1
|
Oyer JL, Croom-Perez TJ, Dieffenthaller TA, Robles-Carillo LD, Gitto SB, Altomare DA, Copik AJ. Cryopreserved PM21-Particle-Expanded Natural Killer Cells Maintain Cytotoxicity and Effector Functions In Vitro and In Vivo. Front Immunol 2022; 13:861681. [PMID: 35464440 PMCID: PMC9022621 DOI: 10.3389/fimmu.2022.861681] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
There is a great interest in developing natural killer (NK) cells as adoptive cancer immunotherapy. For off-the-shelf approaches and to conduct multicenter clinical trials, cryopreserved NK cells are the preferred product. However, recent studies reported that cryopreservation of NK cells results in loss of cell motility and, as a consequence, cytotoxicity which limits the clinical utility of such products. This study assessed the impact of cryopreservation on the recovery and function of PM21-particle expanded NK cells (PM21-NK cells) as well as their antitumor activity in vitro using 2D and 3D cancer models and in vivo in ovarian cancer models, including patient-derived xenografts (PDX). Viable PM21-NK cells were consistently recovered from cryopreservation and overnight rest with a mean recovery of 73 ± 22% (N = 19). Thawed and rested NK cells maintained the expression of activating receptors when compared to expansion-matched fresh NK cells. Cryopreserved NK cells that were thawed and rested showed no decrease in cytotoxicity when co-incubated with tumor cells at varying effector-to-target (NK:T) ratios compared to expansion-matched fresh NK cells. Moreover, no differences in cytotoxicity were observed between expansion-matched cryopreserved and fresh NK cells in 3D models of tumor killing. These were analyzed by kinetic, live-cell imaging assays co-incubating NK cells with tumor spheroids. When exposed to tumor cells, or upon cytokine stimulation, cryopreserved NK cells that were thawed and rested showed no significant differences in surface expression of degranulation marker CD107a or intracellular expression of TNFα and IFNγ. In vivo antitumor activity was also assessed by measuring the extension of survival of SKOV-3-bearing NSG mice treated with fresh vs. cryopreserved NK cells. Cryopreserved NK cells caused a statistically significant survival extension of SKOV-3-bearing NSG mice that was comparable to that observed with fresh NK cells. Additionally, treatment of NSG mice bearing PDX tumor with cryopreserved PM21-NK cells resulted in nearly doubling of survival compared to untreated mice. These data suggest that PM21-NK cells can be cryopreserved and recovered efficiently without appreciable loss of viability or activity while retaining effector function both in vitro and in vivo. These findings support the use of cryopreserved PM21-NK cells as a cancer immunotherapy treatment.
Collapse
Affiliation(s)
- Jeremiah L. Oyer
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Tayler J. Croom-Perez
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Thomas A. Dieffenthaller
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Liza D. Robles-Carillo
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Sarah B. Gitto
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Deborah A. Altomare
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Alicja J. Copik
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
2
|
McKenna DH, Stroncek DF. Cellular Engineering. Transfus Med 2021. [DOI: 10.1002/9781119599586.ch19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
3
|
Abreu SC, Hampton TH, Hoffman E, Dearborn J, Ashare A, Singh Sidhu K, Matthews DE, McKenna DH, Amiel E, Barua J, Krasnodembskaya A, English K, Mahon B, Dos Santos C, Cruz FF, Chambers DC, Liu KD, Matthay MA, Cramer RA, Stanton BA, Rocco PRM, Wargo MJ, Weiss DJ, Rolandsson Enes S. Differential effects of the cystic fibrosis lung inflammatory environment on mesenchymal stromal cells. Am J Physiol Lung Cell Mol Physiol 2020; 319:L908-L925. [PMID: 32901521 PMCID: PMC7792680 DOI: 10.1152/ajplung.00218.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/14/2020] [Accepted: 08/23/2020] [Indexed: 12/23/2022] Open
Abstract
Growing evidence demonstrates that human mesenchymal stromal cells (MSCs) modify their in vivo anti-inflammatory actions depending on the specific inflammatory environment encountered. Understanding this better is crucial to refine MSC-based cell therapies for lung and other diseases. Using acute exacerbations of cystic fibrosis (CF) lung disease as a model, the effects of ex vivo MSC exposure to clinical bronchoalveolar lavage fluid (BALF) samples, as a surrogate for the in vivo clinical lung environment, on MSC viability, gene expression, secreted cytokines, and mitochondrial function were compared with effects of BALF collected from healthy volunteers. CF BALF samples that cultured positive for Aspergillus sp. (Asp) induced rapid MSC death, usually within several hours of exposure. Further analyses suggested the fungal toxin gliotoxin as a potential mediator contributing to CF BALF-induced MSC death. RNA sequencing analyses of MSCs exposed to either Asp+ or Asp- CF BALF samples identified a number of differentially expressed transcripts, including those involved in interferon signaling, antimicrobial gene expression, and cell death. Toxicity did not correlate with bacterial lung infections. These results suggest that the potential use of MSC-based cell therapies for CF or other lung diseases may not be warranted in the presence of Aspergillus.
Collapse
Affiliation(s)
- Soraia C Abreu
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thomas H Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Evan Hoffman
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Jacob Dearborn
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Alix Ashare
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
- Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | | | - Dwight E Matthews
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
- Department of Chemistry, University of Vermont, Burlington, Vermont
| | - David H McKenna
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Eyal Amiel
- Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont
| | - Jayita Barua
- Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington, Vermont
| | - Anna Krasnodembskaya
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University of Belfast, Belfast, United Kingdom
| | - Karen English
- Cellular Immunology Laboratory, Biology Department, Human Health Research Institute, Maynooth University, Maynooth, Ireland
| | - Bernard Mahon
- Immunology & Cell Biology Laboratory, Biology Department, Human Health Research Institute, Maynooth University, Maynooth, Ireland
| | - Claudia Dos Santos
- Departments of Medicine and Critical Care Medicine and the Keenan Research Center for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Daniel C Chambers
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
- Queenland Lung Transplant Service, The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Kathleen D Liu
- Departments of Medicine and Anesthesiology and the Cardiovascular Research Institute, University of California, San Francisco, California
| | - Michael A Matthay
- Departments of Medicine and Anesthesiology and the Cardiovascular Research Institute, University of California, San Francisco, California
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Bruce A Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Matthew J Wargo
- Department of Microbiology & Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Daniel J Weiss
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Sara Rolandsson Enes
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
- Department of Experimental Medical Science, Lung Biology Unit, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Ludwig N, Lotze MT. A treatise on endothelial biology and exosomes: homage to Theresa Maria Listowska Whiteside. HNO 2020; 68:71-79. [PMID: 31965194 DOI: 10.1007/s00106-019-00803-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exosomes are the current primary research focus of Dr. Theresa L. Whiteside. They are key mediators of intercellular communication in the head and neck, as well as other sites. Their effects in the tumor microenvironment are manifold and include suppression of immunity, promotion of angiogenesis, enabling of metastasis, as well as reprogramming of fibroblasts and mesenchymal stromal cells. The aim of this communication is to summarize Dr. Whiteside's contribution to the field of exosome research and details the interactions of exosomes with endothelial cells leading to recent findings on how to target endothelial cells using exosomes as a therapeutic approach.
Collapse
Affiliation(s)
- N Ludwig
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Departments of Surgery, Cardiothoracic Surgery, Bioengineering and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - M T Lotze
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,UPMC Hillman Cancer Center, G.27A, 5150 Centre Ave, 15213, Pittsburgh, PA, USA. .,Departments of Surgery, Cardiothoracic Surgery, Bioengineering and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Abreu SC, Rolandsson Enes S, Dearborn J, Goodwin M, Coffey A, Borg ZD, Dos Santos CC, Wargo MJ, Cruz FF, Loi R, DeSarno M, Ashikaga T, Antunes MA, Rocco PRM, Liu KD, Lee JW, Matthay MA, McKenna DH, Weiss DJ. Lung inflammatory environments differentially alter mesenchymal stromal cell behavior. Am J Physiol Lung Cell Mol Physiol 2019; 317:L823-L831. [PMID: 31553626 PMCID: PMC6962599 DOI: 10.1152/ajplung.00263.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stromal (stem) cells (MSCs) are increasingly demonstrated to ameliorate experimentally induced lung injuries through disease-specific anti-inflammatory actions, thus suggesting that different in vivo inflammatory environments can influence MSC actions. To determine the effects of different representative inflammatory lung conditions, human bone marrow–derived MSCs (hMSCs) were exposed to in vitro culture conditions from bronchoalveolar lavage fluid (BALF) samples obtained from patients with either the acute respiratory distress syndrome (ARDS) or with other lung diseases including acute respiratory exacerbations of cystic fibrosis (CF) (non-ARDS). hMSCs were subsequently assessed for time- and BALF concentration–dependent effects on mRNA expression of selected pro- and anti-inflammatory mediators, and for overall patterns of gene and mRNA expression. Both common and disease-specific patterns were observed in gene expression of different hMSC mediators, notably interleukin (IL)-6. Conditioned media obtained from non-ARDS BALF-exposed hMSCs was more effective in promoting an anti-inflammatory phenotype in monocytes than was conditioned media from ARDS BALF-exposed hMSCs. Neutralizing IL-6 in the conditioned media promoted generation of anti-inflammatory monocyte phenotype. This proof of concept study suggest that different lung inflammatory environments potentially can alter hMSC behaviors. Further identification of these interactions and the driving mechanisms may influence clinical use of MSCs for treating lung diseases.
Collapse
Affiliation(s)
- Soraia C Abreu
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont.,Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Sara Rolandsson Enes
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont.,Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jacob Dearborn
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Meagan Goodwin
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Amy Coffey
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Zachary D Borg
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Claúdia C Dos Santos
- Departments of Medicine and Critical Care Medicine and the Keenan Research Center for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Matthew J Wargo
- Department of Microbial and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Roberto Loi
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Michael DeSarno
- Department of Biostatistics, University of Vermont, Burlington, Vermont
| | - Takamuru Ashikaga
- Department of Biostatistics, University of Vermont, Burlington, Vermont
| | - Mariana A Antunes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Kathleen D Liu
- Department of Anesthesiology, Medicine and the Cardiovascular Research Institute, University of California, San Francisco, California
| | - Jae-Woo Lee
- Department of Anesthesiology, Medicine and the Cardiovascular Research Institute, University of California, San Francisco, California
| | - Michael A Matthay
- Department of Anesthesiology, Medicine and the Cardiovascular Research Institute, University of California, San Francisco, California
| | - David H McKenna
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Daniel J Weiss
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont
| |
Collapse
|
6
|
Wrenn SM, Griswold ED, Uhl FE, Uriarte JJ, Park HE, Coffey AL, Dearborn JS, Ahlers BA, Deng B, Lam YW, Huston DR, Lee PC, Wagner DE, Weiss DJ. Avian lungs: A novel scaffold for lung bioengineering. PLoS One 2018; 13:e0198956. [PMID: 29949597 PMCID: PMC6021073 DOI: 10.1371/journal.pone.0198956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/28/2018] [Indexed: 02/07/2023] Open
Abstract
Allogeneic lung transplant is limited both by the shortage of available donor lungs and by the lack of suitable long-term lung assist devices to bridge patients to lung transplantation. Avian lungs have different structure and mechanics resulting in more efficient gas exchange than mammalian lungs. Decellularized avian lungs, recellularized with human lung cells, could therefore provide a powerful novel gas exchange unit for potential use in pulmonary therapeutics. To initially assess this in both small and large avian lung models, chicken (Gallus gallus domesticus) and emu (Dromaius novaehollandiae) lungs were decellularized using modifications of a detergent-based protocol, previously utilized with mammalian lungs. Light and electron microscopy, vascular and airway resistance, quantitation and gel analyses of residual DNA, and immunohistochemical and mass spectrometric analyses of remaining extracellular matrix (ECM) proteins demonstrated maintenance of lung structure, minimal residual DNA, and retention of major ECM proteins in the decellularized scaffolds. Seeding with human bronchial epithelial cells, human pulmonary vascular endothelial cells, human mesenchymal stromal cells, and human lung fibroblasts demonstrated initial cell attachment on decellularized avian lungs and growth over a 7-day period. These initial studies demonstrate that decellularized avian lungs may be a feasible approach for generating functional lung tissue for clinical therapeutics.
Collapse
Affiliation(s)
- Sean M. Wrenn
- Department of Surgery, University of Vermont, Burlington, VT, United States of America
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Ethan D. Griswold
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
- Rochester Institute of Technology, Rochester, NY, United States of America
| | - Franziska E. Uhl
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Juan J. Uriarte
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Heon E. Park
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
- Department of Mechanical Engineering, University of Vermont, Burlington, VT, United States of America
| | - Amy L. Coffey
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Jacob S. Dearborn
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Bethany A. Ahlers
- Department of Biology, University of Vermont, Burlington, VT, United States of America
| | - Bin Deng
- Department of Biology, University of Vermont, Burlington, VT, United States of America
| | - Ying-Wai Lam
- Department of Biology, University of Vermont, Burlington, VT, United States of America
| | - Dryver R. Huston
- Department of Mechanical Engineering, University of Vermont, Burlington, VT, United States of America
| | - Patrick C. Lee
- Department of Mechanical Engineering, University of Vermont, Burlington, VT, United States of America
| | - Darcy E. Wagner
- Comprehensive Pneumology Center, Ludwig Maximilians University Munich, Munich, Germany
- Department of Experimental Medical Science, Lung Bioengineering and Regeneration, Lund University, Lund, Sweden
| | - Daniel J. Weiss
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
- * E-mail:
| |
Collapse
|
7
|
Uhl FE, Wagner DE, Weiss DJ. Preparation of Decellularized Lung Matrices for Cell Culture and Protein Analysis. Methods Mol Biol 2017; 1627:253-283. [PMID: 28836208 PMCID: PMC7456164 DOI: 10.1007/978-1-4939-7113-8_18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The limited available treatment options for patients with chronic lung diseases, such as fibrosis, lead to poor prognosis after diagnosis and short survival rates. An exciting new bioengineering approach utilizes de- and recellularization of lung tissue to potentially overcome donor organ shortage and immune reactions toward the received transplant. The goal of decellularization is to create a scaffold which contains the necessary framework for stability and functionality for regenerating lung tissue while removing immunomodulatory factors by removal of cells. After decellularization, the scaffold could be re-functionalized by repopulation with the patient's own stem/progenitor cells to create a fully functional organ or can be used as ex vivo models of disease. In this chapter the decellularization of lung tissue from multiple species (i.e., rodents, pigs, and humans) as well as disease states such as fibrosis is described. We discuss and describe the various quality control measures which should be used to characterize decellularized scaffolds, methods for protein analysis of the remaining scaffold, and methods for recellularization of scaffolds.
Collapse
Affiliation(s)
- Franziska E Uhl
- Department of Med-Pulmonary, College of Medicine, University of Vermont, Burlington, VT, USA.
| | - Darcy E Wagner
- Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Daniel J Weiss
- Department of Med-Pulmonary, College of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|
8
|
Cellular Engineering for the Production of New Blood Components. Transfus Med 2016. [DOI: 10.1002/9781119236504.ch18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Cruz FF, Borg ZD, Goodwin M, Coffey AL, Wagner DE, Rocco PRM, Weiss DJ. CD11b+ and Sca-1+ Cells Exert the Main Beneficial Effects of Systemically Administered Bone Marrow-Derived Mononuclear Cells in a Murine Model of Mixed Th2/Th17 Allergic Airway Inflammation. Stem Cells Transl Med 2016; 5:488-99. [PMID: 26933041 PMCID: PMC4798733 DOI: 10.5966/sctm.2015-0141] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/02/2015] [Indexed: 02/06/2023] Open
Abstract
A murine model of severe clinical asthma was used to study which bone marrow-derived mononuclear cells (BMDMCs) are responsible for ameliorating airway hyperresponsiveness and lung inflammation. BMDMCs depleted of either CD11b-positive cells (monocytes, macrophages, dendritic cells) or Sca-1-positive cells (bone marrow-derived mesenchymal stromal cells) were unable to ameliorate these conditions in this model. Depletion of the other cell types did not diminish the ameliorating effects of BMDMC administration. Systemic administration of bone marrow-derived mononuclear cells (BMDMCs) or bone marrow-derived mesenchymal stromal cells (MSCs) reduces inflammation and airway hyperresponsiveness (AHR) in a murine model of Th2-mediated eosinophilic allergic airway inflammation. However, since BMDMCs are a heterogeneous population that includes MSCs, it is unclear whether the MSCs alone are responsible for the BMDMC effects. To determine which BMDMC population(s) is responsible for ameliorating AHR and lung inflammation in a model of mixed Th2-eosinophilic and Th17-neutrophilic allergic airway inflammation, reminiscent of severe clinical asthma, BMDMCs obtained from normal C57Bl/6 mice were serially depleted of CD45, CD34, CD11b, CD3, CD19, CD31, or Sca-1 positive cells. The different resulting cell populations were then assessed for ability to reduce lung inflammation and AHR in mixed Th2/Th17 allergic airway inflammation induced by mucosal sensitization to and challenge with Aspergillus hyphal extract (AHE) in syngeneic C56Bl/6 mice. BMDMCs depleted of either CD11b-positive (CD11b+) or Sca-1-positive (Sca-1+) cells were unable to ameliorate AHR or lung inflammation in this model. Depletion of the other cell types did not diminish the ameliorating effects of BMDMC administration. In conclusion, in the current model of allergic inflammation, CD11b+ cells (monocytes, macrophages, dendritic cells) and Sca-1+ cells (MSCs) are responsible for the beneficial effects of BMDMCs. Significance This study shows that bone marrow-derived mononuclear cells (BMDMCs) are as effective as bone marrow-derived mesenchymal stromal cells (MSCs) in ameliorating experimental asthma. It also demonstrates that not only MSCs present in the pool of BMDMCs are responsible for BMDMCs’ beneficial effects but also monocytes, which are the most important cell population to trigger these effects. All of this is in the setting of a clinically relevant model of severe allergic airways inflammation and thus provides further support for potential clinical use of cell therapy using MSCs, BMDMCs, and also adult cells such as monocytes in patients with severe asthma.
Collapse
Affiliation(s)
- Fernanda F Cruz
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, University of Vermont, Burlington, Vermont, USA Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Zachary D Borg
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Meagan Goodwin
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Amy L Coffey
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Darcy E Wagner
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel J Weiss
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
10
|
Rezvani K, Rouce RH. The Application of Natural Killer Cell Immunotherapy for the Treatment of Cancer. Front Immunol 2015; 6:578. [PMID: 26635792 PMCID: PMC4648067 DOI: 10.3389/fimmu.2015.00578] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 10/29/2015] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells are essential components of the innate immune system and play a critical role in host immunity against cancer. Recent progress in our understanding of NK cell immunobiology has paved the way for novel NK cell-based therapeutic strategies for the treatment of cancer. In this review, we will focus on recent advances in the field of NK cell immunotherapy, including augmentation of antibody-dependent cellular cytotoxicity, manipulation of receptor-mediated activation, and adoptive immunotherapy with ex vivo-expanded, chimeric antigen receptor (CAR)-engineered, or engager-modified NK cells. In contrast to T lymphocytes, donor NK cells do not attack non-hematopoietic tissues, suggesting that an NK-mediated antitumor effect can be achieved in the absence of graft-vs.-host disease. Despite reports of clinical efficacy, a number of factors limit the application of NK cell immunotherapy for the treatment of cancer, such as the failure of infused NK cells to expand and persist in vivo. Therefore, efforts to enhance the therapeutic benefit of NK cell-based immunotherapy by developing strategies to manipulate the NK cell product, host factors, and tumor targets are the subject of intense research. In the preclinical setting, genetic engineering of NK cells to express CARs to redirect their antitumor specificity has shown significant promise. Given the short lifespan and potent cytolytic function of mature NK cells, they are attractive candidate effector cells to express CARs for adoptive immunotherapies. Another innovative approach to redirect NK cytotoxicity towards tumor cells is to create either bispecific or trispecific antibodies, thus augmenting cytotoxicity against tumor-associated antigens. These are exciting times for the study of NK cells; with recent advances in the field of NK cell biology and translational research, it is likely that NK cell immunotherapy will move to the forefront of cancer immunotherapy over the next few years.
Collapse
Affiliation(s)
- Katayoun Rezvani
- Department of Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| | - Rayne H Rouce
- Department of Pediatrics, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine , Houston, TX , USA ; Center for Cell and Gene Therapy, Baylor College of Medicine Houston Methodist Hospital and Texas Children's Hospital , Houston, TX , USA
| |
Collapse
|
11
|
Cruz FF, Borg ZD, Goodwin M, Sokocevic D, Wagner DE, Coffey A, Antunes M, Robinson KL, Mitsialis SA, Kourembanas S, Thane K, Hoffman AM, McKenna DH, Rocco PRM, Weiss DJ. Systemic Administration of Human Bone Marrow-Derived Mesenchymal Stromal Cell Extracellular Vesicles Ameliorates Aspergillus Hyphal Extract-Induced Allergic Airway Inflammation in Immunocompetent Mice. Stem Cells Transl Med 2015; 4:1302-16. [PMID: 26378259 DOI: 10.5966/sctm.2014-0280] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/17/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED An increasing number of studies demonstrate that administration of either conditioned media (CM) or extracellular vesicles (EVs) released by mesenchymal stromal cells (MSCs) derived from bone marrow and other sources are as effective as the MSCs themselves in mitigating inflammation and injury. The goal of the current study was to determine whether xenogeneic administration of CM or EVs from human bone marrow-derived MSCs would be effective in a model of mixed Th2/Th17, neutrophilic-mediated allergic airway inflammation, reflective of severe refractory asthma, induced by repeated mucosal exposure to Aspergillus hyphal extract (AHE) in immunocompetent C57Bl/6 mice. Systemic administration of both CM and EVs isolated from human and murine MSCs, but not human lung fibroblasts, at the onset of antigen challenge in previously sensitized mice significantly ameliorated the AHE-provoked increases in airway hyperreactivity (AHR), lung inflammation, and the antigen-specific CD4 T-cell Th2 and Th17 phenotype. Notably, both CM and EVs from human MSCs (hMSCs) were generally more potent than those from mouse MSCs (mMSCs) in most of the outcome measures. The weak cross-linking agent 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride was found to inhibit release of both soluble mediators and EVs, fully negating effects of systemically administered hMSCs but only partly inhibited the ameliorating effects of mMSCs. These results demonstrate potent xenogeneic effects of CM and EVs from hMSCs in an immunocompetent mouse model of allergic airway inflammation and they also show differences in mechanisms of action of hMSCs versus mMSCs to mitigate AHR and lung inflammation in this model. SIGNIFICANCE There is a growing experience demonstrating benefit of mesenchymal stromal cell (MSC)-based cell therapies in preclinical models of asthma. In the current study, conditioned media (CM) and, in particular, the extracellular vesicle fraction obtained from the CM were as potent as the MSCs themselves in mitigating Th2/Th17-mediated allergic airway inflammation in a mouse model of severe refractory clinical asthma. Moreover, human MSC CM and extracellular vesicles were effective in this immunocompetent mouse model. These data add to a growing scientific basis for initiating clinical trials of MSCs or extracellular vesicles derived from MSCs in severe refractory asthma and provide further insight into the mechanisms by which the MSCs may ameliorate the asthma.
Collapse
Affiliation(s)
- Fernanda F Cruz
- Department of Medicine, Pulmonary, University of Vermont, Burlington, Vermont, USA Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - Zachary D Borg
- Department of Medicine, Pulmonary, University of Vermont, Burlington, Vermont, USA
| | - Meagan Goodwin
- Department of Medicine, Pulmonary, University of Vermont, Burlington, Vermont, USA
| | - Dino Sokocevic
- Department of Medicine, Pulmonary, University of Vermont, Burlington, Vermont, USA
| | - Darcy E Wagner
- Department of Medicine, Pulmonary, University of Vermont, Burlington, Vermont, USA
| | - Amy Coffey
- Department of Medicine, Pulmonary, University of Vermont, Burlington, Vermont, USA
| | - Mariana Antunes
- Department of Medicine, Pulmonary, University of Vermont, Burlington, Vermont, USA Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - Kristen L Robinson
- Department of Medicine, Pulmonary, University of Vermont, Burlington, Vermont, USA
| | - S Alex Mitsialis
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts, USA Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Stella Kourembanas
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts, USA Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Kristen Thane
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, Grafton, Massachusetts, USA
| | - Andrew M Hoffman
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, Grafton, Massachusetts, USA
| | - David H McKenna
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - Daniel J Weiss
- Department of Medicine, Pulmonary, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
12
|
Cruz FF, Borg ZD, Goodwin M, Sokocevic D, Wagner D, McKenna DH, Rocco PRM, Weiss DJ. Freshly thawed and continuously cultured human bone marrow-derived mesenchymal stromal cells comparably ameliorate allergic airways inflammation in immunocompetent mice. Stem Cells Transl Med 2015; 4:615-24. [PMID: 25925837 DOI: 10.5966/sctm.2014-0268] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/09/2015] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Recent data suggest that freshly thawed previously frozen mesenchymal stromal cells (MSCs) may not have the same effectiveness or breadth of anti-inflammatory activities as do continuously cultured MSCs. This has significant implications for clinical use, in which many infusion schemes use frozen cells thawed at the bedside for administration. The available data, however, predominantly evaluate in vitro MSC properties, and so far there has been limited in vivo analysis. To further assess this issue, we compared freshly thawed (thawed) versus continuously cultured (fresh) human bone marrow-derived MSC (hMSC) administration in a mouse model of mixed Th2/Th17 allergic airway inflammation induced by Aspergillus hyphal extract (AHE) exposures in immunocompetent C57Bl/6 mice. Control cell populations included fresh versus thawed murine bone marrow-derived MSCs (mMSCs) and human lung fibroblasts (HLFs). Systemic administration of both thawed and fresh hMSCs and mMSCs, but not HLFs, at the onset of antigen challenge in previously sensitized mice significantly ameliorated the AHE-provoked increases in airway hyper-reactivity, lung inflammation, and antigen-specific CD4 T-cell Th2 and Th17 phenotype. Notably, there was no difference in effects of fresh versus thawed hMSCs or mMSCs on any outcome measured except for some variability in the effects on the bronchoalveolar lavage fluid composition. These results demonstrated potent xenogeneic effects of human MSCs in an immunocompetent mouse model of allergic airways inflammation and that thawed MSCs are as effective as fresh MSCs. The question of fresh versus thawed MSC effectiveness needs to be investigated carefully and may differ in different in vivo disease-specific models. SIGNIFICANCE This study addressed whether freshly thawed mesenchymal stromal cells (MSCs) are as effective in in vivo settings as those that have been continuously cultured. It also provided further data demonstrating that xenogeneic use of MSCs in immunocompetent mice is as effective as murine MSCs. This information provides further support and direction for potential clinical use of MSCs in patients with severe asthma.
Collapse
Affiliation(s)
- Fernanda F Cruz
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA; Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Zachary D Borg
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA; Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Meagan Goodwin
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA; Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dino Sokocevic
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA; Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Darcy Wagner
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA; Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - David H McKenna
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA; Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Patricia R M Rocco
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA; Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Daniel J Weiss
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA; Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
13
|
Minteer DM, Marra KG, Rubin JP. Adipose stem cells: biology, safety, regulation, and regenerative potential. Clin Plast Surg 2015; 42:169-79. [PMID: 25827561 DOI: 10.1016/j.cps.2014.12.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article discusses adipose-derived stem cell (ASC) biology, describes the current knowledge in the literature for the safety and regulation of ASCs, and provides a brief overview of the regenerative potential of ASCs. It is not an exhaustive listing of all available clinical studies or every study applying ASCs in tissue engineering and regenerative medicine, but is an objective commentary of these topics.
Collapse
Affiliation(s)
- Danielle M Minteer
- Department of Bioengineering, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Kacey G Marra
- Department of Bioengineering, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA; Department of Plastic Surgery, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15213, USA
| | - J Peter Rubin
- Department of Bioengineering, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA; Department of Plastic Surgery, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15213, USA.
| |
Collapse
|
14
|
Abstract
Natural killer (NK) cells are normal white blood cells capable of killing malignant cells without prior sensitization. Allogeneic NK cell infusions are attractive for cancer therapy because of non-cross-resistant mechanisms of action and minimal overlapping toxicities with standard cancer treatments. Although NK therapy is promising, many obstacles will need to be overcome, including insufficient cell numbers, failure of homing to tumor sites, effector dysfunction, exhaustion, and tumor cell evasion. Capitalizing on the wealth of knowledge generated by recent NK cell biology studies and the advancements in biotechnology, substantial progress has been made recently in improving therapeutic efficiency and reducing side effects. A multipronged strategy is essential, including immunogenetic-based donor selection, refined NK cell bioprocessing, and novel augmentation techniques, to improve NK function and to reduce tumor resistance. Although data from clinical trials are currently limited primarily to hematologic malignancies, broader applications to a wide spectrum of adult and pediatric cancers are under way. The unique properties of human NK cells open up a new arena of novel cell-based immunotherapy against cancers that are resistant to contemporary therapies.
Collapse
Affiliation(s)
- Wing Leung
- Author's Affiliations: Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital; and Department of Pediatrics, University of Tennessee, Memphis, Tennessee
| |
Collapse
|
15
|
Bubela T, McCabe C. Value-engineered translation for regenerative medicine: meeting the needs of health systems. Stem Cells Dev 2014; 22 Suppl 1:89-93. [PMID: 24304083 DOI: 10.1089/scd.2013.0398] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite high expectations of economic returns, large investments in regenerative medicine technology have yet to materialize, partly due to a lack of proven business and investment models, regulatory hurdles, and a greater focus on cost-effectiveness for reimbursement decisions by payors. Adoption of new economic modeling methods will better link investment decisions to value-based criteria of health systems.
Collapse
Affiliation(s)
- Tania Bubela
- 1 School of Public Health, University of Alberta , Edmonton, Canada
| | | |
Collapse
|
16
|
Wood D, Wesselschmidt R, Hematti P, Gee AP, Rooney C, Silberstein L, Armant M, Couture L, Wagner JE, McKenna DH, Hei D, Mondoro TH, Welniak L, Lindblad R. An update from the United States National Heart, Lung, and Blood Institute-funded Production Assistance for Cellular Therapies (PACT) program: a decade of cell therapy. Clin Transl Sci 2014; 7:93-9. [PMID: 24655892 DOI: 10.1111/cts.12148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
17
|
Abstract
AIM To provide a comprehensive analysis of clinical trials (CTs) listed in worldwide registries involving new applications for stem cell-based treatments and account for the role of industry. MATERIALS & METHODS We developed a data set of 4749 stem cell CTs up to 2013 in worldwide registries. We defined 1058 novel CTs (i.e., trials that were not observational in nature; did not involve an established stem cell therapy for an established indication, such as hematopoietic stem cells for leukemia; and did not investigate supportive measures). Based on trial descriptions, we manually coded these for eight additional elements. RESULTS Our analysis details the characteristics of novel stem cell CTs (e.g., stem cell types being tested, disease being targeted, and whether interventions were autologous or allogeneic), geotemporal trends, and private sector involvement as sponsor or collaborator. CONCLUSION The field is progressing at a steady pace with emerging business models for stem cell therapeutics. However, therapeutic rhetoric must be tempered to reflect current clinical and research realities.
Collapse
Affiliation(s)
- Matthew D Li
- School of Public Health, 3-279 Edmonton Clinic Health Academy, 11405-87 Ave, University of Alberta, Edmonton, AB, T6G 1C9, Canada
| | | | | |
Collapse
|
18
|
Cellular therapy of cancer with natural killer cells-where do we stand? Cytotherapy 2013; 15:1185-94. [PMID: 23768925 DOI: 10.1016/j.jcyt.2013.03.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/02/2013] [Accepted: 03/13/2013] [Indexed: 02/02/2023]
Abstract
Although T-lymphocytes have received most of the attention in immunotherapy trials, new discoveries around natural killer (NK) cells suggest that they also should be suitable effector cells for cellular therapy of cancer. In addition to direct cytotoxicity, NK cells produce an array of immune-active cytokines, among them interferons and granulocyte-macrophage colony-stimulating factor, which places them at the crossroads of innate and adaptive immunity. They also augment monoclonal antibody activity through antibody-mediated cellular cytotoxicity and can be transfected with chimeric antigen receptors. One of the stumbling blocks for NK cell-based therapies has been the inability to predictably obtain and expand larger numbers from donors, but also to achieve sufficiently high transfection efficiency of target genes. The first clinical trials with NK cells suggest some benefit, but more definite evidence is needed to justify this relatively expensive treatment.
Collapse
|
19
|
Klingemann H, Grodman C, Cutler E, Duque M, Kadidlo D, Klein AK, Sprague KA, Miller KB, Comenzo RL, Kewalramani T, Yu N, Van Etten RA, McKenna DH. Autologous stem cell transplant recipients tolerate haploidentical related-donor natural killer cell-enriched infusions. Transfusion 2013; 53:412-8; quiz 411. [PMID: 22738379 PMCID: PMC3549470 DOI: 10.1111/j.1537-2995.2012.03764.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND In the setting of allogeneic stem cell transplantation (SCT), infusing natural killer (NK) cells from a major histocompatibility complex (MHC)-mismatched donor can mediate an antileukemic effect. The graft-versus-tumor effect after autologous stem cell transplantation (ASCT) may result in less disease relapse. STUDY DESIGN AND METHODS We performed a Phase I clinical trial to assess the safety and feasibility of infusing distantly processed donor NK-enriched mononuclear cell (NK-MNC) infusions from a MHC haplotype-mismatched (haploidentical) donor to patients who recently underwent ASCT for a hematologic malignancy. On Day 1, peripheral blood MNCs were obtained by steady-state leukapheresis and sent from Boston to the Production Assistance for Cellular Therapies (PACT) facility at the University of Minnesota, where immunomagnetic depletion of CD3 cells was performed on Day 2. NK-MNC products were then returned to Boston on Day 2 for infusion on Day 3. Toxicity, cellular product characteristics, and logistic events were monitored. RESULTS At a median of 90 days (range, 49-191 days) after ASCT, 13 patients were treated with escalating doses of NK-MNCs per kilogram from 10(5) to 2 × 10(7) . Adverse effects included Grade 2 rigors and muscle aches, but no Grade 3 or 4 events and no graft-versus-host disease or marrow suppression. One air courier delay occurred. NK-MNC products were viable with cytotoxic activity after transport. CONCLUSION CD3-depleted, MHC-mismatched allogeneic NK-MNC infusions can be safely and feasibly administered to patients after ASCT after distant processing and transport, justifying further development of this approach.
Collapse
Affiliation(s)
- Hans Klingemann
- Division of Hematology/Oncology, Tufts Medical Center, Boston, Massachusetts 02111, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ziai JM, Smith BR. Pathology Resident and Fellow Education in a Time of Disruptive Technologies. Clin Lab Med 2012; 32:623-38. [DOI: 10.1016/j.cll.2012.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Cellular Engineering for the Production of New Blood Components. Transfus Med 2011. [DOI: 10.1002/9781444398748.ch18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Bergmann MW, Jaquet K, Schneider C, Krause K, Ujeyl A, Kuck KH. [Interventional, intramyocardial stem cell therapy in ischemic cardiomyopathy: update 2010]. Herz 2011; 35:317-23. [PMID: 20814657 DOI: 10.1007/s00059-010-3358-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The intracoronary application of autologous bone marrow cells has proven hitherto to be safe but not sufficiently effective in patients with ischemic cardiomyopathy. The interventional application of cells injected directly into the myocardium represents one possible approach to improve effectiveness. TECHNIQUES The NOGA method is based on the CARTO technique, which has been evaluated extensively for safety and feasibility in patients with heart failure. In a first step, an electrically and anatomically exact map of the left ventricle is obtained. Guided by this three-dimensional map direct injection of the cells into the ischemic area can be easily performed. CLINICAL STUDIES Since its introduction in 2002 many studies have proven the safety, feasibility and effectiveness of NOGA-guided regenerative therapy to the left ventricle. While several studies also suggest effectiveness regarding various parameters of left ventricular function, no larger multicenter study is available to date. Such studies with also clinical endpoints are currently ongoing. CONCLUSION The currently available data support, but do not yet prove, the hypothesis that intramyocardial stem cell therapy using NOGA-guided injection into the myocardium is safe and feasible in both acute and chronic ischemic cardiomyopathy. Ongoing trials will reveal whether this approach will become the standard form for applying cell therapy to the heart.
Collapse
Affiliation(s)
- M W Bergmann
- Klinik für Kardiologie, Asklepios Klinik St. Georg, Lohmühlenstrasse 5, Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
McCullough J. Innovation in transfusion medicine and blood banking: documenting the record in 50 years of TRANSFUSION. Transfusion 2010; 50:2542-6. [PMID: 20667041 DOI: 10.1111/j.1537-2995.2010.02787.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jeffrey McCullough
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
24
|
Probst-Kepper M, Kröger A, Garritsen HSP, Buer J. Perspectives on Regulatory T Cell Therapies. Transfus Med Hemother 2009; 36:302-308. [PMID: 21076548 PMCID: PMC2969127 DOI: 10.1159/000235929] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 08/25/2009] [Indexed: 12/14/2022] Open
Abstract
Adoptive transfer in animal models clearly indicate an essential role of CD4+ CD25+ FOXP3+ regulatory T (T(reg)) cells in prevention and treatment of autoimmune and graft-versus-host disease. Thus, T(reg) cell therapies and development of drugs that specifically enhance T(reg) cell function and development represent promising tools to establish dominant tolerance. So far, lack of specific markers to differentiate human T(reg) cells from activated CD4+ CD25+ effector T cells, which also express FOXP3 at different levels, hampered such an approach. Recent identification of the orphan receptor glycoprotein-A repetitions predominant (GARP or LRRC32) as T(reg) cell-specific key molecule that dominantly controls FOXP3 via a positive feedback loop opens up new perspectives for molecular and cellular therapies. This brief review focuses on the role of GARP as a safeguard of a complex regulatory network of human T(reg) cells and its implications for regulatory T cell therapies in autoimmunity and graft-versus-host disease.
Collapse
Affiliation(s)
- Michael Probst-Kepper
- Institut für Mikrobiologie, Immunologie und Krankenhaushygiene, Braunschweig, Germany
| | | | | | | |
Collapse
|