. Habitual Alcohol Seeking: Neural Bases and Possible Relations to Alcohol Use Disorders. Alcohol Clin Exp Res 2016; 40:1380-9. [PMID: 27223341 DOI: 10.1111/acer.13094] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/05/2016] [Indexed: 12/22/2022]
Abstract
Loss of flexible control over alcohol use may contribute to the development of alcohol use disorders. An increased contribution of response habits to alcohol-related behaviors may help explain this loss of control. Focusing on data from outcome devaluation and Pavlovian-instrumental transfer procedures, we review evidence for loss of goal-directed control over alcohol seeking and consumption drawing from both preclinical findings and clinical data where they exist. Over the course of extended alcohol self-administration and exposure, the performance of alcohol-seeking responses becomes less sensitive to reduction in the value of alcohol and more vulnerable to the influences of alcohol-predictive stimuli. These behavioral changes are accompanied by a shift in the corticostriatal circuits that control responding from circuits centered on the dorsomedial to those centered on the dorsolateral striatum. These changes in behavioral and neural control could help explain failures to abstain from alcohol despite intention to do so. Understanding and ultimately ameliorating these changes will aid development of more effective treatment interventions.
Collapse
Affiliation(s)
- Laura H Corbit
- School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
| | - Patricia H Janak
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
20
|
Cervera-Juanes R, Wilhem LJ, Park B, Lee R, Locke J, Helms C, Gonzales S, Wand G, Jones SR, Grant KA, Ferguson B. MAOA expression predicts vulnerability for alcohol use. Mol Psychiatry 2016; 21:472-9. [PMID: 26148813 PMCID: PMC4705001 DOI: 10.1038/mp.2015.93] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 05/27/2015] [Accepted: 06/01/2015] [Indexed: 01/15/2023]
Abstract
The role of the monoamines dopamine (DA) and serotonin (5HT) and the monoamine-metabolizing enzyme monoamine oxidase A (MAOA) have been repeatedly implicated in studies of alcohol use and dependence. Genetic investigations of MAOA have yielded conflicting associations between a common polymorphism (MAOA-LPR) and risk for alcohol abuse. The present study provides direct comparison of tissue-specific MAOA expression and the level of alcohol consumption. We analyzed rhesus macaque MAOA (rhMAOA) expression in blood from males before and after 12 months of alcohol self-administration. In addition, nucleus accumbens core (NAc core) and cerebrospinal fluid (CSF) were collected from alcohol access and control (no alcohol access) subjects at the 12-month time point for comparison. The rhMAOA expression level in the blood of alcohol-naive subjects was negatively correlated with subsequent alcohol consumption level. The mRNA expression was independent of rhMAOA-LPR genotype and global promoter methylation. After 12 months of alcohol use, blood rhMAOA expression had decreased in an alcohol dose-dependent manner. Also after 12 months, rhMAOA expression in the NAc core was significantly lower in the heavy drinkers, as compared with control subjects. The CSF measured higher levels of DA and lower DOPAC/DA ratios among the heavy drinkers at the same time point. These results provide novel evidence that blood MAOA expression predicts alcohol consumption and that heavy alcohol use is linked to low MAOA expression in both the blood and NAc core. Together, the findings suggest a mechanistic link between dampened MAOA expression, elevated DA and alcohol abuse.
Collapse
Affiliation(s)
- Rita Cervera-Juanes
- Department of Neurosciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Larry J. Wilhem
- Department of Neurosciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Byung Park
- Department of Public Health and Preventive Medicine, Oregon Health & Science University, Portland, OR 97239
| | - Richard Lee
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD 21205
| | - Jason Locke
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157
| | - Christa Helms
- Department of Neurosciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Steven Gonzales
- Department of Neurosciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Gary Wand
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD 21205,Department of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Sara R. Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157
| | - Kathleen A. Grant
- Department of Neurosciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Betsy Ferguson
- Department of Neurosciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006,Corresponding author: Betsy Ferguson. Division of Neurosciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006.
| |
Collapse
|
21
|
Bell RL, Hauser S, Rodd ZA, Liang T, Sari Y, McClintick J, Rahman S, Engleman EA. A Genetic Animal Model of Alcoholism for Screening Medications to Treat Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:179-261. [PMID: 27055615 PMCID: PMC4851471 DOI: 10.1016/bs.irn.2016.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purpose of this review is to present up-to-date pharmacological, genetic, and behavioral findings from the alcohol-preferring P rat and summarize similar past work. Behaviorally, the focus will be on how the P rat meets criteria put forth for a valid animal model of alcoholism with a highlight on its use as an animal model of polysubstance abuse, including alcohol, nicotine, and psychostimulants. Pharmacologically and genetically, the focus will be on the neurotransmitter and neuropeptide systems that have received the most attention: cholinergic, dopaminergic, GABAergic, glutamatergic, serotonergic, noradrenergic, corticotrophin releasing hormone, opioid, and neuropeptide Y. Herein, we sought to place the P rat's behavioral and neurochemical phenotypes, and to some extent its genotype, in the context of the clinical literature. After reviewing the findings thus far, this chapter discusses future directions for expanding the use of this genetic animal model of alcoholism to identify molecular targets for treating drug addiction in general.
Collapse
Affiliation(s)
- R L Bell
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - S Hauser
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Z A Rodd
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - T Liang
- Indiana University School of Medicine, Indianapolis, IN, United States
| | - Y Sari
- University of Toledo, Toledo, OH, United States
| | - J McClintick
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - S Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - E A Engleman
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
22
|
Modulation of nucleus accumbens connectivity by alcohol drinking and naltrexone in alcohol-preferring rats: A manganese-enhanced magnetic resonance imaging study. Eur Neuropsychopharmacol 2016; 26:445-55. [PMID: 26851200 DOI: 10.1016/j.euroneuro.2016.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/31/2015] [Accepted: 01/15/2016] [Indexed: 11/23/2022]
Abstract
The nonselective opioid receptor antagonist naltrexone is now used for the treatment of alcoholism, yet naltrexone's central mechanism of action remains poorly understood. One line of evidence suggests that opioid antagonists regulate alcohol drinking through interaction with the mesolimbic dopamine system. Hence, our goal here was to examine the role of the nucleus accumbens connectivity in alcohol reinforcement and naltrexone's actions using manganese-enhanced magnetic resonance imaging (MEMRI). Following long-term free-choice drinking of alcohol and water, AA (Alko Alcohol) rats received injections of MnCl2 into the nucleus accumbens for activity-dependent tracing of accumbal connections. Immediately after the accumbal injections, rats were imaged using MEMRI, and then allowed to drink either alcohol or water for the next 24h. Naltrexone was administered prior to the active dark period, and the second MEMRI was performed 24h after the first scan. Comparison of signal intensity at 1 and 24h after accumbal MnCl2 injections revealed an ipsilateral continuum through the ventral pallidum, bed nucleus of the stria terminalis, globus pallidus, and lateral hypothalamus to the substantia nigra and ventral tegmental area. Activation was also seen in the rostral part of the insular cortex and regions of the prefrontal cortex. Alcohol drinking resulted in enhanced activation of these connections, whereas naltrexone suppressed alcohol-induced activity. These data support the involvement of the accumbal connections in alcohol reinforcement and mediation of naltrexone's suppressive effects on alcohol drinking through their deactivation.
Collapse
|
23
|
Beckley JT, Laguesse S, Phamluong K, Morisot N, Wegner SA, Ron D. The First Alcohol Drink Triggers mTORC1-Dependent Synaptic Plasticity in Nucleus Accumbens Dopamine D1 Receptor Neurons. J Neurosci 2016; 36:701-13. [PMID: 26791202 PMCID: PMC4719011 DOI: 10.1523/jneurosci.2254-15.2016] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 11/16/2015] [Accepted: 11/24/2015] [Indexed: 01/25/2023] Open
Abstract
Early binge-like alcohol drinking may promote the development of hazardous intake. However, the enduring cellular alterations following the first experience with alcohol consumption are not fully understood. We found that the first binge-drinking alcohol session produced enduring enhancement of excitatory synaptic transmission onto dopamine D1 receptor-expressing neurons (D1+ neurons) in the nucleus accumbens (NAc) shell but not the core in mice, which required D1 receptors (D1Rs) and mechanistic target of rapamycin complex 1 (mTORC1). Furthermore, inhibition of mTORC1 activity during the first alcohol drinking session reduced alcohol consumption and preference of a subsequent drinking session. mTORC1 is critically involved in RNA-to-protein translation, and we found that the first alcohol session rapidly activated mTORC1 in NAc shell D1+ neurons and increased synaptic expression of the AMPAR subunit GluA1 and the scaffolding protein Homer. Finally, D1R stimulation alone was sufficient to activate mTORC1 in the NAc to promote mTORC1-dependent translation of the synaptic proteins GluA1 and Homer. Together, our results indicate that the first alcohol drinking session induces synaptic plasticity in NAc D1+ neurons via enhanced mTORC1-dependent translation of proteins involved in excitatory synaptic transmission that in turn drives the reinforcement learning associated with the first alcohol experience. Thus, the alcohol-dependent D1R/mTORC1-mediated increase in synaptic function in the NAc may reflect a neural imprint of alcohol's reinforcing properties, which could promote subsequent alcohol intake. Significance statement: Consuming alcohol for the first time is a learning event that drives further drinking. Here, we identified a mechanism that may underlie the reinforcing learning associated with the initial alcohol experience. We show that the first alcohol experience induces a persistent enhancement of excitatory synaptic transmission on NAc shell D1+ neurons, which is dependent on D1R and mTORC1. We also find that mTORC1 is necessary for the sustained alcohol consumption and preference across the initial drinking sessions. The first alcohol binge activates mTORC1 in NAc D1+ neurons and increases levels of synaptic proteins involved in glutamatergic signaling. Thus, the D1R/mTORC1-dependent plasticity following the first alcohol exposure may be a critical cellular component of reinforcement learning.
Collapse
Affiliation(s)
- Jacob T Beckley
- Department of Neurology, University of California, San Francisco, California 94143-0663
| | - Sophie Laguesse
- Department of Neurology, University of California, San Francisco, California 94143-0663
| | - Khanhky Phamluong
- Department of Neurology, University of California, San Francisco, California 94143-0663
| | - Nadege Morisot
- Department of Neurology, University of California, San Francisco, California 94143-0663
| | - Scott A Wegner
- Department of Neurology, University of California, San Francisco, California 94143-0663
| | - Dorit Ron
- Department of Neurology, University of California, San Francisco, California 94143-0663
| |
Collapse
|
24
|
Deehan GA, Hauser SR, Waeiss RA, Knight CP, Toalston JE, Truitt WA, McBride WJ, Rodd ZA. Co-administration of ethanol and nicotine: the enduring alterations in the rewarding properties of nicotine and glutamate activity within the mesocorticolimbic system of female alcohol-preferring (P) rats. Psychopharmacology (Berl) 2015; 232:4293-302. [PMID: 26306917 PMCID: PMC4899841 DOI: 10.1007/s00213-015-4056-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022]
Abstract
RATIONALE The co-abuse of ethanol (EtOH) and nicotine (NIC) increases the likelihood that an individual will relapse to drug use while attempting to maintain abstinence. There is limited research examining the consequences of long-term EtOH and NIC co-abuse. OBJECTIVES The current experiments determined the enduring effects of chronic EtOH, NIC, or EtOH + NIC intake on the reinforcing properties of NIC and glutamate (GLU) activity within the mesocorticolimbic (MCL) system. METHODS Alcohol-preferring (P) rats self-administered EtOH, Sacc + NIC, or EtOH + NIC combined for 10 weeks. The reinforcing properties of 0.1-3.0 μM NIC within the nucleus accumbens shell (AcbSh) were assessed following a 2-3-week drug-free period using intracranial self-administration (ICSA) procedures. The effects of EtOH, Sacc, Sacc + NIC, or EtOH + NIC intake on extracellular levels and clearance of glutamate (GLU) in the medial prefrontal cortex (mPFC) were also determined. RESULTS Binge intake of EtOH (96-100 mg%) and NIC (21-27 mg/mL) were attained. All groups of P rats self-infused 3.0 μM NIC directly into the AcbSh, whereas only animals in the EtOH + NIC co-abuse group self-infused the 0.3 and 1.0 μM NIC concentrations. Additionally, self-administration of EtOH + NIC, but not EtOH, Sacc or Sacc + NIC, resulted in enduring increases in basal extracellular GLU levels in the mPFC. CONCLUSIONS Overall, the co-abuse of EtOH + NIC produced enduring neuronal alterations within the MCL which enhanced the rewarding properties of NIC in the AcbSh and elevated extracellular GLU levels within the mPFC.
Collapse
Affiliation(s)
- Gerald A Deehan
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 West 15th St, Indianapolis, IN, 46202-2266, USA.
| | - Sheketha R Hauser
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 West 15th St, Indianapolis, IN, 46202-2266, USA
| | - R Aaron Waeiss
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 West 15th St, Indianapolis, IN, 46202-2266, USA
| | - Christopher P Knight
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 West 15th St, Indianapolis, IN, 46202-2266, USA
| | - Jamie E Toalston
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 West 15th St, Indianapolis, IN, 46202-2266, USA
| | - William A Truitt
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 West 15th St, Indianapolis, IN, 46202-2266, USA
| | - William J McBride
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 West 15th St, Indianapolis, IN, 46202-2266, USA
| | - Zachary A Rodd
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 West 15th St, Indianapolis, IN, 46202-2266, USA
| |
Collapse
|
25
|
Perkel JK, Bentzley BS, Andrzejewski ME, Martinetti MP. Delay discounting for sucrose in alcohol-preferring and nonpreferring rats using a sipper tube within-sessions task. Alcohol Clin Exp Res 2015; 39:232-8. [PMID: 25684046 DOI: 10.1111/acer.12632] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 11/10/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Delay discounting (DD) is a measure of impulsivity that quantifies preference for a small reward delivered immediately over a large reward delivered after a delay. It has been hypothesized that impulsivity is an endophenotype associated with increased risk for development of alcohol use disorders (AUDs); however, a causal role of impulsivity is difficult to determine with human studies. We tested this hypothesis by assessing the degree of DD present in alcohol-naïve rats selectively bred for either high- or low-alcohol preference. METHODS A novel adaptation of a within-sessions DD procedure was used to compare impulsivity differences between male alcohol-preferring (P) and nonpreferring (NP) rat lines (n = 6 per line) using a 5% sucrose reward. Animals chose between 2 options: 2-second sipper tube access delivered immediately (small reward) or 8-second access after a variable delay (large reward). Each 50-minute session consisted of 5 blocks of ten 60-second trials. Within each session, the delay to the large reward increased in each block of trials. Delays were gradually increased over 3 sets to attain a final delay set of 3, 8, 15, 18, and 25 seconds. RESULTS Prior to starting delays, there were no significant differences between lines in sucrose consumption or percent choice for the large reward, and both lines exhibited a clear preference for the large reward. After delays were initiated, choice for the large reward decreased as the delay to its presentation increased. Although discounting of the large, delayed reward was observed for both lines, the degree of discounting, or "impulsivity," was greater for P rats compared with NP rats. CONCLUSIONS P rats are more impulsive for sucrose rewards before exposure to alcohol compared with NP rats. Thus, individuals genetically predisposed toward developing AUDs may be more likely to engage in impulsive decision making prior to alcohol exposure.
Collapse
Affiliation(s)
- Jessica K Perkel
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | | | | | | |
Collapse
|
26
|
Hauser SR, Wilden JA, Deehan GA, McBride WJ, Rodd ZA. Cocaine influences alcohol-seeking behavior and relapse drinking in alcohol-preferring (P) rats. Alcohol Clin Exp Res 2015; 38:2678-86. [PMID: 25346508 DOI: 10.1111/acer.12540] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 08/01/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND The results of several studies suggest that there may be common neurocircuits regulating drug-seeking behaviors. Common biological pathways regulating drug-seeking would explain the phenomenon that seeking for 1 drug can be enhanced by exposure to another drug of abuse. The objective of this study was to assess the time course effects of acute cocaine administration on ethanol (EtOH) seeking and relapse. METHODS Alcohol-preferring (P) rats were allowed to self-administer 15% EtOH and water. EtOH-seeking was assessed through the use of the Pavlovian spontaneous recovery (PSR) model, while EtOH-relapse drinking was assessed through the use of the alcohol-deprivation effect. RESULTS Cocaine (0, 1, or 10 mg/kg), injected immediately, 30 minutes, or 4 hours prior to the first PSR testing session, dose-dependently increased responding on the EtOH lever compared to extinction responses and responding by saline controls. Under relapse conditions, cocaine given immediately prior to the relapse session had no effect (1 mg/kg) or reduced responding (10 mg/kg). In contrast, cocaine given 4 hours prior to the relapse session markedly enhanced EtOH responding compared to saline. CONCLUSIONS The enhanced expression of EtOH-seeking and EtOH-relapse behaviors may be a result of a priming effect of cocaine on neuronal circuits mediating these behaviors. The effect of cocaine on EtOH-relapse drinking is indicative of the complex interactions that can occur between drugs of abuse; production of conflicting behaviors (immediate), and priming of relapse/seeking (4-hour delay).
Collapse
Affiliation(s)
- Sheketha R Hauser
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | | |
Collapse
|
27
|
Franklin KM, Hauser SR, Lasek AW, McClintick J, Ding ZM, McBride WJ, Bell RL. Reduction of alcohol drinking of alcohol-preferring (P) and high-alcohol drinking (HAD1) rats by targeting phosphodiesterase-4 (PDE4). Psychopharmacology (Berl) 2015; 232:2251-62. [PMID: 25585681 PMCID: PMC4465875 DOI: 10.1007/s00213-014-3852-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 12/22/2014] [Indexed: 01/21/2023]
Abstract
RATIONALE Phosphodiesterase-4 (PDE4) and neuroimmune signaling have been posited to regulate alcohol drinking. OBJECTIVES This study evaluated the involvement of PDE4 and Il22ra2 on ethanol (EtOH) intake by alcohol-preferring (P) and high-alcohol-drinking (HAD1) rats. METHODS Exp 1 determined the dose-response effects of PDE4 inhibitors, rolipram, and Ro 20-1724, on 2 h/day free-choice EtOH intake by adult P and HAD1 rats. Exps 2-3 examined the effects of repeated administration with the PDE4 inhibitors on EtOH or sucrose intake and locomotor behavior. Exp 4 determined Pde4-associated gene expression differences in subregions of the extended amygdala, between high- and low-alcohol-consuming rat lines. Exp 5 evaluated the effects of infusing short hairpin RNA to knock down Il22ra2 in the nucleus accumbens (NAc) shell on a 24-h free-choice EtOH drinking by P rats. RESULTS Administration of rolipram or Ro 20-1724 reduced EtOH intake by P rats; Ro 20-1724 reduced EtOH intake by HAD1 rats. Repeated rolipram or Ro 20-1724 exposure reduced EtOH intake by P and HAD1 rats. PDE4 inhibition induced motor impairment during the first hour of EtOH intake by P rats. Higher gene expression levels for PDE4A were found in the NAc shell of P vs NP rats. ShRNAs targeting Il22ra2 in the NAc shell significantly reduced chronic EtOH intake. CONCLUSIONS PDE4 and neuroinflammatory/immune signaling pathways could represent molecular targets for the treatment of alcohol use disorders in genetically predisposed subjects. This study underscores the importance of testing compounds over multiple days and rat lines when determining efficacy to disrupt excessive alcohol intake.
Collapse
Affiliation(s)
- Kelle M Franklin
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Neuroscience Research Building, 320W. 15th Street, Indianapolis, IN, 46202, USA
| | - Sheketha R Hauser
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Neuroscience Research Building, 320W. 15th Street, Indianapolis, IN, 46202, USA.
| | - Amy W Lasek
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Jeanette McClintick
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Zheng-Ming Ding
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Neuroscience Research Building, 320W. 15th Street, Indianapolis, IN, 46202, USA
| | - William J McBride
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Neuroscience Research Building, 320W. 15th Street, Indianapolis, IN, 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Richard L Bell
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Neuroscience Research Building, 320W. 15th Street, Indianapolis, IN, 46202, USA
| |
Collapse
|
28
|
Hauser SR, Deehan GA, Dhaher R, Knight CP, Wilden JA, McBride WJ, Rodd ZA. D1 receptors in the nucleus accumbens-shell, but not the core, are involved in mediating ethanol-seeking behavior of alcohol-preferring (P) rats. Neuroscience 2015; 295:243-51. [PMID: 25813708 PMCID: PMC4415684 DOI: 10.1016/j.neuroscience.2015.03.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/23/2015] [Accepted: 03/17/2015] [Indexed: 11/16/2022]
Abstract
Clinical and preclinical research suggest that activation of the mesolimbic dopamine (DA) system is involved in mediating the rewarding actions of drugs of abuse, as well as promoting drug-seeking behavior. Inhibition of DA D1 receptors in the nucleus accumbens (Acb) can reduce ethanol (EtOH)-seeking behavior of non-selective rats triggered by environmental context. However, to date, there has been no research on the effects of D1 receptor agents on EtOH- seeking behavior of high alcohol-preferring (P) rats following prolonged abstinence. The objective of the present study was to examine the effects of microinjecting the D1 antagonist SCH 23390 or the D1 agonist A-77636 into the Acb shell or Acb core on spontaneous recovery of EtOH-seeking behavior. After 10 weeks of concurrent access to EtOH and water, P rats underwent seven extinction sessions (EtOH and water withheld), followed by 2 weeks in their home cages without access to EtOH or operant sessions. In the 2nd week of the home cage phase, rats were bilaterally implanted with guide cannula aimed at the Acb shell or Acb core; rats were allowed 7d ays to recover before EtOH-seeking was assessed by the Pavlovian Spontaneous Recovery (PSR) model. Administration of SCH23390 (1μg/side) into the Acb shell inhibited responding on the EtOH lever, whereas administration of A-77636 (0.125μg/side) increased responding on the EtOH lever. Microinfusion of D1 receptor agents into the Acb core did not alter responding on the EtOH lever. Responses on the water lever were not altered by any of the treatments. The results suggest that activation of D1 receptors within the Acb shell, but not Acb core, are involved in mediating PSR of EtOH-seeking behavior of P rats.
Collapse
Affiliation(s)
- S R Hauser
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| | - G A Deehan
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - R Dhaher
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - C P Knight
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - J A Wilden
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - W J McBride
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Z A Rodd
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| |
Collapse
|
29
|
Ding ZM, Ingraham CM, Rodd ZA, McBride WJ. The reinforcing effects of ethanol within the nucleus accumbens shell involve activation of local GABA and serotonin receptors. J Psychopharmacol 2015; 29:725-33. [PMID: 25922425 PMCID: PMC4677478 DOI: 10.1177/0269881115581982] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ethanol is reinforcing within the nucleus accumbens shell (NACsh), but the underlying mechanisms remain unclear. Ethanol can potentiate the function of the GABAA, GABAB, and serotonin-3 (5-HT3) receptors. Therefore, the current study tested the hypothesis that activation of these receptors would be involved in the reinforcing effects of ethanol in the NACsh. An intracranial self-administration (ICSA) procedure was used to assess the reinforcing effects of ethanol in the NACsh of alcohol preferring (P) rats. The ICSA consisted of seven sessions: four sessions to establish 150 mg% ethanol self-infusion into the NACsh; sessions 5 and 6 with co-infusion of ethanol plus one concentration of the GABAA antagonist bicuculline (10 or 100 µM), the GABAB antagonist SCH 50911 (50, 75 or 100 µM), or the 5-HT3 receptor antagonist zacopride (10 or 100 µM); and session 7 with 150 mg% ethanol alone. All groups self-infused ethanol into the NACsh and readily discriminated the active from inactive lever during the acquisition sessions. Co-infusion of 100 µM, but not 10 µM, bicuculline or zacopride significantly decreased active responses during sessions 5 and 6. Co-infusion of 75 µM, but not 50 or 100 µM, SCH 50911 significantly attenuated responses for ethanol. Overall, the results suggest that the reinforcing effects of ethanol in the NACsh may be modulated by activation of local GABAA, GABAB and 5-HT3 receptors.
Collapse
Affiliation(s)
- Zheng-Ming Ding
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | |
Collapse
|
30
|
Differential phosphorylation of NMDAR1-CaMKII-MAPKs in the rat nucleus accumbens following chronic ethanol exposure. Neurosci Lett 2015; 597:60-5. [PMID: 25837445 DOI: 10.1016/j.neulet.2015.03.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/13/2015] [Accepted: 03/27/2015] [Indexed: 11/21/2022]
Abstract
Previous studies suggest that the nucleus accumbens shell (AcbSh) and core (AcbC) regions may have distinct roles in ethanol consumption. N-Methyl-d-aspartate receptor 1 (NMDAR1), Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinases (ERKs) have been demonstrated to contribute to and possibly interact in the molecular mechanism underlying ethanol dependence and relapse. However, little is known regarding the mechanisms underlying the effects of ethanol exposure, withdrawal, and re-exposure, particularly with regard to NMDAR1-CaMKII-ERK signaling in accumbens subregions. In the present study, rats were provided with a 6% ethanol solution as their only drinking source. We found that ethanol exerted locomotor stimulant and anxiolytic effects in open field behaviors. Phosphorylation of NMDAR1, CaMKII and ERK was significantly decreased in the AcbSh and AcbC following chronic ethanol exposure. Ethanol withdrawal increased phospho-NMDAR1 and phospho-CaMKII expression in the AcbSh. Ethanol withdrawal also induced an increase of phospho-ERK1/2 in both the AcbSh and AcbC, while ethanol re-exposure decreased phospho-ERK in the AcbSh. These results indicated that the activation of NMDAR1-CaMKII-ERK signaling in the AcbSh but not the AcbC would contribute more to ethanol drinking and chronic ethanol-related negative emotional states.
Collapse
|
31
|
Karahanian E, Rivera-Meza M, Tampier L, Quintanilla ME, Herrera-Marschitz M, Israel Y. Long-term inhibition of ethanol intake by the administration of an aldehyde dehydrogenase-2 (ALDH2)-coding lentiviral vector into the ventral tegmental area of rats. Addict Biol 2015; 20:336-44. [PMID: 24571199 DOI: 10.1111/adb.12130] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Previous studies suggest that acetaldehyde generated from ethanol in the brain is reinforcing. The present studies tested the feasibility of achieving a long-term reduction of chronic and post-deprivation binge ethanol drinking by a single administration into the brain ventral tegmental area (VTA) of a lentiviral vector that codes for aldehyde dehydrogenase-2 (ALDH2), which degrades acetaldehyde. The ALDH2 gene coding vector or a control lentiviral vector were microinjected into the VTA of rats bred for their alcohol preference. In the chronic alcohol administration model, naïve animals administered the control vector and subsequently offered 10% ethanol and water ingested 8-9 g ethanol/kg body weight/day. The single administration of the ALDH2-coding vector prior to allowing ethanol availability reduced ethanol drinking by 85-90% (P < 0.001) for the 45 days tested. In the post-deprivation binge-drinking model, animals that had previously consumed ethanol chronically for 81 days were administered the lentiviral vector and were thereafter deprived of ethanol for three 7-day periods, each interrupted by a single 60-minute ethanol re-access after the last day of each deprivation period. Upon ethanol re-access, control vector-treated animals consumed intoxicating 'binge' amounts of ethanol, reaching intakes of 2.7 g ethanol/kg body weight in 60 minutes. The administration of the ALDH2-coding vector reduced re-access binge drinking by 75-80% (P < 0.001). This study shows that endowing the ventral tegmental with an increased ability to degrade acetaldehyde greatly reduces chronic alcohol consumption and post-deprivation binge drinking for prolonged periods and supports the hypothesis that brain-generated acetaldehyde promotes alcohol drinking.
Collapse
Affiliation(s)
| | - Mario Rivera-Meza
- Molecular and Clinical Pharmacology Program; ICBM; Faculty of Medicine; University of Chile; Chile
| | - Lutske Tampier
- Molecular and Clinical Pharmacology Program; ICBM; Faculty of Medicine; University of Chile; Chile
| | - María Elena Quintanilla
- Molecular and Clinical Pharmacology Program; ICBM; Faculty of Medicine; University of Chile; Chile
| | - Mario Herrera-Marschitz
- Molecular and Clinical Pharmacology Program; ICBM; Faculty of Medicine; University of Chile; Chile
| | - Yedy Israel
- Molecular and Clinical Pharmacology Program; ICBM; Faculty of Medicine; University of Chile; Chile
| |
Collapse
|
32
|
Hauser SR, Bracken AL, Deehan GA, Toalston JE, Ding ZM, Truitt WA, Bell RL, McBride WJ, Rodd ZA. Selective breeding for high alcohol preference increases the sensitivity of the posterior VTA to the reinforcing effects of nicotine. Addict Biol 2014; 19:800-11. [PMID: 23496648 PMCID: PMC3715585 DOI: 10.1111/adb.12048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rate of codependency for alcohol and nicotine is extremely high. Numerous studies have indicated that there is a common genetic association for alcoholism and nicotine dependency. The current experiments examined whether selective breeding for high alcohol preference in rats may be associated with increased sensitivity of the posterior ventral tegmental area (pVTA) to the reinforcing properties of nicotine. In addition, nicotine can directly bind to the serotonin-3 (5-HT3 ) receptor, which has been shown to mediate the reinforcing properties of other drugs of abuse within the pVTA Wistar rats were assigned to groups that were allowed to self-infuse 0, 10, 50, 100, 200, 400 or 800 μM nicotine in two-lever (active and inactive) operant chambers. P rats were allowed to self-infuse 0, 1, 10, 50 or 100 μM nicotine. Co-infusion of 5-HT3 receptor antagonists with nicotine into the pVTA was also determined. P rats self-infused nicotine at lower concentrations than required to support self-administration in Wistar rats. In addition, P rats received more self-infusions of 50 and 100 μM nicotine than Wistar rats; including a 5HT3 receptor antagonist (LY-278,584 or zacopride) with nicotine reduced responding on the active lever. Overall, the data support an association between selective breeding for high alcohol preference and increased sensitivity of the pVTA to the reinforcing properties of nicotine. In addition, the data suggest that activation of 5HT3 receptors may be required to maintain the local reinforcing actions of nicotine within the pVTA.
Collapse
Affiliation(s)
- Sheketha R Hauser
- Institute of Psychiatric Research, Departments of Psychiatry & Anatomy, Indiana School of Medicine, and Department of Psychology, Purdue School of Science, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Clarke RBC, Adermark L, Chau P, Söderpalm B, Ericson M. Increase in nucleus accumbens dopamine levels following local ethanol administration is not mediated by acetaldehyde. Alcohol Alcohol 2014; 49:498-504. [PMID: 25063803 DOI: 10.1093/alcalc/agu047] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Ethanol (EtOH) activates the mesolimbic dopamine system and increases dopamine levels in the nucleus accumbens (nAc), which is believed to underlie the rewarding effects of alcohol. Accumulating evidence now implicates that acetaldehyde, the first metabolite of EtOH, may play an important role in mediating some of the rewarding properties of its parent compound. The objective of this study was to investigate if the increase in accumbal dopamine output observed when administering EtOH locally in the nAc by reversed microdialysis is mediated by acetaldehyde. METHODS Acetaldehyde (1, 10, 100 or 200 µM) or EtOH (300 mM) was administered via reversed microdialysis in the nAc of male Wistar rats. In a separate experiment, animals were administered EtOH (300 mM) in the nAc, following pre-treatment with the acetaldehyde-sequestering agent d-penicillamine (50 mg/kg injected intraperitoneally 60 min before drug challenge). Microdialysates from the nAc were collected every 20 min and dopamine content was quantified using high-performance liquid chromatography. RESULTS Acetaldehyde administered in the nAc did not influence accumbal dopamine levels at any of the concentrations applied, whereas EtOH induced a significant increase in accumbal dopamine. The dopamine-elevating properties of EtOH were not attenuated by pre-treatment with d-penicillamine. CONCLUSION The current results show that EtOH administered in the nAc induces an elevation in accumbal dopamine levels, which is not mimicked by acetaldehyde alone, nor is it influenced by acetaldehyde sequestering. This would suggest that the increase in accumbal dopamine following nAc EtOH administration is not mediated by acetaldehyde.
Collapse
Affiliation(s)
- Rhona B C Clarke
- Addiction Biology Unit, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Louise Adermark
- Addiction Biology Unit, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - PeiPei Chau
- Addiction Biology Unit, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
34
|
Zhou Y, Kreek MJ. Alcohol: a stimulant activating brain stress responsive systems with persistent neuroadaptation. Neuropharmacology 2014; 87:51-8. [PMID: 24929109 DOI: 10.1016/j.neuropharm.2014.05.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/08/2014] [Accepted: 05/19/2014] [Indexed: 01/08/2023]
Abstract
Addictive diseases, including addiction to alcohol, opiates or cocaine, pose massive public health costs. Addictions are chronic relapsing brain diseases, caused by drug-induced direct effects and persistent neuroadaptations at the molecular, cellular and behavioral levels. These drug-type specific neuroadapations are mainly contributed by three factors: environment, including stress, the direct reinforcing effects of the drug on the CNS, and genetics. Results from animal models and basic clinical research (including human genetic study) have shown important interactions between the stress responsive systems and alcohol abuse. In this review we will discuss the involvement of the dysregulation of the stress responsive hypothalamic-pituitary-adrenal (HPA) axis in alcohol addiction (Section I). Addictions to specific drugs such as alcohol, psychostimulants and opiates (e.g., heroin) have some common direct or downstream effects on several brain stress-responsive systems, including vasopressin and its receptor system (Section II), POMC and mu opioid receptor system (Section III) and dynorphin and kappa opioid receptor systems (Section IV). Further understanding of these systems, through laboratory-based and translational studies, have the potential to optimize early interventions and to discover new treatment targets for the therapy of alcoholism. This article is part of the Special Issue entitled 'CNS Stimulants'.
Collapse
Affiliation(s)
- Yan Zhou
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
35
|
McBride WJ, Rodd ZA, Bell RL, Lumeng L, Li TK. The alcohol-preferring (P) and high-alcohol-drinking (HAD) rats--animal models of alcoholism. Alcohol 2014; 48:209-15. [PMID: 24268381 DOI: 10.1016/j.alcohol.2013.09.044] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/13/2013] [Accepted: 09/29/2013] [Indexed: 12/22/2022]
Abstract
The objective of this article is to review the literature on the utility of using the selectively bred alcohol-preferring (P) and high-alcohol-drinking (HAD) lines of rats in studies examining high alcohol drinking in adults and adolescents, craving-like behavior, and the co-abuse of alcohol with other drugs. The P line of rats meets all of the originally proposed criteria for a suitable animal model of alcoholism. In addition, the P rat exhibits high alcohol-seeking behavior, demonstrates an alcohol deprivation effect (ADE) under relapse drinking conditions, consumes amounts of ethanol during adolescence equivalent to those consumed in adulthood, and co-abuses ethanol and nicotine. The P line also exhibits excessive binge-like alcohol drinking, attaining blood alcohol concentrations (BACs) of 200 mg% on a daily basis. The HAD replicate lines of rats have not been as extensively studied as the P rats. The HAD1,2 rats satisfy several of the criteria for an animal model of alcoholism, e.g., these rats will voluntarily consume ethanol in a free-choice situation to produce BACs between 50 and 200 mg%. The HAD1,2 rats also exhibit an ADE under repeated relapse conditions, and will demonstrate similar levels of ethanol intake during adolescence as seen in adults. Overall, the P and HAD1,2 rats have characteristics attributed to an early onset alcoholic, and can be used to study various aspects of alcohol use disorders.
Collapse
|
36
|
Davis JF, Tracy AL, Schurdak JD, Magrisso IJ, Grayson BE, Seeley RJ, Benoit SC. Roux en Y gastric bypass increases ethanol intake in the rat. Obes Surg 2014; 23:920-30. [PMID: 23440511 DOI: 10.1007/s11695-013-0884-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Roux en Y gastric bypass (RYGB) surgery is currently the most effective therapy employed to treat obesity and its associated complications. In addition to weight loss and resolution of metabolic syndromes, such as diabetes, the RYGB procedure has been reported to increase alcohol consumption in humans. Using an outbred rodent model, we demonstrate that RYGB increases postsurgical ethanol consumption, that this effect cannot be explained solely by postsurgical weight loss and that it is independent of presurgical body weight or dietary composition. Altered ethanol metabolism and postsurgical shifts in release of ghrelin were also unable to account for changes in alcohol intake. Further investigation of the potential physiological factors underlying this behavioral effect identified altered patterns of gene expression in brain regions associated with reward following RYGB surgery. These findings have important clinical implications as they demonstrate that RYGB surgery leads directly to increased alcohol intake in otherwise alcohol nonpreferring rat and induces neurobiological changes in brain circuits that mediate a variety of appetitive behaviors.
Collapse
Affiliation(s)
- Jon F Davis
- Department of Psychiatry and Behavioral Neuroscience, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Wilden JA, Qing KY, Hauser SR, McBride WJ, Irazoqui PP, Rodd ZA. Reduced ethanol consumption by alcohol-preferring (P) rats following pharmacological silencing and deep brain stimulation of the nucleus accumbens shell. J Neurosurg 2014; 120:997-1005. [PMID: 24460492 DOI: 10.3171/2013.12.jns13205] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECT There is increasing interest in deep brain stimulation (DBS) for the treatment of addiction. Initial testing must be conducted in animals, and the alcohol-preferring (P) rat meets the criteria for an animal model of alcoholism. This study is composed of 2 experiments designed to examine the effects of 1) pharmacological inactivation and 2) DBS of the nucleus accumbens shell (AcbSh) on the consumption of alcohol by P rats. METHODS In the first experiment, the effects of reversible inactivation of the AcbSh were investigated by administering intracranial injections of γ-aminobutyric acid (GABA) agonists. Bilateral microinjections of drug were administered to the AcbSh in P rats (8-10 rats/group), after which the animals were placed in operant chambers containing 2 levers--one used to administer water and the other to administer 15% EtOH--to examine the acquisition and maintenance of oral EtOH self-administration. In the second experiment, a DBS electrode was placed in each P rat's left AcbSh. The animals then received 100 or 200 μA (3-4 rats/group) of DBS to examine the effect on daily consumption of oral EtOH in a free-access paradigm. RESULTS In the first experiment, pharmacological silencing of the AcbSh with GABA agonists did not decrease the acquisition of EtOH drinking behavior but did reduce EtOH consumption by 55% in chronically drinking rats. Similarly, in the second experiment, 200 μA of DBS consistently reduced EtOH intake by 47% in chronically drinking rats. The amount of EtOH consumption returned to baseline levels following termination of therapy in both experiments. CONCLUSIONS Pharmacological silencing and DBS of the AcbSh reduced EtOH intake after chronic EtOH use had been established in rodents. The AcbSh is a neuroanatomical substrate for the reinforcing effects of alcohol and may be a target for surgical intervention in cases of alcoholism.
Collapse
Affiliation(s)
- Jessica A Wilden
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | | | | | | | | | | |
Collapse
|
38
|
McBride WJ, Kimpel MW, McClintick JN, Ding ZM, Hyytia P, Colombo G, Liang T, Edenberg HJ, Lumeng L, Bell RL. Gene expression within the extended amygdala of 5 pairs of rat lines selectively bred for high or low ethanol consumption. Alcohol 2013; 47:517-29. [PMID: 24157127 DOI: 10.1016/j.alcohol.2013.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/30/2013] [Accepted: 08/30/2013] [Indexed: 11/25/2022]
Abstract
The objectives of this study were to determine innate differences in gene expression in 2 regions of the extended amygdala between 5 different pairs of lines of male rats selectively bred for high or low ethanol consumption: a) alcohol-preferring (P) vs. alcohol-non-preferring (NP) rats, b) high-alcohol-drinking (HAD) vs. low-alcohol-drinking (LAD) rats (replicate line-pairs 1 and 2), c) ALKO alcohol (AA) vs. nonalcohol (ANA) rats, and d) Sardinian alcohol-preferring (sP) vs. Sardinian alcohol-nonpreferring (sNP) rats, and then to determine if these differences are common across the line-pairs. Microarray analysis revealed up to 1772 unique named genes in the nucleus accumbens shell (AcbSh) and 494 unique named genes in the central nucleus of the amygdala (CeA) that significantly differed [False Discovery Rate (FDR) = 0.10; fold-change at least 1.2] in expression between the individual line-pairs. Analysis using Gene Ontology (GO) and Ingenuity Pathways information indicated significant categories and networks in common for up to 3 or 4 line-pairs, but not for all 5 line-pairs. However, there were almost no individual genes in common within these categories and networks. ANOVAs of the combined data for the 5 line-pairs indicated 1014 and 731 significant (p < 0.01) differences in expression of named genes in the AcbSh and CeA, respectively. There were 4-6 individual named genes that significantly differed across up to 3 line-pairs in both regions; only 1 gene (Gsta4 in the CeA) differed in as many as 4 line-pairs. Overall, the findings suggest that a) some biological categories or networks (e.g., cell-to-cell signaling, cellular stress response, cellular organization, etc.) may be in common for subsets of line-pairs within either the AcbSh or CeA, and b) regulation of different genes and/or combinations of multiple biological systems may be contributing to the disparate alcohol drinking behaviors of these line-pairs.
Collapse
|
39
|
Howell NA, Worbe Y, Lange I, Tait R, Irvine M, Banca P, Harrison NA, Bullmore ET, Hutchison WD, Voon V. Increased ventral striatal volume in college-aged binge drinkers. PLoS One 2013; 8:e74164. [PMID: 24086317 PMCID: PMC3785474 DOI: 10.1371/journal.pone.0074164] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 07/30/2013] [Indexed: 01/26/2023] Open
Abstract
Background Binge drinking is a serious public health issue associated with cognitive, physiological, and anatomical differences from healthy individuals. No studies, however, have reported subcortical grey matter differences in this population. To address this, we compared the grey matter volumes of college-age binge drinkers and healthy controls, focusing on the ventral striatum, hippocampus and amygdala. Method T1-weighted images of 19 binge drinkers and 19 healthy volunteers were analyzed using voxel-based morphometry. Structural data were also covaried with Alcohol Use Disorders Identification Test (AUDIT) scores. Cluster-extent threshold and small volume corrections were both used to analyze imaging data. Results Binge drinkers had significantly larger ventral striatal grey matter volumes compared to controls. There were no between group differences in hippocampal or amygdalar volume. Ventral striatal, amygdalar, and hippocampal volumes were also negatively related to AUDIT scores across groups. Conclusions Our findings stand in contrast to the lower ventral striatal volume previously observed in more severe forms of alcohol use disorders, suggesting that college-age binge drinkers may represent a distinct population from those groups. These findings may instead represent early sequelae, compensatory effects of repeated binge and withdrawal, or an endophenotypic risk factor.
Collapse
Affiliation(s)
- Nicholas A. Howell
- Toronto Western Research Institute, Division of Brain Imaging and Behaviour — Systems Neuroscience, Toronto Western Hospital, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Yulia Worbe
- Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge, United Kingdom
| | - Iris Lange
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Roger Tait
- Department of Psychology, University Of Cambridge, Cambridge, United Kingdom
| | - Michael Irvine
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Paula Banca
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Portugal
| | - Neil A. Harrison
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Edward T. Bullmore
- Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge, United Kingdom
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
- GlaxoSmithKline, Clinical Unit Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
- NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - William D. Hutchison
- Toronto Western Research Institute, Division of Brain Imaging and Behaviour — Systems Neuroscience, Toronto Western Hospital, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Departments of Surgery & Physiology, University of Toronto, Toronto, Canada
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge, United Kingdom
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
- NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
40
|
Lesscher HMB, Vanderschuren LJMJ. Compulsive drug use and its neural substrates. Rev Neurosci 2013; 23:731-45. [PMID: 23079511 DOI: 10.1515/revneuro-2012-0066] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 08/15/2012] [Indexed: 12/22/2022]
Abstract
Drug addiction is a chronic relapsing brain disease, characterized by compulsive drug use. Despite the fact that drug addiction affects millions of people worldwide, treatments for this disorder are limited in number and efficacy. In our opinion, understanding the neural underpinnings of drug addiction would open new avenues for the development of innovative treatments for this disorder. Based on an awareness that drug use and drug reward do not equal drug addiction, there has been increasing interest in developing animal models of addiction that mimick the loss of control over drug use more closely than existing models aimed at studying drug reward. The present review provides an overview of animal studies of compulsive drug use and the neural mechanisms involved. First, the employed models are summarized, with a particular emphasis on models of escalation of drug use and resistance to punishment. Next, we discuss mechanisms within the (ventral and dorsal) striatum and (central) amygdala that have recently been implicated in the compulsive seeking and taking of alcohol and cocaine. The studies discussed here provide a promising line of research that will advance our knowledge of the neural circuits involved in the self-destructive behavior that characterizes drug addiction.
Collapse
Affiliation(s)
- Heidi M B Lesscher
- Department of Animals in Science and Society, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
41
|
Sweetened-fat intake sensitizes gamma-aminobutyric acid-mediated feeding responses elicited from the nucleus accumbens shell. Biol Psychiatry 2013; 73:843-50. [PMID: 23312563 PMCID: PMC3885159 DOI: 10.1016/j.biopsych.2012.11.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 11/02/2012] [Accepted: 11/02/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND There is much interest in exploring whether reward-driven feeding can produce druglike plasticity in the brain. The gamma-aminobutyric acid (GABA) system in the nucleus accumbens (Acb) shell, which modulates hypothalamic feeding systems, is well placed to "usurp" homeostatic control of feeding. Nevertheless, it is unknown whether feeding-induced neuroadaptations occur in this system. METHODS Separate groups of ad libitum-maintained rats were exposed to daily bouts of sweetened-fat intake, predator stress, or intra-Acb shell infusions of either d-amphetamine (2 or 10 μg) or the μ-opioid agonist D-[Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO, 2.5 μg), then challenged with intra-Acb shell infusion of the GABAA agonist, muscimol (10 ng). RESULTS Exposure to sweetened fat robustly sensitized muscimol-induced feeding. Sensitization was present 1 week after cessation of the palatable feeding regimen but had abated by 2 weeks. Rats exposed to sweetened fat did not show an altered feeding response to food deprivation. Repeated intra-Acb shell infusions of DAMGO (2.5 μg) also sensitized intra-Acb shell muscimol-driven feeding. However, neither repeated intra-Acb shell d-amphetamine infusions (2 or 10 μg) nor intermittent exposure to an aversive stimulus (predator stress) altered sensitivity to muscimol. CONCLUSIONS Palatable feeding engenders hypersensitivity of Acb shell GABA responses; this effect may involve feeding-induced release of opioid peptides. Heightened arousal, aversive experiences, or increased catecholamine transmission alone are insufficient to produce the effect, and a hunger-induced feeding drive is insufficient to reveal the effect. These findings reveal a novel type of food-induced neuroadaptation within the Acb; possible implications for understanding crossover effects between food reward and drug reward are discussed.
Collapse
|
42
|
Ding ZM, Rodd ZA, Engleman EA, Bailey JA, Lahiri DK, McBride WJ. Alcohol drinking and deprivation alter basal extracellular glutamate concentrations and clearance in the mesolimbic system of alcohol-preferring (P) rats. Addict Biol 2013; 18:297-306. [PMID: 23240885 PMCID: PMC3584204 DOI: 10.1111/adb.12018] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present study determined the effects of voluntary ethanol drinking and deprivation on basal extracellular glutamate concentrations and clearance in the mesolimbic system and tested the hypothesis that chronic ethanol drinking would persistently increase basal glutamate neurotransmission. Three groups of alcohol-preferring (P) rats were used: 'water group (WG),' 'ethanol maintenance group (MG; 24-hour free choice water versus 15% ethanol)' and 'ethanol deprivation group (DG; 2 weeks of deprivation).' Quantitative microdialysis and Western blots were conducted to measure basal extracellular glutamate concentrations, clearance and proteins associated with glutamate clearance. Chronic alcohol drinking produced a 70-100% increase of basal extracellular glutamate concentrations in the posterior ventral tegmental area (4.0 versus 7.0 μM) and nucleus accumbens shell (3.0 versus 6.0 μM). Glutamate clearances were reduced by 30-40% in both regions of MG rats compared with WG rats. In addition, Western blots revealed a 40-45% decrease of excitatory amino transporter 1 (EAAT1) protein, but no significant changes in the levels of EAAT2 or cystine-glutamate antiporter in these regions of MG versus WG rats. The enhanced glutamate concentrations returned to control levels, accompanied by a recovery of glutamate clearance following deprivation. These results indicated that chronic alcohol drinking enhanced extracellular glutamate concentrations in the mesolimbic system, as a result, in part, of reduced clearance, suggesting that enhanced glutamate neurotransmission may contribute to the maintenance of alcohol drinking. However, because the increased glutamate levels returned to normal after deprivation, elevated glutamate neurotransmission may not contribute to the initiation of relapse drinking.
Collapse
Affiliation(s)
- Zheng-Ming Ding
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202-4887, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Deehan GA, Brodie MS, Rodd ZA. What is in that drink: the biological actions of ethanol, acetaldehyde, and salsolinol. Curr Top Behav Neurosci 2013; 13:163-184. [PMID: 22351424 PMCID: PMC4955731 DOI: 10.1007/7854_2011_198] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Alcohol abuse and alcoholism represent substantial problems that affect a large portion of individuals throughout the world. Extensive research continues to be conducted in an effort to identify the biological basis of the reinforcing properties of alcohol in order to develop effective pharmacotherapeutic and behavioral interventions. One theory that has developed within the alcohol field over the past four decades postulates that the reinforcing properties of alcohol are due to the action of the metabolites/products of alcohol within the central nervous system (CNS). The most extreme version of this theory suggests that the biologically active metabolites/products of alcohol, created from the breakdown from alcohol, are the ultimate source of the reinforcing properties of alcohol. The contrary theory proposes that the reinforcing properties of alcohol are mediated completely through the interaction of the ethanol molecule with several neurochemical systems within the CNS. While there are scientific findings that offer support for both of these stances, the reinforcing properties of alcohol are most likely generated through a complex series of peripheral and central effects of both alcohol and its metabolites. Nonetheless, the development of a greater understanding for how the metabolites/products of alcohol contribute to the reinforcing properties of alcohol is an important factor in the development of efficacious pharmacotherapies for alcohol abuse and alcoholism. This chapter is intended to provide a historical perspective of the role of acetaldehyde (the first metabolite of alcohol) in alcohol reinforcement as well as review the basic research literature on the effects of acetaldehyde (and acetaldehyde metabolites/products) within the CNS and how these function with regard to alcohol reward.
Collapse
Affiliation(s)
- Gerald A Deehan
- Institute of Psychiatric Research, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN 46202-4887, USA.
| | | | | |
Collapse
|
44
|
Mitchell JM, O'Neil JP, Janabi M, Marks SM, Jagust WJ, Fields HL. Alcohol consumption induces endogenous opioid release in the human orbitofrontal cortex and nucleus accumbens. Sci Transl Med 2012; 4:116ra6. [PMID: 22238334 DOI: 10.1126/scitranslmed.3002902] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Excessive consumption of alcohol is among the leading causes of preventable death worldwide. Although ethanol modulates a variety of molecular targets, including several neurotransmitter receptors, the neural mechanisms that underlie its rewarding actions and lead to excessive consumption are unknown. Studies in animals suggest that release of endogenous opioids by ethanol promotes further consumption. To examine this issue in humans and to determine where in the brain endogenous opioids act to promote alcohol consumption, we measured displacement of a radiolabeled μ opioid receptor agonist, [¹¹C]carfentanil, before and immediately after alcohol consumption in both heavy drinkers and control subjects. Drinking alcohol induced opioid release in the nucleus accumbens and orbitofrontal cortex, areas of the brain implicated in reward valuation. Opioid release in the orbitofrontal cortex and nucleus accumbens was significantly positively correlated. Furthermore, changes in orbitofrontal cortex binding correlated significantly with problem alcohol use and subjective high in heavy drinkers, suggesting that differences in endogenous opioid function in these regions contribute to excessive alcohol consumption. These results also suggest a possible mechanism by which opioid antagonists such as naltrexone act to treat alcohol abuse.
Collapse
Affiliation(s)
- Jennifer M Mitchell
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, CA 94608, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Rice JP, Suggs LE, Lusk AV, Parker MO, Candelaria-Cook FT, Akers KG, Savage DD, Hamilton DA. Effects of exposure to moderate levels of ethanol during prenatal brain development on dendritic length, branching, and spine density in the nucleus accumbens and dorsal striatum of adult rats. Alcohol 2012; 46:577-84. [PMID: 22749340 DOI: 10.1016/j.alcohol.2011.11.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 10/14/2011] [Accepted: 11/30/2011] [Indexed: 11/24/2022]
Abstract
Reductions in measures of dendritic morphology in the agranular insular cortex have been identified as consequences of prenatal exposure to moderate levels of ethanol in the rat. Motivated by the strong connectivity between this region of frontal cortex and the striatum and a growing body of data linking specific components of the mesocortical/limbic system to effects of ethanol and ethanol self-administration, the current study investigated the effects of moderate fetal ethanol exposure on the dendritic morphology of medium spiny neurons (MSNs) in several regions of the striatum. Throughout gestation, pregnant rat dams either consumed a saccharin solution (control) or achieved average daily blood ethanol concentrations of 84 mg% via voluntary consumption of a 5% ethanol solution. The brains of adult male offspring were extracted and processed for Golgi-Cox staining. MSNs from the dorsomedial striatum, dorsolateral striatum and the nucleus accumbens core and shell were sampled for analysis. Relative to saccharin controls, robust reductions in dendritic length and branching, but not spine density, were observed in the shell of the nucleus accumbens in fetal-ethanol-exposed rats. No significant prenatal ethanol effects were found in the other regions of the striatum. These findings suggest that exposure to moderate levels of ethanol in utero can have profound effects on brain regions related to reward processing and provide possible clues relevant to understanding increased self-administration of drugs of abuse in animals exposed to ethanol during brain development.
Collapse
|
46
|
Yoshimoto K, Watanabe Y, Tanaka M, Kimura M. Serotonin2C receptors in the nucleus accumbens are involved in enhanced alcohol-drinking behavior. Eur J Neurosci 2012; 35:1368-80. [PMID: 22512261 PMCID: PMC3490368 DOI: 10.1111/j.1460-9568.2012.08037.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dopamine and serotonin (5-HT) in the nucleus accumbens (ACC) and ventral tegmental area of the mesoaccumbens reward pathways have been implicated in the mechanisms underlying development of alcohol dependence. We used a C57BL/6J mouse model with increased voluntary alcohol-drinking behavior by exposing the mice to alcohol vapor for 20 consecutive days. In the alcohol-exposed mice, the expression of 5-HT(2C) receptor mRNA increased in the ACC, caudate nucleus and putamen, dorsal raphe nucleus (DRN), hippocampus and lateral hypothalamus, while the protein level of 5-HT(2C) receptor significantly increased in the ACC. The expression of 5-HT(7) receptor mRNA increased in the ACC and DRN. Contents of 5-HT decreased in the ACC shell (ACC(S) ) and DRN of the alcohol-exposed mice. The basal extracellular releases of dopamine (DA) and 5-HT in the ACC(S) increased more in the alcohol-exposed mice than in alcohol-naïve mice. The magnitude of the alcohol-induced ACC(S) DA and 5-HT release in the alcohol-exposed mice was increased compared with the control mice. Intraperitoneal (i.p.) administration or local injection into ACC(S) of the 5-HT(2C) receptor antagonist, SB-242084, suppressed voluntary alcohol-drinking behavior in the alcohol-exposed mice. But the i.p. administration of the 5-HT(7) receptor antagonist, SB-258719, did not have significant effects on alcohol-drinking behavior in the alcohol-exposed mice. The effects of the 5-HT(2C) receptor antagonist were not observed in the air-exposed control mice. These results suggest that adaptations of the 5-HT system, especially the upregulation of 5-HT(2C) receptors in the ACC(S) , are involved in the development of enhanced voluntary alcohol-drinking behavior.
Collapse
Affiliation(s)
- Kanji Yoshimoto
- Department of Forensic Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | | | | | | |
Collapse
|
47
|
Zhou Y, Colombo G, Niikura K, Carai MAM, Femenía T, García-Gutiérrez MS, Manzanares J, Ho A, Gessa GL, Kreek MJ. Voluntary alcohol drinking enhances proopiomelanocortin gene expression in nucleus accumbens shell and hypothalamus of Sardinian alcohol-preferring rats. Alcohol Clin Exp Res 2012; 37 Suppl 1:E131-40. [PMID: 22724395 DOI: 10.1111/j.1530-0277.2012.01867.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 04/09/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND Evidence obtained in humans and rodents indicates that beta-endorphin (encoded by the proopiomelanocortin [POMC] gene) is critical in the regulation of alcohol drinking behavior. However, the alcohol effect on POMC gene expression has not been studied in rodent mesolimbic regions, such as the nucleus accumbens (NAc). METHODS In this study, we first utilized POMC-enhanced green fluorescent protein (EGFP) transgenic mice to visualize POMC neurons and found that POMC-EGFP cells were modestly distributed throughout the NAc shell and core, in addition to the hypothalamic arcuate nucleus. POMC mRNA expression in the NAc of mice and rats was confirmed using reverse transcriptase-polymerase chain reaction and solution hybridization assays. We then investigated whether there are genetically determined differences in basal mRNA levels of POMC and mu opioid receptor (MOP-r) between selectively bred Sardinian alcohol-preferring (sP) and nonpreferring (sNP) rats, and whether these mRNA levels are altered in sP rats after alcohol drinking (10%, unlimited access) for 17 days. RESULTS Alcohol-naïve sP rats had higher basal POMC mRNA levels than sNP rats only in hypothalamus. Alcohol drinking increased POMC mRNA levels in both the NAc shell (by 100%) and the hypothalamus (by 50%) of sP rats. Although sP rats had lower basal levels of MOP-r mRNA and GTPγS binding in NAc shell than sNP rats, voluntary alcohol consumption had no effect on MOP-r mRNA levels in the NAc shell. CONCLUSIONS Our results define the distribution of POMC-expressing neurons in the NAc of mice and rats. Higher POMC expression at basal levels in sP rats (genetically determined), along with increases after drinking (alcohol-induced) in the NAc shell and hypothalamus, suggests that the POMC systems play a role in high alcohol preference and consumption.
Collapse
Affiliation(s)
- Yan Zhou
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York 10065, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Rewal M, Donahue R, Gill TM, Nie H, Ron D, Janak PH. Alpha4 subunit-containing GABAA receptors in the accumbens shell contribute to the reinforcing effects of alcohol. Addict Biol 2012; 17:309-21. [PMID: 21507158 DOI: 10.1111/j.1369-1600.2011.00333.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The α4βδ gamma-aminobutyric acid A receptor (GABA(A) R) has been proposed to mediate the rewarding effects of low-to-moderate concentrations of alcohol (ethanol) that approximate those achieved by social drinking. If this is true, then this receptor should be necessary for the reinforcing effects of ethanol as assessed in an instrumental self-administration procedure in which rats are trained to lever press for oral ethanol. We used viral-mediated RNA interference to transiently reduce expression of the α4 GABA(A) R subunit in the shell region of the nucleus accumbens (NAc). We found that responding for ethanol was significantly reduced after α4 reductions in the NAc shell, but not NAc core. This reduction was specific to ethanol, as responding for sucrose was not altered. The presence of ethanol was also required as unreinforced responding for ethanol in subjects previously trained to respond for ethanol (i.e. responding during an extinction test) was not altered. In addition, responding during reinforced sessions was not altered during the initial 5 minutes of the session, but decreased after 5 minutes, following multiple reinforced responses. Together, these findings indicate that the α4 GABA(A) R subunit in the NAc shell is necessary for the instrumental reinforcing effects of oral ethanol, further supporting a role for α4-containing GABA(A) Rs in the rewarding/reinforcing effects of ethanol. Possible pharmacological and non-pharmacological explanations for these effects are considered.
Collapse
Affiliation(s)
- Mridula Rewal
- Ernest Gallo Clinic and Research Center, University of California at San Francisco, 5858 Horton Street, Emeryville, CA 94608, USA
| | | | | | | | | | | |
Collapse
|
49
|
Ding ZM, Oster SM, Hauser SR, Toalston JE, Bell RL, McBride WJ, Rodd ZA. Synergistic self-administration of ethanol and cocaine directly into the posterior ventral tegmental area: involvement of serotonin-3 receptors. J Pharmacol Exp Ther 2012; 340:202-9. [PMID: 22011435 PMCID: PMC3251028 DOI: 10.1124/jpet.111.187245] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/18/2011] [Indexed: 01/16/2023] Open
Abstract
Ethanol (EtOH) and cocaine are both self-administered into the posterior ventral tegmental area (VTA). Self-administration of either drug is prevented by coadministration of a serotonin (5-HT₃) receptor antagonist. Electrophysiological studies indicated that cocaine and EtOH can act synergistically to stimulate VTA dopamine neurons. The current experiment assessed whether cocaine and EtOH would synergistically interact to produce a reinforcing action within the posterior VTA. Adult female Wistar rats were randomly assigned to one of 13 groups. There were three control groups: artificial cerebrospinal fluid (aCSF), a subthreshold EtOH (100 mg%) group, and a subthreshold cocaine (25 pmol/100 nl) group. The other groups self-administered 50 or 75 mg% EtOH containing 6.25, 12.5, or 25 pmol/100 nl cocaine or 100 mg% EtOH containing 3.12, 6.25, 12.5, or 25 pmol/100 nl cocaine. All rats received the assigned infusate for sessions 1 through 4, aCSF alone in sessions 5 and 6, and the original infusate during session 7. The effects of adding a 5-HT₃ receptor antagonist [tropisetron, C₁₇H₂₀N₂O₂ (ICS 205,930) and C₁₇H₂₂N₄O.C₄H₄O₄ (LY278-584)] on coadministration of EtOH and cocaine (75 mg% + 12.5 pmol/100 nl) were determined. Rats failed to self-administer aCSF or the subthreshold concentration of EtOH or cocaine. All three concentrations of EtOH (50, 75, and 100 mg%) combined with cocaine (12.5 and 25 pmol/100 nl) supported self-administration. Adding a 5HT₃ receptor antagonist attenuated coadministration of EtOH + cocaine. Overall, the data indicate that the reinforcing properties of EtOH and cocaine interacted synergistically within the posterior VTA, and these synergistic effects were mediated, at least in part, by activation of local 5-HT₃ receptors.
Collapse
Affiliation(s)
- Zheng-Ming Ding
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN 46202-4887, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Katner SN, Oster SM, Ding ZM, Deehan GA, Toalston JE, Hauser SR, McBride WJ, Rodd ZA. Alcohol-preferring (P) rats are more sensitive than Wistar rats to the reinforcing effects of cocaine self-administered directly into the nucleus accumbens shell. Pharmacol Biochem Behav 2011; 99:688-95. [PMID: 21723879 DOI: 10.1016/j.pbb.2011.06.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/16/2011] [Accepted: 06/18/2011] [Indexed: 11/29/2022]
Abstract
Wistar rats will self-administer cocaine directly into the nucleus accumbens shell (AcbSh), but not into the nucleus accumbens core. In human and animal literature, there is a genetic association between alcoholism and cocaine dependency. The current experiment examined whether selective breeding for high alcohol preference is also associated with greater sensitivity of the AcbSh to the reinforcing properties of cocaine. P and Wistar rats were given cocaine (0, 100, 200, 400, or 800 pmol/100 nl) to self-infuse into the AcbSh. Rats were given cocaine for the first 4 sessions (acquisition), artificial CSF for sessions 5 and 6 (extinction), and cocaine again in session 7 (reinstatement). During acquisition, P rats self-infused 200-800 pmol cocaine (59 infusions/session), whereas Wistar rats only reliably self-infused 800 pmol cocaine (38 infusions/session). Furthermore, P rats received a greater number of cocaine infusions in the 200, 400 and 800 pmol cocaine groups compared to respective Wistar groups during acquisition. Both P and Wistar rats reduced responding on the active lever when aCSF was substituted for cocaine, and reinstated responding in session 7 when cocaine was restored. However, P rats had significantly greater infusions during session 7 compared to session 4 at all concentrations of cocaine tested, whereas Wistar rats only displayed greater infusions during session 7 compared to session 4 at the 400 and 800 pmol cocaine concentrations. The present results suggest that, compared to Wistar rats, the AcbSh of P rats was more sensitive to the reinforcing effects of cocaine. The reinstatement data suggest that the AcbSh of P rats may have become sensitized to the reinforcing effects of cocaine. Overall, the findings from this study support a genetic association between high alcohol preference and greater sensitivity to the reinforcing effects of cocaine.
Collapse
Affiliation(s)
- Simon N Katner
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | |
Collapse
|