1
|
Lee S, Sun Y, Fan S, Rahim N, Xian Y, Shakhawat MK, Chavarria KA, Vedrin M, Guikema S, Sela L, Kumpel E, Lanzarini-Lopes M, Shen Y, Kirisits MJ, Raskin L, Potgieter S, Dowdell KS, Szczuka A. Moving Beyond the Silos of Opportunistic Pathogen and Disinfection Byproduct Research to Improve Drinking Water System Management. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40313230 DOI: 10.1021/acs.est.4c12586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Drinking water opportunistic pathogens (OPs) and disinfection byproducts (DBPs) both pose risks to public health, and their variable occurrence from source to tap complicates efforts to control them simultaneously. Management of OPs and DBPs is further hindered by the historical division between microbial and chemical research. This review brings together the current knowledge regarding OPs and DBPs, identifies factors that influence the occurrence of both, and highlights areas where research is needed to better understand their health risks. First, we examine the current understanding of how OPs and DBPs are jointly influenced by physicochemical parameters, source water characteristics, treatment processes including disinfection, and distribution system properties. Temperature, for example, can affect OP and DBP occurrence, where higher temperatures can promote the growth of some OPs, such as Legionella pneumophila, but temperature's effect on DBPs is species-dependent. Methods for quantifying the risks associated with OPs (quantitative microbial risk assessment) and DBPs (chemical risk assessment) are compared, finding that the numerous assumptions and data gaps associated with each method limit comparability across contaminant types. We highlight the urgent need to fill existing data gaps and develop a more unified risk framework so as to move toward holistic assessment of microbial and chemical risks. This review provides suggestions for future research, highlighting ways that researchers might utilize established practices in OP or DBP studies to further our understanding of the other. For example, analysis of source water organic matter composition, which has advanced our understanding of DBP formation, could be utilized to elucidate how source water characteristics influence OPs. This review bridges the gap between the OP and DBP disciplines, arguing that collaboration between the two is needed to address the pressing challenges facing water systems today.
Collapse
Affiliation(s)
- Soojung Lee
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yue Sun
- Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, Massachusetts 01002, United States
| | - Shi Fan
- Department of Civil and Environmental Engineering, The George Washington University, Washington, D.C. 20052, United States
| | - Nowrina Rahim
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuhao Xian
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mohammad Kiron Shakhawat
- Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, Massachusetts 01002, United States
| | - Karina A Chavarria
- Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, Massachusetts 01002, United States
| | - Matthew Vedrin
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Seth Guikema
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Industrial and Operations Engineering, Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lina Sela
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Emily Kumpel
- Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, Massachusetts 01002, United States
| | - Mariana Lanzarini-Lopes
- Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, Massachusetts 01002, United States
| | - Yun Shen
- Department of Civil and Environmental Engineering, The George Washington University, Washington, D.C. 20052, United States
| | - Mary Jo Kirisits
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Lutgarde Raskin
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sarah Potgieter
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Katherine S Dowdell
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Aleksandra Szczuka
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Sylvestre É, Charron D, Lefebvre X, Bedard E, Prévost M. Leveraging regulatory monitoring data for quantitative microbial risk assessment of Legionella pneumophila in cooling towers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 975:179293. [PMID: 40179757 DOI: 10.1016/j.scitotenv.2025.179293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 03/09/2025] [Accepted: 03/28/2025] [Indexed: 04/05/2025]
Abstract
Cooling towers are critical engineered water systems for air conditioning and refrigeration but can create favorable conditions for Legionella pneumophila growth and aerosolization. Human exposure to L. pneumophila-contaminated aerosols can cause Legionnaire's disease. Routine monitoring of L. pneumophila in cooling towers offers possibilities to develop quantitative microbial risk assessment (QMRA) models to guide system design, operation, control, and maintenance. Here, we used the regulatory monitoring database from Quebec, Canada, to develop statistical models for predicting L. pneumophila concentration variability in cooling towers and integrate these models into a screening-level QMRA model to predict human health risks. Analysis of 105,463 monthly L. pneumophila test results revealed that the exceedance rate of the 104 colony-forming unit (CFU) per liter threshold was constant at 10 % from 2016 to 2020, emphasizing the need to better validate the efficacy of corrective measures following the threshold exceedances. Among 2852 cooling towers, 51.2 % reported no detections, 38.5 % had up to nine positives, and 10.2 % over ten. The gamma or the lognormal distributions adequately described site-specific variations in L. pneumophila concentrations, but parametric uncertainty was very high for the lognormal distribution. We showed that rigorous model comparison is essential to predict peak concentrations accurately. Using QMRA, we found that an average L. pneumophila concentration below 1.4 × 104 CFU L-1 should be maintained in cooling towers to meet a health-based target of 10-6 DALY/pers.-year for clinical severity infections. We identified 137 cooling towers at risk of exceeding this limit, primarily due to the observation or prediction of rare peak concentrations above 105 CFU L-1. Effective mitigation of those peaks is critical to controlling public health risks associated with L. pneumophila.
Collapse
Affiliation(s)
- Émile Sylvestre
- Sanitary Engineering, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands; NSERC Industrial Chair on Drinking Water, Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, Quebec H3C 3A7, Canada.
| | - Dominique Charron
- NSERC Industrial Chair on Drinking Water, Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, Quebec H3C 3A7, Canada
| | - Xavier Lefebvre
- Department of Mechanical Engineering, Polytechnique Montreal, Montreal, Quebec H3C 3A7, Canada
| | - Emilie Bedard
- Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, Quebec H3C 3A7, Canada
| | - Michèle Prévost
- NSERC Industrial Chair on Drinking Water, Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, Quebec H3C 3A7, Canada
| |
Collapse
|
3
|
Heida A, Maal-Bared R, Veillette M, Duchaine C, Reynolds KA, Ashraf A, Ogunseye OO, Jung Y, Shulman L, Ikner L, Betancourt W, Hamilton KA, Wilson AM. Quantitative microbial risk assessment (QMRA) tool for modelling pathogen infection risk to wastewater treatment plant workers. WATER RESEARCH 2024; 260:121858. [PMID: 38936269 PMCID: PMC11657630 DOI: 10.1016/j.watres.2024.121858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Wastewater treatment plants (WWTPs) provide vital services to the public by removing contaminants from wastewater prior to environmental discharge or reuse for beneficial purposes. WWTP workers occupationally exposed to wastewater can be at risk of respiratory or gastrointestinal diseases. The study objectives were to: (1) quantify pathogens and pathogen indicators in wastewater aerosols near different WWTP processes/unit operations, (2) develop a QMRA model for multi-pathogen and multi-exposure pathway risks, and (3) create a web-based application to perform and communicate risk calculations for wastewater workers. Case studies for seven different WWTP job tasks were performed investigating infection risk across nine different enteric and respiratory pathogens. It was observed that the ingestion risk among job tasks was highest for "walking the WWTP," which involved exposure from splashing, bioaerosols, and hand-to-mouth contact from touching contaminated surfaces. There was also a notable difference in exposure risk during peak (5:00am-9:00am) and non-peak hours (9:00am- 5:00am), with risks during the peak flow hours of the early morning assumed to be 5 times greater than non-peak hours. N95 respirator usage reduced median respiratory risks by 77 %. The developed tool performs multiple QMRA calculations to estimate WWTP workers' infection risks from accidental ingestion or inhalation of wastewater from multiple pathogens and exposure scenarios, which can inform risk management strategies to protect occupational health. However, more data are needed to reduce uncertainty in model estimates, including comparative data for pathogen concentrations in wastewater during peak and non-peak hours. QMRA tools will increase accessibility of risk models for utilization in decision-making.
Collapse
Affiliation(s)
- Ashley Heida
- School for Engineering of Matter, Transport and Energy, Arizona State University, 502 E Tyler Mall, Tempe, AZ 85287, USA; The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA
| | - Rasha Maal-Bared
- Bellevue Research and Testing Laboratory, CDM Smith, 14432 SE Eastgate Way Suite 100, Bellevue, WA 98007, USA
| | - Marc Veillette
- Department of biochemistry, microbiology and bioinformatics, Université Laval, Canada Research Chair on Bioaerosols, Quebec City, Canada
| | - Caroline Duchaine
- Department of biochemistry, microbiology and bioinformatics, Université Laval, Canada Research Chair on Bioaerosols, Quebec City, Canada
| | - Kelly A Reynolds
- Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Ahamed Ashraf
- Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Olusola O Ogunseye
- Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Yoonhee Jung
- Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Lester Shulman
- Central Virology Laboratory, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel; School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Luisa Ikner
- Department of Environmental Science, College of Agricultre, Life & Environmental Sciences, University of Arizona, Tucson, AZ, USA
| | - Walter Betancourt
- Department of Environmental Science, College of Agricultre, Life & Environmental Sciences, University of Arizona, Tucson, AZ, USA
| | - Kerry A Hamilton
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA
| | - Amanda M Wilson
- Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
4
|
Quon H, Jiang S. Quantitative Microbial Risk Assessment of Antibiotic-Resistant E. coli, Legionella pneumophila, and Mycobacteria in Nonpotable Wastewater Reuse Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12888-12898. [PMID: 39004818 PMCID: PMC11270989 DOI: 10.1021/acs.est.4c01690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
Antibiotic-resistant bacteria (ARB) have become a major threat to public health and modern medicine. A simple death kinetics-based dose-response model (SD-DRM) was incorporated into a quantitative microbial risk assessment (QMRA) to assess the risks of exposure to reclaimed wastewater harboring antibiotic-resistant E. coli, Legionella pneumophila, and Mycobacterium avium for multiple exposure scenarios. The fractions of ARB and trace antibiotics present in the body were incorporated to demonstrate their impact on infection risks. Both ARB and antibiotic susceptible bacteria, ASB, are assumed to have the same dose-response in the absence of antibiotics but behave differently in the presence of residual antibiotics in the body. Annual risk of L. pneumophila infection exceeded the EPA 10-4 pppy (per person per year) benchmark at concentrations in reclaimed water greater than 103-104 CFU/L, depending on parameter variation. Enteropathogenic E. coli infection risks meet the EPA annual benchmark at concentrations around 105-106 total E. coli. The results illustrated that an increase in residual antibiotics from 0 to 40% of the minimum inhibitory concentration (MIC) reduced the risk by about 1 order of magnitude for E. coli but was more likely to result in an untreatable infection.
Collapse
Affiliation(s)
- Hunter Quon
- Department of Civil and Environmental
Engineering, University of California, Irvine, California 92697-2175, United States
| | - Sunny Jiang
- Department of Civil and Environmental
Engineering, University of California, Irvine, California 92697-2175, United States
| |
Collapse
|
5
|
Gholipour S, Nikaeen M. Comment on "Quantitative SARS-CoV-2 exposure assessment for workers in wastewater treatment plants using Monte-Carlo simulation by Cheng Yan et al. [Water Research 248 (2024) 120845]". WATER RESEARCH 2024; 256:121115. [PMID: 38480082 DOI: 10.1016/j.watres.2024.121115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/06/2024] [Indexed: 05/12/2024]
Affiliation(s)
- Sahar Gholipour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
6
|
Tang L, Rhoads WJ, Eichelberg A, Hamilton KA, Julian TR. Applications of Quantitative Microbial Risk Assessment to Respiratory Pathogens and Implications for Uptake in Policy: A State-of-the-Science Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:56001. [PMID: 38728217 PMCID: PMC11086748 DOI: 10.1289/ehp12695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Respiratory tract infections are major contributors to the global disease burden. Quantitative microbial risk assessment (QMRA) holds potential as a rapidly deployable framework to understand respiratory pathogen transmission and inform policy on infection control. OBJECTIVES The goal of this paper was to evaluate, motivate, and inform further development of the use of QMRA as a rapid tool to understand the transmission of respiratory pathogens and improve the evidence base for infection control policies. METHODS We conducted a literature review to identify peer-reviewed studies of complete QMRA frameworks on aerosol inhalation or contact transmission of respiratory pathogens. From each of the identified studies, we extracted and summarized information on the applied exposure model approaches, dose-response models, and parameter values, including risk characterization. Finally, we reviewed linkages between model outcomes and policy. RESULTS We identified 93 studies conducted in 16 different countries with complete QMRA frameworks for diverse respiratory pathogens, including SARS-CoV-2, Legionella spp., Staphylococcus aureus, influenza, and Bacillus anthracis. Six distinct exposure models were identified across diverse and complex transmission pathways. In 57 studies, exposure model frameworks were informed by their ability to model the efficacy of potential interventions. Among interventions, masking, ventilation, social distancing, and other environmental source controls were commonly assessed. Pathogen concentration, aerosol concentration, and partitioning coefficient were influential exposure parameters as identified by sensitivity analysis. Most (84%, n = 78 ) studies presented policy-relevant content including a) determining disease burden to call for policy intervention, b) determining risk-based threshold values for regulations, c) informing intervention and control strategies, and d) making recommendations and suggestions for QMRA application in policy. CONCLUSIONS We identified needs to further the development of QMRA frameworks for respiratory pathogens that prioritize appropriate aerosol exposure modeling approaches, consider trade-offs between model validity and complexity, and incorporate research that strengthens confidence in QMRA results. https://doi.org/10.1289/EHP12695.
Collapse
Affiliation(s)
- Lizhan Tang
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - William J. Rhoads
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Antonia Eichelberg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Kerry A. Hamilton
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
- Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona, USA
| | - Timothy R. Julian
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
7
|
Clements E, Crank K, Nerenberg R, Atkinson A, Gerrity D, Hannoun D. Quantitative Microbial Risk Assessment Framework Incorporating Water Ages with Legionella pneumophila Growth Rates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6540-6551. [PMID: 38574283 PMCID: PMC11025131 DOI: 10.1021/acs.est.4c01208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
Water age in drinking water systems is often used as a proxy for water quality but is rarely used as a direct input in assessing microbial risk. This study directly linked water ages in a premise plumbing system to concentrations of Legionella pneumophila via a growth model. In turn, the L. pneumophila concentrations were used for a quantitative microbial risk assessment to calculate the associated probabilities of infection (Pinf) and clinically severe illness (Pcsi) due to showering. Risk reductions achieved by purging devices, which reduce water age, were also quantified. The median annual Pinf exceeded the commonly used 1 in 10,000 (10-4) risk benchmark in all scenarios, but the median annual Pcsi was always 1-3 orders of magnitude below 10-4. The median annual Pcsi was lower in homes with two occupants (4.7 × 10-7) than with one occupant (7.5 × 10-7) due to more frequent use of water fixtures, which reduced water ages. The median annual Pcsi for homes with one occupant was reduced by 39-43% with scheduled purging 1-2 times per day. Smart purging devices, which purge only after a certain period of nonuse, maintained these lower annual Pcsi values while reducing additional water consumption by 45-62%.
Collapse
Affiliation(s)
- Emily Clements
- Southern
Nevada Water Authority, P.O. Box 99954, Las Vegas, Nevada 89193, United States
| | - Katherine Crank
- Southern
Nevada Water Authority, P.O. Box 99954, Las Vegas, Nevada 89193, United States
| | - Robert Nerenberg
- Department
of Civil & Environmental Engineering & Earth Science, University of Notre Dame, 156 Fitzpatrick Hall, Notre
Dame, Indiana 46556, United States
| | - Ariel Atkinson
- Southern
Nevada Water Authority, P.O. Box 99954, Las Vegas, Nevada 89193, United States
| | - Daniel Gerrity
- Southern
Nevada Water Authority, P.O. Box 99954, Las Vegas, Nevada 89193, United States
| | - Deena Hannoun
- Southern
Nevada Water Authority, P.O. Box 99954, Las Vegas, Nevada 89193, United States
| |
Collapse
|
8
|
Svenson O, Isohanni F, Salo I, Lindholm T. Airborne SARS-CoV2 virus exposure, interpersonal distance, face mask and perceived risk of infection. Sci Rep 2024; 14:2285. [PMID: 38280918 PMCID: PMC10821858 DOI: 10.1038/s41598-024-52711-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/23/2024] [Indexed: 01/29/2024] Open
Abstract
Participants judged the risk of an infection during a face to face conversation at different interpersonal distances from a SARS-CoV-2 infected person who wore a face mask or not, and in the same questionnaire answered questions about Corona related issues. Keeping a distance to an infected person serves as a protective measure against an infection. When an infected person moves closer, risk of infection increases. Participants were aware of this fact, but underestimated the rate at which the risk of infection increases when getting closer to an infected person, e.g., from 1.5 to 0.5 m (perceived risk increase = 3.33 times higher, objective = 9.00 times higher). This is alarming because it means that people can take risks of infection that they are not aware of or want to take, when they approach another possibly virus infected person. Correspondingly, when an infected person moves away the speed of risk decrease was underestimated, meaning that people are not aware of how much safer they will be if they move away from an infected person. The perceived risk reducing effects of a face mask were approximately correct. Judgments of infection risk at different interpersonal distances (with or without a mask) were unrelated to how often a person used a mask, avoided others or canceled meetings during the COVID-19 pandemic. Greater worry in general and in particular over COVID-19, correlated positively with more protective behavior during the pandemic, but not with judgments of infection risk at different interpersonal distances. Participants with higher scores on a cognitive numeracy test judged mask efficiency more correctly, and women were more worried and risk avoiding than men. The results have implications for understanding behavior in a pandemic, and are relevant for risk communications about the steep increase in risk when approaching a person who may be infected with an airborne virus.
Collapse
Affiliation(s)
- Ola Svenson
- Department of Psychology, Stockholm University, Stockholm, Sweden.
- Decision Research, Eugene, OR, USA.
| | - Freja Isohanni
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Ilkka Salo
- Department of Psychology, Lund University, Lund, Sweden
| | - Torun Lindholm
- Department of Psychology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
9
|
Chatziprodromidou IP, Savoglidou I, Stavrou V, Vantarakis G, Vantarakis A. Surveillance of Legionella spp. in Open Fountains: Does It Pose a Risk? Microorganisms 2022; 10:2458. [PMID: 36557711 PMCID: PMC9781103 DOI: 10.3390/microorganisms10122458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/21/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
Clusters of outbreaks or cases of legionellosis have been linked to fountains. The function of fountains, along with their inadequate design and poor sanitation, in combination with the warm Mediterranean climate, can favor the proliferation of Legionella in water systems. Public fountains in Mediterranean cities may pose a significant risk for public health due to the aerosolization of water. Nevertheless, few studies have been conducted on Legionella and the risk of infection in humans through fountains. In our study, the presence and quantity of Legionella spp. in fifteen external public fountains were investigated. Two samplings were performed in two different periods (dry and wet). Sixty samples were collected, quantified and analyzed with a culture ISO method. The operation of all fountains was evaluated twice using a standardized checklist. In accordance with their operation, a ranking factor (R factor) was suggested. Finally, based on these results, a quantitative microbial risk assessment was performed. Thirty water samples taken from the fountains (100%) during the dry sampling period were positive for Legionella (mean log concentration: 3.64 ± 0.45 cfu/L), whereas 24 water samples taken from the fountains during the wet period were Legionella-positive (mean log concentration: 2.36 ± 1.23 cfu/L). All fountains were classified as unsatisfactory according to the checklist for the evaluation of their function. A statistically significant correlation was found between Legionella concentration and the assessment score. The risk of Legionella infection was estimated in both periods, with higher risk in the dry period. The surveillance and risk assessment of Legionella spp. in the fountains of Patras confirmed a high prevalence and a high risk to public health.
Collapse
Affiliation(s)
- Ioanna P. Chatziprodromidou
- Environmental Microbiology, Department of Public Health, Medical School, University of Patras, 265 04 Patras, Greece
| | | | | | | | - Apostolos Vantarakis
- Environmental Microbiology, Department of Public Health, Medical School, University of Patras, 265 04 Patras, Greece
| |
Collapse
|
10
|
Shen Y, Haig SJ, Prussin AJ, LiPuma JJ, Marr LC, Raskin L. Shower water contributes viable nontuberculous mycobacteria to indoor air. PNAS NEXUS 2022; 1:pgac145. [PMID: 36712351 PMCID: PMC9802317 DOI: 10.1093/pnasnexus/pgac145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Nontuberculous mycobacteria (NTM) are frequently present in municipal drinking water and building plumbing, and some are believed to cause respiratory tract infections through inhalation of NTM-containing aerosols generated during showering. However, the present understanding of NTM transfer from water to air is insufficient to develop NTM risk mitigation strategies. This study aimed to characterize the contribution of shower water to the abundance of viable NTM in indoor air. Shower water and indoor air samples were collected, and 16S rRNA and rpoB genes were sequenced. The sequencing results showed that running the shower impacted the bacterial community structure and NTM species composition in indoor air by transferring certain bacteria from water to air. A mass balance model combined with NTM quantification results revealed that on average 1/132 and 1/254 of NTM cells in water were transferred to air during 1 hour of showering using a rain and massage showerhead, respectively. A large fraction of the bacteria transferred from water to air were membrane-damaged, i.e. they had compromised membranes based on analysis by live/dead staining and flow cytometry. However, the damaged NTM in air were recoverable as shown by growth in a culture medium mimicking the respiratory secretions of people with cystic fibrosis, implying a potential infection risk by NTM introduced to indoor air during shower running. Among the recovered NTM, Mycobacterium mucogenicum was the dominant species as determined by rpoB gene sequencing. Overall, this study lays the groundwork for future pathogen risk management and public health protection in the built environment.
Collapse
Affiliation(s)
| | | | - Aaron J Prussin
- Department of Civil and Environmental Engineering, Virginia Tech, 418 Durham Hall, Blacksburg, VA 24061, USA
| | - John J LiPuma
- Department of Pediatrics, University of Michigan Medical School, 1500 E. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Linsey C Marr
- Department of Civil and Environmental Engineering, Virginia Tech, 418 Durham Hall, Blacksburg, VA 24061, USA
| | | |
Collapse
|
11
|
Kermani M, Chegini Z, Mirkalantari S, Norzaee S. Assessment of the risk of Legionella pneumophila in water distribution systems in hospitals of Tehran city. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:842. [PMID: 36175694 DOI: 10.1007/s10661-022-10469-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
When a sensitive host inhales aerosols containing these bacteria, Legionella infection occurs. Therefore, monitoring and assessing Legionella in the environment and water distribution systems of such places are critical due to the prone population in hospitals. However, the health risks of Legionella bacteria in the environment are not adequately evaluated. In this study, for hospitalized patients, we performed a quantitative health risk assessment of Legionella in selected hospitals in Tehran city using two scenarios of shower and toilet faucet exposure. This study identified Legionella in 38 cases (38%) out of 100 samples collected from toilet faucets and showers in 8 hospitals. The information gathered was used for quantitative microbial risk assessment (QMRA). The microbial load transmitted by inhalation was calculated using the concentration of Legionella in water. Other exposure parameters (inhalation rate and exposure time) were obtained using information from other studies and the median length of hospital stay (3.6 days). The exponential model was used to estimate the risk of infection (γ = 0.06) due to Legionella pneumophila (L. pneumophila) inhalation for each exposure event. For the mean concentration obtained for Legionella (103 CFU/L), the risk of infection for toilet faucets and showers was in the range of 0.23-2.3 and 3.5-21.9, respectively, per 10,000 hospitalized patients. The results were compared with the tolerable risk level of infection determined by the US EPA and WHO. The risk values exceeded the WHO values for waterborne pathogens in hospitals in both exposure scenarios. As a result, our QMRA results based on monitoring data showed that despite using treated water (from distribution networks in the urban areas) by hospitals, 38% of the samples were contaminated with Legionella, and faucets and showers can be sources of Legionella transmission. Hence, to protect the health of hospitalized patients, the risk of Legionella infection should be considered.
Collapse
Affiliation(s)
- Majid Kermani
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shiva Mirkalantari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Samira Norzaee
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Wilson AM, Canter K, Abney SE, Gerba CP, Myers ER, Hanlin J, Reynolds KA. An application for relating Legionella shower water monitoring results to estimated health outcomes. WATER RESEARCH 2022; 221:118812. [PMID: 35816914 DOI: 10.1016/j.watres.2022.118812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Exposure models are useful tools for relating environmental monitoring data to expected health outcomes. The objective of this study was to (1) compare two Legionella shower exposure models, and (2) develop a risk calculator tool for relating environmental monitoring data to estimated Legionella infection risks and Legionnaires' Disease (LD) illness risks. Legionella infection risks for a single shower event were compared using two shower Legionella exposure models. These models varied in their description of partitioning of Legionella in aerosols and aerosol deposition in the lung, where Model 1 had larger and fewer aerosol ranges than Model 2. Model 2 described conventional vs. water efficient showers separately, while Model 1 described exposure for an unspecified shower type (did not describe it as conventional or water efficient). A Monte Carlo approach was used to account for variability and uncertainty in these aerosolization and deposition parameters, Legionella concentrations, and the dose-response parameter. Methods for relating infection risks to illness risks accounting for demographic differences were used to inform the risk calculator web application ("app"). Model 2 consistently estimated higher infection risks than Model 1 for the same Legionella concentration in water and estimated deposited doses with less variability. For a 7.8-min shower with a Legionella concentration of 0.1 CFU/mL, the average infection risks estimated using Model 2 were 4.8 × 10-6 (SD=3.0 × 10-6) (conventional shower) and 2.3 × 10-6 (SD=1.7 × 10-6) (water efficient). Average infection risk estimated by Model 1 was 1.1 × 10-6 (SD=9.7 × 10-7). Model 2 was used for app development due to more conservative risk estimates and less variability in estimated dose. While multiple Legionella shower models are available for quantitative microbial risk assessments (QMRAs), they may yield notably different infection risks for the same environmental microbial concentration. Model comparisons will inform decisions regarding their integration with risk assessment tools. The development of risk calculator tools for relating environmental microbiology data to infection risks will increase the impact of exposure models for informing water treatment decisions and achieving risk targets.
Collapse
Affiliation(s)
- Amanda M Wilson
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Avenue, Drachman Hall, PO Box: 245210, Tucson, AZ 85724, United States; Rocky Mountain Center for Occupational and Environmental Health, University of Utah, Salt Lake City, UT, United States
| | - Kelly Canter
- Ecolab Research, Development & Engineering, Eagan, MN, United States
| | - Sarah E Abney
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Avenue, Drachman Hall, PO Box: 245210, Tucson, AZ 85724, United States; Department of Soil, Water, and Environmental Science, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, United States
| | - Charles P Gerba
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Avenue, Drachman Hall, PO Box: 245210, Tucson, AZ 85724, United States; Department of Soil, Water, and Environmental Science, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, United States
| | - Eric R Myers
- Nalco Water, An Ecolab Company, Naperville, IL, United States
| | - John Hanlin
- Ecolab Research, Development & Engineering, Eagan, MN, United States
| | - Kelly A Reynolds
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Avenue, Drachman Hall, PO Box: 245210, Tucson, AZ 85724, United States.
| |
Collapse
|
13
|
Li B, Cai W. A novel CO 2-based demand-controlled ventilation strategy to limit the spread of COVID-19 in the indoor environment. BUILDING AND ENVIRONMENT 2022; 219:109232. [PMID: 35637641 PMCID: PMC9132786 DOI: 10.1016/j.buildenv.2022.109232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/03/2022] [Accepted: 05/23/2022] [Indexed: 05/09/2023]
Abstract
Ventilation is of critical importance to containing COVID-19 contagion in indoor environments. Keeping the ventilation rate at high level is recommended by many guidelines to dilute virus-laden respiratory particles and mitigate airborne transmission risk. However, high ventilation rate will cause high energy use. Demand-controlled ventilation is a promising technology option for controlling indoor air quality in an energy-efficient manner. This paper proposes a novel CO2-based demand-controlled ventilation strategy to limit the spread of COVID-19 in indoor environments. First, the quantitative relationship is established between COVID-19 infection risk and average CO2 level. Then, a sufficient condition is proposed to ensure COVID-19 event reproduction number is less than 1 under a conservative consideration of the number of infectors. Finally, a ventilation control scheme is designed to make sure the above condition can be satisfied. Case studies of different indoor environments have been conducted on a testbed of a real ventilation system to validate the effectiveness of the proposed strategy. Results show that the proposed strategy can efficiently maintain the reproduction number less than 1 to limit COVID-19 contagion while saving about 30%-50% of energy compared with the fixed ventilation scheme. The proposed strategy offers more practical values compared with existing studies: it is applicable to scenarios where there are multiple infectors, and the number of infectors varies with time; it only requires CO2 sensors and does not require occupancy detection sensors. Since CO2 sensors are very mature and low-cost, the proposed strategy is suitable for mass deployment in most existing ventilation systems.
Collapse
Affiliation(s)
- Bingxu Li
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore
| | - Wenjian Cai
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
14
|
Zhao X, Liu S, Yin Y, Zhang T(T, Chen Q. Airborne transmission of COVID-19 virus in enclosed spaces: An overview of research methods. INDOOR AIR 2022; 32:e13056. [PMID: 35762235 PMCID: PMC9349854 DOI: 10.1111/ina.13056] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 05/22/2023]
Abstract
Since the outbreak of COVID-19 in December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) has spread worldwide. This study summarized the transmission mechanisms of COVID-19 and their main influencing factors, such as airflow patterns, air temperature, relative humidity, and social distancing. The transmission characteristics in existing cases are providing more and more evidence that SARS CoV-2 can be transmitted through the air. This investigation reviewed probabilistic and deterministic research methods, such as the Wells-Riley equation, the dose-response model, the Monte-Carlo model, computational fluid dynamics (CFD) with the Eulerian method, CFD with the Lagrangian method, and the experimental approach, that have been used for studying the airborne transmission mechanism. The Wells-Riley equation and dose-response model are typically used for the assessment of the average infection risk. Only in combination with the Eulerian method or the Lagrangian method can these two methods obtain the spatial distribution of airborne particles' concentration and infection risk. In contrast with the Eulerian and Lagrangian methods, the Monte-Carlo model is suitable for studying the infection risk when the behavior of individuals is highly random. Although researchers tend to use numerical methods to study the airborne transmission mechanism of COVID-19, an experimental approach could often provide stronger evidence to prove the possibility of airborne transmission than a simple numerical model. All in all, the reviewed methods are helpful in the study of the airborne transmission mechanism of COVID-19 and epidemic prevention and control.
Collapse
Affiliation(s)
- Xingwang Zhao
- School of Energy and EnvironmentSoutheast UniversityNanjingChina
| | - Sumei Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality ControlSchool of Environmental Science and EngineeringTianjin UniversityTianjinChina
| | - Yonggao Yin
- School of Energy and EnvironmentSoutheast UniversityNanjingChina
- Engineering Research Center of Building Equipment, Energy, and EnvironmentMinistry of EducationNanjingChina
| | - Tengfei (Tim) Zhang
- Tianjin Key Laboratory of Indoor Air Environmental Quality ControlSchool of Environmental Science and EngineeringTianjin UniversityTianjinChina
| | - Qingyan Chen
- Department of Building Environment and Energy EngineeringThe Hong Kong Polytechnic UniversityKowloonHong Kong SARChina
| |
Collapse
|
15
|
Xu PC, Zhang CM, Wang XC. Numerical simulation for spatial distribution of water aerosol produced from nozzle spray and health risk related to Legionella pneumophila in spray scenarios. WATER RESEARCH 2022; 216:118304. [PMID: 35325820 DOI: 10.1016/j.watres.2022.118304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/22/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Water spray facilities are widely used in public places for sprinkling or beautifying the environment. However, the potential health risk induced by water aerosols increasingly calls for attention. In this study, the spatial distribution of water aerosols was investigated through the molecular sieve adsorption method, and predicted by discrete phase model (DPM). On this basis, the health risk regarding Legionella pneumophila for specific spray scenarios was evaluated by quantitative microbial risk assessment (QMRA). The results showed that the original droplet size can be described by the Rosin_Rommaler distribution (R2>0.99). The spatial distribution of water aerosols produced from a nozzle spray can be well predicted by the DPM. The concentration of water aerosols showed a sharp decline within 5 m from the nozzle and was not significantly different within 5 m (p>0.05) as for various spray scenarios. However, the difference was significant outside 5 m (p<0.05). Furthermore, a safe contact distance of exceeding 8 m is proposed in spray scenarios considering the risk threshold of 0.0001. Sensitivity analysis demonstrated the concentration of Legionella pneumophila in water aerosols as the critical factor affecting the health risk.
Collapse
Affiliation(s)
- Peng-Cheng Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Chong-Miao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Xiaochang C Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
16
|
Quantitative Microbial Risk Assessment Applied to Legionella Contamination on Long-Distance Public Transport. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19041960. [PMID: 35206148 PMCID: PMC8872098 DOI: 10.3390/ijerph19041960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/01/2023]
Abstract
The quantitative microbial risk assessment (QMRA) framework is used for assessing health risk coming from pathogens in the environment. In this paper, we used QMRA to evaluate the infection risk of L. pneumophila attributable to sink usage in a toilet cabin on Italian long-distance public transportation (LDT). LDT has water distribution systems with risk points for Legionella proliferation, as well as premise plumbing for drinking water, but they are not considered for risk assessment. Monitoring data revealed that approximately 55% of water samples (217/398) were positive for L. pneumophila, and the most frequently isolated was L. pneumophila sg1 (64%, 139/217); therefore, such data were fitted to the best probability distribution function to be used as a stochastic variable in the QMRA model. Then, a sink-specific aerosolization ratio was applied to calculate the inhaled dose, also considering inhalation rate and exposure time, which were used as stochastic parameters based on literature data. At L. pneumophila sg1 concentration ≤100 CFU/L, health risk was approximately 1 infection per 1 million exposures, with an increase of up to 5 infections per 10,000 exposures when the concentrations were ≥10,000 CFU/L. Our QMRA results showed a low Legionella infection risk from faucets on LDT; however, it deserves consideration since LDT can be used by people highly susceptible for the development of a severe form of the disease, owing to their immunological status or other predisposing factors. Further investigations could also evaluate Legionella-laden aerosols from toilet flushing.
Collapse
|
17
|
Liu Z, Xie Y, Hu X, Shi B, Lin X. A control strategy for cabin temperature of electric vehicle considering health ventilation for lowering virus infection. INTERNATIONAL JOURNAL OF THERMAL SCIENCES = REVUE GENERALE DE THERMIQUE 2022; 172:107371. [PMID: 34785972 PMCID: PMC8582288 DOI: 10.1016/j.ijthermalsci.2021.107371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 05/05/2023]
Abstract
A cooperative control strategy is proposed for the air conditioning (AC) system and ventilation system to reduce the risk of COVID-19 infection and save the energy of the AC system. This strategy integrates the dynamic model of the AC-cabin system, infection risk assessment, model predictive control (MPC) of the thermal environment inside the cabin, and ventilation control that considers passengers' sneezing. Unlike other existing AC system models, the thermal-health model established can describe not only the system performance but also the virus concentration and risk of COVID-19 infection using the Wells-Riley assessment model. Experiments are conducted to verify the prediction accuracy of the AC-cabin model. The results prove that the proposed model can accurately predict the evolution of cabin temperature under different cases. The cooperative control strategy of the AC system integrates the MPC-based refrigeration algorithm for the cabin temperature and intermittent ventilation strategy to reduce the risk of COVID-19 infection. This strategy well balances the control accuracy, energy consumption of the AC system, and the risk of COVID-19 infection, and greatly reduces the infection risk at the expense of a little rise in the energy consumption.
Collapse
Affiliation(s)
- Zhaoming Liu
- College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing, 400044, China
| | - Yi Xie
- College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing, 400044, China
| | - Xiaosong Hu
- College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing, 400044, China
| | - Bing Shi
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 404000, China
| | - Xianke Lin
- Department of Automotive and Mechatronics Engineering, Ontario Tech University, Oshawa, Ontario L1G 0C5, Canada
| |
Collapse
|
18
|
Li M, Song G, Liu R, Huang X, Liu H. Inactivation and risk control of pathogenic microorganisms in municipal sludge treatment: A review. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2022; 16:70. [PMID: 34608423 PMCID: PMC8482957 DOI: 10.1007/s11783-021-1504-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/28/2021] [Accepted: 07/12/2021] [Indexed: 05/05/2023]
Abstract
The rapid global spread of coronavirus disease 2019 (COVID-19) has promoted concern over human pathogens and their significant threats to public health security. The monitoring and control of human pathogens in public sanitation and health facilities are of great importance. Excessive sludge is an inevitable byproduct of sewage that contains human and animal feces in wastewater treatment plants (WWTPs). It is an important sink of different pollutants and pathogens, and the proper treatment and disposal of sludge are important to minimize potential risks to the environment and public health. However, there is a lack of comprehensive analysis of the diversity, exposure risks, assessment methods and inactivation techniques of pathogenic microorganisms in sludge. Based on this consideration, this review summarizes the control performance of pathogenic microorganisms such as enterovirus, Salmonella spp., and Escherichia coli by different sludge treatment technologies, including composting, anaerobic digestion, aerobic digestion, and microwave irradiation, and the mechanisms of pathogenic microorganism inactivation in sludge treatment processes are discussed. Additionally, this study reviews the diversity, detection methods, and exposure risks of pathogenic microorganisms in sludge. This review advances the quantitative assessment of pathogenic microorganism risks involved in sludge reuse and is practically valuable to optimize the treatment and disposal of sludge for pathogenic microorganism control.
Collapse
Affiliation(s)
- Mengtian Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ge Song
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ruiping Liu
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing, 100084 China
| | - Xia Huang
- School of Environment, Tsinghua University, Beijing, 100084 China
| | - Huijuan Liu
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
19
|
Hamilton KA, Kuppravalli A, Heida A, Joshi S, Haas CN, Verhougstraete M, Gerrity D. Legionnaires' disease in dental offices: Quantifying aerosol risks to dental workers and patients. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2021; 18:378-393. [PMID: 34161202 DOI: 10.1080/15459624.2021.1939878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Legionella pneumophila is an opportunistic bacterial respiratory pathogen that is one of the leading causes of drinking water outbreaks in the United States. Dental offices pose a potential risk for inhalation or aspiration of L. pneumophila due to the high surface area to volume ratio of dental unit water lines-a feature that is conducive to biofilm growth. This is coupled with the use of high-pressure water devices (e.g., ultrasonic scalers) that produce fine aerosols within the breathing zone. Prior research confirms that L. pneumophila occurs in dental unit water lines, but the associated human health risks have not been assessed. We aimed to: (1) synthesize the evidence for transmission and management of Legionnaires' disease in dental offices; (2) create a quantitative modeling framework for predicting associated L. pneumophila infection risk; and (3) highlight influential parameters and research gaps requiring further study. We reviewed outbreaks, management guidance, and exposure studies and used these data to parameterize a quantitative microbial risk assessment (QMRA) model for L. pneumophila in dental applications. Probabilities of infection for dental hygienists and patients were assessed on a per-exposure and annual basis. We also assessed the impact of varying ventilation rates and the use of personal protective equipment (PPE). Following an instrument purge (i.e., flush) and with a ventilation rate of 1.2 air changes per hour, the median per-exposure probability of infection for dental hygienists and patients exceeded a 1-in-10,000 infection risk benchmark. Per-exposure risks for workers during a purge and annual risks for workers wearing N95 masks did not exceed the benchmark. Increasing air change rates in the treatment room from 1.2 to 10 would achieve an ∼85% risk reduction, while utilization of N95 respirators would reduce risks by ∼95%. The concentration of L. pneumophila in dental unit water lines was a dominant parameter in the model and driver of risk. Future risk assessment efforts and refinement of microbiological control protocols would benefit from expanded occurrence datasets for L. pneumophila in dental applications.
Collapse
Affiliation(s)
- Kerry A Hamilton
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona
| | - Aditya Kuppravalli
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona
- BASIS Scottsdale High School, Scottsdale, Arizona
| | - Ashley Heida
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona
| | - Sayalee Joshi
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona
| | - Charles N Haas
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, Philadelphia, Pennsylvania
| | - Marc Verhougstraete
- Mel and Enid Zuckerman College of Public Health, The University of Arizona, Tucson, Arizona
| | | |
Collapse
|
20
|
Löhner R, Antil H, Srinivasan A, Idelsohn S, Oñate E. High-Fidelity Simulation of Pathogen Propagation, Transmission and Mitigation in the Built Environment. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2021; 28:4237-4262. [PMID: 34248352 PMCID: PMC8256653 DOI: 10.1007/s11831-021-09606-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/08/2021] [Indexed: 05/31/2023]
Abstract
An overview of high-fidelity modeling of pathogen propagation, transmission and mitigation in the built environment is given. In order to derive the required physical and numerical models, the current understanding of pathogen, and in particular virus transmission and mitigation is summarized. The ordinary and partial differential equations that describe the flow, the particles and possibly the UV radiation loads in rooms or HVAC ducts are presented, as well as proper numerical methods to solve them in an expedient way. Thereafter, the motion of pedestrians, as well as proper ways to couple computational fluid dynamics and computational crowd dynamics to enable high-fidelity pathogen transmission and infection simulations is treated. The present review shows that high-fidelity simulations of pathogen propagation, transmission and mitigation in the built environment have reached a high degree of sophistication, offering a quantum leap in accuracy from simpler probabilistic models. This is particularly the case when considering the propagation of pathogens via aerosols in the presence of moving pedestrians.
Collapse
Affiliation(s)
- Rainald Löhner
- Center for Computational Fluid Dynamics, College of Science, George Mason University, Fairfax, VA 22030-4444 USA
| | - Harbir Antil
- Center for Mathematics and Artificial Intelligence, College of Science, George Mason University, Fairfax, VA 22030-4444 USA
| | - Ashok Srinivasan
- Department of Computer Science, University of West Florida, Pensacola, FL 32514 USA
| | - Sergio Idelsohn
- Catalan Institution for Research and Advanced Studies, ICREA, Barcelona, Spain
- International Center for Numerical Methods in Engineering, CIMNE, Barcelona, Spain
| | - Eugenio Oñate
- International Center for Numerical Methods in Engineering, CIMNE, Barcelona, Spain
| |
Collapse
|
21
|
Mori J, Uprety S, Mao Y, Koloutsou-Vakakis S, Nguyen TH, Smith RL. Quantification and Comparison of Risks Associated with Wastewater Use in Spray Irrigation. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2021; 41:745-760. [PMID: 33084120 DOI: 10.1111/risa.13607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/12/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
In the U.S., spray irrigation is the most common method used in agriculture and supplementing with animal wastewater has the potential to reduce water demands. However, this could expose individuals to respiratory pathogens such as Legionella pneumophila and nontuberculosis Mycobacteria (NTM). Disinfection with methods like anaerobic digestion is an option but can increase concentrations of cytotoxic ammonia (personal communication). Our study aimed to model the annual risks of infection from these bacterial pathogens and the air concentrations of ammonia and determine if anaerobically digesting this wastewater is a safe option. Air dispersion modeling, conducted in AERMOD, generated air concentrations of water during the irrigation season (May-September) for the years 2013-2018. These values fed into the quantitative microbial risk assessments for the bacteria and allowed calculation of ammonia air concentrations. The outputs of these models were compared to the safety thresholds of 10-4 infections/year and 0.5 mg/m3 , respectively, to determine their potential for negative health outcomes. It was determined that infection from NTM was not a concern for individuals near active spray irrigators, but that infection with L. pneumophila could be a concern, with a maximum predicted annual risk of infection of 3.5 × 10-3 infections/year and 25.2% of parameter combinations exceeding the established threshold. Ammonia posed a minor risk, with 1.5% of parameter combinations surpassing the risk threshold of 0.5 mg/m3 . These findings suggest that animal wastewater should be anaerobically digested prior to use in irrigation to remove harmful pathogens.
Collapse
Affiliation(s)
- Jameson Mori
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sital Uprety
- Department of Civil & Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yuqing Mao
- Department of Civil & Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sotiria Koloutsou-Vakakis
- Department of Civil & Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Thanh H Nguyen
- Department of Civil & Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign
| | - Rebecca L Smith
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign
| |
Collapse
|
22
|
Kusumawardhana A, Zlatanovic L, Bosch A, van der Hoek JP. Microbiological Health Risk Assessment of Water Conservation Strategies: A Case Study in Amsterdam. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:2595. [PMID: 33807661 PMCID: PMC7967349 DOI: 10.3390/ijerph18052595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/24/2021] [Accepted: 03/03/2021] [Indexed: 11/24/2022]
Abstract
The aim of this study was to assess the health risks that may arise from the implementation of greywater reuse and rainwater harvesting for household use, especially for toilet flushing. In addition, the risk of cross connections between these systems and the drinking water system was considered. Quantitative microbial risk assessment (QMRA) is a method that uses mathematical modelling to estimate the risk of infection when exposure to pathogens happens and was used in this study to assess the health risks. The results showed that using rainwater without prior treatment for toilet flushing poses an annual infection risk from L. pneumophila at 0.64 per-person-per-year (pppy) which exceeds the Dutch standard of 10-4 pppy. The use of untreated greywater showed a risk that is below the standard. However, treatment is recommended due to the ability of P. aeruginosa to grow in the reuse system. Moreover, showering and drinking with cross-connected water has a high annual infection risk that exceeds the standard due to contact with Staphylococcus aureus and E. coli O157:H7. Several measures can be implemented to mitigate the risks such as treating the greywater and rainwater with a minimum of 5-log removal, closing the toilet lid while flushing, good design of greywater and rainwater collection systems, and rigorous plumbing installation procedures.
Collapse
Affiliation(s)
- Agung Kusumawardhana
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5, 2600 AA Delft, The Netherlands; (A.K.); (L.Z.)
| | - Ljiljana Zlatanovic
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5, 2600 AA Delft, The Netherlands; (A.K.); (L.Z.)
- Amsterdam Institute for Advanced Metropolitan Solutions, Kattenburgerstraat 5, 1018 JA Amsterdam, The Netherlands
- Water Supply Company Noord-Holland PWN, Rijksweg 501, 1991 AS Velserbroek, The Netherlands
| | - Arne Bosch
- Waternet, P.O. Box 94370, 1090 GJ Amsterdam, The Netherlands;
| | - Jan Peter van der Hoek
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5, 2600 AA Delft, The Netherlands; (A.K.); (L.Z.)
- Amsterdam Institute for Advanced Metropolitan Solutions, Kattenburgerstraat 5, 1018 JA Amsterdam, The Netherlands
- Waternet, P.O. Box 94370, 1090 GJ Amsterdam, The Netherlands;
| |
Collapse
|
23
|
Hozalski RM, LaPara TM, Zhao X, Kim T, Waak MB, Burch T, McCarty M. Flushing of Stagnant Premise Water Systems after the COVID-19 Shutdown Can Reduce Infection Risk by Legionella and Mycobacterium spp. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15914-15924. [PMID: 33232602 DOI: 10.1021/acs.est.0c06357] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
There is concern about potential exposure to opportunistic pathogens when reopening buildings closed due to the COVID-19 pandemic. In this study, water samples were collected before, during, and after flushing showers in five unoccupied (i.e., for ∼2 months) university buildings with quantification of opportunists via a cultivation-based assay (Legionella pneumophila only) and quantitative PCR. L. pneumophila were not detected by either method; Legionella spp., nontuberculous mycobacteria (NTM), and Mycobacterium avium complex (MAC), however, were widespread. Using quantitative microbial risk assessment (QMRA), the estimated risks of illness from exposure to L. pneumophila and MAC via showering were generally low (i.e., less than a 10-7 daily risk threshold), with the exception of systemic infection risk from MAC exposure in some buildings. Flushing rapidly restored the total chlorine (as chloramine) residual and decreased bacterial gene targets to building inlet concentrations within 30 min. During the postflush stagnation period, the residual chlorine dissipated within a few days and bacteria rebounded, approaching preflush concentrations after 6-7 days. These results suggest that flushing can quickly improve water quality in unoccupied buildings, but the improvement may only last a few days.
Collapse
Affiliation(s)
- Raymond M Hozalski
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis 55455, Minnesota, United States
| | - Timothy M LaPara
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis 55455, Minnesota, United States
| | - Xiaotian Zhao
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis 55455, Minnesota, United States
| | - Taegyu Kim
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis 55455, Minnesota, United States
| | - Michael B Waak
- Norwegian University of Science and Technology, Trondheim 7031, Norway
- Department of Infrastructure, SINTEF Community, Trondheim 7031, Norway
| | - Tucker Burch
- Agricultural Research Service, U.S. Department of Agriculture, Marshfield, Wisconsin 54449, United States
| | - Michael McCarty
- School of Public Health, University of Minnesota, Minneapolis 55455, Minnesota, United States
| |
Collapse
|
24
|
Reyneke B, Hamilton KA, Fernández-Ibáñez P, Polo-López MI, McGuigan KG, Khan S, Khan W. EMA-amplicon-based sequencing informs risk assessment analysis of water treatment systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140717. [PMID: 32679496 DOI: 10.1016/j.scitotenv.2020.140717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Illumina amplicon-based sequencing was coupled with ethidium monoazide bromide (EMA) pre-treatment to monitor the total viable bacterial community and subsequently identify and prioritise the target organisms for the health risk assessment of the untreated rainwater and rainwater treated using large-volume batch solar reactor prototypes installed in an informal settlement and rural farming community. Taxonomic assignments indicated that Legionella and Pseudomonas were the most frequently detected genera containing opportunistic bacterial pathogens in the untreated and treated rainwater at both sites. Additionally, Mycobacterium, Clostridium sensu stricto and Escherichia/Shigella displayed high (≥80%) detection frequencies in the untreated and/or treated rainwater samples at one or both sites. Numerous exposure scenarios (e.g. drinking, cleaning) were subsequently investigated and the health risk of using untreated and solar reactor treated rainwater in developing countries was quantified based on the presence of L. pneumophila, P. aeruginosa and E. coli. The solar reactor prototypes were able to reduce the health risk associated with E. coli and P. aeruginosa to below the 1 × 10-4 annual benchmark limit for all the non-potable uses of rainwater within the target communities (exception of showering for E. coli). However, the risk associated with intentional drinking of untreated or treated rainwater exceeded the benchmark limit (E. coli and P. aeruginosa). Additionally, while the solar reactor treatment reduced the risk associated with garden hosing and showering based on the presence of L. pneumophila, the risk estimates for both activities still exceeded the annual benchmark limit. The large-volume batch solar reactor prototypes were thus able to reduce the risk posed by the target bacteria for non-potable activities rainwater is commonly used for in water scarce regions of sub-Saharan Africa. This study highlights the need to assess water treatment systems in field trials using QMRA.
Collapse
Affiliation(s)
- B Reyneke
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| | - K A Hamilton
- School for Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, United States; The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ 85281, United States
| | - P Fernández-Ibáñez
- Plataforma Solar de Almeria-CIEMAT, P.O. Box 22, Tabernas, Almería, Spain; Nanotechnology and Integrated BioEngineering Centre, School of Engineering, University of Ulster, Newtownabbey, Northern Ireland, United Kingdom
| | - M I Polo-López
- Plataforma Solar de Almeria-CIEMAT, P.O. Box 22, Tabernas, Almería, Spain
| | - K G McGuigan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - S Khan
- Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein 2028, South Africa
| | - W Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa.
| |
Collapse
|
25
|
Paranjape K, Bédard É, Shetty D, Hu M, Choon FCP, Prévost M, Faucher SP. Unravelling the importance of the eukaryotic and bacterial communities and their relationship with Legionella spp. ecology in cooling towers: a complex network. MICROBIOME 2020; 8:157. [PMID: 33183356 PMCID: PMC7664032 DOI: 10.1186/s40168-020-00926-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Cooling towers are a major source of large community-associated outbreaks of Legionnaires' disease, a severe pneumonia. This disease is contracted when inhaling aerosols that are contaminated with bacteria from the genus Legionella, most importantly Legionella pneumophila. How cooling towers support the growth of this bacterium is still not well understood. As Legionella species are intracellular parasites of protozoa, it is assumed that protozoan community in cooling towers play an important role in Legionella ecology and outbreaks. However, the exact mechanism of how the eukaryotic community contributes to Legionella ecology is still unclear. Therefore, we used 18S rRNA gene amplicon sequencing to characterize the eukaryotic communities of 18 different cooling towers. The data from the eukaryotic community was then analysed with the bacterial community of the same towers in order to understand how each community could affect Legionella spp. ecology in cooling towers. RESULTS We identified several microbial groups in the cooling tower ecosystem associated with Legionella spp. that suggest the presence of a microbial loop in these systems. Dissolved organic carbon was shown to be a major factor in shaping the eukaryotic community and may be an important factor for Legionella ecology. Network analysis, based on co-occurrence, revealed that Legionella was correlated with a number of different organisms. Out of these, the bacterial genus Brevundimonas and the ciliate class Oligohymenophorea were shown, through in vitro experiments, to stimulate the growth of L. pneumophila through direct and indirect mechanisms. CONCLUSION Our results suggest that Legionella ecology depends on the host community, including ciliates and on several groups of organisms that contribute to its survival and growth in the cooling tower ecosystem. These findings further support the idea that some cooling tower microbiomes may promote the survival and growth of Legionella better than others. Video Abstract.
Collapse
Affiliation(s)
- Kiran Paranjape
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Émilie Bédard
- Department of Civil Engineering, Polytechnique Montreal, Montréal, QC, Canada
| | - Deeksha Shetty
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Mengqi Hu
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Fiona Chan Pak Choon
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Michèle Prévost
- Department of Civil Engineering, Polytechnique Montreal, Montréal, QC, Canada
| | - Sébastien P Faucher
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada.
| |
Collapse
|
26
|
Xu P, Zhang C, Mou X, Wang XC. Bioaerosol in a typical municipal wastewater treatment plant: concentration, size distribution, and health risk assessment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:1547-1559. [PMID: 33107849 DOI: 10.2166/wst.2020.416] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
An investigation on bioaerosol in a wastewater treatment plant (WWTP) located in Xi'an, China, was conducted to understand the characteristics of bioaerosol released from wastewater and sludge treatment facilities because the bioaerosols may pose a threat to human health. Using the Andersen impactor sampler collection and colony-counting method, bioaerosol concentrations and size distributions were detected. The risk quotient method was used to evaluate the health risks associated with inhalation of bioaerosol for WWTP staff, based on the average daily dose rates of exposure. The health risk in relation to Legionella pneumophila was quantitatively calculated using quantitative microbial risk assessment (QMRA), based on the assumption of the percentage. The maximum concentration of airborne bacteria (3,767 ± 280 colony forming units (CFU)/m3) and fungi (8,775 ± 406 CFU/m3) occurred from the aerated grit chamber and sludge thickening house, respectively, which all exceeded 500 CFU/m3 as the acceptable guideline proposed by the American Conference of Governmental Industrial Hygienists. The particle size of airborne bacteria was mainly distributed in the first three stages (>3.3 µm), while that of airborne fungi was from the second to the fourth stage (2.1-7.0 µm). The hazard index exposure to bioaerosol for adult males and females by inhalation were higher than 1. The proportion of L. pneumophila should be strictly controlled below 10-8, based on the QMRA approach.
Collapse
Affiliation(s)
- Pengcheng Xu
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China E-mail:
| | - Chongmiao Zhang
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China E-mail:
| | - Xiao Mou
- Shaanxi Institute for Food and Drug Control, Xi'an 710065, China
| | - Xiaochang C Wang
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China E-mail:
| |
Collapse
|
27
|
Zemouri C, Awad SF, Volgenant CMC, Crielaard W, Laheij AMGA, de Soet JJ. Modeling of the Transmission of Coronaviruses, Measles Virus, Influenza Virus, Mycobacterium tuberculosis, and Legionella pneumophila in Dental Clinics. J Dent Res 2020; 99:1192-1198. [PMID: 32614681 PMCID: PMC7444020 DOI: 10.1177/0022034520940288] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Dental health care workers are in close contact to their patients and are therefore at higher risk for contracting airborne infectious diseases. The transmission rates of airborne pathogens from patient to dental health care workers are unknown. With the outbreaks of infectious diseases, such as seasonal influenza, occasional outbreaks of measles and tuberculosis, and the current pandemic of the coronavirus disease COVID-19, it is important to estimate the risks for dental health care workers. Therefore, the transmission probability of these airborne infectious diseases was estimated via mathematical modeling. The transmission probability was modeled for Mycobacterium tuberculosis, Legionella pneumophila, measles virus, influenza virus, and coronaviruses per a modified version of the Wells-Riley equation. This equation incorporated the indoor air quality by using carbon dioxide as a proxy and added the respiratory protection rate from medical face masks and N95 respirators. Scenario-specific analyses, uncertainty analyses, and sensitivity analyses were run to produce probability rates. A high transmission probability was characterized by high patient infectiousness, the absence of respiratory protection, and poor indoor air quality. The highest transmission probabilities were estimated for measles virus (100%), coronaviruses (99.4%), influenza virus (89.4%), and M. tuberculosis (84.0%). The low-risk scenario leads to transmission probabilities of 4.5% for measles virus and 0% for the other pathogens. From the sensitivity analysis, it shows that the transmission probability is strongly driven by indoor air quality, followed by patient infectiousness, and the least by respiratory protection from medical face mask use. Airborne infection transmission of pathogens such as measles virus and coronaviruses is likely to occur in the dental practice. The risk magnitude, however, is highly dependent on specific conditions in each dental clinic. Improved indoor air quality by ventilation, which reduces carbon dioxide, is the most important factor that will either strongly increase or decrease the probability of the transmission of a pathogen.
Collapse
Affiliation(s)
- C Zemouri
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - S F Awad
- Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation, Doha, Qatar
| | - C M C Volgenant
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - W Crielaard
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - A M G A Laheij
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - J J de Soet
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
28
|
Huang C, Shen Y, Smith RL, Dong S, Nguyen TH. Effect of disinfectant residuals on infection risks from Legionella pneumophila released by biofilms grown under simulated premise plumbing conditions. ENVIRONMENT INTERNATIONAL 2020; 137:105561. [PMID: 32088542 DOI: 10.1016/j.envint.2020.105561] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
The ubiquitous presence of biofilms in premise plumbing and stagnation, which commonly occurs in premise plumbing, can exacerbate the decay of chlorine residual in drinking water. Using biofilms grown in a simulated premise plumbing setup fed directly with freshly treated water at two full-scale water treatment plants, we previously determined the mass transfer coefficients for chlorine decay in premise plumbing. These coefficients coupled with inactivation kinetics of L. pneumophila released from biofilms reported previously were integrated into a Monte Carlo framework to estimate the infection risk of biofilm-derived L. pneumophila from 1 to 48 h of stagnation. The annual infection risk was significantly higher when water stayed stagnant for up to 48 h in pipes covered internally with biofilms, compared to clean pipes without biofilms. The decay of residual chlorine due to biofilms during 48-hour stagnation led to up to 6 times increase in the annual infection risk compared to the case where biofilms was absent. Global sensitivity analysis revealed that the rate of L. pneumophila detachment from biofilms and the decay of chlorine residual during stagnation are the two most important factors influencing the infection risks. Stagnation caused by water use patterns and water-saving devices in the premise plumbing can lead to increased infection risk by biofilm-derived L. pneumophila. Overall, this study's findings suggested that biofilms could induce chlorine decay and consequently increase L. pneumophila infection risk. Thus, reducing stagnation, maintaining residual chlorine, and suppressing biofilm growth could contribute to better management of L. pneumophila infection risk.
Collapse
Affiliation(s)
- Conghui Huang
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Yun Shen
- Department of Chemical and Environmental Engineering, The University of California, Riverside, Riverside, CA 92521, United States
| | - Rebecca L Smith
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Shengkun Dong
- Guangdong Engineering Technology Research Center of Water Security Regulation and Control for Southern China, Key Laboratory of Water Cycle and Water Security in Southern China of Guangdong Higher Education Institute, School of Civil Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
29
|
An Advanced Risk Modeling Method to Estimate Legionellosis Risks Within a Diverse Population. WATER 2019. [DOI: 10.3390/w12010043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Quantitative microbial risk assessment (QMRA) is a computational science leveraged to optimize infectious disease controls at both population and individual levels. Often, diverse populations will have different health risks based on a population’s susceptibility or outcome severity due to heterogeneity within the host. Unfortunately, due to a host homogeneity assumption in the microbial dose-response models’ derivation, the current QMRA method of modeling exposure volume heterogeneity is not an accurate method for pathogens such as Legionella pneumophila. Therefore, a new method to model within-group heterogeneity is needed. The method developed in this research uses USA national incidence rates from the Centers for Disease Control and Prevention (CDC) to calculate proxies for the morbidity ratio that are descriptive of the within-group variability. From these proxies, an example QMRA model is developed to demonstrate their use. This method makes the QMRA results more representative of clinical outcomes and increases population-specific precision. Further, the risks estimated demonstrate a significant difference between demographic groups known to have heterogeneous health outcomes after infection. The method both improves fidelity to the real health impacts resulting from L. pneumophila infection and allows for the estimation of severe disability-adjusted life years (DALYs) for Legionnaires’ disease, moderate DALYs for Pontiac fever, and post-acute DALYs for sequela after recovering from Legionnaires’ disease.
Collapse
|
30
|
Dyke S, Barrass I, Pollock K, Hall IM. Dispersion of Legionella bacteria in atmosphere: A practical source location estimation method. PLoS One 2019; 14:e0224144. [PMID: 31765384 PMCID: PMC6876933 DOI: 10.1371/journal.pone.0224144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 10/06/2019] [Indexed: 11/29/2022] Open
Abstract
Legionnaires’ disease, a form of pneumonia which can be fatal, is transmitted via the inhalation of water droplets containing Legionella bacteria. These droplets can be dispersed in the atmosphere several kilometers from their source. The most common such sources are contaminated water within cooling towers and other air-conditioning systems but other sources such as ornamental fountains and spa pools have also caused outbreaks of the disease in the past. There is an obvious need to locate and eliminate any such sources as quickly as possible. Here a maximum likelihood model estimating the source of an outbreak from case location data has been developed and implemented. Unlike previous models, the average dose exposure sub-model is formulated using a atmospheric dispersion model. How the uncertainty in inferred parameters can be estimated is discussed. The model is applied to the 2012 Edinburgh Legionnaires’ disease outbreak.
Collapse
Affiliation(s)
- Steven Dyke
- Emergency Response Department Science and Technology (ERD S&T), Public Health England, Porton Down, Wiltshire, United Kingdom, SP4 0JG
| | - Iain Barrass
- Emergency Response Department Science and Technology (ERD S&T), Public Health England, Porton Down, Wiltshire, United Kingdom, SP4 0JG
| | - Kevin Pollock
- Health Protection Scotland, Glasgow, United Kingdom
- School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Ian M. Hall
- Emergency Response Department Science and Technology (ERD S&T), Public Health England, Porton Down, Wiltshire, United Kingdom, SP4 0JG
- * E-mail:
| |
Collapse
|
31
|
Reverse QMRA as a Decision Support Tool: Setting Acceptable Concentration Limits for Pseudomonas aeruginosa and Naegleria fowleri. WATER 2019. [DOI: 10.3390/w11091850] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Opportunistic premise plumbing pathogens such as Pseudomonas aeruginosa and Naegleria fowleri are a growing concern in building water systems because of their potential risks to human health. The aim of this study was to determine the critical concentrations of P. aeruginosa and N. fowleri in water that are associated with meaningful public health risks. To determine these concentrations, a reverse quantitative microbial risk assessment (QMRA) was conducted. Environmental concentrations of P. aeruginosa and N. fowleri corresponding to the risk target of one micro-disability-adjusted life year (DALY) per person per year and 10−4 annual risks of illness were calculated for several applicable exposure scenarios. To calculate the concentration of P. aeruginosa, cleaning contact lenses with potentially contaminated tap water in the absence of an appropriate cleaning solution was considered. For N. fowleri, two exposure scenarios, recreational exposure (swimming) and nasal cleansing (via the use of a neti pot™ or similar device) were considered. The highest critical concentration for P. aeruginosa was found to be 33 CFU/L with a 95% confidence interval of (2.0, 118) for the drop exposure scenario using the 10−4 annual risk target. For N. fowleri, based on the DALY approach, critical concentrations were 0.000030 N. fowleri/L for swimming and 0.00000060 N. fowleri/L for neti pot™ use scenario. Considering heat inactivation, the critical concentration limits for P. aeruginosa using the DALY approach and the 10−4 annual risk target approach were found to be 0.55 CFU/L and 55 CFU/L, respectively. For N. fowleri, the 10−4 annual risk target approach resulted in 0.022 N. fowleri/L and the DALY approach resulted in 0.00000064 N. fowleri/L for the neti pot™ scenario. For P. aeruginosa, N50 (the median infective dose) and alpha (α) contributed the most and contact rates the least to the variability and uncertainty of the estimates for all the scenarios. For N. fowleri, N50 and contact rates contributed the most and α the least to the variability and uncertainty to calculate the concentrations for all the scenarios. The QMRA framework implemented in this research can be used to incorporate more information regarding opportunistic pathogens to inform management decisions, and to prioritize the best interventions regarding estimated reduction in infections caused by opportunistic pathogens.
Collapse
|
32
|
Sharaby Y, Rodríguez-Martínez S, Höfle MG, Brettar I, Halpern M. Quantitative microbial risk assessment of Legionella pneumophila in a drinking water supply system in Israel. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:404-410. [PMID: 30933796 DOI: 10.1016/j.scitotenv.2019.03.287] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
Legionella pneumophila cause human infections via inhalation of contaminated water aerosols, resulting in severe pneumonia. Legionella spp. prevalence was monitored in a drinking-water distribution system (DWDS) in Northern Israel. Five points (toilet faucets and showers) were sampled seasonally along a three years period. Toilet faucets and shower use, both generating aerosols, are known transmission routes for this pathogen and thus, present a potential health risk. Quantitative Microbial Risk Assessment (QMRA) was applied in order to assess the health risks posed by Legionella for these two exposure scenarios, while considering Legionella seasonality. The obtained results were compared with estimated tolerable risk levels of infection and of disease set by the USEPA and WHO. Both limits were expressed as Disability-Adjusted Life Years index (DALY) being 1 × 10-4 and 1 × 10-6, respectively. The QMRA revealed that the annual risk levels for both faucets and showers use exceeded the acceptable risk of infection with an average of 5.52 × 10-4 and 2.37 × 10-3 DALY'S per person per year, respectively. Annual risk levels were stable with no significant differences between the three years. Risk levels varied significantly between seasons by up to three orders of magnitude. Risk levels were highest during summer, autumn, and lowest during winter. The highest seasonal infection risk values were found in summer for both faucets and showers, which corresponded to 8.09 × 10-4 and 2.75 × 10-3 DALY'S per person per year, respectively. In conclusion, during summer and autumn there is a significant increase of the infection risk associated with exposure to Legionella-contaminated aerosols, in the studied water system. Public health assessment and prevention measures should focus on these seasons.
Collapse
Affiliation(s)
- Y Sharaby
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| | - S Rodríguez-Martínez
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - M G Höfle
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - I Brettar
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - M Halpern
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel; Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Tivon, Israel
| |
Collapse
|
33
|
Hamilton KA, Hamilton MT, Johnson W, Jjemba P, Bukhari Z, LeChevallier M, Haas CN, Gurian PL. Risk-Based Critical Concentrations of Legionella pneumophila for Indoor Residential Water Uses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4528-4541. [PMID: 30629886 DOI: 10.1021/acs.est.8b03000] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Legionella spp. is a key contributor to the United States waterborne disease burden. Despite potentially widespread exposure, human disease is relatively uncommon, except under circumstances where pathogen concentrations are high, host immunity is low, or exposure to small-diameter aerosols occurs. Water quality guidance values for Legionella are available for building managers but are generally not based on technical criteria. To address this gap, a quantitative microbial risk assessment (QMRA) was conducted using target risk values in order to calculate corresponding critical concentrations on a per-fixture and aggregate (multiple fixture exposure) basis. Showers were the driving indoor exposure risk compared to sinks and toilets. Critical concentrations depended on the dose response model (infection vs clinical severity infection, CSI), risk target used (infection risk vs disability adjusted life years [DALY] on a per-exposure or annual basis), and fixture type (conventional vs water efficient or "green"). Median critical concentrations based on exposure to a combination of toilet, faucet, and shower aerosols ranged from ∼10-2 to ∼100 CFU per L and ∼101 to ∼103 CFU per L for infection and CSI dose response models, respectively. As infection model results for critical L. pneumophila concentrations were often below a feasible detection limit for culture-based assays, the use of CSI model results for nonhealthcare water systems with a 10-6 DALY pppy target (the more conservative target) would result in an estimate of 12.3 CFU per L (arithmetic mean of samples across multiple fixtures and/or over time). Single sample critical concentrations with a per-exposure-corrected DALY target at each conventional fixture would be 1.06 × 103 CFU per L (faucets), 8.84 × 103 CFU per L (toilets), and 14.4 CFU per L (showers). Using a 10-4 annual infection risk target would give a 1.20 × 103 CFU per L mean for multiple fixtures and single sample critical concentrations of 1.02 × 105, 8.59 × 105, and 1.40 × 103 CFU per L for faucets, toilets, and showers, respectively. Annual infection risk-based target estimates are in line with most current guidance documents of less than 1000 CFU per L, while DALY-based guidance suggests lower critical concentrations might be warranted in some cases. Furthermore, approximately <10 CFU per mL L. pneumophila may be appropriate for healthcare or susceptible population settings. This analysis underscores the importance of the choice of risk target as well as sampling program considerations when choosing the most appropriate critical concentration for use in public health guidance.
Collapse
Affiliation(s)
- Kerry A Hamilton
- School for Sustainable Engineering and the Built Environment , Arizona State University , Tempe , Arizona 85281 , United States
- The Biodesign Institute Center for Environmental Health Engineering , Arizona State University , Tempe , Arizona 85281 , United States
| | - Mark T Hamilton
- Microsoft Applied Artificial Intelligence Group , 1 Memorial Drive , Cambridge , Massachusetts 02142 , United States
| | - William Johnson
- American Water Research Laboratory , 213 Carriage Lane , Delran , New Jersey 08075 , United States
| | - Patrick Jjemba
- American Water Research Laboratory , 213 Carriage Lane , Delran , New Jersey 08075 , United States
| | - Zia Bukhari
- American Water Research Laboratory , 213 Carriage Lane , Delran , New Jersey 08075 , United States
| | - Mark LeChevallier
- American Water Research Laboratory , 213 Carriage Lane , Delran , New Jersey 08075 , United States
| | - Charles N Haas
- Drexel University , 3141 Chestnut Street , Philadelphia , Pennsylvania 19104 , United States
| | - P L Gurian
- Drexel University , 3141 Chestnut Street , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
34
|
Pepper IL, Gerba CP. Risk of infection from Legionella associated with spray irrigation of reclaimed water. WATER RESEARCH 2018; 139:101-107. [PMID: 29631185 DOI: 10.1016/j.watres.2018.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 03/16/2018] [Accepted: 04/01/2018] [Indexed: 06/08/2023]
Abstract
Legionella pneumophila has been detected in reclaimed water used for spray irrigation of turfgrass in public parks and golf courses. This study determined the risks of infection from exposure to various levels of Legionella in reclaimed waters considering: the method of spray application; and the duration and frequency of exposure. Evaluation of these factors resulted in a risk of infection greater than 1:10,000 for several scenarios when the number of Legionella in the reclaimed water exceeded 1000 colony-forming units (CFU) per ml. Most current guidelines for control of Legionella in distribution systems recommend that increased monitoring or remedial action be taken when Legionella levels exceed 1000 to 10,000 CFU/ml. Based upon our risk assessment, these guidelines seem appropriate for reclaimed water systems where spray irrigation is practiced.
Collapse
Affiliation(s)
- Ian L Pepper
- Department of Soil, Water and Environmental Science, University of Arizona, 2959 W. Calle Agua Nueva, Tucson, AZ, 85745, USA
| | - Charles P Gerba
- Department of Soil, Water and Environmental Science, University of Arizona, 2959 W. Calle Agua Nueva, Tucson, AZ, 85745, USA.
| |
Collapse
|
35
|
Hamilton KA, Prussin AJ, Ahmed W, Haas CN. Outbreaks of Legionnaires' Disease and Pontiac Fever 2006-2017. Curr Environ Health Rep 2018; 5:263-271. [PMID: 29744757 DOI: 10.1007/s40572-018-0201-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE OF REVIEW The global importance of Legionnaires' disease (LD) and Pontiac fever (PF) has grown in recent years. While sporadic cases of LD and PF do not always provide contextual information for evaluating causes and drivers of Legionella risks, analysis of outbreaks provides an opportunity to assess these factors. RECENT FINDINGS A review was performed and provides a summary of LD and PF outbreaks between 2006 and 2017. Of the 136 outbreaks, 115 were LD outbreaks, 4 were PF outbreaks, and 17 were mixed outbreaks of LD and PF. Cooling towers were implicated or suspected in the a large portion of LD or PF outbreaks (30% total outbreaks, 50% confirmed outbreak-associated cases, and 60% outbreak-associated deaths) over this period of time, while building water systems and pools/spas were also important contributors. Potable water/building water system outbreaks seldom identify specific building water system or fixture deficiencies. The outbreak data summarized here provides information for prioritizing and targeting risk analysis and mitigation strategies.
Collapse
Affiliation(s)
- K A Hamilton
- Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA.
| | - A J Prussin
- Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - W Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Brisbane, QLD, 4102, Australia
| | - C N Haas
- Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
36
|
Quantitative Microbial Risk Assessment and Opportunist Waterborne Infections⁻Are There Too Many Gaps to Fill? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15061150. [PMID: 29865180 PMCID: PMC6025005 DOI: 10.3390/ijerph15061150] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 01/14/2023]
Abstract
Quantitative microbial risk assessment (QMRA) is a relatively new approach in identifying health risks associated with the ubiquitous presence of pathogens and opportunists in the human environment. The methodology builds on experimental and meta-analytical data to identify measurable factors that contribute to, and can quantify, the likely extent of disease given a particular exposure. Early modelling was particularly focused on food-borne disease, and subsequently water-borne disease, with the emphasis focused on ingestion and its role in enteric disease. More recently, there has been a focus on translating these principles to opportunist waterborne infections (OWI) with primary focus on Legionella spp. Whereas dose and susceptibility are well documented via the ingestion route of exposure there is considerably less certainty regarding both factors when understanding Legionella spp. and other OWI. Many OWI can arise through numerous routes of transmission with greatly differing disease presentations. Routes of Legionella spp. infection do not include ingestion, but rather aspiration and inhalation of contaminated water are the routes of exposure. The susceptible population for OWI is a vulnerable sub-set of the population unlike those associated with enteric disease pathogens. These variabilities in dose, exposure and susceptibility call in to question whether QMRA can be a useful tool in managing risks associated with OWI. Consideration of Legionella spp. as a well-documented subject of research calls into question whether QMRA of OWI is likely to be a useful tool in developing risk management strategies.
Collapse
|
37
|
Hamilton KA, Hamilton MT, Johnson W, Jjemba P, Bukhari Z, LeChevallier M, Haas CN. Health risks from exposure to Legionella in reclaimed water aerosols: Toilet flushing, spray irrigation, and cooling towers. WATER RESEARCH 2018; 134:261-279. [PMID: 29428779 DOI: 10.1016/j.watres.2017.12.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/30/2017] [Accepted: 12/12/2017] [Indexed: 05/05/2023]
Abstract
The use of reclaimed water brings new challenges for the water industry in terms of maintaining water quality while increasing sustainability. Increased attention has been devoted to opportunistic pathogens, especially Legionella pneumophila, due to its growing importance as a portion of the waterborne disease burden in the United States. Infection occurs when a person inhales a mist containing Legionella bacteria. The top three uses for reclaimed water (cooling towers, spray irrigation, and toilet flushing) that generate aerosols were evaluated for Legionella health risks in reclaimed water using quantitative microbial risk assessment (QMRA). Risks are compared using data from nineteen United States reclaimed water utilities measured with culture-based methods, quantitative PCR (qPCR), and ethidium-monoazide-qPCR. Median toilet flushing annual infection risks exceeded 10-4 considering multiple toilet types, while median clinical severity infection risks did not exceed this value. Sprinkler and cooling tower risks varied depending on meteorological conditions and operational characteristics such as drift eliminator performance. However, the greatest differences between risk scenarios were due to 1) the dose response model used (infection or clinical severity infection) 2) population at risk considered (residential or occupational) and 3) differences in laboratory analytical method. Theoretical setback distances necessary to achieve a median annual infection risk level of 10-4 are proposed for spray irrigation and cooling towers. In both cooling tower and sprinkler cases, Legionella infection risks were non-trivial at potentially large setback distances, and indicate other simultaneous management practices could be needed to manage risks. The sensitivity analysis indicated that the most influential factors for variability in risks were the concentration of Legionella and aerosol partitioning and/or efficiency across all models, highlighting the importance of strategies to manage Legionella occurrence in reclaimed water.
Collapse
Affiliation(s)
- Kerry A Hamilton
- Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | | | - William Johnson
- American Water Research Laboratory, 213 Carriage Lane, Delran, New Jersey 08075, USA
| | - Patrick Jjemba
- American Water Research Laboratory, 213 Carriage Lane, Delran, New Jersey 08075, USA
| | - Zia Bukhari
- American Water Research Laboratory, 213 Carriage Lane, Delran, New Jersey 08075, USA
| | - Mark LeChevallier
- American Water Research Laboratory, 213 Carriage Lane, Delran, New Jersey 08075, USA
| | - Charles N Haas
- Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| |
Collapse
|
38
|
Al-Bloushi M, Saththasivam J, Al-Sayeghc S, Jeong S, Ng KC, Amy GL, Leiknes T. Performance assessment of oxidants as a biocide for biofouling control in industrial seawater cooling towers. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Perinel S, Forest V, Landraud M, Pourchez J, Girardot F, Riffard S, Stauffert M, Vergnon JM, Allegra S. Deposition pattern of aerosolized Legionella using an ex vivo human-porcine respiratory model. Int J Hyg Environ Health 2018; 221:252-259. [DOI: 10.1016/j.ijheh.2017.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/16/2017] [Accepted: 11/16/2017] [Indexed: 01/27/2023]
|
40
|
Blanky M, Sharaby Y, Rodríguez-Martínez S, Halpern M, Friedler E. Greywater reuse - Assessment of the health risk induced by Legionella pneumophila. WATER RESEARCH 2017; 125:410-417. [PMID: 28889040 DOI: 10.1016/j.watres.2017.08.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/20/2017] [Accepted: 08/25/2017] [Indexed: 06/07/2023]
Abstract
Greywater (GW), domestic wastewater excluding the streams generated by toilets and kitchens, can serve as an alternative water source. The main options for GW reuse are toilet flushing and garden irrigation, both generating aerosols. These may transmit inhalable pathogens like Legionella and present a potential health risk. This study quantified the health risk that may arise from inhalation of Legionella-contaminated aerosols due to non-potable GW reuse. Data on Legionella concentrations in potable water and GW was collected. Then, Quantitative Microbial Risk Assessment (QMRA) was performed for two possible exposure scenarios: garden irrigation and toilet flushing. This was performed while considering Legionella seasonality. In order to determine the safety of GW reuse regarding Legionella transmission, the obtained results were compared with estimated tolerable risk levels of infection and of disease. Both limits were expressed as Disability-Adjusted Life Years index (DALY) being 10-4 and 10-5, respectively. The QMRA revealed that the annual risk associated with reuse of treated and chlorinated GW for garden irrigation and toilet flushing was not significantly higher than the risk associated with using potable water for the same two purposes. In all studied scenarios, the health risk stemming from reusing treated and chlorinated GW was acceptable regarding Legionella infection. In contrast, reuse of untreated or treated but unchlorinated GW should not be practiced, as these are associated with significantly higher health risks.
Collapse
Affiliation(s)
- Marina Blanky
- Faculty of Civil and Environmental Engineering, Technion, Haifa, Israel
| | - Yehonatan Sharaby
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Sara Rodríguez-Martínez
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Malka Halpern
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel; Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Tivon, Israel.
| | - Eran Friedler
- Faculty of Civil and Environmental Engineering, Technion, Haifa, Israel
| |
Collapse
|
41
|
Experimental human-like model to assess the part of viable Legionella reaching the thoracic region after nebulization. PLoS One 2017; 12:e0186042. [PMID: 28982141 PMCID: PMC5628919 DOI: 10.1371/journal.pone.0186042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 09/25/2017] [Indexed: 11/24/2022] Open
Abstract
The incidence of Legionnaires’ disease (LD) in European countries and the USA has been constantly increasing since 1998. Infection of humans occurs through aerosol inhalation. To bridge the existing gap between the concentration of Legionella in a water network and the deposition of bacteria within the thoracic region (assessment of the number of viable Legionella), we validated a model mimicking realistic exposure through the use of (i) recent technology for aerosol generation and (ii) a 3D replicate of the human upper respiratory tract. The model’s sensitivity was determined by monitoring the deposition of (i) aerosolized water and Tc99m radio-aerosol as controls, and (ii) bioaerosols generated from both Escherichia coli and Legionella pneumophila sg 1 suspensions. The numbers of viable Legionella prior to and after nebulization were provided by culture, flow cytometry and qPCR. This study was designed to obtain more realistic data on aerosol inhalation (vs. animal experimentation) and deposition at the thoracic region in the context of LD. Upon nebulization, 40% and 48% of the initial Legionella inoculum was made of cultivable and non-cultivable cells, respectively; 0.7% of both populations reached the filter holder mimicking the thoracic region in this setup. These results are in agreement with experimental data based on quantitative microbial risk assessment methods and bring new methods that may be useful for preventing LD.
Collapse
|
42
|
Prussin AJ, Schwake DO, Marr LC. Ten Questions Concerning the Aerosolization and Transmission of Legionella in the Built Environment. BUILDING AND ENVIRONMENT 2017; 123:684-695. [PMID: 29104349 PMCID: PMC5665586 DOI: 10.1016/j.buildenv.2017.06.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Legionella is a genus of pathogenic Gram-negative bacteria responsible for a serious disease known as legionellosis, which is transmitted via inhalation of this pathogen in aerosol form. There are two forms of legionellosis: Legionnaires' disease, which causes pneumonia-like symptoms, and Pontiac fever, which causes influenza-like symptoms. Legionella can be aerosolized from various water sources in the built environment including showers, faucets, hot tubs/swimming pools, cooling towers, and fountains. Incidence of the disease is higher in the summertime, possibly because of increased use of cooling towers for air conditioning systems and differences in water chemistry when outdoor temperatures are higher. Although there have been decades of research related to Legionella transmission, many knowledge gaps remain. While conventional wisdom suggests that showering is an important source of exposure in buildings, existing measurements do not provide strong support for this idea. There has been limited research on the potential for Legionella transmission through heating, ventilation, and air conditioning (HVAC) systems. Epidemiological data suggest a large proportion of legionellosis cases go unreported, as most people who are infected do not seek medical attention. Additionally, controlled laboratory studies examining water-to-air transfer and source tracking are still needed. Herein, we discuss ten questions that spotlight current knowledge about Legionella transmission in the built environment, engineering controls that might prevent future disease outbreaks, and future research that is needed to advance understanding of transmission and control of legionellosis.
Collapse
Affiliation(s)
- Aaron J. Prussin
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
- Corresponding Author:
| | - David Otto Schwake
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Linsey C. Marr
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
43
|
Hamilton KA, Ahmed W, Toze S, Haas CN. Human health risks for Legionella and Mycobacterium avium complex (MAC) from potable and non-potable uses of roof-harvested rainwater. WATER RESEARCH 2017; 119:288-303. [PMID: 28500949 DOI: 10.1016/j.watres.2017.04.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/30/2017] [Accepted: 04/02/2017] [Indexed: 05/25/2023]
Abstract
A quantitative microbial risk assessment (QMRA) of opportunistic pathogens Legionella pneumophila (LP) and Mycobacterium avium complex (MAC) was undertaken for various uses of roof-harvested rainwater (RHRW) reported in Queensland, Australia to identify appropriate usages and guide risk management practices. Risks from inhalation of aerosols due to showering, swimming in pools topped up with RHRW, use of a garden hose, car washing, and toilet flushing with RHRW were considered for LP while both ingestion (drinking, produce consumption, and accidental ingestion from various activities) and inhalation risks were considered for MAC. The drinking water route of exposure presented the greatest risks due to cervical lymphadenitis and disseminated infection health endpoints for children and immune-compromised populations, respectively. It is therefore not recommended that these populations consume untreated rainwater. LP risks were up to 6 orders of magnitude higher than MAC risks for the inhalation route of exposure for all scenarios. Both inhalation and ingestion QMRA simulations support that while drinking, showering, and garden hosing with RHRW may present the highest risks, car washing and clothes washing could constitute appropriate uses of RHRW for all populations, and toilet flushing and consumption of lettuce irrigation with RHRW would be appropriate for non- immune-compromised populations.
Collapse
Affiliation(s)
- Kerry A Hamilton
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia; Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - Simon Toze
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - Charles N Haas
- Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| |
Collapse
|
44
|
Heppell CW, Egan JR, Hall I. A human time dose response model for Q fever. Epidemics 2017; 21:30-38. [PMID: 28666604 PMCID: PMC5729200 DOI: 10.1016/j.epidem.2017.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 12/16/2022] Open
Abstract
The causative agent of Q fever, Coxiella burnetii, has the potential to be developed for use in biological warfare and it is classified as a bioterrorism threat agent by the Centers for Disease Control and Prevention (CDC) and as a category B select agent by the National Institute of Allergy and Infectious Diseases (NIAID). In this paper we focus on the in-host properties that arise when an individual inhales a dose of C. burnetii and establish a human time-dose response model. We also propagate uncertainty throughout the model allowing us to robustly estimate key properties including the infectious dose and incubation period. Using human study data conducted in the 1950's we conclude that the dose required for a 50% probability of infection is about 15 organisms, and that one inhaled organism of C. burnetti can cause infection in 5% of the exposed population. In addition, we derive a low dose incubation period of 17.6 days and an extracellular doubling time of half a day. In conclusion this paper provides a framework for detailing the parameters and approaches that would be required for risk assessments associated with exposures to C. burnetii that might cause human infection.
Collapse
Affiliation(s)
| | - Joseph R Egan
- University of Southampton, Hampshire SO17 1BJ, United Kingdom.
| | - Ian Hall
- Public Health England, Porton, Wiltshire SP4 0JG, United Kingdom.
| |
Collapse
|
45
|
Prasad B, Hamilton KA, Haas CN. Incorporating Time-Dose-Response into Legionella Outbreak Models. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2017; 37:291-304. [PMID: 27228068 DOI: 10.1111/risa.12630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 02/05/2016] [Accepted: 02/13/2016] [Indexed: 06/05/2023]
Abstract
A novel method was used to incorporate in vivo host-pathogen dynamics into a new robust outbreak model for legionellosis. Dose-response and time-dose-response (TDR) models were generated for Legionella longbeachae exposure to mice via the intratracheal route using a maximum likelihood estimation approach. The best-fit TDR model was then incorporated into two L. pneumophila outbreak models: an outbreak that occurred at a spa in Japan, and one that occurred in a Melbourne aquarium. The best-fit TDR from the murine dosing study was the beta-Poisson with exponential-reciprocal dependency model, which had a minimized deviance of 32.9. This model was tested against other incubation distributions in the Japan outbreak, and performed consistently well, with reported deviances ranging from 32 to 35. In the case of the Melbourne outbreak, the exponential model with exponential dependency was tested against non-time-dependent distributions to explore the performance of the time-dependent model with the lowest number of parameters. This model reported low minimized deviances around 8 for the Weibull, gamma, and lognormal exposure distribution cases. This work shows that the incorporation of a time factor into outbreak distributions provides models with acceptable fits that can provide insight into the in vivo dynamics of the host-pathogen system.
Collapse
Affiliation(s)
- Bidya Prasad
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, Philadelphia, PA, USA
| | - Kerry A Hamilton
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, Philadelphia, PA, USA
| | - Charles N Haas
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
46
|
Hamilton KA, Weir MH, Haas CN. Dose response models and a quantitative microbial risk assessment framework for the Mycobacterium avium complex that account for recent developments in molecular biology, taxonomy, and epidemiology. WATER RESEARCH 2017; 109:310-326. [PMID: 27915187 DOI: 10.1016/j.watres.2016.11.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/20/2016] [Accepted: 11/22/2016] [Indexed: 06/06/2023]
Abstract
Mycobacterium avium complex (MAC) is a group of environmentally-transmitted pathogens of great public health importance. This group is known to be harbored, amplified, and selected for more human-virulent characteristics by amoeba species in aquatic biofilms. However, a quantitative microbial risk assessment (QMRA) has not been performed due to the lack of dose response models resulting from significant heterogeneity within even a single species or subspecies of MAC, as well as the range of human susceptibilities to mycobacterial disease. The primary human-relevant species and subspecies responsible for the majority of the human disease burden and present in drinking water, biofilms, and soil are M. avium subsp. hominissuis, M. intracellulare, and M. chimaera. A critical review of the published literature identified important health endpoints, exposure routes, and susceptible populations for MAC risk assessment. In addition, data sets for quantitative dose-response functions were extracted from published in vivo animal dosing experiments. As a result, seven new exponential dose response models for human-relevant species of MAC with endpoints of lung lesions, death, disseminated infection, liver infection, and lymph node lesions are proposed. Although current physical and biochemical tests used in clinical settings do not differentiate between M. avium and M. intracellulare, differentiating between environmental species and subspecies of the MAC can aid in the assessment of health risks and control of MAC sources. A framework is proposed for incorporating the proposed dose response models into susceptible population- and exposure route-specific QMRA models.
Collapse
Affiliation(s)
- Kerry A Hamilton
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | - Mark H Weir
- Division of Environmental Health Sciences and Department of Civil Environmental and Geodetic Engineering, The Ohio State University, USA
| | - Charles N Haas
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| |
Collapse
|
47
|
Mizrahi H, Peretz A, Lesnik R, Aizenberg-Gershtein Y, Rodríguez-Martínez S, Sharaby Y, Pastukh N, Brettar I, Höfle MG, Halpern M. Comparison of sputum microbiome of legionellosis-associated patients and other pneumonia patients: indications for polybacterial infections. Sci Rep 2017; 7:40114. [PMID: 28059171 PMCID: PMC5216348 DOI: 10.1038/srep40114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 12/02/2016] [Indexed: 02/08/2023] Open
Abstract
Bacteria of the genus Legionella cause water-based infections resulting in severe pneumonia. Here we analyze and compare the bacterial microbiome of sputum samples from pneumonia patients in relation to the presence and abundance of the genus Legionella. The prevalence of Legionella species was determined by culture, PCR, and Next Generation Sequencing (NGS). Nine sputum samples out of the 133 analyzed were PCR-positive using Legionella genus-specific primers. Only one sample was positive by culture. Illumina MiSeq 16S rRNA gene sequencing analyses of Legionella-positive and Legionella-negative sputum samples, confirmed that indeed, Legionella was present in the PCR-positive sputum samples. This approach allowed the identification of the sputum microbiome at the genus level, and for Legionella genus at the species and sub-species level. 42% of the sputum samples were dominated by Streptococcus. Legionella was never the dominating genus and was always accompanied by other respiratory pathogens. Interestingly, sputum samples that were Legionella positive were inhabited by aquatic bacteria that have been observed in an association with amoeba, indicating that amoeba might have transferred Legionella from the drinking water together with its microbiome. This is the first study that demonstrates the sputum major bacterial commensals and pathogens profiles with regard to Legionella presence.
Collapse
Affiliation(s)
- Hila Mizrahi
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa, Israel
- Microbiology Lab, Baruch Padeh Medical Center, Poriya, affiliated with the Faculty of Medicine, Bar Ilan University, Israel
| | - Avi Peretz
- Microbiology Lab, Baruch Padeh Medical Center, Poriya, affiliated with the Faculty of Medicine, Bar Ilan University, Israel
| | - René Lesnik
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Yana Aizenberg-Gershtein
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa, Israel
| | - Sara Rodríguez-Martínez
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa, Israel
| | - Yehonatan Sharaby
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa, Israel
| | - Nina Pastukh
- Microbiology Lab, Baruch Padeh Medical Center, Poriya, affiliated with the Faculty of Medicine, Bar Ilan University, Israel
| | - Ingrid Brettar
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Manfred G. Höfle
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Malka Halpern
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa, Israel
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Tivon, Israel
| |
Collapse
|
48
|
Characterization of aerosols containing Legionella generated upon nebulization. Sci Rep 2016; 6:33998. [PMID: 27671446 PMCID: PMC5037422 DOI: 10.1038/srep33998] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/01/2016] [Indexed: 01/01/2023] Open
Abstract
Legionella pneumophila is, by far, the species most frequently associated with Legionnaires' disease (LD). Human infection occurs almost exclusively by aerosol inhalation which places the bacteria in juxtaposition with alveolar macrophages. LD risk management is based on controlling water quality by applying standardized procedures. However, to gain a better understanding of the real risk of exposure, there is a need (i) to investigate under which conditions Legionella may be aerosolized and (ii) to quantify bacterial deposition into the respiratory tract upon nebulization. In this study, we used an original experimental set-up that enables the generation of aerosol particles containing L. pneumophila under various conditions. Using flow cytometry in combination with qPCR and culture, we determined (i) the size of the aerosols and (ii) the concentration of viable Legionella forms that may reach the thoracic region. We determined that the 0.26-2.5 μm aerosol size range represents 7% of initial bacterial suspension. Among the viable forms, 0.7% of initial viable bacterial suspension may reach the pulmonary alveoli. In conclusion, these deposition profiles can be used to standardize the size of inoculum injected in any type of respiratory tract model to obtain new insights into the dose response for LD.
Collapse
|
49
|
Benami M, Busgang A, Gillor O, Gross A. Quantification and risks associated with bacterial aerosols near domestic greywater-treatment systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 562:344-352. [PMID: 27100014 DOI: 10.1016/j.scitotenv.2016.03.200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 03/28/2016] [Accepted: 03/28/2016] [Indexed: 05/13/2023]
Abstract
Greywater (GW) reuse can alleviate water stress by lowering freshwater consumption. However, GW contains pathogens that may compromise public health. During the GW-treatment process, bioaerosols can be produced and may be hazardous to human health if inhaled, ingested, or come in contact with skin. Using air-particle monitoring, BioSampler®, and settle plates we sampled bioaerosols emitted from recirculating vertical flow constructed wetlands (RVFCW) - a domestic GW-treatment system. An array of pathogens and indicators were monitored using settle plates and by culturing the BioSampler® liquid. Further enumeration of viable pathogens in the BioSampler® liquid utilized a newer method combining the benefits of enrichment with molecular detection (MPN-qPCR). Additionally, quantitative microbial risk assessment (QMRA) was applied to assess risks of infection from a representative skin pathogen, Staphylococcus aureus. According to the settle-plate technique, low amounts (0-9.7×10(4)CFUm(-2)h(-1)) of heterotrophic bacteria, Staphylococcus spp., Pseudomonas spp., Klebsiella pneumoniae, Enterococcus spp., and Escherichia coli were found to aerosolize up to 1m away from the GW systems. At the 5m distance amounts of these bacteria were not statistically different (p>0.05) from background concentrations tested over 50m away from the systems. Using the BioSampler®, no bacteria were detected before enrichment of the GW-aerosols. However, after enrichment, using an MPN-qPCR technique, viable indicators and pathogens were occasionally detected. Consequently, the QMRA results were below the critical disability-adjusted life year (DALY) safety limits, a measure of overall disease burden, for S. aureus under the tested exposure scenarios. Our study suggests that health risks from aerosolizing pathogens near RVFCW GW-treatment systems are likely low. This study also emphasizes the growing need for standardization of bioaerosol-evaluation techniques to provide more accurate quantification of small amounts of viable, aerosolized bacterial pathogens.
Collapse
Affiliation(s)
- Maya Benami
- Zuckerberg Institute for Water Research, Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben Gurion 84990, Israel
| | - Allison Busgang
- Zuckerberg Institute for Water Research, Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben Gurion 84990, Israel
| | - Osnat Gillor
- Zuckerberg Institute for Water Research, Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben Gurion 84990, Israel
| | - Amit Gross
- Zuckerberg Institute for Water Research, Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben Gurion 84990, Israel.
| |
Collapse
|
50
|
You S, Wan MP. A Risk Assessment Scheme of Infection Transmission Indoors Incorporating the Impact of Resuspension. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2015; 35:1488-1502. [PMID: 25808677 DOI: 10.1111/risa.12350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A new risk assessment scheme was developed to quantify the impact of resuspension to infection transmission indoors. Airborne and surface pathogenic particle concentration models including the effect of two major resuspension scenarios (airflow-induced particle resuspension [AIPR] and walking-induced particle resuspension [WIPR]) were derived based on two-compartment mass balance models and validated against experimental data found in the literature. The inhalation exposure to pathogenic particles was estimated using the derived airborne concentration model, and subsequently incorporated into a dose-response model to assess the infection risk. Using the proposed risk assessment scheme, the influences of resuspension towards indoor infection transmission were examined by two hypothetical case studies. In the case of AIPR, the infection risk increased from 0 to 0.54 during 0-0.5 hours and from 0.54 to 0.57 during 0.5-4 hours. In the case of WIPR, the infection risk increased from 0 to 0.87 during 0-0.5 hours and from 0.87 to 1 during 0.5-4 hours. Sensitivity analysis was conducted based on the design-of-experiments method and showed that the factors that are related to the inspiratory rate of viable pathogens and pathogen virulence have the most significant effect on the infection probability under the occurrence of AIPR and WIPR. The risk assessment scheme could serve as an effective tool for the risk assessment of infection transmission indoors.
Collapse
Affiliation(s)
- Siming You
- Department of Civil & Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Man Pun Wan
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Nanyang, Singapore
| |
Collapse
|