1
|
Sowa MA, Wu Y, van Groningen J, Di Y, van den Hurk H, Eble JA, Gibbins JM, García Á, Pollitt AY. High-throughput screen identifies MAS9 as a novel inhibitor of the C-type lectin receptor-2 (CLEC-2)-podoplanin interaction. Br J Pharmacol 2025. [PMID: 40269496 DOI: 10.1111/bph.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/21/2024] [Accepted: 03/02/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND AND PURPOSE The C-type lectin-like receptor-2 (CLEC-2) is a platelet receptor for the endogenous ligand podoplanin. This interaction contributes to several (patho)physiological processes, such as lymphangiogenesis, preservation of blood and lymphatic vessel integrity organ development, and tumour metastasis. Activation of CLEC-2 leads to the phosphorylation of its cytoplasmic hemITAM domain and initiates a signalling cascade involving the kinase Syk. The aim of this study was to identify and characterise a novel small molecule inhibitor of CLEC-2. EXPERIMENTAL APPROACH An AlphaScreen-based high-throughput screening was used to identify a small molecule inhibitor of the CLEC-2-podoplanin interaction. Binding site interactions were assessed using in silico modelling. Functional assays, including light transmission aggregometry, platelet spreading and phosphorylation assays, were used to evaluate the effect of a small molecule on CLEC-2-mediated platelet activation. KEY RESULTS A total of 18,476 small molecules were screened resulting in 14 candidates. Following secondary screening, one novel small molecule, MAS9, was taken forward for further characterisation. The binding sites of MAS9 to CLEC-2 were predicted to share binding sites with the CLEC-2 ligands podoplanin and rhodocytin. MAS9 inhibited CLEC-2-mediated platelet aggregation, spreading and signalling. MAS9 also resulted in inhibited fibrinogen binding. CONCLUSION AND IMPLICATIONS MAS9 inhibits CLEC-2-mediated aggregation, platelet spreading and signalling, showing selectivity of CLEC-2 inhibition over GPVI. This study paves the way for future preclinical assays to test the potential of MAS9 as a novel therapeutic tool to treat pathologies such as thromboinflammation and cancer.
Collapse
Affiliation(s)
- Marcin A Sowa
- Institute for Cardiovascular and Metabolic Research (ICMR), School of Biological Sciences, University of Reading, Reading, UK
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Yan Wu
- Institute for Cardiovascular and Metabolic Research (ICMR), School of Biological Sciences, University of Reading, Reading, UK
| | | | - Ying Di
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | - Johannes A Eble
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research (ICMR), School of Biological Sciences, University of Reading, Reading, UK
| | - Ángel García
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Alice Y Pollitt
- Institute for Cardiovascular and Metabolic Research (ICMR), School of Biological Sciences, University of Reading, Reading, UK
| |
Collapse
|
2
|
Oguz AK, Oygur CS, Gur Dedeoglu B, Dogan Turacli I, Serin Kilicoglu S, Ergun I. The Platelet-Specific Gene Signature in the Immunoglobulin G4-Related Disease Transcriptome. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:162. [PMID: 39859144 PMCID: PMC11767091 DOI: 10.3390/medicina61010162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/04/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Background and Objectives: Immunoglobulin G4-related disease (IgG4-RD) is an immune-mediated, fibroinflammatory, multiorgan disease with an obscure pathogenesis. Findings indicating excessive platelet activation have been reported in systemic sclerosis, which is another autoimmune, multisystemic fibrotic disorder. The immune-mediated, inflammatory, and fibrosing intersections of IgG4-RD and systemic sclerosis raised a question about platelets' role in IgG4-RD. Materials and Methods: By borrowing transcriptomic data from Nakajima et al. (GEO repository, GSE66465) we sought a platelet contribution to the pathogenesis of IgG4-RD. GEO2R and BRB-ArrayTools were used for class comparisons, and WebGestalt for functional enrichment analysis. During the selection of differentially expressed genes (DEGs), the translationally active but significantly low amount of platelet mRNA was specifically considered. The platelet-specific gene signature derived was used for cluster analysis of patient and control groups. Results: When IgG4-RD patients were compared with controls, 268 DEGs (204 with increased and 64 with decreased expression) were detected. Among these, a molecular signature of 22 platelet-specific genes harbored genes important for leukocyte-platelet aggregate formation (i.e., CLEC1B, GP1BA, ITGA2B, ITGB3, SELP, and TREML1) and extracellular matrix synthesis (i.e., CLU, PF4, PPBP, SPARC, and THBS1). Functional enrichment analysis documented significantly enriched terms related to platelets, including but not limited to "platelet reactivity", "platelet degranulation", "platelet aggregation", and "platelet activation". During clustering, the 22 gene signatures successfully discriminated IgG4-RD and the control and the IgG4-RD before and after treatment groups. Conclusions: Patients with IgG4-RD apparently display an activated platelet phenotype with a potential contribution to disease immunopathogenesis. If the platelets' role is validated through further carefully designed research, the therapeutic potentials of selected conventional and/or novel antiplatelet agents remain to be evaluated in patients with IgG4-RD. Transcriptomics and/or proteomics research with platelets should take into account the relatively low amounts of platelet mRNA, miRNA, and protein. Secondary analysis of omics data sets has great potential to reveal new and valuable information.
Collapse
Affiliation(s)
- Ali Kemal Oguz
- Department of Internal Medicine, Faculty of Medicine, Ufuk University, 06510 Ankara, Turkey
| | - Cagdas Sahap Oygur
- Department of Internal Medicine (Rheumatology), Faculty of Medicine, Baskent University, 06490 Ankara, Turkey;
| | - Bala Gur Dedeoglu
- Department of Biotechnology, Biotechnology Institute, Ankara University, 06135 Ankara, Turkey;
| | - Irem Dogan Turacli
- Department of Medical Biology, Faculty of Medicine, Ufuk University, 06510 Ankara, Turkey;
| | - Sibel Serin Kilicoglu
- Department of Histology & Embryology, Faculty of Medicine, Baskent University, 06790 Ankara, Turkey;
| | - Ihsan Ergun
- Department of Internal Medicine (Nephrology), Faculty of Medicine, Ufuk University, 06510 Ankara, Turkey;
| |
Collapse
|
3
|
Nakayama T, Saito R, Furuya S, Higuchi Y, Matsuoka K, Takahashi K, Maruyama S, Shoda K, Takiguchi K, Shiraishi K, Kawaguchi Y, Amemiya H, Kawaida H, Tsukiji N, Shirai T, Suzuki-Inoue K, Ichikawa D. Molecular mechanisms driving the interactions between platelet and gastric cancer cells during peritoneal dissemination. Oncol Lett 2024; 28:498. [PMID: 39211304 PMCID: PMC11358723 DOI: 10.3892/ol.2024.14631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Platelets (PLTs) facilitate tumor progression and the spread of metastasis. They also interact with cancer cells in various cancer types. Furthermore, PLTs form complexes with gastric cancer (GC) cells via direct contact and promote their malignant behaviors. The objective of the present study was to explore the molecular mechanisms driving these interactions and to evaluate the potential for preventing peritoneal dissemination by inhibiting PLT activation in GC cells. The present study examined the roles of PLT activation pathways in the increased malignancy of GC cells facilitated by PLT-cancer cells. Transforming growth factor-β receptor kinase inhibitor (TRKI), Src family kinase inhibitor (PP2) and Syk inhibitor (R406) were used to identify the molecules influencing these interactions. Their therapeutic effects were verified via cell experiments and validated using a mouse GC peritoneal dissemination model. Notably, only the PLT activation pathway-related inhibitors TRKI and PP2, but not R406, inhibited the PLT-enhanced migration and invasion of GC cells. In vivo analyses revealed that PLT-enhanced peritoneal dissemination was suppressed by PP2. Overall, the present study revealed the important role of the Srk family in the interactions between PLTs and GC cells, suggesting kinase inhibitors as promising therapeutic agents to mitigate the progression of peritoneal metastasis in patients with GC.
Collapse
Affiliation(s)
- Takashi Nakayama
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Ryo Saito
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Shinji Furuya
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Yudai Higuchi
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Koichi Matsuoka
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Kazunori Takahashi
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Suguru Maruyama
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Katsutoshi Shoda
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Koichi Takiguchi
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Kensuke Shiraishi
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Yoshihiko Kawaguchi
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Hidetake Amemiya
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Hiromichi Kawaida
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Nagaharu Tsukiji
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Toshiaki Shirai
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Katsue Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Daisuke Ichikawa
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
4
|
Tsai HJ, Cheng KW, Li JC, Ruan TX, Chang TH, Wang JR, Tseng CP. Identification of Podoplanin Aptamers by SELEX for Protein Detection and Inhibition of Platelet Aggregation Stimulated by C-Type Lectin-like Receptor 2. BIOSENSORS 2024; 14:464. [PMID: 39451677 PMCID: PMC11506057 DOI: 10.3390/bios14100464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
Tumor cell-induced platelet aggregation (TCIPA) is a mechanism for the protection of tumor cells in the bloodstream and the promotion of tumor progression and metastases. The platelet C-type lectin-like receptor 2 (CLEC-2) can bind podoplanin (PDPN) on a cancer cell surface to facilitate TCIPA. Selective blockage of PDPN-mediated platelet-tumor cell interaction is a plausible strategy for inhibiting metastases. In this study, we aimed to screen for aptamers, which are the single-stranded DNA oligonucleotides that form a specific three-dimensional structure, bind to specific molecular targets with high affinity and specificity, bind to PDPN, and interfere with PDPN/CLEC-2 interactions. The systematic evolution of ligands by exponential enrichment (SELEX) was employed to enrich aptamers that recognize PDPN. The initial characterization of ssDNA pools enriched by SELEX revealed a PDPN aptamer designated as A1 displaying parallel-type G-quadruplexes and long stem-and-loop structures and binding PDPN with a material with a dissociation constant (Kd) of 1.3 ± 1.2 nM. The A1 aptamer recognized both the native and denatured form of PDPN. Notably, the A1 aptamer was able to quantitatively detect PDPN proteins in Western blot analysis. The A1 aptamer could interfere with the interaction between PDPN and CLEC-2 and inhibit PDPN-induced platelet aggregation in a concentration-dependent manner. These findings indicated that the A1 aptamer is a candidate for the development of biosensors in detecting the levels of PDPN expression. The action by A1 aptamer could result in the prevention of tumor cell metastases, and if so, could become an effective pharmacological agent in treating cancer patients.
Collapse
Affiliation(s)
- Hui-Ju Tsai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Kai-Wen Cheng
- Department of Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Jou-Chen Li
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tsai-Xiang Ruan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ting-Hsin Chang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Jin-Ru Wang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ching-Ping Tseng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33302, Taiwan
| |
Collapse
|
5
|
Tomescu LC, Cosma AA, Fenesan MP, Melnic E, Petrovici V, Sarb S, Chis M, Sas I, Ribatti D, Cimpean AM, Dorobantu FR. Combining RNAscope, Immunohistochemistry (IHC) and Digital Image Analysis to Assess Podoplanin (PDPN) Protein and PDPN_mRNA Expression on Formalin-Fixed Paraffin-Embedded Normal Human Placenta Tissues. Curr Issues Mol Biol 2024; 46:5161-5177. [PMID: 38920982 PMCID: PMC11202497 DOI: 10.3390/cimb46060310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
The expression and function of podoplanin (PDPN) in the normal human placenta has been debated in placental evaluation. This study emphasizes the importance of a multimodal approach of PDPN expression in normal human placentas. A complete examination is performed using immunohistochemistry, RNAscope and automated Digital Image examination (DIA) interpretation. QuPath DIA-based analysis automatically generated the stromal and histological scores of PDPN expression for immunohistochemistry and RNAscope stains. The umbilical cord's isolated fibroblasts and luminal structures expressed PDPN protein and PDPN_mRNA. RNAscope detected PDPN_mRNA upregulation in syncytial placental knots trophoblastic cells, but immunohistochemistry did not certify this at the protein level. The study found a significant correlation between the IHC and RNAscope H-Score (p = 0.033) and Allred Score (p = 0.05). A successful multimodal strategy for PDPN assessment in human placentas confirmed PDPN expression heterogeneity in the full-term human normal placenta and umbilical cord at the protein and mRNA level. In placental syncytial knots trophoblastic cells, PDPN showed mRNA overexpression, suggesting a potential role in placenta maturation.
Collapse
Affiliation(s)
- Larisa Cristina Tomescu
- Doctoral School in Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (L.C.T.); (A.A.C.); (M.P.F.)
- Department of Obstetrics and Gynecology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Andrei Alexandru Cosma
- Doctoral School in Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (L.C.T.); (A.A.C.); (M.P.F.)
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- OncoHelp Hospital, 300239 Timisoara, Romania
| | - Mihaela Pasca Fenesan
- Doctoral School in Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (L.C.T.); (A.A.C.); (M.P.F.)
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- OncoHelp Hospital, 300239 Timisoara, Romania
| | - Eugen Melnic
- Department of Pathology, Nicolae Testemitanu State University of Medicine and Pharmacy, 2004 Chisinau, Moldova; (E.M.); (V.P.)
| | - Vergil Petrovici
- Department of Pathology, Nicolae Testemitanu State University of Medicine and Pharmacy, 2004 Chisinau, Moldova; (E.M.); (V.P.)
| | - Simona Sarb
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Monica Chis
- Department ME2/Rheumatology, Rehabilitation, Physical Medicine and Balneology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of TârguMureş (UMPhST), 540088 Targu Mures, Romania;
- Clinic of Rheumatology, Emergency County Hospital of Târgu Mureş, 540088 Targu Mures, Romania
| | - Ioan Sas
- Department of Obstetrics and Gynecology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, 70124 Bari, Italy;
| | - Anca Maria Cimpean
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Center of Expertise for Rare Vascular Disease in Children, Emergency Hospital for Children Louis Turcanu, 300011 Timisoara, Romania
| | - Florica Ramona Dorobantu
- Department of Neonatology, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
| |
Collapse
|
6
|
Yamazaki E, Ikeda K, Urata R, Ueno D, Katayama A, Ito F, Ikegaya H, Matoba S. Endothelial CLEC-1b plays a protective role against cancer hematogenous metastasis. Biochem Biophys Res Commun 2024; 708:149819. [PMID: 38531221 DOI: 10.1016/j.bbrc.2024.149819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
Metastasis, which is the spread of cancer cells into distant organs, is a critical determinant of prognosis in patients with cancer, and blood vessels are the major route for cancer cells to spread systemically. Extravasation is a critical process for the hematogenous metastasis; however, its underlying molecular mechanisms remain poorly understood. Here, we identified that senescent ECs highly express C-type lectin domain family 1 member B (CLEC-1b), and that endothelial CLEC-1b inhibits the hematogenous metastasis of a certain type of cancer. CLEC-1b expression was enhanced in ECs isolated from aged mice, senescent cultured human ECs, and ECs of aged human. CLEC-1b overexpression in ECs prevented the disruption of endothelial integrity, and inhibited the transendothelial migration of cancer cells expressing podoplanin (PDPN), a ligand for CLEC-1b. Notably, target activation of CLEC-1b in ECs decreased the hematogenous metastasis in the lungs by cancer cells expressing PDPN in mice. Our data reveal the protective role of endothelial CLEC-1b against cancer hematogenous metastasis. Considering the high CLEC-1b expression in senescent ECs, EC senescence may play a beneficial role with respect to the cancer hematogenous metastasis.
Collapse
Affiliation(s)
- Ekura Yamazaki
- Department of Cardiology, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto, 602-8566, Japan
| | - Koji Ikeda
- Department of Cardiology, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto, 602-8566, Japan; Department of Epidemiology for Longevity and Regional Health, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto, 602-8566, Japan.
| | - Ryota Urata
- Department of Cardiology, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto, 602-8566, Japan
| | - Daisuke Ueno
- Department of Cardiology, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto, 602-8566, Japan
| | - Akiko Katayama
- Department of Cardiology, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto, 602-8566, Japan
| | - Fumiaki Ito
- Department of Cardiology, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto, 602-8566, Japan
| | - Hiroshi Ikegaya
- Department of Forensics Medicine, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto, 602-8566, Japan
| | - Satoaki Matoba
- Department of Cardiology, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto, 602-8566, Japan
| |
Collapse
|
7
|
Tatsumi K. The pathogenesis of cancer-associated thrombosis. Int J Hematol 2024; 119:495-504. [PMID: 38421488 DOI: 10.1007/s12185-024-03735-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Patients with cancer have a higher risk of venous thromboembolism (VTE), including deep vein thrombosis (DVT) and pulmonary embolism (PE), compared to the general population. Cancer-associated thrombosis (CAT) is a thrombotic event that occurs as a complication of cancer or cancer therapy. Major factors determining VTE risk in cancer patients include not only treatment history and patient characteristics, but also cancer type and site. Cancer types can be broadly divided into three groups based on VTE risk: high risk (pancreatic, ovarian, brain, stomach, gynecologic, and hematologic), intermediate risk (colon and lung), and low risk (breast and prostate). This implies that the mechanism of VTE differs between cancer types and that specific VTE pathways may exist for different cancer types. This review summarizes the specific pathways that contribute to VTE in cancer patients, with a particular focus on leukocytosis, neutrophil extracellular traps (NETs), tissue factor (TF), thrombocytosis, podoplanin (PDPN), plasminogen activator inhibitor-1 (PAI-1), the intrinsic coagulation pathway, and von Willebrand factor (VWF).
Collapse
Affiliation(s)
- Kohei Tatsumi
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, 634-8521, Japan.
| |
Collapse
|
8
|
Sun L, Wang Z, Liu Z, Mu G, Cui Y, Xiang Q. C-type lectin-like receptor 2: roles and drug target. Thromb J 2024; 22:27. [PMID: 38504248 PMCID: PMC10949654 DOI: 10.1186/s12959-024-00594-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024] Open
Abstract
C-type lectin-like receptor-2 (CLEC-2) is a member of the C-type lectin superfamily of cell surface receptors. The first confirmed endogenous and exogenous ligands of CLEC-2 are podoplanin and rhodocytin, respectively. CLEC-2 is expressed on the surface of platelets, which participates in platelet activation and aggregation by binding with its ligands. CLEC-2 and its ligands are involved in pathophysiological processes, such as atherosclerosis, cancer, inflammatory thrombus status, maintenance of vascular wall integrity, and cancer-related thrombosis. In the last 5 years, different anti- podoplanin antibody types have been developed for the treatment of cancers, such as glioblastoma and lung cancer. New tests and new diagnostics targeting CLEC-2 are also discussed. CLEC-2 mediates thrombosis in various pathological states, but CLEC-2-specific deletion does not affect normal hemostasis, which would provide a new therapeutic tool for many thromboembolic diseases. The CLEC-2-podoplanin interaction is a target for cancer treatment. CLEC-2 may be applied in clinical practice and play a therapeutic role.
Collapse
Affiliation(s)
- Lan Sun
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing, 100034, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhe Wang
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing, 100034, China
- Institute of Clinical Pharmacology, Peking University, Beijing, China
| | - Zhiyan Liu
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing, 100034, China
- Institute of Clinical Pharmacology, Peking University, Beijing, China
| | - Guangyan Mu
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing, 100034, China
- Institute of Clinical Pharmacology, Peking University, Beijing, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing, 100034, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
- Institute of Clinical Pharmacology, Peking University, Beijing, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing, 100034, China.
- Institute of Clinical Pharmacology, Peking University, Beijing, China.
| |
Collapse
|
9
|
Rafaqat S, Gluscevic S, Patoulias D, Sharif S, Klisic A. The Association between Coagulation and Atrial Fibrillation. Biomedicines 2024; 12:274. [PMID: 38397876 PMCID: PMC10887311 DOI: 10.3390/biomedicines12020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The existing literature highlights the presence of numerous coagulation factors and markers. Elevated levels of coagulation factors are associated with both existing and newly diagnosed cases of atrial fibrillation (AF). However, this article summarizes the role of coagulation in the pathogenesis of AF, which includes fibrinogen and fibrin, prothrombin, thrombomodulin, soluble urokinase plasminogen activator receptor, von Willebrand factor, P-selectin, D-dimer, plasminogen activator inhibitor-1, and platelet activation. Coagulation irregularities play a significant role in the pathogenesis of AF.
Collapse
Affiliation(s)
- Saira Rafaqat
- Department of Zoology (Molecular Physiology), Lahore College for Women University, Lahore 54600, Punjab, Pakistan
| | - Sanja Gluscevic
- Department of Neurology, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| | - Dimitrios Patoulias
- Outpatient Department of Cardiometabolic Medicine, Second Department of Cardiology, Aristotle University of Thessaloniki, General Hospital “Hippokration”, 54642 Thessaloniki, Greece
| | - Saima Sharif
- Department of Zoology (Molecular Physiology), Lahore College for Women University, Lahore 54600, Punjab, Pakistan
| | - Aleksandra Klisic
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Center for Laboratory Diagnostics, Primary Health Care Center, 81000 Podgorica, Montenegro
| |
Collapse
|
10
|
Zhao J, Huang A, Zeller J, Peter K, McFadyen JD. Decoding the role of platelets in tumour metastasis: enigmatic accomplices and intricate targets for anticancer treatments. Front Immunol 2023; 14:1256129. [PMID: 38106409 PMCID: PMC10722285 DOI: 10.3389/fimmu.2023.1256129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
The canonical role of platelets as central players in cardiovascular disease by way of their fundamental role in mediating thrombosis and haemostasis is well appreciated. However, there is now a large body of experimental evidence demonstrating that platelets are also pivotal in various physiological and pathophysiological processes other than maintaining haemostasis. Foremost amongst these is the emerging data highlighting the key role of platelets in driving cancer growth, metastasis and modulating the tumour microenvironment. As such, there is significant interest in targeting platelets therapeutically for the treatment of cancer. Therefore, the purpose of this review is to provide an overview of how platelets contribute to the cancer landscape and why platelets present as valuable targets for the development of novel cancer diagnosis tools and therapeutics.
Collapse
Affiliation(s)
- Jessie Zhao
- Department of Clinical Haematology, Alfred Hospital, Melbourne, VI, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, VI, Australia
| | - Angela Huang
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VI, Australia
| | - Johannes Zeller
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VI, Australia
- Department of Plastic and Hand Surgery, Medical Center – University of Freiburg, Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VI, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, VI, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, VI, Australia
- Department of Medicine, Monash University, Melbourne, VI, Australia
| | - James D. McFadyen
- Department of Clinical Haematology, Alfred Hospital, Melbourne, VI, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, VI, Australia
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VI, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, VI, Australia
| |
Collapse
|
11
|
Oishi S, Ueda M, Yamazaki H, Tsukiji N, Shirai T, Naito Y, Endo M, Yokomori R, Sasaki T, Suzuki-Inoue K. High plasma soluble CLEC-2 level predicts oxygen therapy requirement in patients with COVID-19. Platelets 2023; 34:2244594. [PMID: 37578059 DOI: 10.1080/09537104.2023.2244594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/06/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023]
Abstract
Predicting the clinical course and allocating limited medical resources appropriately is crucial during the COVID-19 pandemic. Platelets are involved in microthrombosis, a critical pathogenesis of COVID-19; however, the role of soluble CLEC-2 (sCLEC-2), a novel platelet activation marker, in predicting the prognosis of COVID-19 remains unexplored. We enrolled 108 patients with COVID-19, hospitalized between January 2021 and May 2022, to evaluate the clinical use of sCLEC-2 as a predictive marker. sCLEC-2 levels were measured in plasma sampled on admission, as well as interleukin-6, cell-free DNA, von Willebrand factor, and thrombomodulin. We retrospectively classified the patients into two groups - those who required oxygenation during hospitalization (oxygenated group) and those who did not (unoxygenated group) - and compared their clinical and laboratory characteristics. The correlation between sCLEC-2 and the other parameters was validated. The sCLEC-2 level was significantly higher in the oxygenated group (188.8 pg/mL vs. 296.1 pg/mL). Multivariate analysis identified high sCLEC-2 levels (odds ratio per 10 pg/mL:1.25) as an independent predictor of oxygen therapy requirement. sCLEC-2 was positively correlated with cell-free DNA, supporting the association between platelet activation and neutrophil extracellular traps. In conclusion, sCLEC-2 is a clinically valuable marker in predicting oxygen therapy requirements for patients with COVID-19.
Collapse
Affiliation(s)
- Saori Oishi
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
- Department of Laboratory, University of Yamanashi Hospital, Yamanashi, Japan
| | - Makyo Ueda
- Department of Laboratory, University of Yamanashi Hospital, Yamanashi, Japan
| | - Hirokazu Yamazaki
- Department of Laboratory, University of Yamanashi Hospital, Yamanashi, Japan
| | - Nagaharu Tsukiji
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Toshiaki Shirai
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yuna Naito
- Department of Laboratory, University of Yamanashi Hospital, Yamanashi, Japan
| | - Masumi Endo
- Department of Laboratory, University of Yamanashi Hospital, Yamanashi, Japan
| | - Ryohei Yokomori
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
- Department of Laboratory, University of Yamanashi Hospital, Yamanashi, Japan
| | - Tomoyuki Sasaki
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Katsue Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
- Department of Laboratory, University of Yamanashi Hospital, Yamanashi, Japan
| |
Collapse
|
12
|
Nakayama T, Saito R, Furuya S, Shoda K, Maruyma S, Takiguchi K, Shiraishi K, Akaike H, Kawaguchi Y, Amemiya H, Kawaida H, Tsukiji N, Shirai T, Shinmori H, Yamamoto M, Nomura S, Tsukamoto T, Suzuki-Inoue K, Ichikawa D. Inhibition of cancer cell‑platelet adhesion as a promising therapeutic target for preventing peritoneal dissemination of gastric cancer. Oncol Lett 2023; 26:538. [PMID: 38020309 PMCID: PMC10655057 DOI: 10.3892/ol.2023.14125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Platelets form complexes with gastric cancer (GC) cells via direct contact, enhancing their malignant behavior. In the present study, the molecules responsible for GC cell-platelet interactions were examined and their therapeutic application in inhibiting the peritoneal dissemination of GC was investigated. First, the inhibitory effects of various candidate surface molecules were investigated on platelets and GC cells, such as C-type lectin-like receptor 2 (CLEC-2), glycoprotein VI (GPVI) and integrin αIIbβ3, in the platelet-induced enhancement of GC cell malignant potential. Second, the therapeutic effects of molecules responsible for the development and progression of GC were investigated in a mouse model of peritoneal dissemination. Platelet-induced enhancement of the migratory ability of GC cells was markedly inhibited by an anti-GPVI antibody and inhibitor of galectin-3, a GPVI ligand. However, neither the CLEC-2 inhibitor nor the integrin-blocking peptide significantly suppressed this enhanced migratory ability. In experiments using mouse GC cells and platelets, the migratory and invasive abilities enhanced by platelets were significantly suppressed by the anti-GPVI antibody and galectin-3 inhibitor. Furthermore, in vivo analyses demonstrated that the platelet-induced enhancement of peritoneal dissemination was significantly suppressed by the coadministration of anti-GPVI antibody and galectin-3 inhibitor, and was nearly eliminated by the combined treatment. The inhibition of adhesion resulting from GPVI-galectin-3 interaction may be a promising therapeutic strategy for preventing peritoneal dissemination in patients with GC.
Collapse
Affiliation(s)
- Takashi Nakayama
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Ryo Saito
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Shinji Furuya
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Katsutoshi Shoda
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Suguru Maruyma
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Koichi Takiguchi
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Kensuke Shiraishi
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Hidenori Akaike
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Yoshihiko Kawaguchi
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Hidetake Amemiya
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Hiromichi Kawaida
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Nagaharu Tsukiji
- Department of Clinical and Laboratory, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Toshiaki Shirai
- Department of Clinical and Laboratory, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Hideyuki Shinmori
- Department of Biotechnology, Faculty of Life and Environmental Science, University of Yamanashi, Kofu, Yamanashi 400-8510, Japan
| | - Masami Yamamoto
- Laboratory of Physiological Pathology, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tetsuya Tsukamoto
- Department of Diagnostic Pathology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Katsue Suzuki-Inoue
- Department of Clinical and Laboratory, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Daisuke Ichikawa
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
13
|
Martyanov AA, Tesakov IP, Khachatryan LA, An OI, Boldova AE, Ignatova AA, Koltsova EM, Korobkin JJD, Podoplelova NA, Svidelskaya GS, Yushkova E, Novichkova GA, Eble JA, Panteleev MA, Kalinin DV, Sveshnikova AN. Platelet functional abnormalities in pediatric patients with kaposiform hemangioendothelioma/Kasabach-Merritt phenomenon. Blood Adv 2023; 7:4936-4949. [PMID: 37307200 PMCID: PMC10463204 DOI: 10.1182/bloodadvances.2022009590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/05/2023] [Accepted: 05/21/2023] [Indexed: 06/14/2023] Open
Abstract
Kaposiform hemangioendothelioma (KHE) is a rare vascular tumor of infancy that is commonly associated with a life-threatening thrombocytopenic condition, Kasabach-Merritt phenomenon (KMP). Platelet CLEC-2, tumor podoplanin interaction is considered the key mechanism of platelet clearance in these patients. Here, we aimed to assess platelet functionality in such patients. Three groups of 6 to 9 children were enrolled: group A with KHE/KMP without hematologic response (HR) to therapy; group B with KHE/KMP with HR; and group C with healthy children. Platelet functionality was assessed by continuous and end point flow cytometry, low-angle light scattering analysis (LaSca), fluorescent microscopy of blood smears, and ex vivo thrombi formation. Platelet integrin activation in response to a combination of CRP (GPVI agonist) and TRAP-6 (PAR1 agonist), as well as calcium mobilization and integrin activation in response to CRP or rhodocytin (CLEC-2 agonist) alone, were significantly diminished in groups A and B. At the same time, platelet responses to ADP with or without TRAP-6 were unaltered. Thrombi formation from collagen in parallel plate flow chambers was also noticeably decreased in groups A and B. In silico analysis of these results predicted diminished amounts of CLEC-2 on the platelet surface of patients, which was further confirmed by immunofluorescence microscopy and flow cytometry. In addition, we also noted a decrease in GPVI levels on platelets from group A. In KHE/KMP, platelet responses induced by CLEC-2 or GPVI activation are impaired because of the diminished number of receptors on the platelet surface. This impairment correlates with the severity of the disease and resolves as the patient recovers.
Collapse
Affiliation(s)
- Alexey A. Martyanov
- Dmitry Rogachev National Medical Research Centеr of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Ivan P. Tesakov
- Dmitry Rogachev National Medical Research Centеr of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Lili A. Khachatryan
- Dmitry Rogachev National Medical Research Centеr of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Olga I. An
- Center for Theoretical Problems of Physico-Сhemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | - Anna E. Boldova
- Center for Theoretical Problems of Physico-Сhemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | - Anastasia A. Ignatova
- Dmitry Rogachev National Medical Research Centеr of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Center for Theoretical Problems of Physico-Сhemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina M. Koltsova
- Dmitry Rogachev National Medical Research Centеr of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Center for Theoretical Problems of Physico-Сhemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | - Julia-Jessica D. Korobkin
- Center for Theoretical Problems of Physico-Сhemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda A. Podoplelova
- Dmitry Rogachev National Medical Research Centеr of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Center for Theoretical Problems of Physico-Сhemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | - Galina S. Svidelskaya
- Dmitry Rogachev National Medical Research Centеr of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Center for Theoretical Problems of Physico-Сhemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | - Eugenia Yushkova
- Center for Theoretical Problems of Physico-Сhemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | - Galina A. Novichkova
- Dmitry Rogachev National Medical Research Centеr of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Johannes A. Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Mikhail A. Panteleev
- Dmitry Rogachev National Medical Research Centеr of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Center for Theoretical Problems of Physico-Сhemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | - Dmitrii V. Kalinin
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Anastasia N. Sveshnikova
- Dmitry Rogachev National Medical Research Centеr of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Center for Theoretical Problems of Physico-Сhemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
14
|
Huang Y, Lu M, Wang Y, Zhang C, Cao Y, Zhang X. Podoplanin: A potential therapeutic target for thrombotic diseases. Front Neurol 2023; 14:1118843. [PMID: 36970507 PMCID: PMC10033871 DOI: 10.3389/fneur.2023.1118843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
As a specific lymphatic marker and a key ligand of C-type lectin-like receptor 2 (CLEC-2), podoplanin (Pdpn) is involved in various physiological and pathological processes such as growth and development, respiration, blood coagulation, lymphangiogenesis, angiogenesis, and inflammation. Thrombotic diseases constitute a major cause of disability and mortality in adults, in which thrombosis and inflammation play a crucial role. Recently, increasing evidence demonstrates the distribution and function of this glycoprotein in thrombotic diseases such as atherosclerosis, ischemic stroke, venous thrombosis, ischemic-reperfusion injury (IRI) of kidney and liver, and myocardial infarction. Evidence showed that after ischemia, Pdpn can be acquired over time by a heterogeneous cell population, which may not express Pdpn in normal conditions. In this review, the research progresses in understanding the roles and mechanisms of podoplanin in thromobotic diseases are summarized. The challenges of podoplanin-targeted approaches for disease prognosis and preventions are also discussed.
Collapse
Affiliation(s)
- Yaqian Huang
- Department of Neurology, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Manli Lu
- Department of Neurology, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Wang
- Department of Neurology, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chunyuan Zhang
- Department of Rehabilitation, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yongjun Cao
- Department of Neurology, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xia Zhang
- Department of Neurology, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
15
|
Scur M, Parsons BD, Dey S, Makrigiannis AP. The diverse roles of C-type lectin-like receptors in immunity. Front Immunol 2023; 14:1126043. [PMID: 36923398 PMCID: PMC10008955 DOI: 10.3389/fimmu.2023.1126043] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
Our understanding of the C-type lectin-like receptors (CTLRs) and their functions in immunity have continued to expand from their initial roles in pathogen recognition. There are now clear examples of CTLRs acting as scavenger receptors, sensors of cell death and cell transformation, and regulators of immune responses and homeostasis. This range of function reflects an extensive diversity in the expression and signaling activity between individual CTLR members of otherwise highly conserved families. Adding to this diversity is the constant discovery of new receptor binding capabilities and receptor-ligand interactions, distinct cellular expression profiles, and receptor structures and signaling mechanisms which have expanded the defining roles of CTLRs in immunity. The natural killer cell receptors exemplify this functional diversity with growing evidence of their activity in other immune populations and tissues. Here, we broadly review select families of CTLRs encoded in the natural killer cell gene complex (NKC) highlighting key receptors that demonstrate the complex multifunctional capabilities of these proteins. We focus on recent evidence from research on the NKRP1 family of CTLRs and their interaction with the related C-type lectin (CLEC) ligands which together exhibit essential immune functions beyond their defined activity in natural killer (NK) cells. The ever-expanding evidence for the requirement of CTLR in numerous biological processes emphasizes the need to better understand the functional potential of these receptor families in immune defense and pathological conditions.
Collapse
Affiliation(s)
- Michal Scur
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Brendon D Parsons
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Sayanti Dey
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Andrew P Makrigiannis
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
16
|
Wang Y, Peng D, Huang Y, Cao Y, Li H, Zhang X. Podoplanin: Its roles and functions in neurological diseases and brain cancers. Front Pharmacol 2022; 13:964973. [PMID: 36176432 PMCID: PMC9514838 DOI: 10.3389/fphar.2022.964973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022] Open
Abstract
Podoplanin is a small mucin-like glycoprotein involved in several physiological and pathological processes in the brain including development, angiogenesis, tumors, ischemic stroke and other neurological disorders. Podoplanin expression is upregulated in different cell types including choroid plexus epithelial cells, glial cells, as well as periphery infiltrated immune cells during brain development and neurological disorders. As a transmembrane protein, podoplanin interacts with other molecules in the same or neighboring cells. In the past, a lot of studies reported a pleiotropic role of podoplanin in the modulation of thrombosis, inflammation, lymphangiogenesis, angiogenesis, immune surveillance, epithelial mesenchymal transition, as well as extracellular matrix remodeling in periphery, which have been well summarized and discussed. Recently, mounting evidence demonstrates the distribution and function of this molecule in brain development and neurological disorders. In this review, we summarize the research progresses in understanding the roles and mechanisms of podoplanin in the development and disorders of the nervous system. The challenges of podoplanin-targeted approaches for disease prognosis and preventions are also discussed.
Collapse
Affiliation(s)
- Yi Wang
- Department of Neurology, The Second Affiliated Hospital of Soochow University and Clinical Research Center of Neurological Disease, Suzhou, China
| | - Dan Peng
- Department of Neurology, The Second Affiliated Hospital of Soochow University and Clinical Research Center of Neurological Disease, Suzhou, China
| | - Yaqian Huang
- Department of Neurology, The Second Affiliated Hospital of Soochow University and Clinical Research Center of Neurological Disease, Suzhou, China
| | - Yongjun Cao
- Department of Neurology, The Second Affiliated Hospital of Soochow University and Clinical Research Center of Neurological Disease, Suzhou, China
| | - Hui Li
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Hui Li, ; Xia Zhang,
| | - Xia Zhang
- Department of Neurology, The Second Affiliated Hospital of Soochow University and Clinical Research Center of Neurological Disease, Suzhou, China
- *Correspondence: Hui Li, ; Xia Zhang,
| |
Collapse
|
17
|
Wang L, Wang X, Guo E, Mao X, Miao S. Emerging roles of platelets in cancer biology and their potential as therapeutic targets. Front Oncol 2022; 12:939089. [PMID: 35936717 PMCID: PMC9355257 DOI: 10.3389/fonc.2022.939089] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/29/2022] [Indexed: 12/15/2022] Open
Abstract
The main role of platelets is to control bleeding and repair vascular damage via thrombosis. They have also been implicated to promote tumor metastasis through platelet-tumor cell interactions. Platelet-tumor cell interactions promote tumor cell survival and dissemination in blood circulation. Tumor cells are known to induce platelet activation and alter platelet RNA profiles. Liquid biopsies based on tumor-educated platelet biomarkers can detect tumors and correlate with prognosis, personalized therapy, treatment monitoring, and recurrence prediction. Platelet-based strategies for cancer prevention and tumor-targeted therapy include developing drugs that target platelet receptors, interfere with the release of platelet particles, inhibit platelet-specific enzymes, and utilize platelet-derived “nano-platelets” as a targeted drug delivery platform for tumor therapy. This review elaborates on platelet-tumor cell interactions and the molecular mechanisms and discusses future research directions for platelet-based liquid biopsy techniques and platelet-targeted anti-tumor strategies.
Collapse
Affiliation(s)
- Lei Wang
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Erliang Guo
- Department of Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xionghui Mao
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
- *Correspondence: Xionghui Mao, ; Susheng Miao,
| | - Susheng Miao
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
- *Correspondence: Xionghui Mao, ; Susheng Miao,
| |
Collapse
|
18
|
Zhang Z, Zhang N, Yu J, Xu W, Gao J, Lv X, Wen Z. The Role of Podoplanin in the Immune System and Inflammation. J Inflamm Res 2022; 15:3561-3572. [PMID: 35747250 PMCID: PMC9212786 DOI: 10.2147/jir.s366620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/08/2022] [Indexed: 11/23/2022] Open
Abstract
Podoplanin is a small cell-surface mucin-like glycoprotein that participates in multiple physiological and pathological processes. Podoplanin exerts an important function in the immune response and is upregulated in fibroblasts, macrophages, T helper cells, and epithelial cells during inflammation. Herein, we summarize the latest knowledge on the functional expression of podoplanin in the immune system and review the contribution of podoplanin to several inflammatory diseases. Furthermore, we discuss podoplanin as a novel therapeutic target for various inflammatory diseases.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People's Republic of China
| | - Nan Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People's Republic of China
| | - Jing Yu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People's Republic of China
| | - Wenting Xu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People's Republic of China
| | - Jiameng Gao
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People's Republic of China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People's Republic of China
| | - Zongmei Wen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People's Republic of China
| |
Collapse
|
19
|
Constantinescu-Bercu A, Wang YA, Woollard KJ, Mangin P, Vanhoorelbeke K, Crawley JTB, Salles-Crawley II. The GPIbα intracellular tail - role in transducing VWF- and collagen/GPVI-mediated signaling. Haematologica 2022; 107:933-946. [PMID: 34134470 PMCID: PMC8968903 DOI: 10.3324/haematol.2020.278242] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 11/09/2022] Open
Abstract
The GPIbT-VWF A1 domain interaction is essential for platelet tethering under high shear. Synergy between GPIbα and GPVI signaling machineries has been suggested previously, however its molecular mechanism remains unclear. We generated a novel GPIbα transgenic mouse (GpIbαΔsig/Δsig) by CRISPR-Cas9 technology to delete the last 24 residues of the GPIbα intracellular tail that harbors the 14-3-3 and phosphoinositide-3 kinase binding sites. GPIbαΔsig/Δsig platelets bound VWF normally under flow. However, they formed fewer filopodia on VWF/botrocetin in the presence of a oIIbI3 blocker, demonstrating that despite normal ligand binding, VWF-dependent signaling is diminished. Activation of GpIbαΔsig/Δsig platelets with ADP and thrombin was normal, but GpIbαΔsig/Δsig platelets stimulated with collagen-related-peptide (CRP) exhibited markedly decreased P-selectin exposure and eIIbI3 activation, suggesting a role for the GpIbaaintracellular tail in GPVI-mediated signaling. Consistent with this, while haemostasis was normal in GPIbαΔsig/Δsig mice, diminished tyrosine-phosphorylation, (particularly pSYK) was detected in CRP-stimulated GpIbαΔsig/Δsig platelets as well as reduced platelet spreading on CRP. Platelet responses to rhodocytin were also affected in GpIbαΔsig/Δsig platelets but to a lesser extent than those with CRP. GpIbαΔsig/Δsig platelets formed smaller aggregates than wild-type platelets on collagen-coated microchannels at low, medium and high shear. In response to both VWF and collagen binding, flow assays performed with plasma-free blood or in the presence of bIIbI3- or GPVI-blockers suggested reduced bIIbI3 activation contributes to the phenotype of the GpIbαΔsig/Δsig platelets. Together, these results reveal a new role for the intracellular tail of GPIbiiin transducing both VWF-GPIbGGand collagen-GPVI signaling events in platelets.
Collapse
Affiliation(s)
| | - Yuxiao A Wang
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Kevin J Woollard
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Pierre Mangin
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | | | - James T B Crawley
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Isabelle I Salles-Crawley
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK.
| |
Collapse
|
20
|
Kumode T, Tanaka H, Esipinoza JL, Rai S, Taniguchi Y, Fujiwara R, Sano K, Serizawa K, Iwata Y, Morita Y, Matsumura I. C-type lectin-like receptor 2 specifies a functionally distinct subpopulation within phenotypically defined hematopoietic stem cell population that contribute to emergent megakaryopoiesis. Int J Hematol 2022; 115:310-321. [PMID: 35106701 DOI: 10.1007/s12185-021-03220-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 10/19/2022]
Abstract
C-type lectin-like receptor 2 (CLEC-2) expressed on megakaryocytes plays important roles in megakaryopoiesis. We found that CLEC-2 was expressed in about 20% of phenotypical long-term hematopoietic stem cells (LT-HSCs), which expressed lower levels of HSC-specific genes and produced larger amounts of megakaryocyte-related molecules than CLEC-2low LT-HSCs. Although CLEC-2high LT-HSCs had immature clonogenic activity, cultured CLEC-2high LT-HSCs preferentially differentiated into megakaryocytes. CLEC-2high HSCs yielded 6.8 times more megakaryocyte progenitors (MkPs) and 6.0 times more platelets 2 weeks and 1 week after transplantation compared with CLEC-2low LT-HSCs. However, platelet yield from CLEC-2high HSCs gradually declined with the loss of MkPs, while CLEC-2low HSCs self-renewed long-term, indicating that CLEC-2high LT-HSCs mainly contribute to early megakaryopoiesis. Treatment with pI:C and LPS increased the proportion of CLEC-2high LT-HSCs within LT-HSCs. Almost all CLEC-2low LT-HSCs were in the G0 phase and barely responded to pI:C. In contrast, 54% of CLEC-2high LT-HSCs were in G0, and pI:C treatment obliged CLEC-2high LT-HSCs to enter the cell cycle and differentiate into megakaryocytes, indicating that CLEC-2high LT-HSCs are primed for cell cycle entry and rapidly yield platelets in response to inflammatory stress. In conclusion, CLEC-2high LT-HSCs appear to act as a reserve for emergent platelet production under stress conditions.
Collapse
Affiliation(s)
- Takahiro Kumode
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Hirokazu Tanaka
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan.
| | - Jorge Luis Esipinoza
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Shinya Rai
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Yasuhiro Taniguchi
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Ryosuke Fujiwara
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Keigo Sano
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Kentaro Serizawa
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Yoshio Iwata
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Yasuyoshi Morita
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Itaru Matsumura
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| |
Collapse
|
21
|
Abstract
Cancer-associated thrombosis (including venous thromboembolism (VTE) and arterial events) is highly consequential for patients with cancer and is associated with worsened survival. Despite substantial improvements in cancer treatment, the risk of VTE has increased in recent years; VTE rates additionally depend on the type of cancer (with pancreas, stomach and primary brain tumours having the highest risk) as well as on individual patient's and cancer treatment factors. Multiple cancer-specific mechanisms of VTE have been identified and can be classified as mechanisms in which the tumour expresses proteins that alter host systems, such as levels of platelets and leukocytes, and in which the tumour expresses procoagulant proteins released into the circulation that directly activate the coagulation cascade or platelets, such as tissue factor and podoplanin, respectively. As signs and symptoms of VTE may be non-specific, diagnosis requires clinical assessment, evaluation of pre-test probability, and objective diagnostic testing with ultrasonography or CT. Risk assessment tools have been validated to identify patients at risk of VTE. Primary prevention of VTE (thromboprophylaxis) has long been recommended in the inpatient and post-surgical settings, and is now an option in the outpatient setting for individuals with high-risk cancer. Anticoagulant therapy is the cornerstone of therapy, with low molecular weight heparin or newer options such as direct oral anticoagulants. Personalized treatment incorporating risk of bleeding and patient preferences is essential, especially as a diagnosis of VTE is often considered by patients even more distressing than their cancer diagnosis, and can severely affect the quality of life. Future research should focus on current knowledge gaps including optimizing risk assessment tools, biomarker discovery, next-generation anticoagulant development and implementation science.
Collapse
|
22
|
Platelet Membrane: An Outstanding Factor in Cancer Metastasis. MEMBRANES 2022; 12:membranes12020182. [PMID: 35207103 PMCID: PMC8875259 DOI: 10.3390/membranes12020182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/02/2022]
Abstract
In addition to being biological barriers where the internalization or release of biomolecules is decided, cell membranes are contact structures between the interior and exterior of the cell. Here, the processes of cell signaling mediated by receptors, ions, hormones, cytokines, enzymes, growth factors, extracellular matrix (ECM), and vesicles begin. They triggering several responses from the cell membrane that include rearranging its components according to the immediate needs of the cell, for example, in the membrane of platelets, the formation of filopodia and lamellipodia as a tissue repair response. In cancer, the cancer cells must adapt to the new tumor microenvironment (TME) and acquire capacities in the cell membrane to transform their shape, such as in the case of epithelial−mesenchymal transition (EMT) in the metastatic process. The cancer cells must also attract allies in this challenging process, such as platelets, fibroblasts associated with cancer (CAF), stromal cells, adipocytes, and the extracellular matrix itself, which limits tumor growth. The platelets are enucleated cells with fairly interesting growth factors, proangiogenic factors, cytokines, mRNA, and proteins, which support the development of a tumor microenvironment and support the metastatic process. This review will discuss the different actions that platelet membranes and cancer cell membranes carry out during their relationship in the tumor microenvironment and metastasis.
Collapse
|
23
|
Nakata Y, Kono H, Akazawa Y, Hirayama K, Wakana H, Fukushima H, Sun C, Fujii H. Role of podoplanin and Kupffer cells in liver injury after ischemia-reperfusion in mice. Surg Today 2022; 52:344-353. [PMID: 34568969 DOI: 10.1007/s00595-021-02378-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 05/21/2021] [Indexed: 02/02/2023]
Abstract
AIM To investigate the relationship between the intrahepatic expression of podoplanin (PDPN) and Kupffer cells (KCs) in ischemia-reperfusion (I/R) liver damage. METHODS C57Bl/6 mice were injected with 200 µl of clodronate liposomes (macrophage depletion; MDP group) to deplete KCs or control liposomes (control group) via the ophthalmic vein plexus 24 h prior to ischemia. Animals were subjected to 90 min of partial hepatic ischemia (70%), followed by reperfusion, and were then killed at designated time points. Serum and liver tissues were harvested for further analyses. RESULTS Serum ALT levels, mortality rates, and the percentage of necrotic area in liver sections were significantly higher in the MDP group than in the control group. PDPN was expressed in the lymphatic epithelium, interlobular bile duct epithelium, and in some hepatocytes in each group. Its expression in hepatocytes was down-regulated in the MDP group. The accumulation of platelets in the sinusoid was reduced 6 h after I/R in the MDP group. Tissue HGF and IGF-1 levels decreased in the MDP group. CONCLUSIONS These results suggest that KCs play a key role in the activation of platelets through direct contact with PDPN-positive hepatocytes in I/R livers.
Collapse
Affiliation(s)
- Yuuki Nakata
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Hiroshi Kono
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
| | - Yoshihiro Akazawa
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Kazuyoshi Hirayama
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Hiroyuki Wakana
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Hisataka Fukushima
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Chao Sun
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, China
| | - Hideki Fujii
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| |
Collapse
|
24
|
Sasano T, Gonzalez-Delgado R, Muñoz NM, Carlos-Alcade W, Soon Cho M, Sheth RA, Sood AK, Afshar-Kharghan V. Podoplanin promotes tumor growth, platelet aggregation, and venous thrombosis in murine models of ovarian cancer. J Thromb Haemost 2022; 20:104-114. [PMID: 34608736 PMCID: PMC8712373 DOI: 10.1111/jth.15544] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Podoplanin (PDPN) is a sialylated membrane glycoprotein that binds to C-type lectin-like receptor 2 on platelets resulting in platelet activation. PDPN is expressed on lymphatic endothelial cells, perivascular fibroblasts/pericytes, cancer cells, cancer-associated fibroblasts, and tumor stromal cells. PDPN's expression on malignant epithelial cells plays a role in metastasis. Furthermore, the expression of PDPN in brain tumors (high-grade gliomas) was found to correlate with an increased risk of venous thrombosis. OBJECTIVE We examined the expression of PDPN and its role in tumor progression and venous thrombosis in ovarian cancer. METHODS We used mouse models of ovarian cancer and venous thrombosis. RESULTS Ovarian cancer cells express PDPN and release PDPN-rich extracellular vesicles (EVs), and cisplatin and topotecan (chemotherapies commonly used in ovarian cancer) increase the expression of podoplanin in cancer cells. The expression of PDPN in ovarian cancer cells promotes tumor growth in a murine model of ovarian cancer and that knockdown of PDPN gene expression results in smaller primary tumors. Both PDPN-expressing ovarian cancer cells and their EVs cause platelet aggregation. In a mouse model of venous thrombosis, PDPN-expressing EVs released from HeyA8 ovarian cancer cells produce more frequent thrombosis than PDPN-negative EVs derived from PDPN-knockdown HeyA8 cells. Blood clots induced by PDPN-positive EVs contain more platelets than those in blood clots induced by PDPN-negative EVs. CONCLUSIONS In summary, our findings demonstrate that the expression of PDPN by ovarian cancer cells promotes tumor growth and venous thrombosis in mice.
Collapse
Affiliation(s)
- Tomoyuki Sasano
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ricardo Gonzalez-Delgado
- Section of Benign Hematology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nina M. Muñoz
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wendolyn Carlos-Alcade
- Section of Benign Hematology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Min Soon Cho
- Section of Benign Hematology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rahul A. Sheth
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vahid Afshar-Kharghan
- Section of Benign Hematology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
25
|
Platelets in COVID-19 disease: friend, foe, or both? Pharmacol Rep 2022; 74:1182-1197. [PMID: 36463349 PMCID: PMC9726679 DOI: 10.1007/s43440-022-00438-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/07/2022]
Abstract
Immuno-thrombosis of COVID-19 results in the activation of platelets and coagulopathy. Antiplatelet therapy has been widely used in COVID-19 patients to prevent thrombotic events. However, recent analysis of clinical trials does not support the major effects of antiplatelet therapy on mortality in hospitalized COVID-19 patients, despite the indisputable evidence for an increased risk of thrombotic complications in COVID-19 disease. This apparent paradox calls for an explanation. Platelets have an important role in sensing and orchestrating host response to infection, and several platelet functions related to host defense response not directly related to their well-known hemostatic function are emerging. In this paper, we aim to review the evidence supporting the notion that platelets have protective properties in maintaining endothelial barrier integrity in the course of an inflammatory response, and this role seems to be of particular importance in the lung. It might, thus, well be that the inhibition of platelet function, if affecting the protective aspect of platelet activity, might diminish clinical benefits resulting from the inhibition of the pro-thrombotic phenotype of platelets in immuno-thrombosis of COVID-19. A better understanding of the platelet-dependent mechanisms involved in the preservation of the endothelial barrier is necessary to design the antiplatelet therapeutic strategies that inhibit the pro-thrombotic activity of platelets without effects on the vaso-protective function of platelets safeguarding the pulmonary endothelial barrier during multicellular host defense in pulmonary circulation.
Collapse
|
26
|
Willment JA. Fc-conjugated C-type lectin receptors: Tools for understanding host-pathogen interactions. Mol Microbiol 2021; 117:632-660. [PMID: 34709692 DOI: 10.1111/mmi.14837] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022]
Abstract
The use of soluble fusion proteins of pattern recognition receptors (PRRs) used in the detection of exogenous and endogenous ligands has helped resolve the roles of PRRs in the innate immune response to pathogens, how they shape the adaptive immune response, and function in maintaining homeostasis. Using the immunoglobulin (Ig) crystallizable fragment (Fc) domain as a fusion partner, the PRR fusion proteins are soluble, stable, easily purified, have increased affinity due to the Fc homodimerization properties, and consequently have been used in a wide range of applications such as flow cytometry, screening of protein and glycan arrays, and immunofluorescent microscopy. This review will predominantly focus on the recognition of pathogens by the cell membrane-expressed glycan-binding proteins of the C-type lectin receptor (CLR) subgroup of PRRs. PRRs bind to conserved pathogen-associated molecular patterns (PAMPs), such as glycans, usually located within or on the outer surface of the pathogen. Significantly, many glycans structures are identical on both host and pathogen (e.g. the Lewis (Le) X glycan), allowing the use of Fc CLR fusion proteins with known endogenous and/or exogenous ligands as tools to identify pathogen structures that are able to interact with the immune system. Screens of highly purified pathogen-derived cell wall components have enabled identification of many unique PAMP structures recognized by CLRs. This review highlights studies using Fc CLR fusion proteins, with emphasis on the PAMPs found in fungi, bacteria, viruses, and parasites. The structure and unique features of the different CLR families is presented using examples from a broad range of microbes whenever possible.
Collapse
Affiliation(s)
- Janet A Willment
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| |
Collapse
|
27
|
VEGF-C and podoplanin, as biomarkers of sepsis. An experimental study. REV ROMANA MED LAB 2021. [DOI: 10.2478/rrlm-2021-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Background: Sepsis is the leading cause of morbidity and mortality in intensive care units. This study explored the possible role of vascular endothelial growth factor-C (VEGF-C) and podoplanin (PDPN) in sepsis.
Methods: 22 Wistar rats were divided into three groups: two experimental (Group A and B, n=8/8) and a control (Group C, n=6). Sepsis was induced with intraperitoneal injection of ESBL (extended-spectrum beta-lactamases)-producing E-coli live bacteria for group A and with lipopolysaccharide for group B. Sterile saline solution was injected for group C. Blood samples were collected after 24 hours to determine the serum level of VEGF-C, and PDPN expression was examined in liver, kidney, and lung tissues. Bacteremia was assessed for group A.
Results: Higher serum levels of VEGF-C were found in Group A vs C (p=0.05) and group B vs. C (p=0.004), respectively.VEGF-C was also increased in animals with negative- vs. positive blood cultures from group A (p=0.04) and from group B vs. those with positive blood cultures from group A (p=0.03). High intensity of PDPN tissue expression was observed in the pulmonary alveolocytes from Group A and epithelium of the proximal renal tubules in groups B and C, compared to group A.
Conclusions: Circulating VEGF-C can be succesfuly used as a biomarker of sepsis with negative blood cultures and high risk of renal failure, whereas PDPN seems to exert a protective role against lung injuries in live bacteria-induced sepsis.
Collapse
|
28
|
Tang C, Wang L, Sheng Y, Zheng Z, Xie Z, Wu F, You T, Ren L, Xia L, Ruan C, Zhu L. CLEC-2-dependent platelet subendothelial accumulation by flow disturbance contributes to atherogenesis in mice. Theranostics 2021; 11:9791-9804. [PMID: 34815786 PMCID: PMC8581433 DOI: 10.7150/thno.64601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/22/2021] [Indexed: 12/19/2022] Open
Abstract
Rationale: Platelets play an essential role in atherosclerosis, but the underlying mechanisms remain to be addressed. This study is to investigate the role of platelets in d-flow induced vascular inflammation and the underlying mechanism. Methods: We established a disturbed blood flow (d-flow) model by partial carotid ligation (PCL) surgery using atherosclerosis-susceptible mice and wild-type mice to observe the d-flow induced platelet accumulation in the subendothelium or in the plaque by immunostaining or transmission electron microscopy. The mechanism of platelet subendothelial accumulation was further explored by specific gene knockout mice. Results: We observed presence of platelets in atherosclerotic plaques either in the atheroprone area of aortic arch or in carotid artery with d-flow using Ldlr-/- or ApoE-/- mice on high fat diet. Immunostaining showed the subendothelial accumulation of circulating platelets by d-flow in vivo. Transmission electron microscopy demonstrated the accumulation of platelets associated with monocytes in the subendothelial spaces. The subendothelial accumulation of platelet-monocyte/macrophage aggregates reached peak values at 2 days after PCL. In examining the molecules that may mediate the platelet entry, we found that deletion of platelet C-type lectin-like receptor 2 (CLEC-2) reduced the subendothelial accumulation of platelets and monocytes/macrophages by d-flow, and ameliorated plaque formation in Ldlr-/- mice on high fat diet. Supportively, CLEC-2 deficient platelets diminished their promoting effect on the migration of mouse monocyte/macrophage cell line RAW264.7. Moreover, monocyte podoplanin (PDPN), the only ligand of CLEC-2, was upregulated by d-flow, and the myeloid-specific PDPN deletion mitigated the subendothelial accumulation of platelets and monocytes/macrophages. Conclusions: Our results reveal a new CLEC-2-dependent platelet subendothelial accumulation in response to d-flow to regulate vascular inflammation.
Collapse
Affiliation(s)
- Chaojun Tang
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology of Jiangsu Province, Soochow University, Suzhou, China
- Suzhou Key Lab for Thrombosis and Vascular Biology, Soochow University, Suzhou, China
| | - Lei Wang
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Yulan Sheng
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Zhong Zheng
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Zhanli Xie
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Fan Wu
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Tao You
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Lijie Ren
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Changgeng Ruan
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology of Jiangsu Province, Soochow University, Suzhou, China
| | - Li Zhu
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology of Jiangsu Province, Soochow University, Suzhou, China
- Suzhou Key Lab for Thrombosis and Vascular Biology, Soochow University, Suzhou, China
| |
Collapse
|
29
|
The Correlation Between Immunohistochemistry Findings and Metastasis in Squamous Cell Carcinoma: A Review. Dermatol Surg 2021; 47:313-318. [PMID: 33165065 DOI: 10.1097/dss.0000000000002850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Cutaneous squamous cell carcinoma (SCC) is the second most common type of skin cancer. Only 2% to 5% of SCCs metastasize; however, those do carry a poor prognosis. Immunohistochemistry (IHC) is widely used by pathologists to characterize skin cancers and provide clinically useful information. OBJECTIVE To evaluate the potential prognostic associations between IHC findings and metastasis in SCC. METHODS Searches were conducted in MEDLINE via PubMed for articles published between 1999 and 2019. Search criteria included key words "immunohistochemistry" and "cutaneous squamous cell carcinoma." Six hundred and fifty-three articles were returned and screened, which ultimately left 31 for inclusion in our manuscript. RESULTS Thirty-one articles analyzed in this review included a discussion of the expression of a particular IHC marker and the associated risk of metastasis and/or clinical utility of IHC markers in SCC, especially metastatic SCC. Markers that had several or more studies supporting clinical utility were E-cadherin, podoplanin, CD8+ T cells, PD-L1, epidermal growth factor receptor, and Cyclin D1. CONCLUSION Immunohistochemistry profiling of SCC may be useful in select cases when providing a prognosis remains challenging and in identification of potential therapeutic targets for high-risk or metastatic tumors.
Collapse
|
30
|
Muster V, Gary T. Contrasts in Glioblastoma-Venous Thromboembolism versus Bleeding Risk. Cells 2021; 10:cells10061414. [PMID: 34200229 PMCID: PMC8228034 DOI: 10.3390/cells10061414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is among the tumor entities with an extreme thrombogenic potential and patients are at very high risk of developing a venous thromboembolism (VTE) over the course of the disease, with an incidence of up to 30% per year. Major efforts are currently being made to understand and gain novel insights into the underlying pathomechanisms of the development of VTE in patients with glioblastoma and to find appropriate biomarkers. Yet, patients with glioblastoma not only face a high thromboembolic risk but are also at risk of bleeding events. In the case of VTE, a therapeutic anticoagulation with low molecular weight heparin or, in the case of low bleeding risk, treatment with a direct oral anticoagulant, is recommended, according to recently published guidelines. With respect to an elevated bleeding risk in glioblastoma patients, therapeutic anticoagulation remains challenging in this patient group and prospective data for this vulnerable patient group are scarce, particularly with regard to direct oral anticoagulants.
Collapse
|
31
|
Tucker AB, Krishnan P, Agarwal S. Lymphovenous shunts: from development to clinical applications. Microcirculation 2021; 28:e12682. [PMID: 33523573 DOI: 10.1111/micc.12682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 01/19/2023]
Abstract
The lymphatic system is a vast network of vessels that functions to return excess fluid from the interstitial space to the blood stream. Lymphovenous shunts are anastomoses, either natural or surgical, that connect the lymphatic and venous systems. Connections between the thoracic duct and venous system or between the right lymphatic duct and venous system are prime examples of anatomic lymphovenous shunts. Lymphovenous shunts are also present peripherally in tissues such as lymph nodes. Furthermore, pathologic lymphovenous shunts are observed in conditions such as lymphedema, malignancy, and lymphovenous malformations. Surgically, lymphovenous shunts may be constructed as an approach to treat lymphedema. Here, we discuss anatomic and surgical lymphovenous shunts in the context of normal development and disease. This perspective is intended to give an understanding of the role of lymphovenous shunts in health and disease and to show how they can be leveraged to treat disease surgically.
Collapse
Affiliation(s)
- A Blake Tucker
- University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Pranav Krishnan
- University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Shailesh Agarwal
- Division of Plastic and Reconstructive Surgery, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
32
|
Wang X, Liu B, Xu M, Jiang Y, Zhou J, Yang J, Gu H, Ruan C, Wu J, Zhao Y. Blocking podoplanin inhibits platelet activation and decreases cancer-associated venous thrombosis. Thromb Res 2021; 200:72-80. [PMID: 33548843 DOI: 10.1016/j.thromres.2021.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/05/2021] [Accepted: 01/16/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Patients with cancer are at a high risk of venous thromboembolism (VTE), studies have shown that high expression of podoplanin (PDPN) in tumors is associated with increased risk of VTE. METHODS Two human malignant cell lines (NCI-H226 and C8161) expressing high levels of PDPN were selected to explore the role of platelet in cancer-associated venous thrombosis in vitro and in vivo. Immunohistochemical staining using anti-PDPN antibody was performed in the pulmonary carcinoma patients. RESULTS Both NCI-H226 and C8161 cells expressing high PDPN triggered platelet activation via CLEC-2 in vitro, which was abrogated by an anti-PDPN antibody SZ-168. Furthermore, the in vivo study revealed that injection of CHO-PDPN or C8161 in two mouse model of venous thrombosis activated platelets, increased platelet counts and enhanced thrombosis. More importantly, PDPN-enhanced thrombosis was reduced in mice treated with SZ168. A total of 63.3% tumor specimens stained positive for PDPN. High PDPN expression was associated with an increased risk of VTE and poor prognosis. CONCLUSIONS PDPN expression in tumors induced platelet activation and was related to a high risk of VTE via platelet activation. SZ168 inhibited PDPN-induced platelet activation in vitro and decreased the incidence of VTE in mice.
Collapse
Affiliation(s)
- Xia Wang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215006, Jiangsu, China
| | - Biao Liu
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215006, Jiangsu, China
| | - Mengqiao Xu
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of the Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Yizhi Jiang
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of the Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Jundong Zhou
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215006, Jiangsu, China
| | - Jun Yang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215006, Jiangsu, China
| | - Haidi Gu
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215006, Jiangsu, China
| | - Changgeng Ruan
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of the Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Jinchang Wu
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215006, Jiangsu, China; The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu, China.
| | - Yiming Zhao
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of the Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, Jiangsu, China.
| |
Collapse
|
33
|
Lin S, Xu H, Zhang A, Ni Y, Xu Y, Meng T, Wang M, Lou M. Prognosis Analysis and Validation of m 6A Signature and Tumor Immune Microenvironment in Glioma. Front Oncol 2020; 10:541401. [PMID: 33123464 PMCID: PMC7571468 DOI: 10.3389/fonc.2020.541401] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/24/2020] [Indexed: 01/21/2023] Open
Abstract
Glioma is one of the most typical intracranial tumors, comprising about 80% of all brain malignancies. Several key molecular signatures have emerged as prognostic biomarkers, which indicate room for improvement in the current approach to glioma classification. In order to construct a more veracious prediction model and identify the potential prognosis-biomarker, we explore the differential expressed m6A RNA methylation regulators in 665 gliomas from TCGA-GBM and TCGA-LGG. Consensus clustering was applied to the m6A RNA methylation regulators, and two glioma subgroups were identified with a poorer prognosis and a higher grade of WHO classification in cluster 1. The further chi-squared test indicated that the immune infiltration was significantly enriched in cluster 1, indicating a close relation between m6A regulators and immune infiltration. In order to explore the potential biomarkers, the weighted gene co-expression network analysis (WGCNA), along with Least absolute shrinkage and selection operator (LASSO), between high/low immune infiltration and m6A cluster 1/2 groups were utilized for the hub genes, and four genes (TAGLN2, PDPN, TIMP1, EMP3) were identified as prognostic biomarkers. Besides, a prognostic model was constructed based on the four genes with a good prediction and applicability for the overall survival (OS) of glioma patients (the area under the curve of ROC achieved 0.80 (0.76-0.83) and 0.72 (0.68-0.76) in TCGA and Chinese Glioma Genome Atlas (CGGA), respectively). Moreover, we also found PDPN and TIMP1 were highly expressed in high-grade glioma from The Human Protein Atlas database and both of them were correlated with m6A and immune cell marker in glioma tissue samples. In conclusion, we construct a novel prognostic model which provides new insights into glioma prognosis. The PDPN and TIMP1 may serve as potential biomarkers for prognosis of glioma.
Collapse
Affiliation(s)
- Shaojian Lin
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anke Zhang
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunjia Ni
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanzhi Xu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tong Meng
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingjie Wang
- Department of Digestive Diseases, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meiqing Lou
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Maouia A, Rebetz J, Kapur R, Semple JW. The Immune Nature of Platelets Revisited. Transfus Med Rev 2020; 34:209-220. [PMID: 33051111 PMCID: PMC7501063 DOI: 10.1016/j.tmrv.2020.09.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023]
Abstract
Platelets are the primary cellular mediators of hemostasis and this function firmly acquaints them with a variety of inflammatory processes. For example, platelets can act as circulating sentinels by expressing Toll-like receptors (TLR) that bind pathogens and this allows platelets to effectively kill them or present them to cells of the immune system. Furthermore, activated platelets secrete and express many pro- and anti-inflammatory molecules that attract and capture circulating leukocytes and direct them to inflamed tissues. In addition, platelets can directly influence adaptive immune responses via secretion of, for example, CD40 and CD40L molecules. Platelets are also the source of most of the microvesicles in the circulation and these miniscule elements further enhance the platelet’s ability to communicate with the immune system. More recently, it has been demonstrated that platelets and their parent cells, the megakaryocytes (MK), can also uptake, process and present both foreign and self-antigens to CD8+ T-cells conferring on them the ability to directly alter adaptive immune responses. This review will highlight several of the non-hemostatic attributes of platelets that clearly and rightfully place them as integral players in immune reactions. Platelets can act as circulating sentinels by expressing pathogen-associated molecular pattern receptors that bind pathogens and induce their killing and elimination. Activated platelets secrete and express a multitude of pro- and anti-inflammatory molecules that attract and capture circulating leukocytes and direct them to inflamed tissues. Platelets express and secrete many critical immunoregulatory molecules that significantly affect both innate and adaptive immune responses. Platelets are the primary source of microparticles in the circulation and these augment the platelet’s ability to communicate with the immune system. Platelets and megakaryocytes can act as antigen presenting cells and present both foreign- and self-peptides to T-cells.
Collapse
Affiliation(s)
- Amal Maouia
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Johan Rebetz
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Rick Kapur
- Sanquin Research, Department of Experimental Immunohematology, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - John W Semple
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden; Clinical Immunology and Transfusion Medicine, Office of Medical Services, Region Skåne, Lund, Sweden.
| |
Collapse
|
35
|
Platelets and Defective N-Glycosylation. Int J Mol Sci 2020; 21:ijms21165630. [PMID: 32781578 PMCID: PMC7460655 DOI: 10.3390/ijms21165630] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
N-glycans are covalently linked to an asparagine residue in a simple acceptor sequence of proteins, called a sequon. This modification is important for protein folding, enhancing thermodynamic stability, and decreasing abnormal protein aggregation within the endoplasmic reticulum (ER), for the lifetime and for the subcellular localization of proteins besides other functions. Hypoglycosylation is the hallmark of a group of rare genetic diseases called congenital disorders of glycosylation (CDG). These diseases are due to defects in glycan synthesis, processing, and attachment to proteins and lipids, thereby modifying signaling functions and metabolic pathways. Defects in N-glycosylation and O-glycosylation constitute the largest CDG groups. Clotting and anticlotting factor defects as well as a tendency to thrombosis or bleeding have been described in CDG patients. However, N-glycosylation of platelet proteins has been poorly investigated in CDG. In this review, we highlight normal and deficient N-glycosylation of platelet-derived molecules and discuss the involvement of platelets in the congenital disorders of N-glycosylation.
Collapse
|
36
|
Gerhards C, Uhlig S, Etemad M, Christodoulou F, Bieback K, Klüter H, Bugert P. Expression of ADP receptor P2Y 12, thromboxane A 2 receptor and C-type lectin-like receptor 2 in cord blood-derived megakaryopoiesis. Platelets 2020; 32:618-625. [PMID: 32619120 DOI: 10.1080/09537104.2020.1782868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ADP receptor P2Y12, the thromboxane A2 receptor (TXA2R) and the C-type lectin-like receptor 2 (CLEC-2) mediate platelet activation by different mechanisms. Only little is known about the expression of the receptors in human megakaryopoiesis. Our study aimed to establish a flow cytometry (FC) method for the measurement of P2Y12, TXA2R, and CLEC-2 on platelets of healthy donors and to monitor receptor expression in ex vivo megakaryopoiesis. We determined mean fluorescence intensity (MFI) values of FITC, PE, or APC labeled antibodies binding to the receptors on platelets of 90 healthy donors. For cord blood-derived megakaryopoiesis (CBMK) differentiation of CD34+ cells was induced by IL-3, SCF, and TPO. At 6 time points between day 0 and day 21 of cell culture the MFI values for CD34, CD41, CD61, P2Y12, TXA2R, and CLEC-2 were measured. Quantitative PCR was used for relative quantification of the corresponding mRNA. Transcription factor (TF) binding sites were predicted by in silico analysis of the genes. Platelets showed expectable high MFI values for the platelet marker CD41 (13,716 median MFI). Lower MFI was found for P2Y12 (2,847 median MFI) and CLEC-2 (1,211 median MFI), whereas, binding of the TXA2R antibody revealed even higher values (21,458 median MFI) than CD41. In CBMK the CD34+ cells were negative for P2Y12, TXA2R, and CLEC-2 at day 0. A maximum of 21-fold and 6-fold increase of P2Y12 and TXA2R MFI values, respectively, was found on day 14 to 17. MFI for CLEC-2 increased by 58-fold within the first week and reached a maximum of 1,572-fold increase within the first two weeks of CBMK. Very similar results were obtained on the RNA level. The differential regulation of receptor expression in CBMK was further supported by significant differences in the numbers and types of TF binding sites. P2Y12 and TXA2R, both upregulated only to a low extent in CBMK, probably, are dispensable for megakaryopoiesis. Furthermore, we speculate that CLEC-2 strongly upregulated in early CMBK is important for megakaryopoiesis.
Collapse
Affiliation(s)
- Catharina Gerhards
- Institute of Transfusion Medicine and Immunology, Heidelberg University, Medical Faculty Mannheim, German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany.,European Center for Angioscience (ECAS), Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany
| | - Stefanie Uhlig
- Institute of Transfusion Medicine and Immunology, Heidelberg University, Medical Faculty Mannheim, German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Mani Etemad
- Institute of Transfusion Medicine and Immunology, Heidelberg University, Medical Faculty Mannheim, German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany.,European Center for Angioscience (ECAS), Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany
| | - Foteini Christodoulou
- Institute of Transfusion Medicine and Immunology, Heidelberg University, Medical Faculty Mannheim, German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany.,European Center for Angioscience (ECAS), Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Heidelberg University, Medical Faculty Mannheim, German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Harald Klüter
- Institute of Transfusion Medicine and Immunology, Heidelberg University, Medical Faculty Mannheim, German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany.,European Center for Angioscience (ECAS), Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany
| | - Peter Bugert
- Institute of Transfusion Medicine and Immunology, Heidelberg University, Medical Faculty Mannheim, German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany.,European Center for Angioscience (ECAS), Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany
| |
Collapse
|
37
|
Maruyama S, Kono H, Furuya S, Shimizu H, Saito R, Shoda K, Akaike H, Hosomura N, Kawaguchi Y, Amemiya H, Kawaida H, Sudo M, Inoue S, Shirai T, Suzuki-Inoue K, Ichikawa D. Platelet C-Type Lectin-Like Receptor 2 Reduces Cholestatic Liver Injury in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1833-1842. [PMID: 32473917 DOI: 10.1016/j.ajpath.2020.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
Abstract
Cholestatic liver injury leads to liver dysfunction. The available evidence suggests that platelets can either promote or reduce liver injury and fibrosis. This study focused on the functions of the C-type lectin-like receptor 2 (CLEC-2), a new special platelet receptor that binds with podoplanin-activating platelets. The role of CLEC-2 and podoplanin in cholestatic liver injury was investigated. Mice were injected intraperitoneally with weekly doses of anti-CLEC-2 antibody (2A2B10) to achieve effective CLEC-2 inhibition in their platelets. Next, left and middle hepatic bile duct ligation (BDL) procedures were performed, and mice were euthanized 1 week later (2A2B10-BDL group). In addition, mice were prepared for control groups, and relevant histological and laboratory variables were compared among these groups. The inhibition of CLEC-2 resulted in increasing hepatocellular necrosis, hepatic inflammation, and liver fibrosis. In addition, podoplanin was strongly expressed in hepatic sinusoidal endothelial cells in BDL-treated mice. Moreover, in 2A2B10-BDL mice, total plasma bile acid levels were significantly increased. In summary, podoplanin is expressed on hepatic sinusoidal endothelial cells upon BDL. Platelets bind with podoplanin via CLEC-2 and become activated. As a result, the total bile acid pool is decreased. Therefore, the CLEC-2-podoplanin interaction promotes liver protection and inhibits liver fibrosis after cholestatic liver injury.
Collapse
Affiliation(s)
- Suguru Maruyama
- First Department of Surgery, Faculty of Medicine University of Yamanashi, Chuo, Japan
| | - Hiroshi Kono
- First Department of Surgery, Faculty of Medicine University of Yamanashi, Chuo, Japan.
| | - Shinji Furuya
- First Department of Surgery, Faculty of Medicine University of Yamanashi, Chuo, Japan
| | - Hiroki Shimizu
- First Department of Surgery, Faculty of Medicine University of Yamanashi, Chuo, Japan
| | - Ryo Saito
- First Department of Surgery, Faculty of Medicine University of Yamanashi, Chuo, Japan
| | - Katsutoshi Shoda
- First Department of Surgery, Faculty of Medicine University of Yamanashi, Chuo, Japan
| | - Hidenori Akaike
- First Department of Surgery, Faculty of Medicine University of Yamanashi, Chuo, Japan
| | - Naohiro Hosomura
- First Department of Surgery, Faculty of Medicine University of Yamanashi, Chuo, Japan
| | - Yoshihiko Kawaguchi
- First Department of Surgery, Faculty of Medicine University of Yamanashi, Chuo, Japan
| | - Hidetake Amemiya
- First Department of Surgery, Faculty of Medicine University of Yamanashi, Chuo, Japan
| | - Hiromichi Kawaida
- First Department of Surgery, Faculty of Medicine University of Yamanashi, Chuo, Japan
| | - Makoto Sudo
- First Department of Surgery, Faculty of Medicine University of Yamanashi, Chuo, Japan
| | - Shingo Inoue
- First Department of Surgery, Faculty of Medicine University of Yamanashi, Chuo, Japan
| | - Toshiaki Shirai
- Department of Clinical and Laboratory Medicine, Faculty of Medicine University of Yamanashi, Chuo, Japan
| | - Katsue Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine University of Yamanashi, Chuo, Japan
| | - Daisuke Ichikawa
- First Department of Surgery, Faculty of Medicine University of Yamanashi, Chuo, Japan
| |
Collapse
|
38
|
New Therapeutic Strategies for Osteoarthritis by Targeting Sialic Acid Receptors. Biomolecules 2020; 10:biom10040637. [PMID: 32326143 PMCID: PMC7226619 DOI: 10.3390/biom10040637] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease characterized by articular cartilage degradation and joint degeneration. The articular cartilage is mainly formed by chondrocytes and a collagen-proteoglycan extracellular matrix that contains high levels of glycosylated proteins. It was reported that the shift from glycoproteins containing α-2,6-linked sialic acids to those that contain α-2,3 was associated with the onset of common types of arthritis. However, the pathophysiology of α-2,3-sialylation in cartilage has not been yet elucidated. We show that cartilage from osteoarthritic patients expresses high levels of the α-2,3-sialylated transmembrane mucin receptor, known as podoplanin (PDPN). Additionally, the Maackia amurensis seed lectin (MASL), that can be utilized to target PDPN, attenuates the inflammatory response mediated by NF-kB activation in primary chondrocytes and protects human cartilage breakdown ex vivo and in an animal model of arthritis. These findings reveal that specific lectins targeting α-2,3-sialylated receptors on chondrocytes might effectively inhibit cartilage breakdown. We also present a computational 3D molecular model for this interaction. These findings provide mechanistic information on how a specific lectin could be used as a novel therapy to treat degenerative joint diseases such as osteoarthritis.
Collapse
|
39
|
Asada Y, Yamashita A, Sato Y, Hatakeyama K. Pathophysiology of atherothrombosis: Mechanisms of thrombus formation on disrupted atherosclerotic plaques. Pathol Int 2020; 70:309-322. [PMID: 32166823 PMCID: PMC7317428 DOI: 10.1111/pin.12921] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022]
Abstract
Atherothrombosis is a leading cause of cardiovascular mortality and morbidity worldwide. The underlying mechanisms of atherothrombosis comprise plaque disruption and subsequent thrombus formation. Arterial thrombi are thought to mainly comprise aggregated platelets as a result of high blood velocity. However, thrombi that develop on disrupted plaques comprise not only aggregated platelets, but also large amounts of fibrin, because plaques contain large amount of tissue factor that activate the coagulation cascade. Since not all thrombi grow large enough to occlude the vascular lumen, the propagation of thrombi is also critical in the onset of adverse vascular events. Various factors such as vascular wall thrombogenicity, local hemorheology, systemic thrombogenicity and fibrinolytic activity modulate thrombus formation and propagation. Although the activation mechanisms of platelets and the coagulation cascade have been intensively investigated, the underlying mechanisms of occlusive thrombus formation on disrupted plaques remain obscure. Pathological findings derived from humans and animal models of human atherothrombosis have uncovered pathophysiological processes during thrombus formation and propagation after plaque disruption, and novel factors have been identified that modulate the activation of platelets and the coagulation cascade. These findings have also provided insights into the development of novel drugs for atherothrombosis.
Collapse
Affiliation(s)
- Yujiro Asada
- Pathophysiology Section, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Atsushi Yamashita
- Pathophysiology Section, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yuichiro Sato
- Department of Diagnostic Pathology, University of Miyazaki Hospital, University of Miyazaki, Miyazaki, Japan
| | - Kinta Hatakeyama
- Department of Diagnostic Pathology, Nara Medical University, Nara, Japan
| |
Collapse
|
40
|
Sung PS, Hsieh SL. CLEC2 and CLEC5A: Pathogenic Host Factors in Acute Viral Infections. Front Immunol 2019; 10:2867. [PMID: 31867016 PMCID: PMC6909378 DOI: 10.3389/fimmu.2019.02867] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022] Open
Abstract
The protective roles of endosomal toll-like receptors (TLRs) and cytosolic nucleic acid sensors are well elucidated, but the pathogenic host factors during viral infections remain unclear. Spleen tyrosine kinase (Syk)-coupled C-type lectins (CLECs) CLEC2 and CLEC5A are highly expressed on platelets and myeloid cells, respectively. CLEC2 has been shown to recognize snake venom aggretin and the endogenous ligand podoplanin and acts as a critical regulator in the development and immunothrombosis. Although CLEC2 has been reported to interact with type I immunodeficiency virus (HIV-1), its role in viral infections is still unclear. CLEC5A binds to fucose and mannose moieties of dengue virus membrane glycans, as well as to N-acetylglucosamine (GlcNAc)/N-acetylmuramic acid (MurNAc) disaccharides that form the backbone of L. monocytogenes peptidoglycans. Recently, we demonstrated that both CLEC2 and CLEC5A are critical in microbe-induced “neutrophil extracellular trap” (NET) formation and proinflammatory cytokine production. Moreover, activation of CLEC2 by dengue virus (DV) and H5N1 influenza virus (IAV) induces the release of extracellular vesicles (EVs), which further enhance NETosis and proinflammatory cytokine production via CLEC5A and Toll-like receptor 2 (TLR2). These findings not only illustrate the immunomodulatory effects of EVs during platelet-leukocyte interactions, but also demonstrate the critical roles of CLEC2 and CLEC5A in acute viral infections.
Collapse
Affiliation(s)
- Pei-Shan Sung
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Shie-Liang Hsieh
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
41
|
Furukoji E, Yamashita A, Nakamura K, Hirai T, Asada Y. Podoplanin expression on endothelial cells promotes superficial erosive injury and thrombus formation in rat carotid artery: Implications for plaque erosion. Thromb Res 2019; 183:76-79. [PMID: 31670230 DOI: 10.1016/j.thromres.2019.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/29/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Eiji Furukoji
- Department of Radiology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | - Atsushi Yamashita
- Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Kensuke Nakamura
- Organization for Promotion of Tenure Track, University of Miyazaki, 1-1 Gakuen Kibanadainishi, Miyazaki 889-2192, Japan; Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadainishi, Miyazaki 889-2192, Japan
| | - Toshinori Hirai
- Department of Radiology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Yujiro Asada
- Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
42
|
Nagy M, van Geffen JP, Stegner D, Adams DJ, Braun A, de Witt SM, Elvers M, Geer MJ, Kuijpers MJE, Kunzelmann K, Mori J, Oury C, Pircher J, Pleines I, Poole AW, Senis YA, Verdoold R, Weber C, Nieswandt B, Heemskerk JWM, Baaten CCFMJ. Comparative Analysis of Microfluidics Thrombus Formation in Multiple Genetically Modified Mice: Link to Thrombosis and Hemostasis. Front Cardiovasc Med 2019; 6:99. [PMID: 31417909 PMCID: PMC6682619 DOI: 10.3389/fcvm.2019.00099] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
Genetically modified mice are indispensable for establishing the roles of platelets in arterial thrombosis and hemostasis. Microfluidics assays using anticoagulated whole blood are commonly used as integrative proxy tests for platelet function in mice. In the present study, we quantified the changes in collagen-dependent thrombus formation for 38 different strains of (genetically) modified mice, all measured with the same microfluidics chamber. The mice included were deficient in platelet receptors, protein kinases or phosphatases, small GTPases or other signaling or scaffold proteins. By standardized re-analysis of high-resolution microscopic images, detailed information was obtained on altered platelet adhesion, aggregation and/or activation. For a subset of 11 mouse strains, these platelet functions were further evaluated in rhodocytin- and laminin-dependent thrombus formation, thus allowing a comparison of glycoprotein VI (GPVI), C-type lectin-like receptor 2 (CLEC2) and integrin α6β1 pathways. High homogeneity was found between wild-type mice datasets concerning adhesion and aggregation parameters. Quantitative comparison for the 38 modified mouse strains resulted in a matrix visualizing the impact of the respective (genetic) deficiency on thrombus formation with detailed insight into the type and extent of altered thrombus signatures. Network analysis revealed strong clusters of genes involved in GPVI signaling and Ca2+ homeostasis. The majority of mice demonstrating an antithrombotic phenotype in vivo displayed with a larger or smaller reduction in multi-parameter analysis of collagen-dependent thrombus formation in vitro. Remarkably, in only approximately half of the mouse strains that displayed reduced arterial thrombosis in vivo, this was accompanied by impaired hemostasis. This was also reflected by comparing in vitro thrombus formation (by microfluidics) with alterations in in vivo bleeding time. In conclusion, the presently developed multi-parameter analysis of thrombus formation using microfluidics can be used to: (i) determine the severity of platelet abnormalities; (ii) distinguish between altered platelet adhesion, aggregation and activation; and (iii) elucidate both collagen and non-collagen dependent alterations of thrombus formation. This approach may thereby aid in the better understanding and better assessment of genetic variation that affect in vivo arterial thrombosis and hemostasis.
Collapse
Affiliation(s)
- Magdolna Nagy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Johanna P van Geffen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - David Stegner
- Rudolf Virchow Center, Institute of Experimental Biomedicine, University Hospital Würzburg, University of Würzburg, Würzburg, Germany
| | - David J Adams
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Attila Braun
- Rudolf Virchow Center, Institute of Experimental Biomedicine, University Hospital Würzburg, University of Würzburg, Würzburg, Germany
| | - Susanne M de Witt
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Margitta Elvers
- Department of Vascular Surgery, Experimental Vascular Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Mitchell J Geer
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Marijke J E Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Karl Kunzelmann
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Jun Mori
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Cécile Oury
- GIGA-Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - Joachim Pircher
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-University, and DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Irina Pleines
- Rudolf Virchow Center, Institute of Experimental Biomedicine, University Hospital Würzburg, University of Würzburg, Würzburg, Germany
| | - Alastair W Poole
- Department of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | - Yotis A Senis
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Remco Verdoold
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Christian Weber
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bernhard Nieswandt
- Rudolf Virchow Center, Institute of Experimental Biomedicine, University Hospital Würzburg, University of Würzburg, Würzburg, Germany
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Constance C F M J Baaten
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.,Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Aachen, Germany
| |
Collapse
|
43
|
|
44
|
Watanabe J, Natsumeda M, Okada M, Kanemaru Y, Tsukamoto Y, Oishi M, Kakita A, Fujii Y. Podoplanin Expression and IDH-Wildtype Status Predict Venous Thromboembolism in Patients with High-Grade Gliomas in the Early Postoperative Period. World Neurosurg 2019; 128:e982-e988. [PMID: 31100523 DOI: 10.1016/j.wneu.2019.05.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Venous thromboembolism (VTE) often is encountered in patients with high-grade gliomas. The underlying mechanisms are unclear, as is the optimal prophylactic protocol. The purpose of the present study was to identify risk factors of VTE and examine the validity of early VTE detection in high-grade gliomas. METHODS We reviewed the medical records of 165 patients with newly diagnosed high-grade glioma treated at Niigata University Hospital during the years 2009 to 2016. If the serum D-dimer levels increased to 5.0 μg/mL or more, computed tomography was performed to detect VTE. Furthermore, immunohistochemistry with antibodies against podoplanin was performed on available 101 tumor tissues. RESULTS Of the 165 patients, 44 (26.7%) developed VTE. Of the 44 patients, 34 (79.5%) developed VTE within 7 days after surgery. No fatal VTE occurred and major complications secondary to anticoagulation occurred in only 2 (1.2%) patients. On multivariate analysis, lower Karnofsky Performance Scale status, podoplanin expression, and isocitrate dehydrogenase-wildtype status were independently associated with the risk of VTE (P < 0.05). CONCLUSIONS We found that most VTEs occurred early in the postoperative period and commonly in patients with lower Karnofsky Performance Scale status and isocitrate dehydrogenase-wildtype gliomas, which expressed podoplanin.
Collapse
Affiliation(s)
- Jun Watanabe
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata.
| | - Manabu Natsumeda
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata
| | - Masayasu Okada
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata
| | - Yu Kanemaru
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata
| | - Yoshihiro Tsukamoto
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata
| | - Makoto Oishi
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata
| | - Yukihiko Fujii
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata
| |
Collapse
|
45
|
Riedl J, Ay C. Venous Thromboembolism in Brain Tumors: Risk Factors, Molecular Mechanisms, and Clinical Challenges. Semin Thromb Hemost 2019; 45:334-341. [PMID: 31041803 DOI: 10.1055/s-0039-1688493] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Venous thromboembolism (VTE) is a common complication in patients with primary brain tumors, with up to 20% of patients per year having a VTE event. Clinical risk factors for VTE include glioblastoma subtype, paresis, or surgery. Furthermore, specific factors playing a role in tumor biology were recently identified to predispose to prothrombotic risk. For instance, mutations in the isocitrate dehydrogenase 1 (IDH1) gene, which occurs in a subgroup of glioma, correlate with risk of VTE, with low incidence in patients with presence of an IDH1 mutation compared with those with IDH1 wild-type status. In addition, expression of the glycoprotein podoplanin on brain tumors was associated with both intratumoral thrombi and high risk of VTE. As podoplanin has the ability to activate platelets, a mechanistic role of podoplanin-mediated platelet activation in VTE development has been suggested. From a clinical point of view, the management of patients with primary brain tumors and VTE is challenging. Anticoagulation is required to treat patients; however, it is associated with increased risk of intracranial hemorrhage. This review focuses on describing the epidemiology, risk factors, and mechanisms of brain tumor-associated thrombosis and discusses clinical challenges in the prevention and treatment of VTE in patients with brain tumors.
Collapse
Affiliation(s)
- Julia Riedl
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Cihan Ay
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
46
|
Amelirad A, Shamsasenjan K, Akbarzadehlaleh P, Pashoutan Sarvar D. Signaling Pathways of Receptors Involved in Platelet Activation and Shedding of These Receptors in Stored Platelets. Adv Pharm Bull 2019; 9:38-47. [PMID: 31011556 PMCID: PMC6468227 DOI: 10.15171/apb.2019.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/25/2018] [Accepted: 11/12/2018] [Indexed: 12/26/2022] Open
Abstract
All cells encounter various signals coming from the surrounding environment and they need to receive and respond to these signals in order to perform their functions. Cell surface receptors are responsible for signal transduction .Platelets are blood cells which perform several functions using diverse receptors. Platelet concentrate is one of the most consumed blood products. However, due to the short lifespan of the platelets and platelets damage during storage, we face shortage of platelet products. One of the damages that platelets undergo during storage is the loss of surface receptors. Since cell surface receptors are responsible for all cell functions, the loss of platelet receptors reduces the quality of platelet products. In this study, we reviewed the important receptors involved in platelet activation and their associated signaling pathways. We also looked at the platelet receptors that shed during storage and the causes of this incident. We found that GPIbα, P-selectin, CD40 and GPVI are platelet receptors that fall during platelet storage at room temperature. Considering that GPVI and GPIbα are the most important receptors which involved in platelet activation, their shedding can cause decrease in platelet activation after transfusion and decrease thrombus consistence. Shear stress and platelet contact with the container wall are among the mechanisms discussed in this process, but studies in this area have to be continued.
Collapse
Affiliation(s)
- Asra Amelirad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasenjan
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Akbarzadehlaleh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
47
|
Rosa JG, de Albuquerque CZ, Mattaraia VGDM, Santoro ML. Comparative study of platelet aggregation and secretion induced by Bothrops jararaca snake venom and thrombin. Toxicon 2019; 159:50-60. [PMID: 30677414 DOI: 10.1016/j.toxicon.2019.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/04/2019] [Accepted: 01/10/2019] [Indexed: 12/28/2022]
Abstract
Victims of Bothrops jararaca snakebites manifest bleedings, blood incoagulability, platelet dysfunction, and thrombocytopenia, and the latter has been directly implicated in the genesis of hemorrhagic diathesis. We addressed herein the direct effects of B. jararaca venom (BjV) on ex vivo platelet aggregation and granule secretion in washed human and mouse platelets. BjV directly aggregated platelets, but the extent of platelet aggregation was lower in human than mouse platelets. On the other hand, BjV (24.4 μg/mL) and thrombin (0.1 U/mL) induced a similar extent of ATP and platelet factor 4 (PF4) secretion in both species. BjV-induced platelet aggregation was independent of the platelet dense body content, as in pearl mouse (Ap3b1-/-) platelets, whose dense bodies are deficient in adenine nucleotides and serotonin, the extent of platelet aggregation was superior to that induced in BALB/c or C57BL/6 mice. BjV-induced β-hexosaminidase secretion in human platelets was less intense than that evoked by thrombin, and the contrary was observed in mouse platelets. Irreversible inactivation of platelet cyclooxygenase 1 by acetylsalicylic acid did not reduce BjV-induced platelet aggregation. BjV exerted no cytotoxic activity in human and mouse platelets, as evaluated by lactate dehydrogenase loss. Eptifibatide, which inhibits the binding of fibrinogen to platelet glycoprotein complex GPIIb-IIIa, differently blocked BjV-induced platelet aggregation in mice and humans. BjV-induced platelet aggregation did not depend on snake venom serine proteinases nor metalloproteinases in mice, whilst serine proteinases were rather important for platelet aggregation in humans. Our results show that BjV induces direct activation, aggregation, and secretion in human and mouse platelets, but it exerts diverse responses in them, which should be considered in comparative studies to understand pathophysiological events during Bothrops envenomation.
Collapse
Affiliation(s)
- Jaqueline Gomes Rosa
- Instituto Butantan, Laboratório de Fisiopatologia, Av. Dr. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | - Marcelo Larami Santoro
- Instituto Butantan, Laboratório de Fisiopatologia, Av. Dr. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
48
|
|
49
|
Schlesinger M. Role of platelets and platelet receptors in cancer metastasis. J Hematol Oncol 2018; 11:125. [PMID: 30305116 PMCID: PMC6180572 DOI: 10.1186/s13045-018-0669-2] [Citation(s) in RCA: 415] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/25/2018] [Indexed: 01/15/2023] Open
Abstract
The interaction of tumor cells with platelets is a prerequisite for successful hematogenous metastatic dissemination. Upon tumor cell arrival in the blood, tumor cells immediately activate platelets to form a permissive microenvironment. Platelets protect tumor cells from shear forces and assault of NK cells, recruit myeloid cells by secretion of chemokines, and mediate an arrest of the tumor cell platelet embolus at the vascular wall. Subsequently, platelet-derived growth factors confer a mesenchymal-like phenotype to tumor cells and open the capillary endothelium to expedite extravasation in distant organs. Finally, platelet-secreted growth factors stimulate tumor cell proliferation to micrometastatic foci. This review provides a synopsis on the current literature on platelet-mediated effects in cancer metastasis and particularly focuses on platelet adhesion receptors and their role in metastasis. Immunoreceptor tyrosine-based activation motif (ITAM) and hemi ITAM (hemITAM) comprising receptors, especially, glycoprotein VI (GPVI), FcγRIIa, and C-type lectin-like-2 receptor (CLEC-2) are turned in the spotlight since several new mechanisms and contributions to metastasis have been attributed to this family of platelet receptors in the last years.
Collapse
|
50
|
Naderi-Meshkin H, Ahmadiankia N. Cancer metastasis versus stem cell homing: Role of platelets. J Cell Physiol 2018; 233:9167-9178. [PMID: 30105746 DOI: 10.1002/jcp.26937] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022]
Abstract
One of the major obstacles in achieving a successful stem cell therapy is insufficient homing of transplanted cells. To overcome this obstacle, understanding the underlying mechanisms of stem cell homing is of obvious importance. Central to this review is the concept that cancer metastasis can be viewed as a role model to build up a comprehensive concept of stem cell homing. In this novel perspective, the prosurvival choices of the cancerous cells in the bloodstream, their arrest, extravasation, and proliferation at the secondary site can be exploited in favor of targeted stem cell homing. To date, tumor cells have been found to employ a wide variety of strategies to promote metastasis. One of these strategies is through their ability to activate platelets and subsequently activated platelets serve cancer cell survival and metastasis. Accordingly, in the first part of this review the roles of platelets in cancer metastasis as well as stem cell homing are discussed. Next, we provide some lessons learned from cancer metastasis in favor of developing strategies for improvement of stem cell homing with emphasis on the role of platelets. Based on direct or indirect evidence from metastasis, strategies such as manipulation of stem cells to enhance interaction with platelets, preconditioning-pretreatment of stem cells with platelets in vitro, and coinjection of both stem cells and platelets are proposed to improve stem cell homing.
Collapse
Affiliation(s)
- Hojjat Naderi-Meshkin
- Stem Cells and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Naghmeh Ahmadiankia
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.,Cancer Prevention Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|