1
|
Na B, Lee J, Chang HE, Park E, Park S, Lee J, Oh S, Shin DW, Hong YJ, Park KU. Verification of a method using magnetic bead enrichment and nucleic acid extraction to improve the molecular detection of bacterial contamination in blood components. Microbiol Spectr 2024; 12:e0276023. [PMID: 38319091 PMCID: PMC10913752 DOI: 10.1128/spectrum.02760-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/26/2023] [Indexed: 02/07/2024] Open
Abstract
Bacterial contamination of blood products poses a significant risk in transfusion medicine. Platelets are particularly vulnerable to bacterial growth because they must be stored at room temperature with constant agitation for >5 days. The limitations of bacterial detection using conventional methods, such as blood cultures and lateral flow assays, include the long detection times, low sensitivity, and the requirement for substantial volumes of blood components. To address these limitations, we assessed the performance of a bacterial enrichment technique using antibiotic-conjugated magnetic nanobeads (AcMNBs) and real-time PCR for the detection of bacterial contamination in plasma. AcMNBs successfully captured >80% of four bacterial strains, including Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Klebsiella pneumoniae, in both plasma and phosphate-buffered saline. After 24-h incubation with bacterial enrichment, S. aureus and B. cereus were each detected at 101 CFU/mL in all trials (5/5), E. coli at 101 CFU/mL in 1/5 trials, and K. pneumoniae at 10² CFU/mL in 4/5 trials. Additionally, without incubation, the improvement was also achieved in samples with bacterial enrichment, S. aureus at 10² CFU/mL and B. cereus at 101 CFU/mL in 1/5 trials each, E. coli at 10³ CFU/mL in 3/5 trials, and K. pneumoniae at 10¹ CFU/mL in 2/5 trials. Overall, the findings from this study strongly support the superiority of bacterial enrichment in detecting low-level bacterial contamination in plasma when employing AcMNBs and PCR.IMPORTANCEThe study presents a breakthrough approach to detect bacterial contamination in plasma, a critical concern in transfusion medicine. Traditional methods, such as blood cultures and lateral flow assays, are hampered by slow detection times, low sensitivity, and the need for large blood sample volumes. Our research introduces a novel technique using antibiotic-conjugated magnetic nanobeads combined with real-time PCR, enhancing the detection of bacteria in blood products, especially platelets. This method has shown exceptional efficiency in identifying even low levels of four different species of bacteria in plasma. The ability to detect bacterial contamination rapidly and accurately is vital for ensuring the safety of blood transfusions and can significantly reduce the risk of infections transmitted through blood products. This advancement is a pivotal step in improving patient outcomes and elevating the standards of care in transfusion medicine.
Collapse
Affiliation(s)
- Byungjoon Na
- KingoBio Inc. Research Center, Seoul, South Korea
| | - Jinyeop Lee
- KingoBio Inc. Research Center, Seoul, South Korea
| | | | - Eunseon Park
- KingoBio Inc. Research Center, Seoul, South Korea
| | - Sojin Park
- KingoBio Inc. Research Center, Seoul, South Korea
| | | | - Sujin Oh
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Dong Woo Shin
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Yun Ji Hong
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|
2
|
Jacobs MR, Zhou B, Tayal A, Maitta RW. Bacterial Contamination of Platelet Products. Microorganisms 2024; 12:258. [PMID: 38399662 PMCID: PMC10891786 DOI: 10.3390/microorganisms12020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Transfusion of bacterially contaminated platelets, although rare, is still a major cause of mortality and morbidity despite the introduction of many methods to limit this over the past 20 years. The methods used include improved donor skin disinfection, diversion of the first part of donations, use of apheresis platelet units rather than whole-blood derived pools, primary and secondary testing by culture or rapid test, and use of pathogen reduction. Primary culture has been in use the US since 2004, using culture 24 h after collection of volumes of 4-8 mL from apheresis collections and whole-blood derived pools inoculated into aerobic culture bottles, with limited use of secondary testing by culture or rapid test to extend shelf-life from 5 to 7 days. Primary culture was introduced in the UK in 2011 using a "large-volume, delayed sampling" (LVDS) protocol requiring culture 36-48 h after collection of volumes of 16 mL from split apheresis units and whole-blood derived pools, inoculated into aerobic and anaerobic culture bottles (8 mL each), with a shelf-life of 7 days. Pathogen reduction using amotosalen has been in use in Europe since 2002, and was approved for use in the US in 2014. In the US, recent FDA guidance, effective October 2021, recommended several strategies to limit bacterial contamination of platelet products, including pathogen reduction, variants of the UK LVDS method and several two-step strategies, with shelf-life ranging from 3 to 7 days. The issues associated with bacterial contamination and these strategies are discussed in this review.
Collapse
Affiliation(s)
- Michael R. Jacobs
- Department of Pathology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (B.Z.); (A.T.); (R.W.M.)
| | | | | | | |
Collapse
|
3
|
Alabdullatif MI. Hemovigilance data: An effective approach for evaluating bacterial protection systems for platelet transfusions. Asian J Transfus Sci 2024; 18:91-96. [PMID: 39036690 PMCID: PMC11259335 DOI: 10.4103/ajts.ajts_157_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 05/23/2021] [Accepted: 05/29/2022] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Septic transfusion reactions due to bacterial contamination in platelet concentrates (PCs) are continually reported to hemovigilance (HV) programs. Worldwide, blood centers use different systems to avoid transfusion-associated bacterial sepsis in PCs. Herein, national HV data were gathered to compare bacterial protection systems and to assess the risk of bacterial contamination. MATERIALS AND METHODS HV data with definite transfusion-associated bacterial sepsis in PCs were obtained from Australia, Canada, the United Kingdom (U. K.), and Switzerland between 2006 and 2016. These data were reviewed to evaluate bacterial protection systems including early small-volume (ESV), early large-volume (ELV), and delayed large-volume (DLV) bacterial culture screening and pathogen inactivation (PI) treatment. RESULTS Implementation of DLV bacterial culture screening in the U. K. and PI treatment in Switzerland resulted in significant reductions (P < 0.05) in transfusion-associated bacterial sepsis for the period of 2011-2016 compared to the prior 4 years (2006-2010). Approximately 1.86 million DLV bacterial culture-screened PCs and 0.21 million PI-treated PCs were issued with no reported septic fatalities nor cases of life-threatening sepsis. In Australia, two life-threatening septic transfusion reactions (1.923 per million) were reported out of almost 1.04 million ELV bacterial culture-screened PCs, and no septic fatalities were reported. Meanwhile, in Canada, four life-threatening septic transfusion reactions (3.6/million) and one fatality (0.9/million) were observed in about 1.11 million ESV bacterial culture-screened PCs. CONCLUSION DLV bacterial culture and PI treatment significantly reduced the incidence of septic reactions. The advantages and disadvantages of both systems merit further investigation before implementation.
Collapse
Affiliation(s)
- Meshari I. Alabdullatif
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
- Department of Pathology, SmartLab, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Vollmer T, Knabbe C, Dreier J. Dual-Temperature Microbiological Control of Cellular Products: A Potential Impact for Bacterial Screening of Platelet Concentrates? Microorganisms 2023; 11:2350. [PMID: 37764194 PMCID: PMC10534585 DOI: 10.3390/microorganisms11092350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
An experimental study by the Paul-Ehrlich Institute (PEI) demonstrated that temperatures between 35 and 37 °C are too high for the growth of some bacterial strains (e.g., Pseudomonas fluorescens), leading to false negative results. Thus, the question of whether it is necessary to adapt incubation temperatures for the microbiological control of blood products, especially platelet concentrates (PCs), to enhance safety and regulatory compliance has arisen. In order to further elucidate this issue, the growth capability of different bacterial strains of interest in PCs and the detection efficacy of cultivation of these at different incubation temperatures must be taken into account. Therefore, we inoculated PCs with 46 different strains (3-6 PCs from different donors per strain) from different origins (PC isolates, reference strains) and stored PCs at 20-22 °C under constant agitation. On day three of storage, the inoculated PCs were sampled; aerobic and anaerobic culture bottles (BacT/Alert AST/NST) were each inoculated with 5 mL of sample, and culture bottles were incubated at 25 and 35 °C using the automated BacT/Alert Dual-temperature system. Bacterial proliferation was enumerated using a colony-forming assay. All strains of Enterobacteriacae (n = 5), Staphy-lococcus spp. (n = 11), Streptococcus spp. (n = 5), and Bacillus spp. (n = 4) and most Pseudomonas aeruginosa strains (4 of 5) tested showed the capability to grow in most inoculated PCs, revealing a faster time to detection (TTD) at an incubation temperature of 35 °C. The tested Pseudomonas putida (n = 3) strains showed a noticeably reduced capability to grow in PCs. Nonetheless, those with a notable growth capability revealed a faster TTD at an incubation temperature of 35 °C. Only one of the four Pseudomonas fluorescens strains tested (strain ATCC 13525) was able to grow in PCs, showing a faster TTD at an incubation temperature of 25 °C but also detection at 35 °C. The commonly detected bacteria involved in the bacterial contamination of PCs showed a superior TTD at 35 °C incubation. Only one P. fluorescens strain showed superior growth at 25 °C; however, the microbiological control at 35 °C did not fail to identify this contamination. In conclusion, the use of PC screening using a dual-temperature setting for microbiological control is presently not justified according to the observed kinetics.
Collapse
Affiliation(s)
- Tanja Vollmer
- Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | | | | |
Collapse
|
5
|
Al-Ghafry M, Senaldi E. Increased frequency of false-positive bacterial detection after implementation of new guidelines for large-volume delayed sampling of platelets. Transfusion 2023; 63:1728-1737. [PMID: 37453073 DOI: 10.1111/trf.17486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND The updated guidance for improving bacterial detection (BD) of platelets has included the implementation of large-volume delayed sampling (LVDS) with the addition of anaerobic culture bottles (BPNs) and sampling of each platelet split product. METHODS The frequency of BD was reviewed during this LVDS time period in comparison with pre-LVDS and the Post-Approval Surveillance Study of Platelet Outcomes, Release Tested (PASSPORT) study (when BPNs were last used). RESULTS There was more than a twofold increase in bottles inoculated per collection during LVDS, with an almost fivefold increase in sample volume collected. During LVDS, the concordance of split products within an initial reactive collection was only 8.7%. There was no difference in LVDS aerobic culture bottle (BPA) true positives (TPs), but there was a significant increase in LVDS false positives (FPs), p < .0001, compared to both PASSPORT and pre-LVDS, respectively. There was an increase in BPN TPs during LVDS (p < .05 compared to PASSPORT), with predominance of Cutibacter acnes (C. acnes), noted exclusively in BPN, and accounting for more than two-fifths of all organisms detected. Time to alarm during LVDS for TPs had two peaks with one due to C. acnes at 96 h compared to 17 h for non-C. acnes. DISCUSSION The high FP frequency, along with low clinical significance of TPs found in BPNs, has led to the needless discard of inventory, as the utility of BPNs in BD for platelets is yet to be established and may require much larger studies.
Collapse
|
6
|
Walker BS, Schmidt RL, Moore RA, White SK, Fisher MA, Metcalf RA. Bacterial culture time to detection in platelet components: An evidence synthesis and estimation of detection failures. Transfusion 2023; 63:182-192. [PMID: 36371753 DOI: 10.1111/trf.17179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Non-pathogen reduction platelet bacterial risk control strategies in the US FDA guidance include at least one culture. Almost all of these strategies have a culture hold time of ≥12 h. Studies have reported time to detection (TTD) of bacterial cultures inoculated with bacteria from contaminated platelets, but these data and estimates of risk associated with detection failures have not been synthesized. METHODS We performed a literature search to identify studies reporting TTD for samples obtained from spiked platelet components. Using extracted data, regression analysis was used to estimate TTD for culture bottles at different inoculum sizes. Detection failures were defined as events in which contaminated components are transfused to a patient. We then used published data on time of transfusion (ToT) to estimate the risk of detection failures in practice. RESULTS The search identified 1427 studies, of which 16 were included for analysis. TTD data were available for 16 different organisms, including 14 in aerobic cultures and 11 in anaerobic cultures. For inocula of 1 colony forming unit (CFU), the average TTD for aerobic organisms was 19.2 h while it was 24.9 h in anaerobic organisms, but there was substantial overall variation. A hold time of 12 versus 24 h had minimal effect for most organisms. CONCLUSION TTD variation occurs between bacterial species and within a particular species. Under typical inventory management, the relative contribution of culture detection failures is much smaller than the residual risk from sampling failures. Increasing the hold period beyond 12 h has limited value.
Collapse
Affiliation(s)
| | - Robert L Schmidt
- ARUP Laboratories, Salt Lake City, Utah, USA.,Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Ryleigh A Moore
- Department of Mathematics, University of Utah, Salt Lake City, Utah, USA
| | - Sandra K White
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Mark A Fisher
- ARUP Laboratories, Salt Lake City, Utah, USA.,Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Ryan A Metcalf
- ARUP Laboratories, Salt Lake City, Utah, USA.,Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
7
|
Lee J, Abafogi AT, Oh S, Chang HE, Tepeng W, Lee D, Park S, Park KU, Hong YJ. Molecular detection of bacterial contamination in plasma using magnetic-based enrichment. Sci Rep 2022; 12:9151. [PMID: 35650226 PMCID: PMC9160056 DOI: 10.1038/s41598-022-12960-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/25/2022] [Indexed: 11/24/2022] Open
Abstract
Bacterial contamination of blood products is a major problem in transfusion medicine, in terms of both morbidity and mortality. Platelets (PLTs) are stored at room temperature (under constant agitation) for more than 5 days, and bacteria can thus grow significantly from a low level to high titers. However, conventional methods like blood culture and lateral flow assay have disadvantages such as long detection time, low sensitivity, and the need for a large volume of blood components. We used real-time polymerase chain reaction (PCR) assays with antibiotic-conjugated magnetic nanobeads (MNBs) to detect enriched Gram-positive and -negative bacteria. The MNBs were coated with polyethylene glycol (PEG) to prevent aggregation by blood components. Over 80% of all bacteria were captured by the MNBs, and the levels of detection were 101 colony forming unit [CFU]/mL and 102 CFU/mL for Gram-positive and -negative bacteria, respectively. The detection time is < 3 h using only small volumes of blood components. Thus, compared to conventional methods, real-time PCR using MNBs allows for rapid detection with high sensitivity using only a small volume of blood components.
Collapse
Affiliation(s)
- Jinyeop Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, South Korea.,KingoBio Inc. Research Center, Suwon, South Korea
| | | | - Sujin Oh
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | | | - Wu Tepeng
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, South Korea.,KingoBio Inc. Research Center, Suwon, South Korea
| | - Daekyu Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, South Korea. .,Department of Biophysics, Institute of Quantum Biophysics (IQB), Sungkyunkwan University, Suwon, South Korea.
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea.,Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Yun Ji Hong
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea. .,Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea.
| |
Collapse
|
8
|
Cloutier M, De Korte D. Residual risks of bacterial contamination for
pathogen‐reduced
platelet components. Vox Sang 2022; 117:879-886. [DOI: 10.1111/vox.13272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/22/2021] [Accepted: 02/10/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Marc Cloutier
- Medical Affairs and Innovation Héma‐Québec Québec Canada
- Biochemistry, Microbiology and Bio‐informatics Université Laval Québec Canada
| | - Dirk De Korte
- Blood Cell Research Sanquin Research Amsterdam The Netherlands
- Product and Process Development Sanquin Blood Bank Amsterdam The Netherlands
| | | |
Collapse
|
9
|
Prioli KM, Abersone I, Kopko PM, Herman JH, Custer B, Pizzi LT. Economic implications of FDA platelet bacterial guidance compliance options: Comparison of single-step strategies. Transfusion 2022; 62:365-373. [PMID: 34997763 PMCID: PMC9303536 DOI: 10.1111/trf.16778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Bloodborne pathogens pose a major safety risk in transfusion medicine. To mitigate the risk of bacterial contamination in platelet units, FDA issues updated guidance materials on various bacterial risk control strategies (BRCS). This analysis presents results of a budget impact model updated to include 5- and 7-day pathogen reduced (PR) and large volumed delayed sampling (LVDS) BRCS. STUDY DESIGN AND METHODS Model base-case parameter inputs were based on scientific literature, a survey distributed to 27 US hospitals, and transfusion experts' opinion. The outputs include hospital budget and shelf-life impacts for 5- and 7-day LVDS, and 5- and 7-day PR units under three different scenarios: (1) 100% LVDS, (2) 100% PR, and (3) mix of 50% LVDS - and 50% PR. RESULTS Total annual costs from the hospital perspective were highest for 100% LVDS platelets (US$2.325M) and lowest for 100% PR-7 units (US$2.170M). Net budget impact after offsetting annual costs by outpatient reimbursements was 5.5% lower for 5-day PR platelets as compared to 5-day LVDS (US$1.663 vs. US$1.760M). A mix of 7-day LVDS and 5-day PR platelets had net annual costs that were 1.3% lower than for 100% 7-day LVDS, but 1.3% higher than for 100% 5-day PR. 7-day PR platelets had the longest shelf life (4.63 days), while 5-day LVDS had the shortest (2.00 days). DISCUSSION The model identifies opportunities to minimize transfusion center costs for 5- and 7-day platelets. Budget impact models such as this are important for understanding the financial implications of evolving FDA guidance and new platelet technologies.
Collapse
Affiliation(s)
- Katherine M Prioli
- Center for Health Outcomes, Policy and Economics, Rutgers University, Piscataway, New Jersey, USA
| | - Ilze Abersone
- Center for Health Outcomes, Policy and Economics, Rutgers University, Piscataway, New Jersey, USA
| | - Patricia M Kopko
- Division of Transfusion Medicine, University of California San Diego, San Diego, California, USA
| | - Jay H Herman
- Division of Transfusion Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Brian Custer
- Vitalant Research Institute, San Francisco, California, USA.,Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - Laura T Pizzi
- Center for Health Outcomes, Policy and Economics, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
10
|
Miles J, Bailey SL, Obenaus AM, Mollica MY, Usaneerungrueng C, Byrne D, Fang L, Flynn JR, Corson J, Osborne B, Houck K, Wang Y, Shen Y, Fu X, Dong JF, Sniadecki NJ, Stolla M. Storage temperature determines platelet GPVI levels and function in mice and humans. Blood Adv 2021; 5:3839-3849. [PMID: 34478498 PMCID: PMC8679671 DOI: 10.1182/bloodadvances.2021004692] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/27/2021] [Indexed: 01/02/2023] Open
Abstract
Platelets are currently stored at room temperature before transfusion to maximize circulation time. This approach has numerous downsides, including limited storage duration, bacterial growth risk, and increased costs. Cold storage could alleviate these problems. However, the functional consequences of cold exposure for platelets are poorly understood. In the present study, we compared the function of cold-stored platelets (CSP) with that of room temperature-stored platelets (RSP) in vitro, in vivo, and posttransfusion. CSP formed larger aggregates under in vitro shear while generating similar contractile forces compared with RSP. We found significantly reduced glycoprotein VI (GPVI) levels after cold exposure of 5 to 7 days. After transfusion into humans, CSP were mostly equivalent to RSP; however, their rate of aggregation in response to the GPVI agonist collagen was significantly lower. In a mouse model of platelet transfusion, we found a significantly lower response rate to the GPVI-dependent agonist convulxin and significantly lower GPVI levels on the surface of transfused platelets after cold storage. In summary, our data support an immediate but short-lived benefit of cold storage and highlight the need for thorough investigations of CSP. This trial was registered at www.clinicaltrials.gov as #NCT03787927.
Collapse
Affiliation(s)
- Jeffrey Miles
- Bloodworks Northwest Research Institute, Seattle, WA; and
| | | | | | | | | | - Daire Byrne
- Bloodworks Northwest Research Institute, Seattle, WA; and
| | - Lydia Fang
- Bloodworks Northwest Research Institute, Seattle, WA; and
| | | | - Jill Corson
- Bloodworks Northwest Research Institute, Seattle, WA; and
| | | | - Katie Houck
- Bloodworks Northwest Research Institute, Seattle, WA; and
| | - Yi Wang
- Bloodworks Northwest Research Institute, Seattle, WA; and
| | - Yu Shen
- Bloodworks Northwest Research Institute, Seattle, WA; and
| | - Xiaoyun Fu
- Bloodworks Northwest Research Institute, Seattle, WA; and
- Division of Hematology, Department of Medicine, School of Medicine, and
| | - Jing-Fei Dong
- Bloodworks Northwest Research Institute, Seattle, WA; and
- Division of Hematology, Department of Medicine, School of Medicine, and
| | - Nathan J. Sniadecki
- Department of Mechanical Engineering
- Department of Bioengineering
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA
| | - Moritz Stolla
- Bloodworks Northwest Research Institute, Seattle, WA; and
- Division of Hematology, Department of Medicine, School of Medicine, and
| |
Collapse
|
11
|
Wilson-Nieuwenhuis J, El-Mohtadi M, Edwards K, Whitehead K, Dempsey-Hibbert N. Factors Involved in the onset of infection following bacterially contaminated platelet transfusions. Platelets 2021; 32:909-918. [PMID: 32762589 DOI: 10.1080/09537104.2020.1803253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Transfusion of platelet concentrates (PCs) is associated with several adverse patient reactions, the most common of which are febrile non-hemolytic transfusion reactions (FNHTRs) and transfusion-associated bacterial-infection/transfusion-associated sepsis (T-ABI/TA-S). Diagnosis of T-ABI/T-AS requires a positive blood culture (BC) result from the transfusion recipient and also a positive identification of bacterial contamination within a test aliquot of the transfused PC. In a significant number of cases, clinical symptoms post-transfusion are reported by the clinician, yet the BCs from the patient and/or PC are negative. The topic of 'missed bacterial detection' has therefore been the focus of several primary research studies and review articles, suggesting that biofilm formation in the blood bag and the presence of viable but non-culturable (VBNC) pathogens are the major causes of this missed detection. However, platelets are emerging as key players in early host responses to infection and as such, the aforementioned biofilm formation could elicit 'platelet priming', which could lead to significant immunological reactions in the host, in the absence of planktonic bacteria in the host bloodstream. This review reflects on what is known about missed detection and relates this to the emerging understanding of the effect of bacterial contamination on the platelets themselves and the significant role played by platelets in exacerbation of an immune response to infection within the transfusion setting.
Collapse
Affiliation(s)
| | - Mohamed El-Mohtadi
- Centre for Bioscience, Manchester Metropolitan University, Manchester, UK
| | - Kurtis Edwards
- Centre for Bioscience, Manchester Metropolitan University, Manchester, UK
| | - Kathryn Whitehead
- Centre for Bioscience, Manchester Metropolitan University, Manchester, UK
| | | |
Collapse
|
12
|
Corean J, White SK, Schmidt RL, Walker BS, Fisher MA, Metcalf RA. Platelet Component False Positive Detection Rate in Aerobic and Anaerobic Primary Culture: A Systematic Review and Meta-Analysis. Transfus Med Rev 2021; 35:44-52. [PMID: 34158212 DOI: 10.1016/j.tmrv.2021.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Septic reactions from platelet transfusions are one of the leading causes of transfusion-associated mortality. The FDA guidance for platelet bacterial risk control includes bacterial culture using both aerobic and anaerobic bottles. Several studies have reported false positive rates (FPR) of culture, but these data have not been summarized or influencing factors analyzed. A systematic review and meta-analysis was performed according to published guidelines to assess the false positive rate and influencing factors. Eighteen studies were included for analysis. The combined aerobic/anaerobic FPR was 2.4 events per thousand (EPT) with a prediction interval of 0.5 to 5.7, while the aerobic FPR rate was 1.0 EPT (prediction interval: 0.2-2.2) and the anaerobic rate was 1.8 EPT. Estimates were based on a total of almost 5 million units tested. The rate of false positives due to instrument error was between 0.5-1.7 EPT, while it was between 0.3-1.0 EPT for sampling contamination based on whether only aerobic, anaerobic, or aerobic/anaerobic cultures were performed. The FPR is approximately 2 to 5 times higher than the literature reported true positive rate of 0.5 EPT.
Collapse
Affiliation(s)
- Jessica Corean
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Sandra K White
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Robert L Schmidt
- Department of Pathology, University of Utah, Salt Lake City, UT, USA; ARUP Laboratories, Salt Lake City, UT, USA
| | | | - Mark A Fisher
- Department of Pathology, University of Utah, Salt Lake City, UT, USA; ARUP Laboratories, Salt Lake City, UT, USA
| | - Ryan A Metcalf
- Department of Pathology, University of Utah, Salt Lake City, UT, USA; ARUP Laboratories, Salt Lake City, UT, USA.
| |
Collapse
|
13
|
Quality validation of platelets obtained from the Haemonetics and Trima Accel automated blood-collection systems. Transfus Clin Biol 2020; 28:44-50. [PMID: 33227455 DOI: 10.1016/j.tracli.2020.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Platelet transfusion is required to treat haemo-oncology or trauma patients. Platelet apheresis (PA) performed with apheresis equipment has increased rapidly in recent years. Leucocyte-reduced platelet apheresis (LRPA) can reduce the risk of platelet refractoriness and febrile nonhemolytic transfusion reactions (FNHTRs) for transfusion. Accordingly, this study aimed to investigate and compare the platelet metabolic and functional responses between PA performed with Haemonetics and LRPA performed with Trima Accel cell separator. METHODS The qualities of platelets collected through PA and LRPA were evaluated in terms of visual appearance, morphology, platelet-aggregation changes, metabolic activities, and bacterium-screening test during 5-day storage. Statistical analyses included two-sample t-test and generalised estimating equation(GEE) method. RESULTS During 5-day storage in LRPA, residual leucocytes were all <1.0×106, and the parameters of platelet function were as follows: platelet aggregated to agonists such as adenosine 5'-diphosphate (ADP) and collagen, and the extent of shape change and pO2 showed no statistically significant difference between PA and LRPA. The hypotonic shock reaction (HSR) on days 0, 1, and 3 were significantly higher in LRPA than in PA (71.78±6.92 vs. 64.10±7.42; P=0.002; 71.53±8.98 vs. 62.96±9.84; P=0.007; 68.05±7.28 vs. 57.76±6.80; P<0.0001, respectively). Values of mean platelet volume (MPV) were statistically larger in PA than in LRPA on days 0, 1, and 3. On day 5, the swirling score was higher in LRPA than in PA. The mean lactate levels had no statistically significant difference between PA and LRPA. Moreover, no growth was observed through bacterium-screening test conducted on 40 samples. CONCLUSION Comparison of LRPA and PA products collected from the Trima Accel and Haemonetics automated blood-collection systems, respectively, revealed that both products possessed good platelet qualities even though additional processes are needed to reduce leucocytes. Furthermore, investigating the outcomes of other apheresis instruments with focus on the safety of donors, products, and recipients is necessary.
Collapse
|
14
|
Corean J, White SK, Schmidt RL, Walker BS, Fisher MA, Metcalf RA. The incremental benefit of anaerobic culture for controlling bacterial risk in platelets: a systematic review and meta-analysis. Vox Sang 2020; 116:397-404. [PMID: 32996621 DOI: 10.1111/vox.13013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVES Septic transfusion reactions are a principal cause of transfusion-related mortality. The frequency of detectable bacterial contamination is greater in platelets compared to other blood components because platelets are stored at room temperature. Most strategies outlined in the September 2019 FDA guidance require both aerobic culture (AC) and anaerobic culture (AnC) testing. We performed a systematic review and meta-analysis in an effort to provide the best available estimate of the effectiveness of AnC. MATERIALS AND METHODS Our analysis was performed according to published guidelines. Broad and context-specific meta-analyses of bacterial detection rates in platelets by AnC were performed to assess the practical effectiveness of AnC as a risk control measure. RESULTS Seven studies with a total of 1 767 014 tested platelet components were included for analysis. With exclusion of positives due to Cutibacterium/Propionibacterium species and redundancy due to AC results, AnC detected 0·06 contamination events per thousand (EPT) components tested, twofold lower than the AC (0·12 EPT). CONCLUSION Excluding Cutibacterium/Propionibacterium species, AnC detects occasional bacterial contamination events that are not detected by AC (~1 in 17 000 platelet components).
Collapse
Affiliation(s)
- Jessica Corean
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Sandra K White
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Robert L Schmidt
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.,ARUP Laboratories, Salt Lake City, UT, USA
| | | | - Mark A Fisher
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.,ARUP Laboratories, Salt Lake City, UT, USA
| | - Ryan A Metcalf
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.,ARUP Laboratories, Salt Lake City, UT, USA
| |
Collapse
|
15
|
Fenwick AJ, Gehrie EA, Marshall CE, Tobian AAR, Shrestha R, Kacker S, Brunker PAR, Shifflett L, Carroll KC, Gozelanczyk D, Goel R, Ness PM, Bloch EM. Secondary bacterial culture of platelets to mitigate transfusion-associated sepsis: A 3-year analysis at a large academic institution. Transfusion 2020; 60:2021-2028. [PMID: 32750171 PMCID: PMC10007897 DOI: 10.1111/trf.15978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/16/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND In 2019, the United States Food and Drug Administration published its final recommendations to mitigate bacterial contamination of platelets. We sought to evaluate our secondary bacterial culture (SBC) strategy in light of those recommendations. STUDY DESIGN AND METHODS A retrospective analysis was conducted of SBC data (October 2016-2019) at our institution. SBC was performed upon receipt (Day 3 after collection); 5 mL of platelet product was inoculated aseptically into an aerobic bottle and incubated at 35°C for 3 days. For 8 months, a 10-mL inoculum was trialed. No quarantine was applied. All positive cultures underwent Gram staining and repeat culture of the platelet product (if available). A probable true positive was defined as concordant positive culture between the initial and repeat culture. The incidence of probable true- and false-positive cultures were reported descriptively and differences evaluated by sampling volume. RESULTS Over 3 years, 55 896 platelet products underwent SBC, yielding 30 initial positive results (approx. 1/1863 platelets); 25 (83.3%) signaled within 24 hours of SBC. The rates of probable true positive, false positive, and indeterminate for 5 mL were 0.027% (1/3771), 0.002% (1/45 251) and 0.018% (1/5656), respectively. The respective rates for 10 mL were 0.018% (1/5323), 0.07% (1/1521), and 0%. Seven of eight (87.5%) false-positive SBCs occurred with a 10-mL inoculum. No septic transfusion reactions were reported. CONCLUSION SBC continues to interdict bacterially contaminated units of platelets. Our findings suggest higher rates of false positivity using large-volume inocula.
Collapse
Affiliation(s)
- Alexander J Fenwick
- Division of Transfusion Medicine, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eric A Gehrie
- Division of Transfusion Medicine, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christi E Marshall
- Division of Transfusion Medicine, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aaron A R Tobian
- Division of Transfusion Medicine, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ruchee Shrestha
- Division of Transfusion Medicine, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Seema Kacker
- Division of Transfusion Medicine, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Patricia A R Brunker
- Division of Transfusion Medicine, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,American Red Cross Biomedical Services, Greater Chesapeake & Potomac Region, Baltimore, Maryland, USA
| | - Lisa Shifflett
- Division of Transfusion Medicine, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Karen C Carroll
- Division of Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Donna Gozelanczyk
- American Red Cross Biomedical Services, Greater Chesapeake & Potomac Region, Baltimore, Maryland, USA
| | - Ruchika Goel
- Division of Transfusion Medicine, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Mississippi Valley Regional Blood Center, Springfield, IL, USA
| | - Paul M Ness
- Division of Transfusion Medicine, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Evan M Bloch
- Division of Transfusion Medicine, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Walker BS, White SK, Schmidt RL, Metcalf RA. Residual bacterial detection rates after primary culture as determined by secondary culture and rapid testing in platelet components: A systematic review and meta-analysis. Transfusion 2020; 60:2029-2037. [PMID: 32757411 DOI: 10.1111/trf.16001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Primary culture alone was a bacterial risk control strategy intended to facilitate interdiction of contaminated platelets (PLTs). A September 2019 FDA guidance includes secondary testing options to enhance safety. Our objective was to use meta-analysis to determine residual contamination risk after primary culture using secondary culture and rapid testing. STUDY DESIGN AND METHODS A December 2019 literature search identified articles on PLT bacterial detection rates using primary culture and a secondary testing method. We used meta-analysis to estimate secondary testing detection rates after a negative primary culture. We evaluated collection method, sample volume, sample time, and study date as potential sources of heterogeneity. RESULTS The search identified 6102 articles; 16 were included for meta-analysis. Of these, 12 used culture and five used rapid testing as a secondary testing method. Meta-analysis was based on a total of 103 968 components tested by secondary culture and 114 697 by rapid testing. The residual detection rate using secondary culture (DRSC ) was 0.93 (95% CI, 0.24-0.6) per 1000 components, while residual detection rate using rapid testing (DRRT ) was 0.09 (95% CI, 0.01-0.25) per 1000 components. Primary culture detection rate was the only statistically significant source of heterogeneity. CONCLUSION We evaluated bacterial detection rates after primary culture using rapid testing and secondary culture. These results provide a lower and upper bound on real-world residual clinical risk because these methods are designed to detect high-level exposures or any level of exposure, respectively. Rapid testing may miss some harmful exposures and secondary culture may identify some clinically insignificant exposures.
Collapse
Affiliation(s)
| | - Sandra K White
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Robert L Schmidt
- ARUP Laboratories, Salt Lake City, Utah, USA.,Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Ryan A Metcalf
- ARUP Laboratories, Salt Lake City, Utah, USA.,Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
17
|
Walker BS, Schmidt RL, Fisher MA, White SK, Blaylock RC, Metcalf RA. The comparative safety of bacterial risk control strategies for platelet components: a simulation study. Transfusion 2020; 60:1723-1731. [PMID: 32632927 DOI: 10.1111/trf.15919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Bacterial contamination of platelets is a problem that can lead to harmful septic transfusion reactions. The US Food and Drug Administration published a guidance in September 2019 detailing several permissible risk control strategies. Our objective was to compare the safety of each bacterial testing strategy for apheresis platelets. STUDY DESIGN AND METHODS We used simulation to compare safety of the nine risk control strategies involving apheresis platelet testing. The primary outcome was the risk of exposure. An exposure event occurred if a patient received platelets exceeding a specific contamination threshold (>0, 103 , and 105 colony-forming units (CFU/mL). We generated a range of bacterial contamination scenarios (inoculum size, doubling time, lag time) and compared risk of exposure for each policy in each contamination scenario. We then computed the average risk difference over all scenarios. RESULTS At the 0 CFU/mL exposure threshold, two-step policies that used secondary culture ranked best (all top three), while single-step 24-hour culture with 3-day expiration ranked last (ninth). This latter policy performed well (median rank of 1) at both the 103 and 105 CFU/mL thresholds, but 48-hour culture with 7-day expiration performed relatively poorly. At these higher thresholds, median ranks of two-step policies that used secondary culture were again top three. Two-step policies that used rapid testing improved at the higher (105 CFU/mL) harm threshold, with median rankings between 1 and 5. CONCLUSION Two-step policies that used secondary culture were generally safer than single-step policies. Performance of two-step policies that used rapid testing depended on the CFU per milliter threshold of exposure used.
Collapse
Affiliation(s)
- Brandon S Walker
- Department of Pathology and ARUP Laboratories, University of Utah, Salt Lake City, Utah, USA
| | - Robert L Schmidt
- Department of Pathology and ARUP Laboratories, University of Utah, Salt Lake City, Utah, USA
| | - Mark A Fisher
- Department of Pathology and ARUP Laboratories, University of Utah, Salt Lake City, Utah, USA
| | - Sandra K White
- Department of Pathology and ARUP Laboratories, University of Utah, Salt Lake City, Utah, USA
| | - Robert C Blaylock
- Department of Pathology and ARUP Laboratories, University of Utah, Salt Lake City, Utah, USA
| | - Ryan A Metcalf
- Department of Pathology and ARUP Laboratories, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
18
|
White SK, Schmidt RL, Walker BS, Metcalf RA. Bacterial contamination rate of platelet components by primary culture: a systematic review and meta-analysis. Transfusion 2020; 60:986-996. [PMID: 32181889 DOI: 10.1111/trf.15762] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Platelets have the highest bacterial contamination risk of all blood components, and septic transfusion reactions remain a problem. A good estimate of contamination rates could provide information about residual risk and inform optimal testing strategies. We performed a systematic review and meta-analysis of platelet contamination rates by primary culture. STUDY DESIGN AND METHODS A literature search in December 2019 identified articles on platelet contamination rates using primary culture. We used meta-analysis to estimate the overall rate of contamination and meta-regression to identify heterogeneity. We studied the following sources of heterogeneity: collection method, sample volume, positivity criteria, and study date. Contamination rate estimates were obtained for apheresis (AP), platelet rich plasma (PRP), and buffy coat (BC) collection methods. RESULTS The search identified 6102 studies, and 22 were included for meta-analysis. Among these 22 studies, there were 21 AP cohorts (4,072,022 components), 4 PRP cohorts (138,869 components), and 15 BC cohorts (1,474,679 components). The overall mean contamination rate per 1000 components was 0.51 (95% CI: 0.38-0.67) including AP (0.23, 95% CI: 0.18-0.28), PRP, (0.38, 95% CI: 0.15-0.70), and BC (1.12, 95% CI: 0.51-1.96). There was considerable variability within each collection method. Sample volume, positivity criteria, and publication year were significant sources of heterogeneity. CONCLUSION The bacterial contamination rate of platelets by primary culture is 1 in 1961. AP and PRP components showed a lower contamination rate than BC components. There is clinically significant between-study variability for each method. Larger sample volumes increased sensitivity, and bacterial contamination rates have decreased over time.
Collapse
Affiliation(s)
- Sandra K White
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Robert L Schmidt
- Department of Pathology, University of Utah, Salt Lake City, Utah
- ARUP Laboratories, Salt Lake City, Utah
| | | | - Ryan A Metcalf
- Department of Pathology, University of Utah, Salt Lake City, Utah
- ARUP Laboratories, Salt Lake City, Utah
| |
Collapse
|
19
|
Kundrapu S, Srivastava S, Good CE, Lazarus HM, Maitta RW, Jacobs MR. Bacterial contamination and septic transfusion reaction rates associated with platelet components before and after introduction of primary culture: experience at a US Academic Medical Center 1991 through 2017. Transfusion 2020; 60:974-985. [PMID: 32357261 DOI: 10.1111/trf.15780] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 01/27/2020] [Accepted: 02/20/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND The high incidence of septic transfusion reactions (STRs) led to testing being mandated by AABB from 2004. This was implemented by primary culture of single-donor apheresis platelets (APs) from 2004 and prestorage pooled platelets (PSPPs) from 2007. STUDY DESIGN/METHODS Platelet (PLT) aliquots were cultured at issue and transfusion reactions evaluated at our hospital. Bacterial contamination and STR rates (shown as rates per million transfusions in Results) were evaluated before and after introduction of primary culture by blood centers that used a microbial detection system (BacT/ALERT, bioMerieux) or enhanced bacterial detection system (eBDS, Haemonetics). RESULTS A total of 28,457 PLTs were cultured during pre-primary culture periods (44.7% APs; 55.3% at-issue pooled PLTs [AIPPs]) and 97,595 during post-primary culture periods (79.3% APs; 20.7% PSPPs). Forty-three contaminated units were identified in preculture and 34 in postculture periods (rates, 1511 vs. 348; p < 0.0001). Contamination rates of APs were significantly lower than AIPPs in the preculture (393 vs. 2415; p < 0.0001) but not postculture period compared to PSPPs (387 vs. 198; p = 0.9). STR rates (79 vs. 90; p = 0.98) were unchanged with APs but decreased considerably with pooled PLTs (826 vs. 50; p = 0.0006). Contamination (299 vs. 324; p = 0.84) and STR rates (25 vs. 116; p = 0.22) were similar for PLTs tested by BacT/ALERT and eBDS primary culture methods. A change in donor skin preparation method in 2012 was associated with decreased contamination and STR rates. CONCLUSION Primary culture significantly reduced bacterial contamination and STR associated with pooled but not AP PLTs. Measures such as secondary testing near time of use or pathogen reduction are needed to further reduce STRs.
Collapse
Affiliation(s)
- Sirisha Kundrapu
- Department of Pathology and Medicine, University Hospitals Cleveland Medical Center and Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Swati Srivastava
- Department of Pathology and Medicine, University Hospitals Cleveland Medical Center and Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Caryn E Good
- Department of Pathology and Medicine, University Hospitals Cleveland Medical Center and Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Hillard M Lazarus
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Robert W Maitta
- Department of Pathology and Medicine, University Hospitals Cleveland Medical Center and Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Michael R Jacobs
- Department of Pathology and Medicine, University Hospitals Cleveland Medical Center and Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
20
|
Kacker S, Katz LM, Ness PM, Bloch EM, Goel R, Gehrie EA, Lokhandwala PM, Tobian AAR. Financial analysis of large-volume delayed sampling to reduce bacterial contamination of platelets. Transfusion 2020; 60:997-1002. [PMID: 32275069 DOI: 10.1111/trf.15773] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/17/2020] [Accepted: 02/28/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Effective and financially viable mitigation approaches are needed to reduce bacterial contamination of platelets in the US. Expected costs of large-volume delayed sampling (LVDS), which would be performed by a blood center prior to shipment to a hospital, were compared to those of pathogen reduction (PR), point-of-release testing (PORt), and secondary bacterial culture (SBC). METHODS Using a Markov-based decision-tree model, the financial and clinical impact of implementing all variants of LVDS, PR, PORt, and SBC described in FDA guidance were evaluated from a hospital perspective. Hospitals were assumed to acquire leukoreduced apheresis platelets, with LVDS adding $30 per unit. Monte Carlo simulations were run to estimate the direct medical costs for platelet acquisition, testing, transfusion, and possible complications associated with each approach. Input parameters, including test sensitivity and specificity, were drawn from existing literature and costs (2018US$) were based on a hospital perspective. A one-way sensitivity analysis varied the assumed additional cost of LVDS. RESULTS Under an approach of LVDS (7-day), the total cost per transfused unit is $735.78, which falls between estimates for SBC (7-day) and PORt. Assuming 20,000 transfusions each year, LVDS would cost $14.72 million annually. Per-unit LVDS costs would need to be less than $22.32 to be cheaper per transfusion than all other strategies, less than $32.02 to be cheaper than SBC (7-day), and less than $196.19 to be cheaper than PR (5-day). CONCLUSIONS LVDS is an effective and cost-competitive approach, assuming additional costs to blood centers and associated charges to hospitals are modest.
Collapse
Affiliation(s)
- Seema Kacker
- Transfusion Medicine Division, Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Louis M Katz
- Mississippi Valley Regional Blood Center, Davenport, Iowa, USA
| | - Paul M Ness
- Transfusion Medicine Division, Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Evan M Bloch
- Transfusion Medicine Division, Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ruchika Goel
- Transfusion Medicine Division, Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA.,Mississippi Valley Regional Blood Center, Davenport, Iowa, USA
| | - Eric A Gehrie
- Transfusion Medicine Division, Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Parvez M Lokhandwala
- Transfusion Medicine Division, Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Aaron A R Tobian
- Transfusion Medicine Division, Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Prodger CF, Rampotas A, Estcourt LJ, Stanworth SJ, Murphy MF. Platelet transfusion: Alloimmunization and refractoriness. Semin Hematol 2019; 57:92-99. [PMID: 32892848 DOI: 10.1053/j.seminhematol.2019.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 12/28/2022]
Abstract
The transfusion of platelets for both prophylaxis and treatment of bleeding is relevant to all areas of medicine and surgery. Historically, guidance regarding platelet transfusion has been limited by a lack of good quality clinical trials and so has been based largely on expert opinion. In recent years however there has been renewed interest in methods to prevent and treat hemorrhage, and the field has benefited from a number of large clinical trials. Some studies, such as platelet transfusion versus standard care after acute stroke due to spontaneous cerebral haemorrhage associated with antiplatelet therapy (PATCH) and platelets for neonatal transfusion Study 2 (PLANET-2), have reported an increased risk of harm with platelet transfusion in specific patient groups. These studies suggest a wider role of platelets beyond hemostasis, and highlight the need for further clinical trials to better understand the risks and benefits of platelet transfusions. This review evaluates the indications for platelet transfusion, both prophylactic and therapeutic, in the light of recent studies and clinical trials. It highlights new developments in the fields of platelet storage and platelet substitutes, and novel ways to avoid complications associated with platelet transfusions. Lastly, it reviews initiatives designed to reduce inappropriate use of platelet transfusions and to preserve this valuable resource for situations where there is evidence for their beneficial effect.
Collapse
Affiliation(s)
- Catherine F Prodger
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford; UK
| | - Alexandros Rampotas
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford; UK
| | - Lise J Estcourt
- NHS Blood and Transplant, Oxford; UK; National Institute of Health Research Biomedical Research Centre Haematology Theme, Oxford; UK
| | - Simon J Stanworth
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford; UK; NHS Blood and Transplant, Oxford; UK; National Institute of Health Research Biomedical Research Centre Haematology Theme, Oxford; UK
| | - Michael F Murphy
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford; UK; NHS Blood and Transplant, Oxford; UK; National Institute of Health Research Biomedical Research Centre Haematology Theme, Oxford; UK.
| |
Collapse
|
22
|
Infanti L, Holbro A, Passweg J, Bolliger D, Tsakiris DA, Merki R, Plattner A, Tappe D, Irsch J, Lin J, Corash L, Benjamin RJ, Buser A. Clinical impact of amotosalen-ultraviolet A pathogen-inactivated platelets stored for up to 7 days. Transfusion 2019; 59:3350-3361. [PMID: 31574181 PMCID: PMC6900102 DOI: 10.1111/trf.15511] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Universal pathogen inactivation of platelet concentrates (PCs) using amotosalen/ultraviolet A with 7-day storage was implemented in Switzerland in 2011. Routine-use data were analyzed at the University Hospital Basel, Switzerland. STUDY DESIGN A retrospective two-cohort study of patient and PC characteristics, component usage, patient outcomes, count increments (CIs), and adverse events were analyzed for two consecutive 5-year periods with either 0- to 5-day-old conventional PC (C-PC) (n = 14,181) or 0- to 7-day-old pathogen-inactivated PC (PI-PC) (n = 22,579). RESULTS In both periods, PCs were issued for transfusion on a "first in, first out" basis. With 7-day PI-PC, wastage was reduced from 8.7% to 1.5%; 16.6% of transfused PI-PCs were more than 5 days old. Transfusion of PI-PC more than 5 days old compared with 5 days old or less did not increase platelet and RBC use on the same or next day as an indirect measure of hemostasis and did not increase transfusion reactions. Mean corrected count increments (CCIs) for PI-PC stored for 5 days or less were 22.6% lower than for C-PC (p < 0.001), and declined with increasing storage duration for both, although the correlation was weak (r2 = 0.005-0.014). Mean number of PCs used per patient and duration of PC support were not different for hematology/oncology, allogeneic and autologous hematopoietic stem cell transplant (HSCT), and general medical/surgical patients, who used the majority (~92.0%) of PI-PCs. Five-year treatment-related mortality in allogeneic HSCT was unchanged in the PI-PC period. CONCLUSIONS PI-PCs with 7-day storage reduced wastage and did not increase PC or red blood cell utilization or adverse reactions compared with fresh PI-PC or a historical control group, demonstrating preserved efficacy and safety.
Collapse
Affiliation(s)
- Laura Infanti
- Regional Blood Transfusion ServiceSwiss Red CrossBaselSwitzerland
| | - Andreas Holbro
- Regional Blood Transfusion ServiceSwiss Red CrossBaselSwitzerland
- HematologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Jakob Passweg
- HematologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Daniel Bolliger
- Department for Anesthesia, Prehospital Emergency Medicine, and Pain TherapyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | | | - Ramona Merki
- HematologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | | | | | | | | | | | | | - Andreas Buser
- Regional Blood Transfusion ServiceSwiss Red CrossBaselSwitzerland
- HematologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| |
Collapse
|
23
|
Banerjee T, Tummala T, Elliott R, Jain V, Brantley W, Hadorn L, Santra S. Multimodal Magneto-Fluorescent Nanosensor for Rapid and Specific Detection of Blood-Borne Pathogens. ACS APPLIED NANO MATERIALS 2019; 2:5587-5593. [PMID: 34222829 PMCID: PMC8247792 DOI: 10.1021/acsanm.9b01158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Detection of bacterial contaminants in blood and platelet concentrates (PCs) continues to be challenging in clinical settings despite available current testing methods. At the same time, it is important to detect the low bacterial contaminants present at the time of transfusion. Herein, we report the design and synthesis of a dual-modal magneto-fluorescent nanosensor (MFnS) by integrating magnetic relaxation and fluorescence modalities for the wide-range detection of blood-borne pathogens. In this study, functional MFnS are designed to specifically detect Staphylococcus epidermidis and Escherichia coli, two of the predominant bacterial contaminants of PCs. Specific interaction between the target pathogen and functional MFnS resulted in the change of water proton's magnetic relaxation time (T2 MR), indicative of sensitive detection of the target bacteria from low to high colony forming unit (CFU). In addition, the acquired MR signal of MFnS further facilitated the quantitative assessment of the slow and fast growth kinetics of target pathogens. Moreover, the presence of fluorescence modality in MFnS allowed for the detection of multi-contaminants. The bacterial detection was also performed in complex media including whole blood and platelet concentrates, which further demonstrated for it's robust detection sensitivity. Overall, our study indicated that the designer MFnS will have potential for the wide-range detection of blood-borne pathogens, and features desirable qualities including timeliness, sensitivity and, specificity.
Collapse
Affiliation(s)
- Tuhina Banerjee
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| | - Tanuja Tummala
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| | - Rebekah Elliott
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| | - Vedant Jain
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| | - Wesley Brantley
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| | - Laci Hadorn
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| | - Santimukul Santra
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| |
Collapse
|
24
|
Jacquot C, Mo YD, Luban NLC. New Approaches and Trials in Pediatric Transfusion Medicine. Hematol Oncol Clin North Am 2019; 33:507-520. [PMID: 31030816 DOI: 10.1016/j.hoc.2019.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Blood transfusions are frequently lifesaving, but there is growing awareness of their associated infectious and noninfectious adverse events. Patient blood management advocates for judicious use of transfusions and considerations of alternatives to correct anemia or achieve hemostasis. Several transfusion practices, either already implemented or under investigation, aim to further improve the safety of transfusions. An enduring challenge in pediatric and neonatal transfusion practice is that studies typically focus on adults, and findings are extrapolated to younger patients. This article aims to summarize some of the newer developments in transfusion medicine with a focus on the neonatal and pediatric population.
Collapse
Affiliation(s)
- Cyril Jacquot
- Division of Laboratory Medicine, Center for Cancer and Blood Disorders, Children's National Health System, Sheikh Zayed Campus for Advanced Children's Medicine, 111 Michigan Avenue Northwest, Washington, DC 20010, USA; Division of Hematology, Center for Cancer and Blood Disorders, Children's National Health System, Sheikh Zayed Campus for Advanced Children's Medicine, 111 Michigan Avenue Northwest, Washington, DC 20010, USA; Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA; Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| | - Yunchuan Delores Mo
- Division of Laboratory Medicine, Center for Cancer and Blood Disorders, Children's National Health System, Sheikh Zayed Campus for Advanced Children's Medicine, 111 Michigan Avenue Northwest, Washington, DC 20010, USA; Division of Hematology, Center for Cancer and Blood Disorders, Children's National Health System, Sheikh Zayed Campus for Advanced Children's Medicine, 111 Michigan Avenue Northwest, Washington, DC 20010, USA; Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA; Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Naomi L C Luban
- Division of Laboratory Medicine, Center for Cancer and Blood Disorders, Children's National Health System, Sheikh Zayed Campus for Advanced Children's Medicine, 111 Michigan Avenue Northwest, Washington, DC 20010, USA; Division of Hematology, Center for Cancer and Blood Disorders, Children's National Health System, Sheikh Zayed Campus for Advanced Children's Medicine, 111 Michigan Avenue Northwest, Washington, DC 20010, USA; Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA; Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
25
|
Prax M, Bekeredjian-Ding I, Krut O. Microbiological Screening of Platelet Concentrates in Europe. Transfus Med Hemother 2019; 46:76-86. [PMID: 31191193 PMCID: PMC6514488 DOI: 10.1159/000499349] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/27/2019] [Indexed: 01/05/2023] Open
Abstract
The risk of transfusion-associated sepsis due to transmission of bacteria is a persistent problem in the transfusion field. Despite numerous interventions to reduce the risk, cases of bacterial sepsis following transfusion are repeatedly being reported. Especially platelet concentrates are highly susceptible to bacterial contaminations due to the growth-promoting storage conditions. In Europe, blood establishments and national authorities have implemented individual precaution measures to mitigate the risk of bacterial transmission. To obtain an overview of the different approaches, we compiled information from national authorities, blood establishments, and the current literature. Several aspects such as the shelf life of platelets, time of sampling and the applied control measures are compared between the member states. The analysis of the data revealed a broad heterogeneity of procedures on a national level ranging from platelet release without any safety testing up to mandatory screening of all platelet concentrates prior to transfusion. Despite the substantial progress made in recent years, several bacterial reports on transfusion-associated sepsis indicate that further efforts are needed to increase the safety of blood transfusions in the long term.
Collapse
Affiliation(s)
- Marcel Prax
- Division of Microbiology, Paul Ehrlich Institute, Langen, Germany
| | | | | |
Collapse
|
26
|
Haass KA, Sapiano MRP, Savinkina A, Kuehnert MJ, Basavaraju SV. Transfusion-Transmitted Infections Reported to the National Healthcare Safety Network Hemovigilance Module. Transfus Med Rev 2019; 33:84-91. [PMID: 30930009 DOI: 10.1016/j.tmrv.2019.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/04/2018] [Accepted: 01/02/2019] [Indexed: 11/29/2022]
Abstract
Transfusion-transmitted infections (TTIs) can be severe and result in death. Transfusion-transmitted viral pathogen transmission has been substantially reduced, whereas sepsis due to bacterial contamination of platelets and transfusion-transmitted babesiosis may occur more frequently. Quantifying the burden of TTI is important to develop targeted interventions. From January 1, 2010, to December 31, 2016, health care facilities participating in the National Healthcare Safety Network Hemovigilance Module monitored transfusion recipients for evidence of TTI and recorded the total number of units transfused. Facilities use standard criteria to report TTIs. Incidence rates of TTIs, including for bacterial contamination of platelets and transfusion-transmitted babesiosis, are presented. One hundred ninety-five facilities reported 111 TTIs and 7.9 million transfused components to the National Healthcare Safety Network Hemovigilance Module. Of these 111 reports, 54 met inclusion criteria. The most frequently reported pathogens were Babesia spp in RBCs (16/23, 70%) and Staphylococcus aureus in platelets (12/30, 40%). There were 1.95 (26 apheresis, 4 whole blood derived) TTIs per 100 000 transfused platelet units and 0.53 TTI per 100 000 transfused RBC components, compared to 0.68 TTI per 100 000 all transfused components. Bacterial contamination of platelets and transfusion-transmitted babesiosis were the most frequently reported TTIs. Interventions that reduce the burden of bacterial contamination of platelets, particularly collected by apheresis, and Babesia transmission through RBC transfusion would reduce transfusion recipient morbidity and mortality. These analyses demonstrate the value and importance of facility participation in national recipient hemovigilance using standard reporting criteria.
Collapse
Affiliation(s)
- Kathryn A Haass
- Office of Blood, Organ, and Other Tissue Safety, Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention.
| | - Mathew R P Sapiano
- Surveillance Branch, Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, US Centers for Disease Control and Prevention
| | - Alexandra Savinkina
- Office of Blood, Organ, and Other Tissue Safety, Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention; Oak Ridge Institute for Science and Education
| | - Matthew J Kuehnert
- Office of Blood, Organ, and Other Tissue Safety, Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention
| | - Sridhar V Basavaraju
- Office of Blood, Organ, and Other Tissue Safety, Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention
| |
Collapse
|
27
|
Kacker S, Bloch EM, Ness PM, Gehrie EA, Marshall CE, Lokhandwala PM, Tobian AAR. Financial impact of alternative approaches to reduce bacterial contamination of platelet transfusions. Transfusion 2019; 59:1291-1299. [PMID: 30623459 DOI: 10.1111/trf.15139] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Bacterial contamination of platelets remains the leading infectious risk from blood transfusion. Pathogen reduction (PR), point-of-release testing (PORt), and secondary bacterial culture (SBC) have been proposed as alternative risk control strategies, but a comprehensive financial comparison has not been conducted. STUDY DESIGN AND METHODS A Markov-based decision tree was constructed to model the financial and clinical impact of PR, PORt, and SBC, as well as a baseline strategy involving routine testing only. Hospitals were assumed to acquire leukoreduced apheresis platelets on Day 3 after collection, and, in the base case analysis, expiration would occur at the end of Day 5 (PR and SBC) or 7 (PORt). Monte Carlo simulations assessed the direct medical costs for platelet acquisition, testing, transfusion, and possible complications. Input parameters, including test sensitivity and specificity, were drawn from existing literature, and costs (2018 US dollars) were based on a hospital perspective. RESULTS The total costs per unit acquired by the hospital under the baseline strategy, PR, PORt, and SBC were $651.45, $827.82, $686.33, and $668.50, respectively. All risk-reduction strategies decreased septic transfusion reactions and associated expenses, with the greatest reductions from PR. PR would add $191.09 in per-unit acquisition costs, whereas PORt and SBC would increase per-unit testing costs by $31.79 and $17.26, respectively. Financial outcomes were sensitive to platelet dating; allowing 7-day storage with SBC would lead to a cost savings of $12.41 per transfused unit. Results remained robust in probabilistic sensitivity analyses. CONCLUSIONS All three strategies are viable approaches to reducing bacterially contaminated platelet transfusions, although SBC is likely to be the cheapest overall.
Collapse
Affiliation(s)
- Seema Kacker
- Division of Transfusion Medicine, Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Evan M Bloch
- Division of Transfusion Medicine, Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Paul M Ness
- Division of Transfusion Medicine, Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Eric A Gehrie
- Division of Transfusion Medicine, Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Christi E Marshall
- Division of Transfusion Medicine, Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Parvez M Lokhandwala
- Division of Transfusion Medicine, Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Aaron A R Tobian
- Division of Transfusion Medicine, Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
28
|
Siddon AJ, Tormey CA, Snyder EL. Platelet Transfusion Medicine. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Prioli KM, Karp JK, Lyons NM, Chrebtow V, Herman JH, Pizzi LT. Economic Implications of Pathogen Reduced and Bacterially Tested Platelet Components: A US Hospital Budget Impact Model. APPLIED HEALTH ECONOMICS AND HEALTH POLICY 2018; 16:889-899. [PMID: 30062464 PMCID: PMC6244623 DOI: 10.1007/s40258-018-0409-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
BACKGROUND US FDA draft guidance includes pathogen reduction (PR) or secondary rapid bacterial testing (RT) in its recommendations for mitigating risk of platelet component (PC) bacterial contamination. An interactive budget impact model was created for hospitals to use when considering these technologies. METHODS A Microsoft Excel model was built and populated with base-case costs and probabilities identified through literature search and a survey of US hospital transfusion service directors. Annual costs of PC acquisition, testing, wastage, dispensing/transfusion, sepsis, shelf life, and reimbursement for a mid-sized hospital that purchases all of its PCs were compared for four scenarios: 100% conventional PCs (C-PC), 100% RT-PC, 100% PR-PC, and 50% RT-PC/50% PR-PC. RESULTS Annual total costs were US$3.64, US$3.67, and US$3.96 million when all platelets were C-PC, RT-PC, or PR-PC, respectively, or US$3.81 million in the 50% RT-PC/50% PR-PC scenario. The annual net cost of PR-PC, obtained by subtracting annual reimbursements from annual total costs, is 6.18% above that of RT-PC. Maximum usable shelf lives for C-PC, RT-PC, and PR-PC are 3.0, 5.0, and 3.6 days, respectively; hospitals obtain PR-PC components earliest at 1.37 days. CONCLUSION The model predicts minimal cost increase for PR-PC versus RT-PC, including cost offsets such as elimination of bacterial detection and irradiation, and reimbursement. Additional safety provided by PR, including risk mitigation of transfusion-transmission of a broad spectrum of viruses, parasites, and emerging pathogens, may justify this increase. Effective PC shelf life may increase with RT, but platelets can be available sooner with PR due to elimination of bacterial detection, depending on blood center logistics.
Collapse
Affiliation(s)
- Katherine M. Prioli
- Center for Health Outcomes, Policy, and Economics, Rutgers University, 160 Frelinghuysen Road, Suite 417, Piscataway, NJ 08854 USA
| | - Julie Katz Karp
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University Hospital, 111 South 11th Street, Philadelphia, PA 19107 USA
| | - Nina M. Lyons
- Thomas Jefferson University, 901 Walnut Street, Suite 901, Philadelphia, PA 19107 USA
| | - Vera Chrebtow
- Global Marketing and Communications, Cerus Corporation, 2550 Stanwell Drive, Concord, CA 94520 USA
| | - Jay H. Herman
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University Hospital, 111 South 11th Street, Philadelphia, PA 19107 USA
| | - Laura T. Pizzi
- Center for Health Outcomes, Policy, and Economics, Rutgers University, 160 Frelinghuysen Road, Suite 417, Piscataway, NJ 08854 USA
| |
Collapse
|
30
|
Jentsch U, Swanevelder R. Bacterial surveillance of apheresis platelets in South Africa (January 2011 to December 2016). ACTA ACUST UNITED AC 2018. [DOI: 10.1111/voxs.12474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ute Jentsch
- Medical Department South African National Blood Service Roodepoort South Africa
| | - Ronel Swanevelder
- Business Intelligence South African National Blood Service Roodepoort South Africa
| |
Collapse
|
31
|
Kamel H, Goldman M. More than one way to enhance bacterial detection in platelet components. Transfusion 2018; 58:1574-1577. [DOI: 10.1111/trf.14774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Hany Kamel
- Department of Medical AffairsBlood SystemsScottsdale AZ
| | - Mindy Goldman
- Medical, Scientific and Research Affairs, Canadian Blood ServicesOttawa Ontario Canada
| |
Collapse
|
32
|
Jutzi M, Mansouri Taleghani B, Rueesch M, Amsler L, Buser A. Nationwide Implementation of Pathogen Inactivation for All Platelet Concentrates in Switzerland. Transfus Med Hemother 2018; 45:151-156. [PMID: 29928168 DOI: 10.1159/000489900] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/02/2018] [Indexed: 01/19/2023] Open
Abstract
Introduction Bacterial contamination of platelet concentrates (PCs) has been identified as the most prevalent transfusion-associated infectious risk. To prevent PC-related septic transfusion reactions, the Intercept® pathogen inactivation procedure was introduced for all PCs in Switzerland in 2011. Methods Based on numbers of transfused units and mandatorily reported adverse events with high imputability, we compare the risks associated with transfusion of conventional PCs (cPCs) and pathogen-inactivated PCs (PI-PCs). Results From 2005 to 2011, a total of 158,502 cPCs have been issued in Switzerland, and 16 transfusion-transmitted bacterial infections (including 3 fatalities) were reported. This corresponds to a morbidity and mortality rate of ca. 1:9,900 and 1:52,800, respectively. From 2011 to 2016, a total of 205,574 PI-PCs have been issued, and no transfusion-transmitted bacterial infection was reported. Despite continuously increasing transfusion reaction rates per 1,000 RBC and plasma issued between 2008 and 2016, we observed reductions of 66% for life-threatening and fatal reactions and of 26% for all high-imputability transfusion reactions related to PI-PCs as compared to cPCs. No increased rates of bleeding or clinical observations of ineffectiveness of PI-PCs have been reported. After implementation of PI-PCs, the annual increase in platelet usage per 1,000 inhabitants decelerated. Discussion Swiss hemovigilance data confirm a favorable safety profile of the nationwide introduced Intercept pathogen inactivation procedure and its reliable prevention of septic transfusion reactions and fatalities due to bacterially contaminated PCs.
Collapse
Affiliation(s)
- Markus Jutzi
- Interregional Blood Transfusion SRC Ltd., Bern, Switzerland
| | - Behrouz Mansouri Taleghani
- University Clinic of Hematology and Central Hematology Laboratory, Division of Transfusion Medicine, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Morven Rueesch
- Blood Transfusion Service, Swiss Red Cross, Bern, Switzerland
| | - Lorenz Amsler
- Division Safety of Medicines, Swissmedic, Bern, Switzerland
| | - Andreas Buser
- Regional Blood Transfusion Service, Swiss Red Cross, Basel, and Department of Hematology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
33
|
Ruby KN, Thomasson RR, Szczepiorkowski ZM, Dunbar NM. Bacterial screening of apheresis platelets with a rapid test: a 113‐month single center experience. Transfusion 2018; 58:1665-1669. [DOI: 10.1111/trf.14629] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/06/2018] [Accepted: 02/15/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Kristen N. Ruby
- Department of Pathology and Laboratory MedicineDartmouth‐Hitchcock Medical CenterLebanonNew Hampshire
| | - Reggie R. Thomasson
- Department of Pathology and Laboratory MedicineDartmouth‐Hitchcock Medical CenterLebanonNew Hampshire
| | - Zbigniew M. Szczepiorkowski
- Department of Pathology and Laboratory MedicineDartmouth‐Hitchcock Medical CenterLebanonNew Hampshire
- Department of MedicineDartmouth‐Hitchcock Medical CenterLebanonNew Hampshire
- Geisel School of Medicine at DartmouthHanover New Hampshire
- Institute of Hematology and Transfusion MedicineWarsaw Poland
| | - Nancy M. Dunbar
- Department of Pathology and Laboratory MedicineDartmouth‐Hitchcock Medical CenterLebanonNew Hampshire
- Department of MedicineDartmouth‐Hitchcock Medical CenterLebanonNew Hampshire
- Geisel School of Medicine at DartmouthHanover New Hampshire
| |
Collapse
|
34
|
Vollmer T, Dabisch‐Ruthe M, Weinstock M, Knabbe C, Dreier J. Late sampling for automated culture to extend the platelet shelf life to 5 days in Germany. Transfusion 2018; 58:1654-1664. [DOI: 10.1111/trf.14617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/22/2018] [Accepted: 02/26/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Tanja Vollmer
- Herz‐ und Diabeteszentrum Nordrhein‐Westfalen, Universitaetsklinik der Ruhr‐Universität BochumBad Oeynhausen Germany
| | - Mareike Dabisch‐Ruthe
- Herz‐ und Diabeteszentrum Nordrhein‐Westfalen, Universitaetsklinik der Ruhr‐Universität BochumBad Oeynhausen Germany
| | - Melanie Weinstock
- Herz‐ und Diabeteszentrum Nordrhein‐Westfalen, Universitaetsklinik der Ruhr‐Universität BochumBad Oeynhausen Germany
| | - Cornelius Knabbe
- Herz‐ und Diabeteszentrum Nordrhein‐Westfalen, Universitaetsklinik der Ruhr‐Universität BochumBad Oeynhausen Germany
| | - Jens Dreier
- Herz‐ und Diabeteszentrum Nordrhein‐Westfalen, Universitaetsklinik der Ruhr‐Universität BochumBad Oeynhausen Germany
| |
Collapse
|
35
|
Bloch EM, Marshall CE, Boyd JS, Shifflett L, Tobian AA, Gehrie EA, Ness PM. Implementation of secondary bacterial culture testing of platelets to mitigate residual risk of septic transfusion reactions. Transfusion 2018; 58:1647-1653. [DOI: 10.1111/trf.14618] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/07/2018] [Accepted: 02/26/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Evan M. Bloch
- Department of Pathology, Transfusion Medicine DivisionJohns Hopkins UniversityBaltimore Maryland
| | - Christi E. Marshall
- Department of Pathology, Transfusion Medicine DivisionJohns Hopkins UniversityBaltimore Maryland
| | - Joan S. Boyd
- Department of Pathology, Transfusion Medicine DivisionJohns Hopkins UniversityBaltimore Maryland
| | - Lisa Shifflett
- Department of Pathology, Transfusion Medicine DivisionJohns Hopkins UniversityBaltimore Maryland
| | - Aaron A.R. Tobian
- Department of Pathology, Transfusion Medicine DivisionJohns Hopkins UniversityBaltimore Maryland
| | - Eric A. Gehrie
- Department of Pathology, Transfusion Medicine DivisionJohns Hopkins UniversityBaltimore Maryland
| | - Paul M. Ness
- Department of Pathology, Transfusion Medicine DivisionJohns Hopkins UniversityBaltimore Maryland
| |
Collapse
|
36
|
Jacquot C, Delaney M. Efforts Toward Elimination of Infectious Agents in Blood Products. J Intensive Care Med 2018; 33:543-550. [PMID: 29562814 DOI: 10.1177/0885066618756589] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The US blood supply has never been safer. This level of safety depends on a multifaceted approach including blood donor screening, sensitive infectious disease testing, and good manufacturing practice. However, risks remain for transfusion-transmitted infections due to bacterial contamination of platelets and emerging diseases. Thus, ongoing improvements in screening and testing are required. Newer pathogen reduction technologies have shown promise in further ameliorating the safety of the blood supply.
Collapse
Affiliation(s)
- Cyril Jacquot
- 1 Division of Laboratory Medicine, Center for Cancer and Blood Disorders, Children's National Health System, Sheikh Zayed Campus for Advanced Children's Medicine, Washington, DC, USA.,2 Division of Hematology, Center for Cancer and Blood Disorders, Children's National Health System, Sheikh Zayed Campus for Advanced Children's Medicine, Washington, DC, USA.,3 Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,4 Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Meghan Delaney
- 1 Division of Laboratory Medicine, Center for Cancer and Blood Disorders, Children's National Health System, Sheikh Zayed Campus for Advanced Children's Medicine, Washington, DC, USA.,2 Division of Hematology, Center for Cancer and Blood Disorders, Children's National Health System, Sheikh Zayed Campus for Advanced Children's Medicine, Washington, DC, USA.,3 Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,4 Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
37
|
Tomasulo PA. Reducing the risk of septic transfusion reactions from platelets. Transfusion 2018; 57:1099-1103. [PMID: 28425607 DOI: 10.1111/trf.14111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 11/30/2022]
|
38
|
Harm SK, Szczepiorkowski ZM, Dunbar NM. Routine use of Day 6 and Day 7 platelets with rapid testing: two hospitals assess impact 1 year after implementation. Transfusion 2018; 58:938-942. [DOI: 10.1111/trf.14473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Sarah K. Harm
- Department of Pathology and Laboratory Medicine; University of Vermont Medical Center; Burlington Vermont
| | - Zbigniew M. Szczepiorkowski
- Department of Pathology and Laboratory Medicine; Dartmouth-Hitchcock Medical Center; Lebanon New Hampshire
- Institute of Hematology and Transfusion Medicine; Warsaw Poland
| | - Nancy M. Dunbar
- Department of Pathology and Laboratory Medicine; Dartmouth-Hitchcock Medical Center; Lebanon New Hampshire
| |
Collapse
|
39
|
|
40
|
Kreuger AL, Rostgaard K, Middelburg RA, Kerkhoffs JLH, Edgren G, Erikstrup C, Pedersen OB, Titlestad K, Nielsen KR, Ostrowski SR, Voldstedlund M, van der Bom JG, Ullum H, Hjalgrim H. Storage time of platelet concentrates and risk of a positive blood culture: a nationwide cohort study. Transfusion 2017; 58:16-24. [PMID: 29168187 DOI: 10.1111/trf.14401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 01/28/2023]
Abstract
BACKGROUND Concern of transfusion-transmitted bacterial infections has been the major hurdle to extend shelf life of platelet (PLT) concentrates. We aimed to investigate the association between storage time and risk of positive blood cultures at different times after transfusion. STUDY DESIGN AND METHODS We performed a nationwide cohort study among PLT transfusion recipients in Denmark between 2010 and 2012, as recorded in the Scandinavian Donations and Transfusions (SCANDAT2) database. Linking with a nationwide database on blood cultures (MiBa), we compared the incidence of a positive blood culture among recipients of PLTs stored 6 to 7 days (old) to those receiving fresh PLTs (1-5 days), using Poisson regression models. We considered cumulative exposures in windows of 1, 3, 5, and 7 days. RESULTS A total of 9776 patients received 66,101 PLT transfusions. The incidence rate ratio (IRR) of a positive blood culture the day after transfusion of at least one old PLT concentrate was 0.77 (95% confidence interval [CI], 0.54-1.09) compared to transfusion of fresh PLT concentrates. The incidence rate of a positive blood culture was lower the day after receiving one old compared to one fresh PLT concentrate (IRR, 0.57; 95% CI, 0.37-0.87). Three, 5, or 7 days after transfusion, storage time was not associated with the risk of a positive blood culture. CONCLUSION Storage of buffy coat-derived PLT concentrates in PAS-C up to 7 days seems safe regarding the risk of a positive blood culture. If anything, transfusion of a single old PLT concentrate may decrease this risk the following day.
Collapse
Affiliation(s)
- Aukje L Kreuger
- Center for Clinical Transfusion Research, Sanquin Research, Leiden, the Netherlands.,Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Klaus Rostgaard
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Rutger A Middelburg
- Center for Clinical Transfusion Research, Sanquin Research, Leiden, the Netherlands.,Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jean-Louis H Kerkhoffs
- Center for Clinical Transfusion Research, Sanquin Research, Leiden, the Netherlands.,Haga Hospital, Den Haag, the Netherlands
| | - Gustav Edgren
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Hematology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Ole B Pedersen
- Department of Clinical Immunology, Naestved Hospital, Naestved, Denmark
| | - Kjell Titlestad
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Kaspar R Nielsen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Sisse R Ostrowski
- Department of Clinical Immunology, the Blood Bank, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Marianne Voldstedlund
- Department of Infectious Disease Epidemiology, Statens Serum Institut, Copenhagen, Denmark
| | - Johanna G van der Bom
- Center for Clinical Transfusion Research, Sanquin Research, Leiden, the Netherlands.,Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Henrik Ullum
- Department of Clinical Immunology, the Blood Bank, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Henrik Hjalgrim
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
41
|
Thyer J, Perkowska-Guse Z, Ismay SL, Keller AJ, Chan HT, Dennington PM, Bell B, Kotsiou G, Pink JM. Bacterial testing of platelets - has it prevented transfusion-transmitted bacterial infections in Australia? Vox Sang 2017; 113:13-20. [DOI: 10.1111/vox.12561] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/24/2017] [Accepted: 07/09/2017] [Indexed: 11/28/2022]
Affiliation(s)
- J. Thyer
- Australian Red Cross Blood Service; Melbourne Vic Australia
| | | | - S. L. Ismay
- Australian Red Cross Blood Service; Melbourne Vic Australia
| | - A. J. Keller
- Australian Red Cross Blood Service; Melbourne Vic Australia
| | - H. T. Chan
- Australian Red Cross Blood Service; Melbourne Vic Australia
| | | | - B. Bell
- Australian Red Cross Blood Service; Melbourne Vic Australia
| | - G. Kotsiou
- Australian Red Cross Blood Service; Melbourne Vic Australia
| | - J. M. Pink
- Australian Red Cross Blood Service; Melbourne Vic Australia
| |
Collapse
|
42
|
Li JW, Brecher ME, Jacobson JL, Harm SK, Chen D, El‐Gamil A, Dobson A, Mintz PD. Addressing the risk of bacterial contamination in platelets: a hospital economic perspective. Transfusion 2017; 57:2321-2328. [DOI: 10.1111/trf.14216] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 12/17/2022]
Affiliation(s)
| | - Mark E. Brecher
- Laboratory Corporation of America HoldingsBurlington North Carolina
- University of North Carolina at Chapel Hill School of MedicineChapel Hill North Carolina
| | | | - Sarah K. Harm
- University of Vermont Medical CenterBurlington Vermont
| | | | | | - Al Dobson
- Dobson DaVanzo & Associates, LLCVienna Virginia
| | - Paul D. Mintz
- Verax Biomedical, IncorporatedMarlborough Massachusetts
| |
Collapse
|
43
|
Kreuger AL, Middelburg RA, Bank CM, Beckers EA, van Gammeren AJ, Leyte A, Rondeel JM, de Vooght KM, Weerkamp F, Zwaginga JJ, Kerkhoffs JLH, van der Bom JG. Storage time of platelet concentrates and all-cause bacteremia in hematologic patients. Transfusion 2017; 57:2096-2103. [DOI: 10.1111/trf.14194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Aukje L. Kreuger
- Center for Clinical Transfusion Research; Sanquin Research; Leiden
- Department of Clinical Epidemiology; Leiden University Medical Center; Leiden the Netherlands
| | - Rutger A. Middelburg
- Center for Clinical Transfusion Research; Sanquin Research; Leiden
- Department of Clinical Epidemiology; Leiden University Medical Center; Leiden the Netherlands
| | | | | | | | - Anja Leyte
- OLVG Hospital; Amsterdam the Netherlands
| | | | | | | | - Jaap Jan Zwaginga
- Center for Clinical Transfusion Research; Sanquin Research; Leiden
- Department of Immunohaematology and Blood Transfusion; Leiden University Medical Center; Leiden the Netherlands
| | - Jean Louis H. Kerkhoffs
- Center for Clinical Transfusion Research; Sanquin Research; Leiden
- Haga Hospital; Den Haag the Netherlands
| | - Johanna G. van der Bom
- Center for Clinical Transfusion Research; Sanquin Research; Leiden
- Department of Clinical Epidemiology; Leiden University Medical Center; Leiden the Netherlands
| |
Collapse
|
44
|
Ramirez-Arcos S, DiFranco C, McIntyre T, Goldman M. Residual risk of bacterial contamination of platelets: six years of experience with sterility testing. Transfusion 2017; 57:2174-2181. [DOI: 10.1111/trf.14202] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/04/2017] [Accepted: 04/30/2017] [Indexed: 01/29/2023]
|
45
|
Kamel H, Townsend M, Bravo M, Vassallo RR. Improved yield of minimal proportional sample volume platelet bacterial culture. Transfusion 2017. [PMID: 28643434 DOI: 10.1111/trf.14198] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Reports of septic transfusion reactions (STRs) after transfusion of culture-negative platelets (PLTs) justify more effective prevention strategies. Pathogen reduction technologies or performance of additional point-of-issue testing are proposed strategies to enhance safety through Day 5 of storage. STUDY DESIGN AND METHODS Trima leukoreduced apheresis PLTs (APs) were collected during two study periods (45 and 31 months) using standard procedures, with target settings adjusted during the second period to maintain split rate after increased culture volume. Primary testing for bacterial contamination was performed using BacT/ALERT 3D with sampling from the mother bag 24 to 36 hours after collection. Two culture approaches were compared: in Period A, an 8-mL sample in one aerobic culture bottle (CB), and in Period B a minimal proportional sample volume (PSV) of at least 3.8% of mother bag volume into one to three aerobic CBs (7-10 mL per bottle). RESULTS In Periods A and B, 188,389 and 159,098 AP collections were tested, respectively. The true-positive (TP) rate in Period A was 0.90 per 10,000 collections and in Period B was 1.83 per 10,000 (p < 0.05). In Period B, 12 of 29 (41%) TP results had discrepant CB results (DCBRs; at least one of multiple bottles without growth). The false-positive rate in Period B, 15.05 per 10,000 collections, was significantly higher than that of Period A, 3.66 per 10,000. One contaminated collection resulting in STR(s) was reported in each study period. Implementation of PSV was operationally successful and did not impact the AP split rate. CONCLUSION Proportional sample volume improved the sensitivity of primary testing and identified collections that could have escaped detection had only a single bottle with 8- to 10-mL volume been used. PSV may represent another approach to enhanced PLT safety for 5-day storage without a requirement for secondary testing.
Collapse
|
46
|
Flint A, Aubron C, Bailey M, Bellomo R, Pilcher D, Cheng AC, Hegarty C, Reade MC, McQuilten Z. Duration of platelet storage and outcomes of critically ill patients. Transfusion 2017; 57:599-605. [PMID: 28297080 DOI: 10.1111/trf.14056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/03/2016] [Accepted: 11/06/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND The storage duration of platelet (PLT) units is limited to 5 to 7 days. This study investigates whether PLT storage duration is associated with patient outcomes in critically ill patients. STUDY DESIGN AND METHODS This study was a retrospective analysis of critically ill patients admitted to the intensive care unit (ICU) of two hospitals in Australia who received one or more PLT transfusions from 2008 to 2014. Storage duration was approached in several different ways. Outcome variables were hospital mortality and ICU-acquired infection. Associations between PLT storage duration and outcomes were evaluated using multiple logistic regression and also by Cox regression. RESULTS Among 2250 patients who received one or more PLT transfusions while in the ICU, the storage duration of PLTs was available for 64% of patients (1430). In-hospital mortality was 22.1% and ICU infection rate 7.2%. When comparing patients who received PLTs of a maximum storage duration of not more than 3, 4, or 5 days, there were no significant differences in baseline characteristics. After confounders were adjusted for, the storage duration of PLTs was not independently associated with mortality (4 days vs. ≤3 days, odds ratio [OR] 0.88, 95% confidence interval [CI] 0.59-1.30; 5 days vs. ≤3 days, OR 0.97, 95% CI 0.68-1.37) or infection (4 days vs. ≤3 days, OR 0.71, 95% CI 0.39-1.29; 5 days vs. ≤3 days, OR 1.11, 95% CI 0.67-1.83). Similar results were obtained regardless of how storage duration of PLTs was approached. CONCLUSIONS In this large observational study in a heterogeneous ICU population, storage duration of PLTs was not associated with an increased risk of mortality or infection.
Collapse
Affiliation(s)
- Andrew Flint
- The Australian and New Zealand Intensive Care Research Centre.,Royal Australian Navy, Australian Defence Force, Canberra, Australia
| | - Cécile Aubron
- The Australian and New Zealand Intensive Care Research Centre.,The Intensive Care Unit, The Alfred Hospital, Melbourne, Australia.,The Medical Intensive Care Unit, Centre Hospitalier et Universitaire de Brest site La Cavale Blanche-Université de Bretagne Occidentale, Brest, France
| | - Michael Bailey
- The Australian and New Zealand Intensive Care Research Centre
| | - Rinaldo Bellomo
- The Australian and New Zealand Intensive Care Research Centre.,The Intensive Care Unit, The Austin Hospital
| | - David Pilcher
- The Australian and New Zealand Intensive Care Research Centre.,The Intensive Care Unit, The Alfred Hospital, Melbourne, Australia
| | - Allen C Cheng
- The Infectious Disease Department, The Alfred Hospital
| | - Colin Hegarty
- The Transfusion Service of The Austin Hospital, Melbourne, Australia
| | - Michael C Reade
- The Australian and New Zealand Intensive Care Research Centre.,Joint Health Command, Australian Defence Force, Canberra, Australia.,Burns Trauma and Critical Care Research Centre, University of Queensland, Brisbane, Australia
| | - Zoe McQuilten
- The Australian and New Zealand Intensive Care Research Centre.,The Transfusion Research Unit, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
47
|
Detection of the relatively slow-growing Propionibacterium acnes in seven matrices of blood components and advanced therapeutical medicinal products. Transfus Apher Sci 2017; 56:461-465. [PMID: 28571932 DOI: 10.1016/j.transci.2017.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND Relatively slow-growing bacteria like Propionibacterium acnes represent a challenge for quality control investigations in sterility release testing of blood components and advanced therapeutic medicinal products (ATMPs). METHODS A convenient validation with 7 matrices was performed using buffy coat, stem cells, islet cells, natural killer cells, red blood cells, platelets and plasma in the microbial detection system Bact/Alert®3D incubator. All matrix samples were spiked twofold with Propionibacterium acnes with approximately 50 colony forming units (CFUs) per bottle in iAST and iNST culture bottles for 14days using a multishot bioball. Additionally, the stem cell preparations were also incubated in iFAplus and iFNplus culture bottles, which include neutralizing polymers. RESULTS The Bact/Alert®3D-System detected Propionibacterium acnes in anaerobic culture bottles in buffy coat [3.3 d (=positive signal day to detection as mean value)], red blood cells [3.2 d], platelets [3.3], plasma [3.7 d], natural killer cells [3.3 d] and islet cells [4.9 d], resp. No growth of Propionibacterium was found in autologous stem cells using iAST and iNST culture bottles. However, Propionibacterium was safely detected in the iFNplus culture bottle with polymers in the stem cell matrix. A successful validation of media was performed. CONCLUSIONS Our study shows that Bact/Alert®3D-System safely detects the relatively slow-growing bacterium Propionibacterium acnes in different matrices in a practical way except stem cells. Using the iFNplus culture bottle for stem cell products positive signals were observed.
Collapse
|
48
|
McDonald C, Allen J, Brailsford S, Roy A, Ball J, Moule R, Vasconcelos M, Morrison R, Pitt T. Bacterial screening of platelet components by National Health Service Blood and Transplant, an effective risk reduction measure. Transfusion 2017; 57:1122-1131. [PMID: 28425610 DOI: 10.1111/trf.14085] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 01/19/2017] [Accepted: 01/19/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Bacterial contamination of blood components remains a major cause of sepsis in transfusion medicine. Between 2006 and 2010 in the 5 years before the introduction of bacterial screening of platelet (PLT) components by National Health Service Blood and Transplant (NHSBT), seven cases of PLT component-associated transmission of bacterial infection were recorded for 10 patients, three of which were fatal. STUDY DESIGN AND METHODS Sampling of individual PLT components was undertaken at 36 to 48 hours after donation and tested in the BacT/ALERT system with 8 mL inoculated into each of aerobic and anaerobic culture bottles. Bottles were incubated until the end of the 7-day shelf life and initial reactive bottles were examined for contamination. Bacterial screened time-expired PLTs were tested as in the screen method. RESULTS From February 2011 to September 2015, a total of 1,239,029 PLT components were screened. Initial-reactive, confirmed-positive, and false-positive rates were 0.37, 0.03, and 0.19%, respectively. False-negative cultures, all with Staphylococcus aureus, occurred on four occasions; three were visually detected before transfusion and one confirmed transmission resulted in patient morbidity. The NHSBT screening protocol effectively reduced the number of clinically adverse transfusion transmissions by 90% in this reporting period, compared to a similar time period before implementation. Delayed testing of 4515 time-expired PLT units after screening revealed no positives. CONCLUSION The implementation of bacterial screening of PLT components with the NHSBT BacT/ALERT protocol was an effective risk reduction measure and increased the safety of the blood supply.
Collapse
|
49
|
Chatterjee K, Zaman S, Chaurasia R, Singh S, Keil SD, Tewari S, Bisht A, Agarwal N, Rout D, Chand S, Saha K. Evaluation of Mirasol pathogen reduction system by artificially contaminating platelet concentrates with Staphylococcus epidermidis: A pilot study from India. Asian J Transfus Sci 2016; 10:127-31. [PMID: 27605849 PMCID: PMC4993081 DOI: 10.4103/0973-6247.187946] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND AND OBJECTIVES This study was conducted to assess the efficacy of Mirasol pathogen reduction system for platelets aimed at preventing bacterial regrowth by spiking buffy coat pooled platelets (BCPP) with clinically relevant load of Staphylococous epidermidis. MATERIALS AND METHODS BCPP units were prepared using Teruflex BP-kit with Imugard III-S-PL (Terumo BCT, Tokyo, Japan). Two BCPP units were pooled, of which 40 ml of negative control (NC) was removed. The remaining volume of the platelet unit was inoculated with clinically relevant load of bacteria (total of 30 CFU of S. epidermidis in 1 ml); following this the platelet unit was split into two parts. One part served as positive control (PC) and the other part was subjected to pathogen reduction technique (Mirasol PRT, CaridianBCT Biotechnologies, Lakewood, CO, USA). Bacterial detection was performed using BacT/ALERT system, controls after day 1 and day 7 following inoculation of bacteria and on day 7 for Mirasol-treated unit. RESULTS Of the 32 treatment cycles, 28 were valid and 4 were invalid. No regrowth was observed in 96.4% (27 of 28) after treatment with Mirasol pathogen reduction system. Of four invalid tests, on two instances the NC showed growth, whereas in other 2 no regrowth was detected in 7(th) day PC. Bacterial screening of PCs by BacT/ALERT after 24 h of incubation was 28.6%, whereas the effectiveness increased to 100% when incubated for 7 days. CONCLUSIONS Mirasol system was effective in inactivating S. epidermidis when it was deliberately inoculated into BCPP at clinically relevant concentrations. Such systems may significantly improve blood safety by inactivating traditional and emerging transfusion-transmitted pathogens.
Collapse
Affiliation(s)
- Kabita Chatterjee
- Department of Transfusion Medicine, All Institute of Medical Sciences, New Delhi, India
| | - Shamsuz Zaman
- Department of Transfusion Medicine, All Institute of Medical Sciences, New Delhi, India
| | - Rahul Chaurasia
- Department of Transfusion Medicine, All Institute of Medical Sciences, New Delhi, India
| | - Surinder Singh
- National Institute of Biologicals, Noida, Uttar Pradesh, India
| | | | - Shalini Tewari
- National Institute of Biologicals, Noida, Uttar Pradesh, India
| | - Akanksha Bisht
- Haemovigilance Programme, National Institute of Biologicals, Noida, Uttar Pradesh, India
| | - Nitin Agarwal
- Department of Transfusion Medicine, All Institute of Medical Sciences, New Delhi, India
| | - Diptiranjan Rout
- Department of Transfusion Medicine, All Institute of Medical Sciences, New Delhi, India
| | - Subhash Chand
- National Institute of Biologicals, Noida, Uttar Pradesh, India
| | - Kallol Saha
- National Institute of Biologicals, Noida, Uttar Pradesh, India
| |
Collapse
|
50
|
Abstract
Platelet transfusions continue to be the mainstay to treat patients with quantitative and qualitative platelet disorders. Each year, about 10 millions of platelet transfusions are administered to patients worldwide with marked differences in usage between regions depending on socioeconomic development of the countries. Unfortunately, its use is associated to immune and non-immune side effects. Among the non-immune, bacterial contamination is still the major infectious risk. When bacterial culture methods are introduced for preventing bacterial septic reactions it has been found that this strategy reduce to one half the septic reactions, but do not eliminate completely that risk. To remove completely the risk, a new bacteria detection test at the time of issuance in the case of platelets stored for four or five days would be needed. Pathogen inactivation (PI) methods already in the market (based in the addition of amotosalen (A-L) or riboflavin (R-L) and the illumination with ultraviolet light) or under development (ultraviolet light C and agitation) have shown to be efficacious in the inactivation of bacteria and no cases of septic reactions associated to a pathogen-reduced product has been identified. However, it has been shown that PI technologies have measurable effects on platelet in vitro parameters and reduce the recovery and survival of treated platelets in vivo. Although these effects do not hamper the hemostatic capacity of treated platelets, an increased usage associated with PI technologies has been reported. This increase in utilization seems to be the toll to be paid if we want to completely eliminate the risk of bacterial sepsis in the recipients of platelet transfusion.
Collapse
|